
FEDERAL UNIVERSITY OF AMAZONAS - UFAM

INSTITUTE OF COMPUTING - ICOMP

GRADUATE PROGRAM IN INFORMATICS - PPGI

Bayesian and Neural Ranking Approaches for

Supporting Schema References in Keyword Queries over

Relational Databases

Paulo Rodrigo Oliveira Martins

Manaus, AM, Brazil

July 2024

Paulo Rodrigo Oliveira Martins

Bayesian and Neural Ranking Approaches for

Supporting Schema References in Keyword Queries over

Relational Databases

Thesis submitted for evaluation as a final require-
ment for obtaining the degree of Doctor in Infor-
matics from the Graduate Program in Informatics,
Institute of Computing.

Advisor

Altigran Soares da Silva

Federal University of Amazonas - UFAM

Institute of Computing - IComp

Manaus, AM, Brazil

July 2024

Ficha Catalográfica

M386b Bayesian and neural ranking approaches for supporting schema
references in keyword queries over relational databases / Paulo
Rodrigo Oliveira Martins . 2024
 121 f.: il. color; 31 cm.

 Orientador: Altigran Soares da Silva
 Tese (Doutorado em Informática) - Universidade Federal do
Amazonas.

 1. Keyword Search. 2. Database Systems. 3. Keyword Search
over Relation Databases. 4. Bayesian and Neural approaches. 5.
Sentence Transformers. I. Silva, Altigran Soares da. II.
Universidade Federal do Amazonas III. Título

Ficha catalográfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

Martins, Paulo Rodrigo Oliveira

Ministério da Educação
Universidade Federal do Amazonas

Coordenação do Programa de Pós-Graduação em Informática

FOLHA DE APROVAÇÃO

"BAYESIAN AND NEURAL RANKING APPROACHES FOR SUPPORTING
SCHEMA REFERENCES IN KEYWORD QUERIES OVER RELATIONAL

DATABASES"

PAULO RODRIGO OLIVEIRA MARTINS

Tese de Doutorado defendida e aprovada pela banca examinadora

constituída pelos Professores:

Prof. Dr. Altigran Soares da Silva - Presidente

Prof. Dr. Eduardo Cunha de Almeida - Membro Externo

Prof. Dr. Edleno Silva Moura - Membro Interno

Prof. Dr. João Marcos Bastos Cavalcanti - Membro Interno

Dr. Johny Moreira da Silva - Membro Externo

Manaus, 16 de agosto de 2024.

Anexo CPPGI-ICOMP 2196169 SEI 23105.035857/2024-53 / pg. 1

Documento assinado eletronicamente por Altigran Soares da Silva,
Professor do Magistério Superior, em 19/08/2024, às 17:05, conforme
horário oficial de Manaus, com fundamento no art. 6º, § 1º, do Decreto nº
8.539, de 8 de outubro de 2015.
Documento assinado eletronicamente por Eduardo Cunha de Almeida,
Usuário Externo, em 20/08/2024, às 15:51, conforme horário oficial de
Manaus, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de
outubro de 2015.

Documento assinado eletronicamente por Johny Moreira da Silva, Usuário
Externo, em 21/08/2024, às 16:11, conforme horário oficial de Manaus, com
fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

Documento assinado eletronicamente por Edleno Silva de Moura, Professor
do Magistério Superior, em 22/08/2024, às 10:14, conforme horário oficial
de Manaus, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de
outubro de 2015.
Documento assinado eletronicamente por João Marcos Bastos Cavalcanti,
Professor do Magistério Superior, em 22/08/2024, às 10:44, conforme
horário oficial de Manaus, com fundamento no art. 6º, § 1º, do Decreto nº
8.539, de 8 de outubro de 2015.
Documento assinado eletronicamente por Maria do Perpétuo Socorro
Vasconcelos Palheta, Secretária, em 22/08/2024, às 12:08, conforme
horário oficial de Manaus, com fundamento no art. 6º, § 1º, do Decreto nº
8.539, de 8 de outubro de 2015.

A autenticidade deste documento pode ser conferida no site
https://sei.ufam.edu.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código
verificador 2196169 e o código CRC 55CAF68B.

Avenida General Rodrigo Octávio, 6200 - Bairro Coroado I Campus Universitário

Senador Arthur Virgílio Filho, Setor Norte - Telefone: (92) 3305-1181 / Ramal 1193
CEP 69080-900, Manaus/AM, coordenadorppgi@icomp.ufam.edu.br​

Referência: Processo nº 23105.035857/2024-53 SEI nº 2196169

Anexo CPPGI-ICOMP 2196169 SEI 23105.035857/2024-53 / pg. 2

http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
https://sei.ufam.edu.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior - Brasil (CAPES) - Finance Code 001. This work was partially supported by
Amazonas State Research Support Foundation - FAPEAM - through the POSGRAD project.

iii

“Why is programming fun? What delights may its practitioner expect as his reward?

First is the sheer joy of making things. As the child delights in his mud pie, so the adult enjoys

building things, especially things of his own design. I think this delight must be an image of

God’s delight in making things, a delight shown in the distinctness and newness of each leaf

and each snowflake.”

(Fred Brooks)

iv

Abstract

Relational Keyword Search (R-KwS) systems enable naive/informal users to explore and
retrieve information from relational databases without knowing schema details or query
languages. These systems take the keywords from the input query, locate the elements of
the target database that correspond to these keywords, and look for ways to “connect” these
elements using information on referential integrity constraints, i.e., key/foreign key pairs.
Although several such systems have been proposed in the literature, most of them only support
queries whose keywords refer to the contents of the target database. Very few support queries
in which keywords refer to elements of the database schema. In this work, we propose
Lathe, a novel R-KwS designed to support such queries. To this end, we first generalize
the well-known concepts of Query Matches (QMs) and Candidate Joining Networks (CJNs)
to handle keywords referring to schema elements and propose new algorithms to generate
them. Then, we introduce an approach to automatically select the CJNs that are more likely
to represent the user intent when issuing a keyword query. Our key contributions are a
novel Bayesian-based QM ranking algorithm that prioritizes relevant QMs, avoiding the
processing of less likely answers, an effective Bayesian CJN ranking algorithm leveraging
QM rankings to prioritize and evaluate relevant CJNs, an eager CJN evaluation strategy that
discards spurious CJNs early, and a novel transformer-based neural approach for QM ranking
and CJN ranking, leading to improved results on metrics such as recall and R@k. We present
a comprehensive set of experiments performed with query sets and datasets previously used
in experiments with state-of-the-art R-KwS systems and methods. Our results indicate that
Lathe can handle a wider variety of keyword queries while remaining highly effective, even
for large databases with intricate schemas. Additionally, we developed PyLatheDB, a Python
library for Relational Keyword Search that implements Lathe.

v

Resumo

Sistemas de Busca por Palavra-Chave em Banco de Dados Relacional (R-KwS) permitem
que usuários leigos ou informais explorem e recuperem informações de bancos de dados
relacionais sem precisar conhecer detalhes do esquema ou linguagens de consulta. Esses
sistemas utilizam as palavras-chave da consulta de entrada, localizam os elementos do banco
de dados que correspondem a essas palavras-chave e buscam maneiras de “conectar” esses
elementos usando informações sobre restrições de integridade referencial, isto é, o par
chave/chave estrangeira. Embora vários desses sistemas tenham sido propostos na literatura, a
maioria deles suporta apenas consultas cujas palavras-chave se referem ao conteúdo do banco
de dados. Poucos sistemas oferecem suporte a consultas em que as palavras-chave se referem
a elementos do esquema do banco de dados. Neste trabalho, propomos o Lathe, um novo
R-KwS projetado para suportar esse tipo de consulta. Para isso, primeiro generalizamos os
conceitos conhecidos de Query Matches (QMs) e Candidate Joining Networks (CJNs) para
lidar com palavras-chave que se referem a elementos do esquema e propomos novos algoritmos
para gerá-los. Em seguida, introduzimos uma abordagem para selecionar automaticamente
as CJNs que têm maior probabilidade de representar a intenção do usuário ao fazer uma
consulta por palavras-chave. Nossas principais contribuições incluem um novo algoritmo de
ranqueamento de QMs bayesiano, que prioriza QMs relevantes, evitando o processamento de
respostas menos prováveis; um algoritmo de ranqueamento de CJNs também bayesiano que
utiliza o ranqueamento de QMs para priorizar e avaliar CJNs relevantes; uma estratégia de
eager evaluation que descarta CJNs espúrias logo que são criadas; e uma nova abordagem
neural baseada em transformers para ranqueamento de QMs e CJNs, resultando em melhorias
em métricas como recall e R@k. Apresentamos um conjunto abrangente de experimentos
realizados com conjuntos de consultas e dados previamente utilizados em experimentos com
sistemas e métodos de R-KwS de última geração. Nossos resultados indicam que o Lathe
é capaz de lidar com uma variedade maior de consultas por palavras-chave, mantendo-se
altamente eficaz, mesmo para grandes bancos de dados com esquemas complexos. Além
disso, desenvolvemos o PyLatheDB, uma biblioteca Python para Busca por Palavra-Chave
em Banco de Dados Relacional que implementa o Lathe.

v

List of Figures

3.1 A simplified excerpt from IMDB . 12

3.2 SQL queries generated for the keyword query “will smith movies” and their
returned results. 13

3.3 Main phases and architecture of Lathe . 14

3.4 Examples of combinations of keywords matches that comprises a query match. 15

6.1 A schema graph for the sample movie database of Figure 3.1 25

6.2 A simplified excerpt from MONDIAL . 27

7.1 Bayesian Network corresponding to the query Q = {will, smith, films} 31

8.1 Pipelines for Lathe . 36

8.2 Sentence translation of the keyword query . 38

8.3 Sentence translation of query matches. 40

8.4 Mean Approach for CJN Linearization . 41

8.5 Combination Approach for CJN Linearization 41

8.6 CJNs and their results returned from the database. 41

8.7 Sentence representations for the candidate joining networks CJN1 and CJN2. . 42

8.8 Training examples for the QM ranking fine-tuning 43

8.9 Sentence representations for the candidate joining networks CJN1 and CJN2. . 44

8.10 Results for the template T1. 45

8.11 Keyword Queries and and Answers for the template T1. 45

9.1 Comparison of Lathe with the QUEST system. 52

9.2 Comparison with other approaches using Recall and P@1 metrics 52

9.3 Evaluation of Query Matches . 53

9.4 Ranking of Candidate Joining Networks - IMDb (top) and IMDb-DI (bottom) . 54

9.5 Ranking of Candidate Joining Networks - MONDIAL (top) and MONDIAL-DI
(bottom) . 55

9.6 Ranking of Candidate Joining Networks - Yelp 56

vi

9.7 Average Execution Times for each phase of Lathe. The QM generation time for
the MONDIAL and MONDIAL-DI query sets is in the range of microseconds,
therefore this minimal time does not appear prominently in the chart due to the
scale. 57

9.8 Performance Evaluation of the CJN Generating phase 58
9.9 Evaluation of the Neural QM ranking on all datasets (Average for MMR and

Recall, and Max for Max Recall Position). 60
9.10 Evaluation of the Neural QM ranking on the IMDb dataset. 62
9.11 Evaluation of the Neural QM ranking on the MONDIAL dataset. 62
9.12 Evaluation of the Neural QM ranking on the Yelp dataset. 63
9.13 Neural CJN Ranking - All Datasets . 65
9.14 Neural CJN Ranking - IMDb . 66
9.15 Neural CJN Ranking - MONDIAL . 67
9.16 Neural CJN Ranking - Yelp . 67
9.17 Evaluation of the performance of Neural QM models on the IMDb dataset. . . 69
9.18 Evaluation of the performance of Neural QM models on the MONDIAL dataset. 70
9.19 Evaluation of the performance of Neural QM models on the Yelp dataset. . . . 70
9.20 Evaluation of the performance of neural CJN ranking models on datasets IMDb

and MONDIAL. 72
9.21 Evaluation of the performance of CJN Ranking models on the Yelp dataset. . . 72

10.1 KMs and QMs for the query “julia roberts films” 75
10.2 CJNs for the query “julia roberts films” . 75

11.1 An excerpt from collections in the Yelp! database 78
11.2 CJN for the keyword query . 78
11.3 MongoDB Structured Query (left) and its results for the keyword query (right). 79
11.4 Example of a natural language query . 79
11.5 SQL query returned by PyLatheDB (left), and SQL query enhanced with implicit

operations (right). 80

vii

List of Tables

3.1 Keyword matched for the query "will smith films" 15

9.1 Datasets we used in our experiments . 47
9.2 Query sets we used in our experiments . 48
9.3 Statistics for the CJN process of each query set. 50
9.4 Neural QM Ranking Models . 60
9.5 CJN Ranking Models . 64

10.1 Main Modules Implemented in PyLatheDB. 74

G.1 CJN Ranking Models . 106

viii

Contents

Acknowledgments iii

Abstract v

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Motivation . 2

1.2 Methodology . 2

1.3 Hypotheses and Research Questions . 3

1.4 Key Contributions . 4

1.5 Document Outline . 5

2 Background and Related Work 6
2.1 Relational Keyword Search Systems . 6

2.2 R-KwS Systems based on Schema Graphs 7

2.3 Support to Schema References in R-KwS 8

2.4 Deep Neural Networks and Tabular Data 9

3 Lathe Overview 12
3.1 System Architecture . 13

4 Keyword Matching 17
4.1 Value-Keyword Matching . 17

4.2 Schema-Keyword Matching . 19

4.3 Generalization of Keyword Matches . 21

5 Query Matching 22

ix

5.1 Query Matches Generation . 22

6 Candidate Joining Networks 24
6.1 Candidate Joining Network Pruning . 28

7 Bayesian Ranking 30
7.1 Query Matches Ranking . 30
7.2 Candidate Joining Networks Ranking . 33

8 Neural Ranking 35
8.1 Neural Ranking . 37

8.1.1 QM Ranking . 37
8.1.2 CJN Ranking . 38

8.2 Linearization . 38
8.2.1 QM Linearization . 40
8.2.2 CJN Linearization . 40

8.3 Fine-Tuning . 42
8.3.1 QM Ranking Fine-tuning . 42
8.3.2 CJN Ranking Fine-tuning . 43

8.4 Data Augmentation . 43

9 Experiments 46
9.1 Experimental Setup . 46
9.2 Preliminary Results: CJN Generation . 50
9.3 Experimental Results: Bayesian Ranking . 51

9.3.1 Comparison with other R-KwS systems 51
9.3.2 Evaluation of Query Matches Ranking 53
9.3.3 Evaluation of the Candidate Joining Network Ranking 54
9.3.4 Performance Evaluation . 56
9.3.5 Quality versus Performance . 57

9.4 Experimental Results: Neural Ranking . 59
9.4.1 Neural QM Ranking . 59
9.4.2 Neural CJN Ranking . 63
9.4.3 Performance Analysis: Neural Models 68
9.4.4 Final Remarks . 73

10 PyLatheDB 74

11 Further Developments 77

x

11.1 SEREIA . 77
11.2 Exverbis . 79

12 Conclusions 81

Bibliography 84

Appendix A VKMGen Algorithm 91

Appendix B SKMGen Algorithm 94

Appendix C QMGen Algorithm 96

Appendix D Bayesian QMRank Algorithm 99

Appendix E Sound Theorem 101

Appendix F CJNGen Algorithm 103
F.1 Maximum Node Degree . 105
F.2 Maximum Number of Keyword-free Matches 105

Appendix G Neural Models Table 106

xi

Chapter 1

Introduction

Keyword Search over Relational Databases (R-KwS) enables naive/informal users to retrieve
information from relational databases (DBs) without any knowledge about schema details or
query languages. The success of search engines shows that untrained users are at ease using
keyword search to find information of interest. However, enabling users to search relational
DBs using keyword queries is a challenging task, because the information sought frequently
spans multiple relations and attributes, depending on the schema design of the underlying DB.
As a result, R-KwS systems face the challenge of automatically determining which pieces
of information to retrieve from the database and how to connect them to provide a relevant
answer to the user.

In the last two decades, the R-KwS was extensively studied in academia, which
lead to several improvements in performance and effectiveness. A well-known approach
for R-KwS is to generate Candidate Joining Networks (CJNs), which are networks of
joined database relations that are translated into SQL queries whose results provide an
answer to the input keyword query. The first algorithm for CJN generation is CNGen,
which was first presented in the DISCOVER system [Hristidis and Papakonstantinou, 2002],
but was later adopted by most R-KwS systems [Agrawal et al., 2002, Hristidis et al., 2003,
Luo et al., 2007, Coffman and Weaver, 2010b]. Despite the possible large number of CJNs,
most works in the literature focused on improving CJN evaluation and ranking the returned
results from the database, which can be seen as Joining Networks of Tuples (JNTs), in-
stead. Specifically, DISCOVER II [Hristidis et al., 2003], SPARK [Luo et al., 2007], and CD
[Coffman and Weaver, 2010b] used information retrieval (IR) style score functions to rank
the top-K JNTs. KwS-F [Baid et al., 2010] imposed a time limit for the evaluation of CJNs,
returning potentially partial results, as well as a summary of CJNs that have yet to be evaluated.
Later, CNRank [Oliveira et al., 2015] introduced a CJN ranking, requiring only the top-ranked
CJNs to be evaluated. MatCNGen [Oliveira et al., 2018, de Oliveira et al., 2020] proposed a

1

2 CHAPTER 1. INTRODUCTION

novel method for generating CJNs that efficiently enumerated the possible matches for the
query in the DB. These Query Matches (QMs) are then used to guide the CJN generation
process, greatly decreasing the number of CJNs generated and improving the performance of
the CJN evaluation.

1.1 Motivation

In general, the keywords from a query may refer to both database values, such as tuples
containing these keywords, and schema elements, such as relation and attribute names. For
instance, consider the query “will smith films” over a database on movies. Keywords
“will” and “smith” may refer to values of person names. The keyword “films” on the
other hand, is more likely to refer to a schema element, the name of the relation about
movies. Although a significant number of query keywords correspond to schema references
[Bergamaschi et al., 2011a], the majority of previous work on R-KwS systems in the literature
does not support references to schema information such as the one in the above query. As
a result, given a query, they will search for attributes whose tuples include the keyword
“films”, which is unlikely to yield a useful answer for the user.

Another important issue is that there may exist several void CJNs, that is, CJNs whose
execution against the database return empty results. Therefore, match-based approaches
[Oliveira et al., 2018, de Oliveira et al., 2020], which consider only a number of CJNs for
each QM, may not generate any useful CJN for the relevant QM. As a result, the quality of
results of such approaches is decreased, especially for databases with intricate schema.

1.2 Methodology

In this work, we study new techniques to support schema references in keyword queries
over relational databases. Specifically, we propose Lathe1, a new R-KwS system to
generate a suitable SQL query from a keyword query, considering that keywords may
refer either to instance values or to elements of the database schema, that is, rela-
tions and attributes. Lathe follows the Schema Graph approach for R-KwS systems
[Oliveira et al., 2018, Coffman and Weaver, 2010a]. Given a keyword query, this approach
consists of generating relational algebra expressions called Candidate Joining Networks2

(CJNs), which are likely to express user intent when formulating the original query. The

1The name Lathe refers to the fact that our system assigns a structure or form to an unstructured keyword-
based query

2Most of the previous work uses the term Candidate Networks instead. Here, we use Candidate Joining
Networks because we consider it more meaningful.

1.3. HYPOTHESES AND RESEARCH QUESTIONS 3

generated CJNs are evaluated, that is, they are translated into SQL queries and executed by a
DBMS, resulting in several Joining Networks of Tuples (JNTs) that are collected and supplied
to the user.

Among the methods based on the Schema Graph approach, Lathe is, to the best
of our knowledge, the first method to address the problem of generating and rank-
ing CJNs considering queries with keywords that can refer to either schema elements
or attribute values. We revisited and generalized concepts introduced in previous ap-
proaches [Hristidis and Papakonstantinou, 2002, Oliveira et al., 2015, Oliveira et al., 2018,
de Oliveira et al., 2020], such as tuples-sets, QMs, and the CJNs themselves, to enable schema
references.

In addition, we proposed a more effective approach to CJN generation that four major
novel contributions a Bayesian QM ranking, a Bayesian CJN Ranking, an Eager CJN Evalu-
ation technique, and a Neural approach for QM Ranking and CJN Ranking. Lathe roughly
matches keywords to the values of attributes or to schema elements such as names of attributes
and relations. Next, the system combines the keyword matches into QMs that cover all the
keywords from the query. The QMs are ranked, using either a Bayesian or a neural approach,
so that only the most relevant ones are used to generate CJNs. The CJN generation explores
the primary key/foreign key relationships to connect all the elements of the QMs. In addition,
Lathe employs an eager CJN evaluation strategy, which ensures that all CJNs generated will
yield nonempty results when evaluated. The CJNs are then ranked using either a Bayesian or
a neural approach, and evaluated. Finally, the CJN evaluation results are delivered to the user.
Unlike the previous methods, Lathe provides the user with the most relevant answer without
relying on JNTs rankings. This is due to the effective rankings of QMs and CJNs that we
propose, which are absent from the majority of previous work.

1.3 Hypotheses and Research Questions

Hypothesis 1. The support of schema references leads to better recall while still maintaining

the effectiveness of the system.

Q 1.1. How to extend existing algorithms in R-KwS to support schema references?

Q 1.2. Which similarity function can be used to match keywords to schema elements?

Q 1.3. What is the impact of matching keywords to attributes instead of relations, as it was
done with tuple-sets?

Hypothesis 2. Advancing part of the CJN Ranking and applying it to ranking QMs decrease

the number of CJNs generated, while maintaining the effectiveness of CJN Ranking.

4 CHAPTER 1. INTRODUCTION

Q 2.1. How does QM Ranking affect the final results returned to the user?

Hypothesis 3. An eager evaluation strategy for CJN Generation improves the quality of CJN

Ranking by pruning spurious CJNs that do not yield any information to the user.

Q 3.1. What is the trade-off of adopting a CJN evaluation strategy?

Q 3.2. How to implement this strategy efficiently?

Q 3.3. Is eager CJN evaluation more effective for databases with intricate schema?

Hypothesis 4. A neural approach based on sentence-transformer models provides superior

QM Ranking and CJN Ranking in comparison to the traditional Bayesian approach, improving

the quality of results.

Q 4.1. What models are adequate for ranking QMs and CJNs?

Q 4.2. How to represent QMs and CJNs as sentences for the transformer-based models?

Q 4.3. How to fine-tune the models for QM and CJN ranking?

Q 4.4. Can we implement a data augmentation strategy to minimize the need for manually
labeling training data for fine-tuning?

1.4 Key Contributions

Our key contributions are: (i) a novel method for generating and ranking CJNs that supports
keywords referring to schema elements and instance values; (ii) a novel Bayesian-based QM
ranking algorithm that prioritizes relevant QMs, avoiding the processing of less likely answers;
(iii) an effective Bayesian CJN ranking algorithm leveraging QM rankings to prioritize and
evaluate relevant CJNs; (iv) an eager CJN evaluation strategy that discards spurious CJNs
early; (v) a novel transformer-based neural approach for QM ranking and CJN ranking,
leading to improved results on metrics such as Recall and R@k.

We performed several experiments to assess the effectiveness and efficiency of Lathe.
Initially, we compared the quality of its results with those obtained from several previous
R-KwS systems, including the state-of-the-art QUEST [Bergamaschi et al., 2013] system,
using a benchmark proposed by Coffman & Weaver [Coffman and Weaver, 2010a]. We then
evaluated the quality of our novel QM ranking and assessed the CJN ranking by comparing
different configurations in terms of the number of QMs, the number of CJNs generated per
QM, and the use of the eager evaluation strategy. Additionally, we assessed the speed of
each phase of Lathe, as well as the trade-off between quality and speed for various system
configurations. Moreover, we performed experiments comparing the Bayesian approach and
the Neural approach, considering several transformer-based models. Overall, Lathe achieved

1.5. DOCUMENT OUTLINE 5

better results than all R-KwS systems tested in our experiments. Our results indicate that the
novel QM ranking and eager CJN evaluation greatly improved the quality of CJN generation.
Finally, we also developed PyLatheDB [Martins et al., 2023a], a Python library for Relational
Keyword Search that implements Lathe. The library source code and demonstration are
available at https://github.com/bdri-ufam/PyLatheDB.

1.5 Document Outline

The outline of the remainder of this thesis is as follows. Chapter 2 reviews the related
literature on relational keyword search systems based on schema graphs and support for
schema references. Chapter 3 summarizes all phases of our method, which are discussed in
detail in Chapter 4-8. Chapter 9 summarizes the findings of the experiments we conducted.
Chapter 10 presents PyLatheDB, a Python library for R-KwS, which implements Lathe.
Chapter 11 summarizes additional developments, systems, and research projects derived from
this research. Chapter 12 concludes the thesis, providing a final reflection on the research
outcomes, key findings, and plans for future work.

https://github.com/bdri-ufam/PyLatheDB

Chapter 2

Background and Related Work

In this chapter, we discuss the background and related work on keyword search systems over
relational databases, supporting schema references in such systems, and deep neural networks
(DNNs) applied to tabular data. For a more comprehensive view of the state-of-the-art in
keyword-based and natural language queries over databases, we refer the interested reader to
a survey on this matter [Affolter et al., 2019].

2.1 Relational Keyword Search Systems

Current R-KwS systems fall in one of two distinct categories: systems based on Schema

Graphs and systems based on Instance Graphs. Systems in the first category are
based on the concept of Candidate Joining Networks (CJNs), which are networks of
joined relations that are used to generate SQL queries and whose evaluation return
several Joining Networks of Tuples (JNTs) which are collected and supplied to the
user. This method was proposed in DISCOVER [Hristidis and Papakonstantinou, 2002]
and DBXplorer [Agrawal et al., 2002], and it was later adopted by several other sys-
tems, including DISCOVER-II [Hristidis et al., 2003], SPARK [Luo et al., 2007], CD
[Coffman and Weaver, 2010b], KwS-F [Baid et al., 2010], CNRank [Oliveira et al., 2015],
and MatCNGen [Oliveira et al., 2018, de Oliveira et al., 2020]. Systems in this category
make use of the underlying basic functionality of the RDBMS by generating appropriate SQL
queries to retrieve answers to keyword queries posed by users.

Systems in the second category are based on a structure called Instance Graph, whose
nodes represent tuples associated with the keywords they contain, and the edges connect these
tuples based on referential integrity constraints. BANKS [Aditya et al., 2002], BANKS-II
[Kacholia et al., 2005], BLINKS [He et al., 2007] and, Effective [Liu et al., 2006] use this ap-
proach to compute keyword queries results by finding subtrees in a data graph that minimizes

6

2.2. R-KWS SYSTEMS BASED ON SCHEMA GRAPHS 7

the distance between nodes matching the given keywords. These systems typically generate
the query answer in a single phase that combines the tuple retrieval task and the answer
schema extraction. However, the Instance Graph approach requires a materialization of the
DB and requests a higher computational cost to deliver answers to the user. Furthermore, the
important structural information provided by the database schema is ignored, once the data
graph has been built.

2.2 R-KwS Systems based on Schema Graphs

In our research, we focus on systems based on Schema Graphs, since we assume that the
data we want to query are stored in a relational database and we want to use an RDBMS
capable of processing SQL queries. Also, our work expands on the concepts and terminol-
ogy introduced in DISCOVER [Hristidis and Papakonstantinou, 2002, Hristidis et al., 2003],
and expanded in CNRank [Oliveira et al., 2015] and MatCNGen [Oliveira et al., 2018,
de Oliveira et al., 2020]. We expanded this formal framework to handle keyword queries
that may refer to attribute values or to database schema elements. As a result, it inherits and
maintains all guarantees regarding the generation of complete, sound, and meaningful CJNs.

The best-known algorithm for CJN Generation is CNGen, which was introduced in DIS-
COVER [Hristidis and Papakonstantinou, 2002], and was later adopted as a default in most
of the R-KwS systems proposed in the literature [Agrawal et al., 2002, Hristidis et al., 2003,
Luo et al., 2007, Coffman and Weaver, 2010b]. This algorithm employs a Breadth-First
Search approach [Cormen et al., 2009] to generate a complete, non-redundant set of CJNs.
As a result, CNGen frequently generates a large number of CJNs, resulting in a costly CJN
generation and evaluation process.

Initially, most of the subsequent work focused solely on the CJN evaluation, which
may generate a large number of JNTs. DISCOVER-II [Hristidis et al., 2003], SPARK
[Luo et al., 2007], and CD [Coffman and Weaver, 2010b] introduced algorithms for ranking
JNTs using IR style score functions.

KwS-F [Baid et al., 2010] addressed the efficiency and scalability problems in CJN
evaluation in a different way. Their approach consists of two steps. First, a limit is imposed
on the time the system spends evaluating CJNs. After this limit is reached, the system must
return the (possibly partial) top-K JNTs. Second, if there are any CJNs that have yet to be
evaluated, they are presented to the user in the form of query forms, from which the user can
choose one and the system will evaluate the corresponding CJN.

CNRank [Oliveira et al., 2015] proposed a method for lowering the cost of CJN eval-
uation by ranking them based on the likelihood that they will provide relevant answers to

8 CHAPTER 2. BACKGROUND AND RELATED WORK

the user. Specifically, CNRank presented a probabilistic ranking model that uses a Bayesian

Belief Network [de Cristo et al., 2003] to estimate the relevance of a CJN given the current
state of the underlying database. The model assigns a score to each generated CJN, so that
only a few CJNs with the highest scores need to be evaluated.

MatCNGen [Oliveira et al., 2018, de Oliveira et al., 2020] introduced a match-based
approach for generating CJNs. The system enumerates the possible ways which the query
keywords can be matched in the DB beforehand, to generate query answers. MatCNGen then
generates a single CJN, for each of these query matches, drastically reducing the time required
to generate CJNs. Furthermore, because the system assumes that answers must contain all of
the query keywords, each keyword must appear in at least one element of a CJN. As a result
of the generation process avoiding generating too many keyword occurrence combinations, a
smaller but better set of CJNs is generated.

Lastly, Coffman & Weaver [Coffman and Weaver, 2010a] proposed a framework for
evaluating R-KwS systems and reported experimental results over three representative stan-
dardized datasets they built, namely MONDIAL, IMDb, and Wikipedia, along with respective
query workloads. The authors compare nine R-KwS systems, assessing their effectiveness and
performance in a variety of ways. The resources of this framework were also used in the ex-
periments of several other studies on R-KwS systems [Luo et al., 2007, Oliveira et al., 2015,
Oliveira et al., 2018, de Oliveira et al., 2020, Coffman and Weaver, 2012].

2.3 Support to Schema References in R-KwS

Overall there are few systems in the literature that support schema references in keywords
queries. One of the first such systems was BANKS [Bhalotia et al., 2002], a R-KwS system
based on Instance Graphs. However, hence the query evaluation with keywords matching
metadata can be relatively slow, since a large number of tuples may be defined to be relevant to
the keyword. Keymantic [Bergamaschi et al., 2011a], KEYRY [Bergamaschi et al., 2011b],
and QUEST [Bergamaschi et al., 2013] also addressed the support for schema references in
keyword queries. However, despite these systems being classified as schema-based since they
aim at generating a suitable SQL query given an input keyword query, they do not rely on
the concept of CJNs, as Lathe, the system we propose, and all DISCOVER-based systems
do. Keymantic and KEYRY consider a scenario where data instances are not accessible, such
as in databases on the hidden web and sources hidden behind wrappers in data integration
settings, where typically only metadata is made available. Both systems rely on similarity
techniques based on structural and lexical knowledge that can be extracted from the available
metadata, e.g., names of attributes and tables, attribute domains, regular expressions, or from

2.4. DEEP NEURAL NETWORKS AND TABULAR DATA 9

other external sources, such as ontologies, vocabularies, domain terminologies, etc. The
two systems mainly differ in the way they rank the possible interpretations they generate
for an input query. While Keymantic relies on an extension the authors proposed for the
Hungarian algorithm [Bourgeois and Lassalle, 1971], KEYRY is based on the Hidden Markov
Model [Bergamaschi et al., 2011b], a probabilistic sequence model, adapted for keyword
query modeling. QUEST [Bergamaschi et al., 2013] can be thought of as an extension of
KEYRY because it uses a similar strategy to rank the mappings from keywords to database
elements. QUEST, on the other hand, considers the database instance to be accessible and
includes features derived from it for ranking interpretations, in contrast to KEYRY.

From these systems, QUEST is the one most similar to Lathe. However, it is difficult
to draw a direct comparison between the two systems as QUEST does not rely on the
formal framework from CJN-related previous work [Hristidis and Papakonstantinou, 2002,
Hristidis et al., 2003, Oliveira et al., 2015, Oliveira et al., 2018, de Oliveira et al., 2020] and
it also resolves a smaller set of keyword queries then Lathe. QUEST, in particular, does not
support keyword queries whose resolution necessitates SQL queries with self-joins. As a
result, when comparing QUEST to other approaches, the authors limited the experimentation
to 35 queries rather then the 50 included in the original benchmark [Bergamaschi et al., 2013,
Coffman and Weaver, 2010a]. Lathe, on the other hand, supports all 50 queries.

Finally, there are systems that propose going beyond the retrieval of tuples that fulfill
a query expressed using keywords and try to provide a functionality close to structured
query languages. This is the case of SQAK [Tata and Lohman, 2008] that allows users to
specify aggregation functions over schema elements. Such an approach was later expanded in
systems such as SODA [Blunschi et al., 2012] and SQUIRREL [Ramada et al., 2020], which
aim to handle not only aggregation functions, but also keywords that represent predicates,
groupings, orderings and so on. To support such features, these systems rely on a variety of
resources that are not part of the database schema or instances. Among these are conceptual
schemas, generic and domain-specific ontologies, lists of reserved keywords, and user-defined
metadata patterns. We see such useful systems as being closer to natural language query
systems [Affolter et al., 2019]. In contrast, Lathe, like any typical R-KwS system, aims at
retrieving sets of JNTs that fulfill the query, and not computing results with the tuples. In
addition, it does not rely on any external resources.

2.4 Deep Neural Networks and Tabular Data

Deep neural networks (DNNs) have revolutionized the field of machine learning, achieving
remarkable success in various domains such as images, audio, and text [Devlin et al., 2018].

10 CHAPTER 2. BACKGROUND AND RELATED WORK

However, their application to tabular data, which is characterized by a mix of numerical
and categorical features, presents unique challenges. The heterogeneous nature of tabular
data complicates the direct application of DNNs, prompting the development of specialized
approaches to better handle this data type [Shwartz-Ziv and Armon, 2022].

Recent advancements in DNNs for tabular data can be categorized into three
main groups: data transformations, specialized architectures, and regularization mod-
els [Borisov et al., 2022]. Data transformation techniques convert tabular data into formats
more suitable for neural networks, often employing sophisticated encoding strategies for cate-
gorical variables. Specialized architectures, including hybrid models and transformer-based
approaches, are designed to leverage the unique characteristics of tabular data. Regularization
models focus on preventing overfitting and enhancing the generalization capabilities of DNNs.

Among these, specialized architectures form the largest group of approaches.
Transformer-based approaches [Vaswani et al., 2017], inspired by their success in text and
visual data, have also been adapted for tabular data, utilizing deep attention mechanisms to
handle the diverse features present in such datasets [Arik and Pfister, 2021].

An important problem in this domain is table retrieval, which involves identifying
the most relevant table from a set of tables given a specific query [Zhang and Balog, 2018,
Zhang and Balog, 2021]. This task is crucial for finding tables that can answer a given
question or provide relevant information. Considering that Candidate Joining Networks
(CJNs) can be interpreted as database views, the ranking of CJNs can be seen as a variant of
the table retrieval problem. Both tasks require understanding and matching the structure and
content of tables or views to a given query or information need.

Several transformer-based systems have been developed to handle table retrieval ef-
fectively [Badaro et al., 2023]. TaBERT [Yin et al., 2020] integrates natural language text
with structured tabular data by linearizing table structures and introducing content snapshots.
Linearization is necessary because transformer models are traditionally designed to process
unstructured data like text, so the structured rows and columns of a table must be converted
into a serialized sequence format. StruBERT [Trabelsi et al., 2022] builds on TaBERT by in-
corporating horizontal self-attention, leading to improvements in table retrieval and similarity
tasks. TAPAS [Herzig et al., 2020] extends the BERT model to jointly encode table structures
and questions, facilitating various operations directly within the table context.

While table retrieval systems like TaBERT, StruBERT, and TAPAS primarily handle
single tables, CJNs span different database tables, making the retrieval and ranking tasks
more complex. This complexity highlights the need for specialized approaches to manage
multi-table scenarios effectively, pushing the boundaries of what current transformer-based
systems can achieve.

More recently, models like Table-GPT, TableLlama, and TableLLM have been proposed

2.4. DEEP NEURAL NETWORKS AND TABULAR DATA 11

to advance the state of tabular data processing by leveraging large language models (LLMs).
Table-GPT [Li et al., 2023] adapts the GPT architecture specifically for table tasks, demon-
strating significant improvements in tasks such as table question answering, table-to-text
generation, and table-based data augmentation. TableLlama [Zhang et al., 2023] focuses
on creating open, large generalist models that handle a wide variety of table-related tasks.
TableLLM [Zhang et al., 2024] targets real office usage scenarios, enabling LLMs to perform
complex tabular data manipulations, including table joining, filtering, and aggregation.

Despite these advancements, LLMs like Table-GPT, TableLlama, and TableLLM face
limitations. One significant drawback is their computational complexity and resource require-
ments, often requiring substantial data and computational power for training and inference,
which can be impractical for many real-world applications. Additionally, while LLMs excel at
handling specific tasks they are fine-tuned for, they may struggle with tasks involving intricate
relationships across multiple tables, such as those required for CJN ranking. The integration
of multiple data sources and the complexity of understanding the combined semantics of these
sources remain challenging for current LLMs, highlighting the need for further advancements
in this area.

Chapter 3

Lathe Overview

In this chapter we present an overview of Lathe. We begin by presenting a simple example of
the task carried out by our system. For this, we illustrate in Figure 3.1 a simplified excerpt
from the well-known IMDB1.

PERSON
ID Name

t1 1 Will Smith
t2 2 Will Theakston
t3 3 Maggie Smith
t4 4 Sean Bean
t5 5 Elijah Wood
t6 6 Angelina Jolie

MOVIE
ID Title Year

t7 7 Men in Black 1997
t8 8 I am Legend 2007
t9 9 Harry Potter and the Sorcerer’s Stone 2001
t10 7 The Lord of the Rings: The Fellowship of the Ring 2001
t11 11 The Lord of the Rings: The Return of the King 2003
t12 12 Mr. & Mrs. Smith 2005

CHARACTER
ID Name

t13 13 Agent J
t14 14 Robert Neville
t15 15 Marcus Flint
t16 16 Minerva McGonagall
t17 17 Boromir
t18 18 Frodo Baggins
t19 19 Jane Smith

ROLE
ID Name

t20 20 Actor
t21 21 Actress
t22 22 Producer
t23 23 Writer
t24 24 Director
t25 25 Editor

CASTING
ID PID MID ChID RID

t26 26 1 7 13 20
t27 27 1 8 14 20
t28 28 2 9 15 20
t29 29 3 9 16 21
t30 30 4 10 17 20
t31 31 4 11 17 20
t32 32 5 10 18 20
t33 33 5 11 18 20
t34 34 6 12 19 21

Figure 3.1: A simplified excerpt from IMDB

Consider that a user input the keyword query Q=“will smith films”, where the user
wants the system to list the movies in which Will Smith appears. Notice that, informally, the
terms “will” and “smith” are likely to match the contents of a relation from the DB, while the
term “films” is likely to match the name of a relation or attribute.

1Internet Movie Database https://www.imdb.com/interfaces/

12

3.1. SYSTEM ARCHITECTURE 13

As other methods previously proposed in the literature, such as CN-
Gen [Hristidis and Papakonstantinou, 2002] and MatCNGen [Oliveira et al., 2018,
de Oliveira et al., 2020], the main goal of Lathe is, given a query such as Q, generat-
ing a SQL query that, when executed, fulfills the information needed for the user. The
difference between Lathe and these previous methods is that they are not able to handle
references to schema elements, such as “films” in Q.

For query Q, two of the possible SQL queries that would be generated are presented in
Figures 3.2 (a) (S1) and (b) (S2), whose respective results for the database of Figure 3.1 are
presented in Figures 3.2(c) and (d). In the query S1, the keywords "will" and "smith" match
the value of a single tuple of relation PERSON, while the keyword "films" matches the name
of the relation MOVIE. As a result, S1 retrieves the movies which the person Will Smith was
in, and thus, satisfies the original user intent. As for query S2, the keywords "will" and "smith"
match values of two different tuples in relation PERSON, that is, they refer to two different
persons. The keyword "films" matches the name of the relation MOVIE again. Therefore, S2

retrieves movies in which two different persons, whose names respectively include the terms
“will” and “smith”, participated in. In these case, the persons are Will Theakston and Maggie
Smith.

SELECT m.title, p.name
FROM person p
JOIN casting c ON p.id=c.person_id
JOIN movie m ON m.id = c.movie_id
WHERE p.name ILIKE '%will%'
AND p.name ILIKE '%smith%';

SELECT m.title, p1.name, p2.name
FROM person p1
JOIN casting c1 ON p1.id=c1.person_id
JOIN movie m ON m.id = c1.movie_id
JOIN casting c2 ON m.id = c2.movie_id
JOIN person p2 ON p2.id=c2.person_id
WHERE p1.name ILIKE '%will%'
AND p2.name ILIKE '%smith%'
AND p1.id<>p2.id;

(a) (b)

m.title p.name
Men in Black Will Smith
I am Legend Will Smith

m.title p1.name p2.name
Harry Potter and the
Sorcerer’s Stone

Will Theaskton Maggie Smith

(c) (d)

Figure 3.2: SQL queries generated for the keyword query “will smith movies” and their
returned results.

As this example indicates, there may be several plausible SQL queries related to a given
keyword query. Therefore, it is necessary to decide which alternative is more likely to fulfill
the user intent. This task is also carried out by Lathe.

Next, we present an overview of the components and the functioning of Lathe.

3.1 System Architecture

In this section, we present the overall architecture of Lathe. We base our discussion on
Figure 3.3, which illustrates the main phases that comprise the operation of the method.

14 CHAPTER 3. LATHE OVERVIEW

SQL Query

SELECT____
FROM______
JOIN___ON_
WHERE_____

Query Match2

RankingQMsGeneration

Candidate Joining Network3

CJNsGeneration

Ranking

non-void
CJNs

Instance-based
Pruning

no
yes pruning?

Preprocessing0

RDBMSIndex Creation
Schema

Index

Value
Index

Keyword Match1

VK Match

SK Match

Keyword Query

keyword
occurrences

attribute statistics

keyword frequency

VKMs

SKMs

schema
elements

top-k QMs

early
evaluation

schema graph

Figure 3.3: Main phases and architecture of Lathe

The process begins with an input keyword query posed by the user. The system then
attempts to associate each of the keywords from the query with a database schema element,
such as a relation or an attribute. The system relies on the DB schema, i.e., the names of
relations and attributes, or on the DB instance, i.e., on the values of the attributes, for this.
This phase, called Keyword Matching 1 , generates sets of Value-Keyword Matches (VKMs),
which associate keywords with sets of tuples whose attribute values contain these keywords,
and Schema-Keyword Matches (SKMs), which associate keywords with names of relations or
attributes deemed as similar to these keywords.

In Table 3.1 we show possible matches between keywords in the input query and the
database elements. For example, the keywords “will smith” are found together in the values
of the attribute name of the PERSON relation. The keyword “will” is also found alone in the
values of PERSON.name, which is the case of the person Will Theakston present in instance
shown in Figure 3.1. The term “smith” can refer to either the name of a person, the name
of a character or even the title of a movie, in this case “Mr. & Mrs. Smith”. Since these
keywords are part of attribute values, these matches are considered VKMs. In the case of
the keyword “films”, it actually matches the name of the Movie relation, which is why in
Table 3.1 the keyword “films” matches MOVIE.self. Thus, this match is considered an
SKM. The Keyword Matching phase is detailed in Chapter 4.

In the next phase, Query Matching 2 , Lathe generates combinations of VKMs and
SKMs. In these combinations, we consider that all keywords in the query must be matched;
in other words, the combination must be total. Furthermore, each combination must be a
minimal cover for the keywords from the query, meaning that all pairs of keywords and
attributes are “useful”; that is, if we remove any of the pairs, this would result in a non-total
combination. In Figure 3.4 we present all possible QMs of the KMs illustrated in Table 3.1.

Although the Query Matching phase may generate a large number of QMs due to its
combinatorial nature, only a few of them are useful in producing plausible answers to the user.

3.1. SYSTEM ARCHITECTURE 15

Table 3.1: Keyword matched for the query "will smith films"

Keywords Type Database Element Algebra Expression

will smith value PERSON.name σname⊇{will,smith}(PERSON)

will value PERSON.name σname3will(PERSON)

smith

value PERSON.name σname3smith(PERSON)

value CHARACTER.name σname3smith(CHARACTER)

value MOVIE.title σtitle3smith(MOVIE)

films schema MOVIE.self MOVIE

will smith→PERSON.name
films→MOVIE

will→PERSON.name
smith→PERSON.name
films→MOVIE

(a) (b)

will→PERSON.name
smith→CHARACTER.name
films→MOVIE

will→PERSON.name
smith→MOVIE.title
films→MOVIE

(c) (d)

Figure 3.4: Examples of combinations of keywords matches that comprises a query match.

To address this, we propose the first algorithm for Ranking Query Matches in the literature.
This ranking assigns a score to QMs based on their likelihood of satisfying the needs of
the user when formulating the keyword query, ensuring that only the top-ranked QMs are
processed in subsequent phases. By doing so, it avoids having to process less likely QMs.
This method effectively filters out less likely QMs, enhancing efficiency.

We propose two distinct approaches for QM Ranking: a Bayesian method based on
a Bayesian Belief Network (BBN)[de Cristo et al., 2003] and a neural method leveraging
transformer-based models [Yin et al., 2020]. Details of QMs and their generation are pre-
sented in Chapter 5, the Bayesian ranking in Chapter 7, and the neural ranking in Chapter 8.

Lastly, in the Candidate Joining Network Generation 3 phase, the system searches
for interpretations for the keyword query. That is, the system tries to connect all the keyword
matches from the QMs through CJNs, which are based on the schema graph. CJNs can be
thought as relational algebra joining expressions that can be directly translated into SQL
queries. For instance, both the QMs shown in Figure 3.4 (a) and (b) can be connected using
the CASTING relation, resulting in CJNs whose SQL translation is presented in Figure 3.2
(a) and (b), respectively.

Also, the system performs a Candidate Joining Network Ranking which favors CJNs
that are more concise in terms of the number of relations they employ. We propose two distinct
strategies for CJN Ranking: a Bayesian approach that benefits from the prior QM ranking and
a neural approach that utilizes transformer-based models. Once we have identified the most

16 CHAPTER 3. LATHE OVERVIEW

likely CJNs, they can be evaluated as SQL queries that are executed by a DBMS to the users.
We notice that some of the generated CJNs may return empty results when they are evaluated.
Thus, Lathe can use an eager evaluation strategy for pruning such void CJNs, which consists
of evaluating CJNs before ranking them, and prune the ones that return empty results. We call
this process instance-based pruning. Details of CJNs and their generation are presented in
Chapter 6, the Bayesian ranking in Chapter 7, and the neural ranking in Chapter 8.

During the whole process of generating CJNs, Lathe uses two data structures which are
created in a Preprocessing stage 0 : the Value Index and the Schema Index.

The Value Index is an inverted index that stores keyword occurrences in the database,
indicating the relations, attributes, and tuples where a keyword appears. These occurrences
are retrieved to generate VKMs. Furthermore, the Value Index is used to calculate term

frequencies for the QMs and CJNs Rankings. The Schema Index is an inverted index that
stores database schema information, as well as statistics about relations and attributes. While
database schema information, such as PK/FK relationships, are used for the generation of
CJNs, the statistics about attributes, such as norm and inverted frequency, are used for rankings
of QMs and CJNs.

In the following chapters we present each of the phases of Figure 3.3, describing the
steps, definitions, data structures, and algorithms we used.

Chapter 4

Keyword Matching

In this chapter, we present the details on keyword matches and their generation. Their role
in our work is to associate each keyword from the query to some attribute or relation in the
database schema. Initially, we classify them as either VKMs and SKMs, according to the type
of associations they represent. Later, we provide a generalization of the keyword matches and
we introduce the concept of Keyword-Free Matches, which will be used in the next phases of
our method.

4.1 Value-Keyword Matching

We may associate the keywords from the query to some attribute in the database schema based
on the values of this attribute in the tuples that contain these keywords using value-keyword

matches, according to Definition 1.

Definition 1. Let Q be a keyword query and R be a relation state over the relation schema

R(A1, . . . , Am). A value-keyword match from R over Q is given by:

RV [AK1
1 , . . . , AKm

m] = {t|t ∈ R ∧ ∀Ai : W (t[Ai]) ∩Q = Ki}

where Ki is the set of keywords from Q that are associated to the attribute Ai, W (t[Ai])

returns the set of words in t for attribute Ai and V denotes a match of keywords to the

database values.

Notice that each tuple from the database can be a member of only one value-keyword
match. Therefore, the VKMs of a given query are disjoint sets of tuples.

Throughout our discussion, for the sake of compactness in the notation, we often omit
mappings of attributes to empty keyword sets in the representation of a VKM. For instance,

17

18 CHAPTER 4. KEYWORD MATCHING

we use the notation RV [AK1
1] to represent RV [AK1

1 , A
{}
2 , . . . , A

{}
n].

Example 1. Consider the database instance of Figure 3.1. The following VKMs can be

generated for the query “will smith films”.

PERSONV [name{will,smith}]= {t1}

PERSONV [name{will}] = {t2}

PERSONV [name{smith}] = {t3}

VKMs play a similar role to the tuple-sets from related litera-
ture [Hristidis and Papakonstantinou, 2002, Oliveira et al., 2018]. They are, how-
ever, more expressive because they specify which attribute is associated with
each keyword. Previous R-KwS systems based on the DISCOVER sys-
tem, on the other hand, are unable to create tuple-sets that span multiple at-
tributes [Hristidis and Papakonstantinou, 2002, Hristidis et al., 2003, Oliveira et al., 2015].
Example 2 shows a keyword query that includes more than one attribute.

Example 2. Consider the query “lord rings 2001” whose intent is to return which Lord of

the Rings movie was launched in 2001. We can represent it with the following value-keyword

match:

MOV IEV [title{lord,rings}, year{2001}]= {t10}

The generation of VKMs uses a structure we call the Value Index. This index stores
the occurrences of keywords in the database, indicating the relations and tuples a keyword
appears and which attributes are mapped to the keyword. Lathe creates the Value Index during
a preprocessing phase that scans all target relations only once. This phase comes before
the query processing and it is not expected to be repeated frequently. As a result, without
further interaction with the DBMS, answers are generated for each query. The Value Index
has following the structure, which is shown in Example 3.

IV = {term : {relation : {attribute : {tuples}}}}

Example 3. The VKMs presented in Example 1 are based on the following keyword occur-

rences:.

IV [will] ={PERSON : {name : {t1, t2}}}

IV [smith] ={PERSON : {name : {t1, t3}}}

4.2. SCHEMA-KEYWORD MATCHING 19

IV [smith][PERSON] ={name : {t1, t3}}

IV [smith][PERSON][name]={t1, t3}

In Lathe, the generation of VKMs is carried out by the VKMGen algorithm, presented
in details in Appendix A.

4.2 Schema-Keyword Matching

We may associate the keywords from the query to some attribute or relation in the database
schema based on the name of the attribute or relation using Schema-Keyword Matches,
according to Definition 2. Specifically, our method matches keywords to the names of
relations and attributes using similarity metrics.

Definition 2. Let k ∈ Q be a keyword from the query, R(A1, . . . , Am) be a relation schema.

A schema-keyword match from R over Q is given by:

RS[AK1
1 , . . . , AKm

m] = {t|t ∈ R ∧ ∀k ∈ Ki : sim(Ai, k) ≥ ε}

where 1 ≤ i ≤ m, Ki is the set of keywords from Q that are associated with the schema

element Ai, sim(Ai, k) gives the similarity between the name of a schema element Ai and

the keyword k, which must be above a threshold ε, and S denotes a match of keywords to the

database schema.

In this representation, we use the artificial attribute self when we match a keyword to
the name of a relation. Example 4 shows an instance of a schema-keyword match wherein the
keyword “films” is matched to the relation MOV IE.

Example 4. The following schema-based relation matches are created for the query “will

smith films”, considering a threshold ε = 0.6.

MOV IES[self {films}] ={t7, t8, t9, t10, t11, t12}

MOV IES[title{will}] ={t7, t8, t9, t10, t11, t12}

PERSONS[name{smith}]={t1, t2, t3, t4, t5}

where sim(a, b) gives the similarity between the schema element a and the keyword b,

sim(movie, films) = 1.00, sim(title, will) = 0.87 and sim(name, smith) = 0.63.

Despite their similarity to VKMs, the schema-keyword matches serve a different purpose

20 CHAPTER 4. KEYWORD MATCHING

in our method, ensuring that the attributes of a relation appear in the query results. As a result,
they do not “filter” any of the tuples from the database, implying that they do not represent
any selection operation over database relations.

Similarity Metrics

For the matching of keywords to schema elements, we used two similarity metrics based on
the lexical database WordNet: the Path similarity [Miller, 1998, Pedersen et al., 2004] and
the Wu-Palmer similarity [Wu and Palmer, 1994, Pedersen et al., 2004]. We introduce the
WordNet database and the two similarity metrics below.

WordNet Database WordNet [Miller, 1998] is a large lexical database that resembles a
thesaurus, as it groups words based on their meanings. One use of WordNet is to measure
similarity between words based on the relatedness of their senses, the many different meanings
that words can have [Keselj, 2009]. As a result, the word “film” can refer to a movie, as well
as the act of recording or the plastic film. Each of these senses have a different relation to the
sense of a “show". Wordnet represents sense relationships , such as synonymy, hyponymy,
and hypernymy, to measure similarity between words. Synonyms are two word senses that
share the same meaning. In addition, we say that the sense c1 is a hyponym of the sense c2 if
c1 is more specific, denoting a subclass of c2. For instance, “protagonist” is a hyponym of

“character”; “actor” is a hyponym of “person”, and “movie” is a hyponym of “show”. The
hypernymy is the opposite of hyponymy relation. Thus, c2 us a hypernymy of c1.

Path Similarity The Path similarity [Miller, 1998, Pedersen et al., 2004] exploits the struc-
ture and content of the WordNet database. The relatedness score is inversely proportional
to the number of nodes along the shortest path between the senses of two words. If the two
senses are synonyms, the path between them has length 1. The relatedness score is calculated
as follows:

simpath(w1, w2) = max
c1∈senses(w1)
c2∈senses(w2)

[
1

|shortest_path(c1, c2)|

]

Wu-Palmer Similarity The Wu-Palmer measure (WUP) [Wu and Palmer, 1994,
Pedersen et al., 2004] calculates relatedness by considering the depths of the two synsets
c1 and c2 in the WordNet taxonomies, along with the depth of the Least Common Subsumer

(LCS). The most specific synset c3 is the LCS, which is the ancestor of both synsets c1 and c2.
Because the depth of the LCS is never zero, the score can never be zero (the depth of the root
of a taxonomy is one). Also, the score is 1 if the two input synsets are the same. The WUP
similarity for two words w1 and w2 is given by:

4.3. GENERALIZATION OF KEYWORD MATCHES 21

simwup(w1, w2) = max
c1∈senses(w1)
c2∈senses(w2)

[
2× depth(lcs(c1, c2))

depth(c1, c2)

]
As in the case of VKMs, we detail the SKMGen algorithm used in Lathe in Appendix B.

4.3 Generalization of Keyword Matches

Initially, we presented Definitions 1 and 2 which, respectively, introduce VKMs and SKMs.
We chose to explain the specificity of these concepts separately for didactic purposes. They
are, however, both components of a broader concept, Keyword Match (KM), which we define
in Definition 3. In the following phases, this generalization will be useful when merging
VKMs and SKMs.

Definition 3. Let Q be a keyword query and R be a relation state over the relation schema

R(A1, . . . , Am). Let VKM = RV [A
KS

1
1 , . . . , A

KS
m

m] be a value-keyword match from R over

Q. Let SKM = RS[A
KS

1
1 , . . . , A

KS
m

m] be a schema-keyword match from R over Q. A general

keyword match from R over Q is given by:

RS[A
KS

1
1 , . . . , AKS

m
m]V [A

KV
1

1 , . . . , AKV
m

m] = VKM ∩ SKM

The representations of VKMs and SKMs in the general notation are given as follows:

RS[AK1
1 , . . . , AKm

m] = RS[AK1
1 , . . . , AKm

m]V [A
{}
1 , . . . , A

{}
m]

RV [AK1
1 , . . . , AKm

m] = RS[A
{}
1 , . . . , A

{}
m]V [AK1

1 , . . . , AKm
m]

Another concept in the generation of CJNs is keyword-free matches, which we describe
in Definition 4. These are KMs that are not associated with any keyword but are used as
auxiliary structures, such as intermediate nodes in CJNs.

Definition 4. We say that a keyword match KM given by:

KM = RS[A
KS

1
1 , . . . , AKS

m
m]V [A

KV
1

1 , . . . , AKV
m

m]

is a keyword-free match if, and only if, @KS
i 6={} ∧ @KV

i 6={}, where 1 ≤ i ≤ m.

For the sake of simplifying the notation, we will represent a keyword-free match as
RS[]V [] or simply by R.

Chapter 5

Query Matching

In this chapter, we describe the processes of generating QMs, which are combinations of the
keyword matches generated in the previous phases that comprise every keyword from the
keyword query.

5.1 Query Matches Generation

We combine the associations present in the KMs to form total and non-redundant answers
for the user. In other words, Lathe looks for KM combinations that satisfy two conditions:
(i) every keyword from the query must appear in at least one of the KMs and (ii) if any KM
is removed from the combination, the remaining combination no longer satisfies the first
condition. These combinations, called Query Matches (QMs), are described in Definition 5.

Definition 5. Let Q be a keyword query. Let M = {KM1, . . . , KMn} be a set of keyword

matches for Q in a certain database instance I , where:

KMi =R
S
i [A

KS
i,1

i,1 , . . . , A
KS

i,mi
i,mi

]V [A
KV

i,1

i,1 , . . . , A
KV

i,mi
i,mi

]

Also, let CKMi
=
⋃

1≤j≤mi
X∈{S,V }

KX
i,j and CM=

⋃
1≤i≤n CKMi

be the sets of all keywords associated

with KMi and with M , respectively. We say that M is a query match for Q if, and only if,

CM forms a minimal set cover of the keywords in Q. That is, CM = Q and CM\CKMi
6= Q,

∀KMi ∈M .

Notice that a QM cannot contain any keyword-free match, as it would not be minimal
anymore. Example 5 presents combinations of KMs which are or are not QMs.

Example 5. Considering the KMs from the Examples 1 and 4, only some of the following sets

22

5.1. QUERY MATCHES GENERATION 23

are considered QMs for the query “will smith films”:

M1 = {PERSONV [name{will,smith}],MOV IES[self {films}]}

M2 = {PERSONV [name{will}], PERSONV [name{smith}],MOV IES[self {films}]}

M3 = {PERSONV [name{will}], PERSONV [name{smith}]}

M4 = {PERSONV [name{will,smith}],MOV IES[self {films}], CHARACTER}

M5 = {PERSONV [name{will,smith}], PERSONV [name{smith}],MOV IES[self {films}]}

The sets M1 and M2 are considered QMs. In contrast, the sets of keyword matches M3, M4

and M5 are not QMs. While M3 does not include all query keywords, M4 and M5 are not

minimal, that is, they have unnecessary KMs.

We present the QMGen algorithm for generating QMs in Appendix C.

Chapter 6

Candidate Joining Networks

In this chapter we present the details on our method for generating and pruning Candi-
date Joining Networks (CJNs), which represent different interpretations of the keyword
query. We recall that our definition of CJNs expands on the definition presented in
[Hristidis and Papakonstantinou, 2002] to support keywords referring to schema elements.

The generation of CJNs uses a structure we call a Schema Graph. In this graph, there is
a node representing each relation in the database and the edges correspond to the referential

integrity constraints (RIC) in the database schema. In practice, this graph is built in a
preprocessing phase based on information gathered from the database schema.

Definition 6. Let R = {R1, . . . , Rn} be a set of relation schemas from the database. Let E

be a subset of the ordered pairs fromR2 given by:

E = {〈Ra, Rb〉|〈Ra, Rb〉 ∈ R2 ∧Ra 6= Rb ∧RIC(Ra, Rb) ≥ 1}

where RIC(Ra, Rb) gives the number of Referential Integrity Constraints from a relation Ra

to a relation Rb. We say that a schema graph is an ordered pair GS = 〈R, E〉, where R is

the set of vertices (nodes) of GS , and E is the set of edges of GS .

Example 6. Considering the sample movie database introduced in Figure 3.1, our method

generates the schema graph below.

GS =< {PERSON,MOV IE,CASTING,CHARACTER,ROLE},

{〈CASTING,PERSON〉, 〈CASTING,MOV IE〉,

〈CASTING,CHARACTER〉, 〈CASTING,ROLE〉} >

In Figure 6.1, we represent a graphical illustration of GS .

24

25

PERSON CASTING MOV IE

CHARACTER

ROLE

Figure 6.1: A schema graph for the sample movie database of Figure 3.1

Once we defined the schema graph, we can introduce an important concept, the Joining

Network of Keyword Matches (JNKM). Intuitively, a joining network of keyword matches
J contains every KM from a query match M . Additionally, J may contain free-keyword
matches, comprising the set F , which are necessary to connect all KMs in J for the sake of
connectivity. Finally, J is a connected graph that is structured according to the schema graph
GS . The definition of joining network of keyword matches is given as follows:

Definition 7. Let M be a query match for a keyword query Q. Let GS be a schema graph. Let

F be a set of keyword-free matches from the relations of GS . Consider a graph of keyword

matches J = 〈V , E〉, where V and E are the vertices and edges of J . We say that J is a

joining network of keyword matches from M over GS if the following conditions hold:

i) V =M ∪ F

ii) ∀KMi ∈ V : ∃〈KMa, KMb〉 ∈ E| i ∈ {a, b}

iii)∀〈KMa, KMb〉 ∈ E =⇒ ∃〈Ra, Rb〉 ∈ GS

For the sake of simplifying the notation, we will use a graphical illustration to represent
JNKMs, which is shown in Example 7.

Example 7. Considering the query matchM1 previously generated in Example 5, the following

JNKMs can be generated:

J1 = PERSONV [name{will,smith}] CASTING MOV IES[self {films}]

J2 = PERSONV [name{will,smith}] CASTING MOV IES[self {films}]

CHARACTER

The JNKMs J1 and J2 cover the query match M1. The interpretation of J1 looks for the

movies of the person will smith. J2 looks for the movies of the person will smith and which

character will smith played in these movies.

Notice that a JNKM might have unnecessary information for the keyword query, which

26 CHAPTER 6. CANDIDATE JOINING NETWORKS

was the case of J2 presented in Example 7. One approach to avoid generating unnecessary
information is to generate Minimal Joining Networks of Keyword Matches (MJNKM), which
are addressed in Definition 8. Roughly, a MJNKM cannot have any keyword-free match as a
leaf, that is, a keyword-free match incident to a single edge.

Definition 8. Let GS be a schema graph. Let M be a query match for a query Q. We say that

J = 〈V , E〉 from M over GS is minimal joining network of keyword matches (MJNKM) if,

and only if, the following condition holds:

∀KMi ∈ V (∃!〈KMa, KMb〉 ∈ E|i ∈ {a, b} =⇒ KMi 6= RS
i []

V [])

Example 8. Considering the query matchM2 previously generated in Example 5, the following

MJNKMs can be generated:

J3 = PERSONV [name{smith}] CASTING PERSONV [name{will}]

MOV IES[self {films}]

Another issue that a JNKM might have is representing an inconsistent interpretation. For
instance, it is impossible for J3 presented in Example 8 to return any results from the database.
By Definition 1, the VKMs PERSONV [name{will}] and PERSONV [name{smith}] are
disjoint. However, a tuple from CASTING cannot refer to two different tuples of
PERSON . Thus J3 is inconsistent. We notice that previous work in literature for CJN
generation had addressed this kind of inconsistency [Hristidis and Papakonstantinou, 2002,
Oliveira et al., 2018]. They did not, however, consider the situation in which there exist more
than one RIC from one relation to another. In contrast, based on the theorems and definitions
presented in [Hristidis and Papakonstantinou, 2002], Lathe proposes a novel approach for
checking consistency in CJNs that support such scenarios. Theorem 1 presents a criterion that
determines when a JNKM is sound, that is, it can only produce JNTs that do not have more
than one occurrences of a tuple. The proof of Theorem 1 is presented in Appendix E.

Theorem 1. Let GS = 〈R, EG〉 be a schema graph. Let J = 〈V , EJ〉 be a joining network of

keyword matches. We say that J is sound, that is, it does not have more than one occurrences

of the same tuple for every instance of the database if, and only if, the following condition

holds ∀KMa ∈ V , ∀〈Ra, Rb〉 ∈ EG :

RIC(Ra, Rb) ≥ |{KMc|〈KMa, KMc〉 ∈ EJ ∧Rc = Rb}|

where RIC(Ra, Rb) indicates the number of Referential Integrity Constraints from a relation

27

Ra to a relation Rb.

Example 9 presents a JNKM that is sound, although it would be deemed not sound by
previous approaches [Hristidis and Papakonstantinou, 2002, Oliveira et al., 2018].

Example 9. Consider a simplified excerpt from the MONDIAL database [May, 1999], pre-

sented in Figure 6.2. As there exists 2 RICs from the relation BORDER to COUNTRY ,

represented by the attributes Ctry1_Code e Ctry2_Code, a tuple from BORDER can be

joined to at most two distinct tuples from Country, which is the case of t35 ./ t38 ./ t36. Thus,

the following MJNKM is sound:

J4 = COUNTRY V [name{colombia}] BORDER COUNTRY V [name{brazil}]

COUNTRY
Code Name Capital_ID

t35 CO Colombia 1
t36 BR Brazil 2
t37 PE Peru 3

BORDER
Ctry1_Code Ctry2_Code Length

t38 CO BR 1643
t39 PE BR 1560

CITY
ID Name Population

t40 1 Bogota 1643
t41 2 Brasilia 1560
t42 3 Lima 1560

Figure 6.2: A simplified excerpt from MONDIAL

Finally, Definition 9 describes a Candidate Joining Network (CJN), which is roughly a
sound minimal joining network of keyword matches.

Definition 9. Let M be a query match for the keyword query Q. Let GS be a schema graph.

Let CJN be a joining network of keyword matches from M over GS given by CJN = 〈V , E〉.
We say that CJN is a candidate joining network if, and only if, CJN is minimal and sound.

Example 10. Considering the query match M2 previously generated in Example 5, the follow-

ing CJN can be generated:

CJN1 =MOV IES[self {films}] CASTING PERSONV [name{will}]

CASTING PERSONV [name{smith}]

The candidate joining networks CJN1 covers the query match M2. CJN1 is a minimal and

sound JNKM. The interpretation of CJN1 searches for the movies where both persons “will”

(e.g. Will Theakston) and “smith” (e.g. Maggie Smith) participate in. The two keyword-free

matches from the CASTING are treated as different nodes in the candidate joining network

CJN1.

28 CHAPTER 6. CANDIDATE JOINING NETWORKS

The details on how we generate CJNs in Lathe are described by the CNKMGen Algo-
rithm in Appendix F.

6.1 Candidate Joining Network Pruning

In this section we present an eager evaluation strategy for pruning CJNs. Even if CJNs
contain valid interpretations of the keyword query, some of them may fail to produce any
JNTs as a result. Thus, we can improve the results of our CJN generation and ranking by
pruning what we call void CJNs, which are CJNs with no JNTs in their results.

Example 11. Considering the database instance of Figure 3.1 and the keyword query “will

smith films”, the following CJNs can be generated:

CJN2 =MOV IES[self {films}]V [name{smith}] CASTING

PERSONV [name{will}]

CJN3 =MOV IES[self {films}] CASTING PERSONV [name{will}]

CASTING CHARACTERV [name{smith}]

The interpretation of CJN2 looks for the movies whose name contains the keyword

“smith” (e.g. “Mr. & Mrs. Smith”) and in which a person whose contains “will” (e.g. “Will

Theakston”) participate in. The interpretation of CJN3 looks for the movies where a person

whose name contains “will” (e.g. “Will Theakston”) played the character “smith” (e.g.

“Jane Smith”). Notice that although the candidate joining networks CJN2 and CJN3 both

provide valid interpretations for the keyword query, they do not produce any tuples as a result

in the given database instance.

As most of the previous work does not rank CJNs but only evaluates them and ranks
their resulting JNTs instead, the pruning of void CJNs has previously never been addressed.
Lathe employs a pruning strategy that evaluates CJNs as soon as they are generated, pruning
the void ones. This strategy, as demonstrated in our experiments, can significantly improve
the quality of the CJN generation process, particularly in scenarios where the schema graph
contains a large number of nodes and edges.

For instance, one of the datasets we use in our experiments, the MONDIAL database,
contains a large number of relations and relational integrity constraint (RICs). This results
in a schema graph with several nodes and edges, which, intuitively, incur a large number
of possible CJNs for a single QM. In contrast, we discovered that such schema graphs are

6.1. CANDIDATE JOINING NETWORK PRUNING 29

prone to produce a large number of void CJNs. In particular, while approximately 20% of the
keyword queries used in our experiments required us to consider 9 CJNs per QM, the eager
evaluation strategy reduced this value to 2 CJNs per QM.

Notice, however, that to find if some CJN is void, we must execute it as an SQL in the
DBMS, which incurs an additional cost and an increase in the CJN generation time. Despite
that, we notice in our experiments that the eager evaluation strategy does not necessarily
hinder the performance of a R-KwS system. In fact, reducing the number of CJNs per QM
alone improves the system efficiency because this parameter influences the CJN generation
process. Furthermore, the eager evaluation advances the CJN evaluation, which is already
a required step in the majority of R-KwS systems in the related work. Lastly, we can set a
maximum number of CJNs to probe during the eager evaluation, which limits the increase in
CJN generation time.

Chapter 7

Bayesian Ranking

In this chapter, we explore the Bayesian ranking methodology used to assess the relevance of
Query Matches (QMs) and Candidate Joining Networks (CJNs) within relational databases.
This approach employs a Bayesian Belief Network (BBN) framework, integrating two key
scoring mechanisms: the value score and the schema-based score. Traditionally, the Bayesian
approach has been the primary method used in our system for ranking QMs and CJNs.
However, recognizing the advancements in machine learning, we also investigate an alternative
neural ranking approach in Chapter 8, which offers a modern perspective on information
retrieval in relational databases.

The Bayesian ranking of CJNs is intricately linked to the ranking of QMs, with addi-
tional penalization applied to larger CJNs to balance relevance and complexity. By combining
these elements, our ranking methodology aims to provide comprehensive and contextually rel-
evant results to users, addressing the challenges of information retrieval in complex database
environments. This chapter provides a detailed examination of the Bayesian ranking process,
offering insights into its mechanisms and efficacy.

7.1 Query Matches Ranking

As described in Section 3, Lathe performs a ranking of the QMs generated in the previous
step. This ranking is necessary because frequently many QMs are generated, yet only a few
of them are useful for producing plausible answers to the user.

Lathe estimates the relevance of QMs based on a Bayesian Belief Network (BBN) model
[Ribeiro and Muntz, 1996] for the current state of the underlying database. In practice, this
model assesses two types of relevance when ranking query matches. The TF-IDF model
is used to calculate the value-based score, which adapts the traditional Vector space model
to the context of relational databases, as done in LABRADOR [Mesquita et al., 2007] and

30

7.1. QUERY MATCHES RANKING 31

CNRank [Oliveira et al., 2015]. The schema-based score, on the other hand, is calculated by
estimating the similarity between keywords and schema elements names.

In Lathe, we consider only the top-k QMs for the succeeding phases. By doing so, we
avoid generating CJNs that are less likely to properly interpret the keyword query.

Belief Bayesian Network

We adopted the BBN framework [Ribeiro and Muntz, 1996, de Cristo et al., 2003] for mod-
eling distinct IR problems. This framework is simple and allows for the incorporation of
features from distinct models into the same representational scheme. Other keyword search
systems, such as LABRADOR [Mesquita et al., 2007] and CNRank [Oliveira et al., 2015],
have also used it.

In our model, we interpret the QMs as documents, which are ranked for the keyword
query. Figure 7.1 illustrates an example of the adopted Bayesian Network. The nodes that
represent the keyword query are located at the top of the network, on the Query Side. The
Database Side, located at the bottom of the network, contains the nodes that represent the QM
that will be scored. The center of the network is present on both sides and it comprises sets
of keywords: the set V of all terms present in the values of the database and the set S of all
schema element names.

����� [���]� � �{����,����ℎ} ��� � [���]�� � {�����}

��

�

will men …

�

smithlord

will smith films

…person name titlemovie
�

Database
Side

Query
Side

keyword
query

keywords

keyword
matches

query
match

database terms
and schema
elements

Figure 7.1: Bayesian Network corresponding to the query Q = {will, smith, films}

In our Bayesian Network, we rank QMs based on their similarities with the keyword
query. This similarity is interpreted as the probability of observing a query match QM

given the keyword query Q, that is, P (QM |Q) = µP (QM ∧ Q), where µ = 1/P (Q) is a
normalizing constant [Pearl, 2014].

Initially, we define a random binary variable associated with each keyword from the
sets V and S, which indicates whether the keyword is observed in the keyword query. As

32 CHAPTER 7. BAYESIAN RANKING

these random variables are the root nodes of our Bayesian Network, all of the probabilities
of the other nodes depend on them. Therefore, if we consider v ⊆ V and s ⊆ S as the
sets of keywords observed, we can derive the probability of any non-root node x as follows:
P (x) = P (x|v, s)× P (v)× P (s).

As all the possibilities of v and s are equally likely a priori, we can calculate them as
P (v) = (1/2)|V | and P (s) = (1/2)|S|, respectively.

The instantiation of the root nodes of the network separates the query match nodes from
the query nodes, making them mutually independent. Therefore:

P (QM ∧Q) = P (Q|v, s)P (QM |v, s)P (v)P (s)

The probability of the keyword queryQ = {q1, . . . , q|Q|} is split between the probability
of each of its keywords:

P (Q|v, s) =
∏

1≤i≤|Q|

P (qi|v, s)

A keyword qi from the query is observed, given the sets s and v, either if qi occurs in the
values of the database or if qi has a similarity above a threshold ε with a schema element.

P (qi|v, s) = (qi ∈ v) Y (∃k ∈ s : sim(qi, k) ≥ ε)

Similarly, in our network, the probability of a query match QM is split between the
probability of each of its KMs.

P (QM |v, s) =
∏

1≤i≤|QM |

P (KMi|v, s)

We compute the probability of KMs using two different metrics: a schema score

based on the same similarities used in the generation of SKMs; and a value score based on
a Vector model [Baeza-Yates and Ribeiro-Neto, 2008, Salton and Buckley, 1988] using the
cosine similarity.

P (KMi|v, s) =
∏

1≤j≤mi

KV
i,j 6=∅

cos(
�

Ai,j,
�

v ∩KV
i,j)

∏
1≤j≤mi

KS
i,j 6=∅

∑
t∈s∩KS

i,j
sim(Ai,j, t)

|s ∩KS
i,j|

where KMi = RS
i [A

KS
i,1

i,1 , . . . , A
KS

i,mi
i,mi

]V [A
KV

i,1

i,1 , . . . , A
KV

i,mi
i,mi

].

It is important to distinguish the documents from the Bayesian Network model and the
documents from the Vector Model. The former are QMs, and the query is the keyword query

7.2. CANDIDATE JOINING NETWORKS RANKING 33

itself, whereas the documents from the Vector model are database attributes, and the query is
the set of keywords associated with the KM.

Once we know the document and the query of the Vector model, we can calculate the
cosine similarity by taking the inner product of the document and the query. The cosine
similarity formula is given as follows:

cos(
�

Ai,j,
�

v ∩KV
i,j) =

�

AV
i,j ·

�

v ∩KV
i,j

| # �

Ai,j| × |
�

v ∩KV
i,j|

= α×

∑
t∈V

w(
�

Ai,j, t)× w(
�

v ∩KV
i,j, t)√∑

t∈V

w(
�

Ai,j, t)2

where α = 1/(
∑

t∈V w(
�

v ∩KV
i,j, t)

2)1/2 is the constant that represents the norm of the query,
which is not necessary for the ranking.

The weights for each term are calculated using the TF-IDF measure. This mea-
sure is based on the term frequency and specificity in the collection. We use the raw

frequency and inverse frequency, which are the most recommended forms of TF-IDF weights
[Baeza-Yates and Ribeiro-Neto, 2008].

w(
#�

X, t) = freqX,t × log
NA

nt

where
#�

X ∈ { # �

Ai,j,
�

v ∩KV
i,j} can be either the document or the query, NA is the number of

attributes in the database, and nt is the number of attributes that are mapped to the occurrences
of the term t. In the case of

#�

X being the query, freqX,t gives the number of occurrences
of a term t in the keyword query, which is generally 1. In the case of

#�

X being an attribute
(document), freqX,t gives the occurrences of a term t in an attribute, which is obtained from
the Value Index.

We present the bayesian algorithm for ranking QMs in Appendix D.

7.2 Candidate Joining Networks Ranking

In this section, we introduce CJNKMRank, a novel ranking method for CJNs based on the
ranking of QMs as detailed in Algorithm 11. This approach is necessary because many CJNs
are often generated, yet only a few produce relevant answers.

As described in Section 7.1, our QM ranking advances many of the features present
in other systems, such as CNRank [Oliveira et al., 2015]. By leveraging the scores of QMs,
CJNKMRank provides a straightforward yet effective ranking of CJNs. This is achieved by
applying a penalization for larger CJNs, ensuring a balance between relevance and complexity.

34 CHAPTER 7. BAYESIAN RANKING

Therefore, the score of a candidate joining networkCJNM from a query matchM is calculated
as:

score(CJNM) = score(M)× 1

|CJNM |
To maintain the order of CJNs with identical scores, a stable sorting algorithm

[Cormen et al., 2009] is used, as described in Line 6 of Algorithm 1.

Algorithm 1: CJNKMRank(QM)
Input: A set of candidate joining networks CJN
Output: The set of candidate networks RCJN

1 RCJN ← []
2 for C ∈ RCN do
3 let M be the query match used to generate C
4 cjn_score = score(M)/|C|
5 RCJN.append(〈cjn_score, C〉)

6 Sort RCN in descending order
7 return RCJN

Chapter 8

Neural Ranking

As way of improving the results obtained with the Bayesian ranking approach from Chapter 7,
in this chapter, we introduce two distinct approaches for ranking QMs and CJNs, lever-
aging transformer-based models. Our motivation includes exploring the recent successes
of these models in various information retrieval tasks [Devlin et al., 2018, Fang et al., 2024,
Reimers and Gurevych, 2019] to investigate ways for enhancing the performance of the IR-
based approach presented in Chapter 7. The neural ranking offers a modern alternative that
could further improve the relevance of the results, specially in consistently identifying the
most relevant answers which is a challenge for the Bayesian approach.

In a first approach, we employ pre-trained neural language models to capture the
similarity between a keyword query and either a QM or a CJN. Notice that our QMs and
CJNs span information from multiple database tables and that Neural Language Models
are optimized for processing text inputs. Hence, we must adequately convert the structured
data to a suitable textual format allowing the Language Models to perform tabular data
understanding. Inspired by previous approaches such as TaBERT [Yin et al., 2020] and
StruBERT [Trabelsi et al., 2022], as detailed in Section 8.2 we designed a linearization

process to translate our QMs and CJNs into sentence structures. However, different from
them, our linearization extends beyond individual tables, encompassing views that span
information from multiple database tables.

In a second approach, we aim to further improve the effectiveness of the pre-trained
models by fine-tuning them for the task of ranking QMs and CJNs for a given keyword
query [Reimers and Gurevych, 2019]. We anticipate that the fine-tuned models exhibit en-
hanced capability in understanding the relations between keyword queries and the tables
structures, retrieving a better QM and CJN ranking when compared to the other approaches.
As the fine-tuning process requires annotated training data, we also propose a data aug-
mentation technique to provide such data, reducing the reliance on manually annotated

35

36 CHAPTER 8. NEURAL RANKING

samples[Thakur et al., 2021]. This approach enhances the ability of the model to generalize
across diverse QM and CJN scenarios, thereby enhancing keyword search over relational
databases.

With the introduction of neural ranking, Lathe can now be executed following different
pipelines, each employing different QM and CJN ranking approaches. Figure 8.1 illustrates
five pipelines. The first pipeline uses the Bayesian approach for ranking both QMs and CJNs.
The second pipeline combines Bayesian QM ranking with a pre-trained neural CJN ranking.
The third pipeline uses Bayesian QM ranking and fine-tuned neural CJN ranking. The fourth
pipeline integrates fine-tuned neural QM ranking with pre-trained neural CJN ranking. Finally,
the fifth pipeline employs fine-tuned neural ranking for both QMs and CJNs.

Keyword Match
Generation

Data
Augmentation

Query Match
Generation

CJN
Generation

Query Match
Ranking

Bayesian Belief
Network

CJN
Ranking

Fine-Tuned
Neural Model

Keyword Match
Generation

Data
Augmentation

Data
Augmentation

Query Match
Generation

CJN
Generation

Query Match
Ranking

Fine-Tuned
Neural Model

CJN
Ranking

Fine-Tuned
Neural Model

Keyword Match
Generation

Query Match
Generation

CJN
Generation

Query Match
Ranking

Bayesian Belief
Network

CJN
Ranking

Pre-trained
Neural Model

Keyword Match
Generation

Query Match
Generation

CJN
Generation

Query Match
Ranking

Bayesian Belief
Network

CJN
Ranking

Bayesian Rank

Keyword Match
Generation

Data
Augmentation

Query Match
Generation

CJN
Generation

Query Match
Ranking

Fine-Tuned
Neural Model

CJN
Ranking

Pre-trained
Neural Model

Figure 8.1: Pipelines for Lathe

The structure of this chapter is as follows: Section 8.1 provides an overview of the QM
and CJN neural ranking. Section 8.2 details the linearization process for keyword queries,
QMs, and CJNs for their use in sentence-transformer models. Subsequently, Section 8.3
outlines the adaptation of pre-trained sentence-transformer models for QM and CJN ranking,
utilizing specific training examples to fine-tune the models for improved relevance assessment.
Finally, Section 8.4 presents data augmentation techniques for generating synthetic examples
to enhance the fine-tuning process.

8.1. NEURAL RANKING 37

8.1 Neural Ranking

In our system, we employ similar methodologies for ranking both QMs and CJNs concerning
a given keyword query. Although occurring at different stages, the processes share a common
foundation, leveraging sentence-transformer models for effective comparison and relevance
assessment.

8.1.1 QM Ranking

The QM ranking process utilizes sentence-transformer models to rank QMs for a given key-
word query. This systematic process is detailed in Algorithm 2, and it involves linearization,
embedding generation, and similarity-based ranking.

Algorithm 2: NeuralQMRank(Q,QM)
Input: A keyword query Q

A set of query matches QM
Output: The set of ranked query matches RQM

1 RQM ← []
2 let Model be the sentence-transformer model
3 SQ ← sentence(Q)
4 EQ ←Model.encode(SQ)
5 for Mi ∈ QM do
6 SMi

← sentence(Mi)
7 EMi

←Model.encode(SMi
)

8 score← sim(EQ, EMi
)

9 RQM .append(〈score,Mi〉)
10 Sort RQM in descending order
11 return RQM

First, the algorithm linearizes both the keyword query and the QMs into structured
sentences (Lines 3 and 6), as described in Section 8.2. This step ensures that the information
contained within the keyword query and the QMs is properly structured and represented in a
textual format compatible with subsequent analysis.

Next, the algorithm utilizes a sentence-transformer model to generate embeddings for
both the linearized keyword query and the linearized QMs (Lines 4 and 7). These embeddings
encapsulate the semantic representations of the sentences, facilitating meaningful comparison
and analysis. The subsequent step involves computing the similarity between the embedding
representing the keyword query and the embeddings representing the QMs to determine the
relevance of each QM to the keyword query (Lines 8-9). The similarity measure can be either
cosine similarity or dot product similarity, depending on the specific sentence-transformer

38 CHAPTER 8. NEURAL RANKING

model used. Finally, the algorithm sorts the QMs in descending order based on their similarity
(Line 10). This ranking ensures that the most semantically aligned QMs with the keyword
query are prioritized, thus improving the relevance of the search results returned to the user.

8.1.2 CJN Ranking

The neural CJN ranking is carried out by Algorithm 3. A notable distinction in the ranking
process of CJNs lies in the linearization step, which differs from that of QMs. To rank the
CJNs for a given keyword query, the algorithm first executes queries generated from them
against the database, obtaining the database views they return (Line 6). It then linearizes
the rows of these views, transforming the tabular data into structured sentences. Next, the
algorithm applies aggregation techniques to generate a single embedding representation from
all sentences obtained from the CJN (Lines 7-16). This Linearization process for CJNs is
detailed in Section 8.2.2. The embedding encapsulates the semantic representations of the
sentences, facilitating meaningful comparison and relevance assessment.

The algorithm then computes the similarity between the embedding representing the
keyword query and the aggregated embedding representing the CJN to determine the relevance
of each CJN to the keyword query (Lines 17-18). It uses either cosine similarity or dot product
similarity, depending on the specific model employed.

Finally, the algorithm sorts the CJNs in descending order based on their similarity
scores, ensuring that it prioritizes the most semantically aligned CJNs with the keyword query,
thus enhancing the relevance of the search results returned to the user (Line 19). Despite the
nuances in linearization, the overall ranking methodology for CJNs remains consistent with
that of QMs, underscoring the robustness and adaptability of our approach.

8.2 Linearization

This section details the linearization process for the keyword query, the QMs and CJNs,
crucial for facilitating compatibility with language models.

The keyword query linearization consists of translating the keyword query as a sentence
“query: Q”, where Q is the keyword query. Then, we encode it with the sentence-transformer
model to generate embedding for the keyword query. Figure 8.2 exemplifies the sentence for
the query “Will Smith films”.

Q Will Smith films

sentence(Q) query: Will Smith films

Figure 8.2: Sentence translation of the keyword query

8.2. LINEARIZATION 39

Algorithm 3: NeuralCJNRank(Q,CJN)
Input: A keyword query Q

A set of candidate joining networks CJN
A literal variable indicating the aggregation approach agg

Output: The set of ranked candidate joining networks RCJN
1 RCJN ← []
2 let Model be the sentence-transformer model
3 SQ ← sentence(Q)
4 EQ ←Model.encode(SQ)
5 for C ∈ CJN do
6 let view be the resulting view when running C against the database.
7 if agg = "mean" then
8 Eview ← { }
9 for row ∈ view do

10 Srow ← row_sentence(row)
11 Erow ←Model.encode(S)
12 Eview ← Eview ∪ Erow

13 EC ← mean(Eview)

14 else
15 Sview ← multivalue_sentence(view)
16 EC ←Model.encode(Sview)

17 score← sim(EQ, EC)
18 RCJN .append(〈score, C〉)
19 Sort RCJN in descending order
20 return RCJN

QM linearization involves translating keyword matches from the QMs into structured
sentences, followed by encoding using sentence-transformer models.

Since the results of CJNs when executed against a database can be interpreted as
database views, we explore techniques designed for tabular data to encode them. Specifically,
we translate each row from the resulting view into a sentence. Then, we employ different
methods for aggregating these sentences into a single representation, which serves as the
CJN representation. These aggregation methods encompass strategies for consolidating the
row-level information retrieved from the database, allowing us to capture essential relational
nuances embedded within CJNs.

With these encoding methodologies elucidated we establish a foundation for subsequent
chapters by leveraging the encoded data for neural network-based ranking. This comprehen-
sive approach promises to optimize keyword search efficiency and accuracy.

40 CHAPTER 8. NEURAL RANKING

8.2.1 QM Linearization

The linearization of QMs involves translating them into sentences and then encoding them
with sentence-transformer models. This translation process is straightforward: each keyword
mapping from the QM is represented in the format "table.attribute.type: keywords", separated
by a pipe symbol. Subsequently, these sentences are encoded using such models. Example 12
presents sentences generated from QMs.

Example 12. Considering the query matches M1 and M2 previously generated in Example 5,

their sentences can be generated as shown in Figure 8.3:

M1 {PERSONV [name{will,smith}],MOV IES[self {films}]}

sentence(M1) answer: person.name.value: will smith | movie.self.schema: films

M2 {PERSONV [name{will}], PERSONV [name{smith}],MOV IES[self {films}]}

sentence(M2) answer: person.name.value: will | person.name.value: smith | movie.self.schema: films

Figure 8.3: Sentence translation of query matches.

8.2.2 CJN Linearization

The linearization of CJNs involves translating the rows of database views into individ-
ual sentences, capturing the relevant information contained within each row. We em-
ploy a snapshot approach similar to that used in TaBERT [Yin et al., 2020] and Stru-
BERT [Trabelsi et al., 2022] to handle large database views efficiently. This technique entails
selecting a subset of rows from the database view to ensure it remains within the token
capacity constraints of transformer-based models. Once the snapshot of the CJN is obtained,
we employ aggregation techniques to generate a single embedding of the CJN. We explore
two primary approaches for aggregation: mean and combination.

Mean Approach In the mean approach, we encode the sentence for each row individually
and then compute the average embedding of all the row embeddings, resulting in a single
embedding that represents the entire CJN Figure 8.4 presents the steps for the mean approach.
The sentences generated for CJNs using this approach are shown in the Example 13.

Combination Approach The combination approach involves aggregating the informa-
tion from multiple rows in the snapshot into a single comprehensive sentence, then encoding
this aggregated sentence to represent the CJN. Figure 8.5 presents the steps for the combi-
nation approach. This approach aggregates the rows using either the Multivalue technique,
which concatenates the values of each attribute across all rows within the snapshot, then we
generate a single comprehensive sentence.

8.2. LINEARIZATION 41

Encoding

Encoding

Encoding

Mean
CJN View

Translation

Row
Embedding

0.5 0.3 ... 0.8

Row
Embedding

0.3 0.3 ... 0.9

Row
Embedding

0.1 0.6 ... 0.4

CJN
Embedding
0.3 0.4 ... 0.7

Row sentence

Row sentence

Row sentence

Figure 8.4: Mean Approach for CJN Linearization

CJN View
Translation Multivalue

Combination Encoding

Row sentence

Row sentence

Row sentence

CJN
Embedding
0.3 0.5 ... 0.8

Aggregated
Sentece

Figure 8.5: Combination Approach for CJN Linearization

The sentences generated for CJNs using this approach are also shown in the Example 13.

Example 13. Considering the query matches M1 and M2 encoded in Example 12, we can

generate the candidate joining networks CJN1 and CJN2, shown with their respective results

in Figure 8.6. Based on a snapshot, with the three first rows of the results, we are able to

generate the sentences shown in Figure 8.7.

CJN1 = PERSONV [name{will,smith}]

CASTING

MOV IES[self {films}]

CJN2 =MOV IES[self {films}] CASTING PERSONV [name{will}]

CASTING PERSONV [name{smith}]

Results for CJN1

t3.title t1.name
Bad Boys Smith, Will
Enemy of the State Smith, Will
Free Enterprise Smith, Will
Ali Smith, Will
A Closer Walk Smith, Will

Results for CJN2

t3.year t3.title t1.name t5.name
1944 The Last Horseman Wills, Luke Smith, Tom
1977 Looking Up Hussing, Will Smith, Andrew
1977 Who Has Seen the Wind Woods, Will Smith, Cedric
1981 Urgh! A Music War Sergeant, Will Smith, Barry
1999 The Lost Son Welch, Will Smith, Rachel Quigley

Figure 8.6: CJNs and their results returned from the database.

It is noteworthy that while the results for CJN1 exhibit distinct rows, representing them

as sentences reveals some duplicates. This occurrence arises because the keyword “films”

refers to the table name rather than its values. This observation underscores the nuanced

challenges in accurately representing CJN results through sentence encoding.

42 CHAPTER 8. NEURAL RANKING

Aggr. Approach Sentences for CJN1 Sentences for CJN2

Mean
answer: person.name: Smith, Will | movie: films answer: person.name: Wills, Luke | movie: films |

person.name: Smith, Tom
answer: person.name: Smith, Will | movie: films answer: person.name: Hussing, Will | movie: films |

person.name: Smith, Andrew
answer: person.name: Smith, Will | movie: films answer: person.name: Woods, Will | movie: films |

person.name: Smith, Cedric
Combination answer: person.name: Smith, Will, Smith, Will,

Smith, Will | movie: films
answer: person.name: Wills, Luke, Hussing, Will,
Woods, Will | movie: films | person.name: Smith,
Tom, Smith, Andrew, Smith, Cedric

Figure 8.7: Sentence representations for the candidate joining networks CJN1 and CJN2.

8.3 Fine-Tuning

In this section, we present our ranking approach aligned to fine-tuning sentence-transformer
models, initially pre-trained on extensive and general corpora. As shown previously, these
models discern semantic similarities and allows ranking relevant QMs and CJNs for keyword
queries. However, due to their generalized nature these pre-trained models do not hold weights
for too specific domains and tasks. State-of-the-art works have shown that the performance
of Language Models on specific tasks and domains are improved when these models are
adapted with fine-tuning [Reimers and Gurevych, 2019, Devlin et al., 2018]. Hence, we fine-
tune them for QM and CJN ranking, enabling the language models to better discern pertinent
patterns and relationships within the linearized data that holds structured information. This
section outlines the methodology and significance of fine-tuning, elucidating the intricacies of
optimizing their performance for targeted tasks.

8.3.1 QM Ranking Fine-tuning

In the fine-tuning process for QM ranking, sentence-transformer models are adapted using
specific training examples. These examples consist of tuples comprising the keyword query
representation, the QM representation, and the similarity between them.

We rely on the Bayesian model, in Section 7, to compute the relevance score of a QM
and then build the training set we use for fine-tuning. A score of 1 indicates relevance to
the keyword query, while a sigmoid function of the score in the Bayesian model is applied
otherwise. Additionally, a fixed weight of 0.4 is added to ensure negative examples are
appropriately accounted for. The calculation of the score follows this formula:

Sim(Q,M) =

1, if M is relevant for Q
1

1 + e−0.4×bayesian_score(Q,M)
, otherwise

8.4. DATA AUGMENTATION 43

where bayesian_score(Q,M) denotes the score of the query match M for query Q using the
traditional Bayesian approach.

Example 14. Considering the sentences for the query matches M1 and M2, shown in Fig-

ure 8.3. We are able to generate the two train examples shown in Figure 8.8

Positive Example ("query: Will Smith films", "answer: person.name.value:
will smith | movie.self.schema: films", score=1.0)

Negative Example ("query: Will Smith films", "answer: person.name.value:
will | person.name.value: smith | movie.self.schema: films",
score=0.22)

Figure 8.8: Training examples for the QM ranking fine-tuning

8.3.2 CJN Ranking Fine-tuning

Similarly, in the fine-tuning process for CJN ranking, sentence-transformer models are adapted
using specific training examples. However, as CJNs may generate several sentences, there may
be several training examples for a single CJN. These examples consist of tuples comprising
the keyword query representation, the CJN representation, and the similarity between them.

Again, we rely on the Bayesian model, in Section 7, to compute the relevance score
of a CJN and then build the training set we use for fine-tuning. A score of 1 indicates
relevance to the keyword query, while a sigmoid function of the score in the Bayesian model
is applied otherwise. Additionally, a weight of 0.4 is added to ensure negative examples are
appropriately accounted for. The calculation of the score follows this formula:

Sim(Q,S) =

1, if CJN is relevant for Q
1

1 + e−0.4×bayesian_score(Q,CJN)
, otherwise

where S is a sentence for the candidate joining network CJN , and bayesian_score(Q,M)

denotes the score of CJN for query Q using the traditional Bayesian approach.

Example 15. Considering the sentences for the query matches CJN1 and CJN2, shown in

Figure 8.7. We are able to generate the train examples shown in Figure 8.9.

8.4 Data Augmentation

In order to facilitate the fine-tuning process, which necessitates a robust set of training
examples comprising keyword queries, their respective relevant QMs, and CJNs, we employed

44 CHAPTER 8. NEURAL RANKING

Aggr. Approach Positive Examples Negative Examples

Mean
("query: Will Smith films", "answer: person.name:
Smith, Will | movie: films", score=1.0)

("query: Will Smith films", "answer: person.name:
Wills, Luke | movie: films | person.name: Smith,
Tom", score=0.044)

("query: Will Smith films", "answer: person.name:
Smith, Will | movie: films", score=1.0)

("query: Will Smith films", "answer: person.name:
Hussing, Will | movie: films | person.name: Smith,
Andrew", score=0.044)

("query: Will Smith films", "answer: person.name:
Smith, Will | movie: films", score=1.0)

("query: Will Smith films", "answer: person.name:
Woods, Will | movie: films | person.name: Smith,
Cedric", score=0.044)

Multivalue ("query: Will Smith films", "answer: person.name:
Smith, Will, Smith, Will, Smith, Will | movie: films",
score=1.0)

("query: Will Smith films", "answer: person.name:
Wills, Luke, Hussing, Will, Woods, Will | movie:
films | person.name: Smith, Tom, Smith, Andrew,
Smith, Cedric", score=0.044)

Figure 8.9: Sentence representations for the candidate joining networks CJN1 and CJN2.

a data augmentation strategy. Given the importance of having a diverse and comprehensive
dataset for effective model training, data augmentation plays a pivotal role in enriching the
available training examples. One of the challenges in this context is the lack of annotated data
for training. Thus, one of our goals is to minimize the need for manually labeling data by
leveraging data augmentation techniques to generate a wider variety of training examples.

The data augmentation process involve four main steps: (i) Extraction of CJN Templates;
(ii) Generation of new keyword queries and CJNs; (iii) Run the keyword search for each
query; (iv) Generate sentences for each QM or CJN generated by Lathe for that query.

Given a keyword query and its relevant CJN, we initiate the augmentation process by
extracting CJN templates. A template denotes a CJN wherein all keywords are replaced by
wildcards, represented by the symbol ‘?’. This step facilitates the creation of generalized
structures that encapsulate the essence of query semantics without being bound to specific
keywords.

Example 16. Considering the candidate joining networks CJN1, which was generated in

Example 13 and it is the relevant CJN for the query “Will Smith films”. We can extract the

following template T1, from CJN1 by replacing its keywords with a wildcard ‘?’. This template

selects information on all the movies for all persons, and its results are shown in Figure 8.10.

CJN1 = PERSONV [name{will,smith}]

CASTING

MOV IES[self {films}]

T1 = PERSONV [name{?}]

CASTING

MOV IES[self {?}]

Next, we run the SQL statement derived from T1 against the database, which returns
the rows shown in Figure 8.10. Then, for each row, we are able to generate a new keyword
query, and its relevant CJN and QM. First, we use a subset of the row values to generate a
keyword query. Second, we generate the relevant CJN by filling the wildcards with keywords

8.4. DATA AUGMENTATION 45

Results for T1
t1.name t3.title t3.year
Hues, Jack The Guardian 1990
Coote, Robert The House of Fear 1939
O’Halloran, Jack The Flintstones 1994
Zorn, John Notes on Marie Menken 2006
Kern, Robert Plymouth Adventure 1952

Figure 8.10: Results for the template T1.

from the query. Third, the relevant QM is the set of non-free keyword matches from the
CJN. Figure 8.11 shows five keyword queries and their answers, which were generated from
template T1.

Keyword Queries and Answers generated for template T1

1

Query Hues Jack films

CJN PERSONV [name{hues,jack}] CASTING MOV IES[self {films}]

QM {PERSONV (name{hues,jack}),MOV IES(self {films})}

2

Query Coot Robert films

CJN PERSONV [name{coot,robert}] CASTING MOV IES[self {films}]

QM {PERSONV (name{coot,robert}),MOV IES(self {films})}

3

Query Halloran Jack films

CJN PERSONV [name{halloran,jack}] CASTING MOV IES[self {films}]

QM {PERSONV (name{halloran,jack}),MOV IES(self {films})}

4

Query Zorn John films

CJN PERSONV [name{zorn,john}] CASTING MOV IES[self {films}]

QM {PERSONV (name{zorn,john}),MOV IES(self {films})}

5

Query Kern Robert films

CJN PERSONV [name{kern,robert}] CASTING MOV IES[self {films}]

QM {PERSONV (name{kern,robert}),MOV IES(self {films})}
Figure 8.11: Keyword Queries and and Answers for the template T1.

We use these augmented data to generate positive examples for the fine-tuning of the
QM ranking and CJN ranking. Next, we perform the keyword search for the newly created
queries, and use the non-relevant QMs and CJNs returned by Lathe as negative examples.

Chapter 9

Experiments

In this section, we report a set of experiments performed using datasets and query sets
previously used in similar experiments reported in the literature. Our goal is to evaluate
the CJN Ranking, the QM ranking, and how our Eager Evaluation strategy can improve the
CJN Generation. We evaluate both the Bayesian approach (Chapter 7) and the deep learning
approach (Chapter 8).

9.1 Experimental Setup

Datasets

For all the experiments, we used three datasets, IMDb, MONDIAL, and Yelp,
which were used for the experiments performed with previous R-KwS systems
and methods [Coffman and Weaver, 2010a, Coffman and Weaver, 2012, Luo et al., 2007,
Oliveira et al., 2015, Oliveira et al., 2018, de Oliveira et al., 2020, Afonso et al., 2021]. The
IMDb dataset is a subset of the well-known Internet Movie Database (IMDb)1, which com-
prises information related to films, television shows, and home videos – including actors,
characters, etc. The MONDIAL dataset [May, 1999] comprises geographical and demo-
graphic information from the well-known CIA World Factbook2, the International Atlas, the
TERRA database, and other web sources.

The Yelp dataset is a subset of Yelp3, which comprises information about businesses,
reviews, and user data. The three datasets have distinct characteristics. The IMDb dataset
has a simple schema, but query keywords often occur in several relations. Although the

1https://www.imdb.com/
2https://www.cia.gov/library/publications/the-world-factbook/
3https://www.yelp.com/dataset

46

9.1. EXPERIMENTAL SETUP 47

MONDIAL dataset is smaller, its schema is more complex or dense, with more relations and
relational integrity constraints (RICs). The Yelp dataset has the highest number of tuples but
its schema is simple. Table 9.1 summarizes the details of each dataset.

Table 9.1: Datasets we used in our experiments

Dataset Size(MB) Relations Attributes RIC Tuples

IMDb 701 6 33 5 1,673,076
MONDIAL 14 28 48 38 17,115
Yelp 7898 7 24 5 12,856,448

Query Sets

We used the query sets provided by Coffman & Weaver [Coffman and Weaver, 2010a] bench-
mark for the IMDb and MONDIAL datasets. The query set for Yelp was obtained from
SQLizer [Yaghmazadeh et al., 2017] and consists of 28 queries formulated in Natural Lan-
guage. We adapted all of its queries to our experiments by extracting only their keyword
terms.

However, we notice that several queries from IMDb and MONDIAL query sets do
not have a clear intent, compromising the proper evaluation of the results, for instance, the
ranking of CJNs. To provide a fairer evaluation, we generated an additional query set for each
original set. In these new sets, we replaced queries that we consider unclear with equivalent
queries that include added schema references. As an example, consider the query “Saint Kitts

Cambodia” for the MONDIAL dataset, where Saint Kitts and Cambodia are the names of
the two countries. There exist several interpretations of this keyword query, each of them
with a distinct way to connect the tuples corresponding to these countries. For example, one
might look for shared religions, languages, or ethnic groups between the two countries. While
all these interpretations are valid in theory, the relevant interpretation defined by Coffman
& Weaver [Coffman and Weaver, 2010a] in their golden standard indicates that the query
searches for organizations in which both countries are members. In this case, we replaced the
query with "Saint Kitts Cambodia Organizations".

Table 9.2 presents the query sets we used in our experiments, along with some of their
features. Query sets whose names include the suffix “-DI” correspond to those in which
we have replaced ambiguous queries as explained above. Thus, these queries sets have no
ambiguous queries and they have a higher number of schema references.

48 CHAPTER 9. EXPERIMENTS

Table 9.2: Query sets we used in our experiments

Query Set Target Dataset
Total

Queries
Ambiguous

Queries
Schema

References

IMDb IMDb 50 5 20
IMDb-DI IMDb 50 - 25
MONDIAL MONDIAL 50 7 12
MONDIAL-DI MONDIAL 50 - 19
Yelp Yelp 28 - 24

Golden Standards

The benchmark from Coffman & Weaver [Coffman and Weaver, 2010a] provided the relevant
interpretation and its relevant SQL results for each query of the IMDb and MONDIAL
datasets. In the case of the Yelp dataset, SQLizer [Yaghmazadeh et al., 2017] provided the
relevant SQL queries for natural language queries. Since we derived keyword queries from
the latter, we also adapted the SQL queries to reflect this change. We then manually generated
the golden standards for CJNs and QMs using relevant SQL provided by Coffman & Weaver
and in SQLizer.

Metrics

We evaluate the ranking of CJNs and QMs using several metrics: Recall, Recall at ranking
position K (R@K), Max Recall Position, Precision at ranking position 1 (P@1), and Mean
Reciprocal Rank (MRR).

Recall is the ratio of relevant results retrieved to the total number of relevant results.
Recall at K (R@K) is the mean recall across multiple queries considering only the first K
results. If fewer than K results are retrieved by a system, we calculate the recall value at the
last result. For instance, if the system returns the relevant CJN in at most position 3 of the
ranking for 35 out of 50 queries, then the system would obtain an R@3 of 0.7.

Given that each keyword query has exactly one relevant QM and one relevant CJN,
R@K effectively measures whether the relevant QM or CJN is among the top K results
returned by the system. This metric is important for understanding the effectiveness of our
retrieval approach in ensuring that the relevant results are generated and returned.

The Max Recall Position indicates the highest rank positionK within which the relevant
QM is found. A lower Max Recall Position implies that the relevant QM is found within the
top K positions, reducing the need to generate CJNs for many QMs.

Precision at 1 (P@1) is the ratio of relevant results found in the first position
for each query to the number of queries. We use Recall and P@1 to compare Lathe

9.1. EXPERIMENTAL SETUP 49

and other R-KwS systems. These metrics were chosen because they were reported in
QUEST [Bergamaschi et al., 2016], ensuring a fair and consistent comparison.

The Mean Reciprocal Rank (MRR) value indicates how close the correct CJN is to the
first position of the ranking. Given a keyword query Q, the value of the reciprocal ranking for

Q is given by RRQ = 1
K

, where K is the rank position of the relevant result. Then, the MRR
obtained for the queries in a query set is the average of RRQ, for all Q in the query set. This
metric is particularly useful in our context because it penalizes systems that place the relevant
QM or CJN further down the ranking, thereby highlighting models that not only retrieve the
relevant item but do so with higher precision.

Lathe Setup

For the experiments we report here, we set a maximum size for QMs and CJNs of 3 and
5, respectively. Also, we consider three important parameters for running Lathe: NQM , the
maximum number of QMs considered from the QM ranking; NCJN , the maximum number
of CJNs considered from each QM; and PCJN , the number of CJNs probed per QM by the
eager evaluation. In this context, a setup for Lathe is a triple NQM/NCJN/PCJN . The most
common setup we used in our experiments is 8/1/9, in which we take the top-5 QMs in the
ranking, generate and probe up to 9 CJNs for each QM, and take only the first non-empty CJN,
if any, from each QM. We call this the default setup. Later in this section, we will discuss
how these parameters affect the effectiveness and the performance of Lathe, as well as why
we use the default configuration.

All the resources, including source code, query sets, datasets and golden standards used
in our experiments are available at https://github.com/bdri-ufam/Lathe.

Fine-Tuning Setup

In our experiments, we used a set of parameters for configuring the transformer-based models
we used as weel as the data augmentation techniques we described in Chapter 8. We utilized
a batch size of 128, which was chosen as it was the maximum that did not exceed the GPU
memory capacity, ensuring efficient utilization of hardware resources without causing memory
overflow. The model was trained over 2 epochs, allowing us to go over the dataset twice to
balance between sufficient training time and computational efficiency. We incorporated 100
warmup steps to gradually increase the learning rate, aiding in stable model convergence.
Evaluations were conducted every 500 steps to monitor performance and make necessary
adjustments during training. We used the CosineSimilarityLoss function for training, ensuring
that the model effectively learned to measure similarity between embeddings. This choice of

https://github.com/bdri-ufam/Lathe

50 CHAPTER 9. EXPERIMENTS

loss function was crucial for our task, as it directly influenced the quality and accuracy of the
learned embeddings.

For fine-tuning, we relied on the golden standards as the validation set, ensuring accurate
performance evaluation against a trusted reference. The training and test sets were derived
from data augmentation, with a generation ratio of 200. We split the data into 80% for training
and 20% for testing, maintaining a balanced approach to model training and evaluation.

Additionally, we utilized view snapshots, comprising the first 3 rows from the database
views, to generate sentences for the CJNs. This technique provided structured sentences that
encapsulated essential information from the views, facilitating meaningful comparisons and
relevance assessments.

System Details

We ran the experiments reported in Sections 9.2 and 9.3 on a Linux machine running
Artix Linux (64-bit, 32GB RAM, AMD Ryzen™ 5 5600X CPU @ 3.7GHz). We ran the
experiments reported in Section 9.4 on a Linux machine Ubuntu 22.04.4 LTS (64-bit, 32GB
RAM, Intel(R) Xeon(R) W-2225 CPU @ 4.10GHz, 2 x 16GiB DIMM DDR4 Synchronous
3200 MHz, NVIDIA Quadro RTX 5000). We used PostgreSQL as the underlying RDBMS
with a default configuration. All implementations were made in Python 3.

9.2 Preliminary Results: CJN Generation

We present in this section some statistics about the CJN generation process. Table 9.3 shows
the maximum and average numbers of KMs, QMs, and CJNs generated for each query set. The
last two columns refer to the ratio of the number of CJNs to the number of QMs. Notice that
we removed the maximum caps for the number of CJNs and CJNs per QM in the experiment
reported here. However, we maintained the limit sizes of 3 and 5 for the QMs and CJNs,
respectively.

Table 9.3: Statistics for the CJN process of each query set.

Query sets Num. KMs Num. QMs Num. CJNs CJNs / QMs
Max Avg Max Avg Max Avg Max Avg

IMDb 47 15.38 702 80.50 656 97.28 0.93 1.21
IMDb-DI 64 16.20 702 85.34 656 103.88 0.93 1.22
MONDIAL 8 3.12 9 2.10 35 9.40 3.89 4.48
MONDIAL-DI 8 3.40 9 2.42 44 11.04 4.89 4.56
Yelp 21 11.82 124 32.39 301 74.07 2.43 2.29

9.3. EXPERIMENTAL RESULTS: BAYESIAN RANKING 51

Overall, the query sets for both IMDb and Yelp datasets achieved higher maximum and
average numbers of KMs and QMs. This result is due to a higher number of tuples and the
keywords being present in multiple relations or combinations. For example, in the IMDb
dataset, several persons, characters, and even movies share the same name or part of it. In
the case of Yelp, for instance, the keyword “texas” can match a state, a restaurant name, or a
username. On the other hand, in MONDIAL, the keywords often match a few attributes only.
For example, a city name probably does not overlap with the names of countries, continents,
etc. Consequently, the system produces a low number of KMs and QMs for the query sets of
this dataset.

Regarding the CJN generation, the query sets for IMDb and Yelp achieved high numbers
of CJNs because of their already high numbers of QMs, but a low ratio of CJNs per QMs due
to their simple schema graphs. As for the query sets for the MONDIAL dataset, they achieved
opposite results due to their complex schema graph.

9.3 Experimental Results: Bayesian Ranking

In this section, we present the results of experiments we carried out using Lathe with the
Bayesian Ranking described in Chapter 7. This encompasses our initial results with the
Lathe system. We compare Lathe with other R-KwS systems, examining its performance
and capabilities. Additionally, we analyze various configurations for CJN generation, pro-
viding insights into their effectiveness. These results have been previously reported and
published [Martins et al., 2023b].

9.3.1 Comparison with other R-KwS systems

In this experiment, we first compare Lathe with QUEST [Bergamaschi et al., 2013], the
current state of art R-KwS system with support to schema references and then we also compare
Lathe with several other R-KwS systems. Here, we used the default Lathe setup, that is, 8/1/9.
We compare our results to those published by the authors, which refer to the MONDIAL
dataset, because we were unable to run QUEST due to the lack of code and enough details for
implementing it. It is important to note that QUEST only supports 35 out of the 50 queries
in the original query set. Figure 9.1 depicts the results for these 35 supported queries4. The
graphs show the recall and P@1 values for the raking produced by each system considering
the golden standard supplied by Coffman & Weaver [Coffman and Weaver, 2010a].

Both systems achieved perfect recall; that is, all the expected solutions for the given
keyword queries were retrieved. Concerning P@1, Lathe obtained better results than QUEST,

4Specifically, queries 01-20, 26-35 and 46-50.

52 CHAPTER 9. EXPERIMENTS

0.0 0.2 0.4 0.6 0.8 1.0
Recall

LATHE

QUEST

0.0 0.2 0.4 0.6 0.8 1.0
P@1

LATHE

QUEST

Figure 9.1: Comparison of Lathe with the QUEST system.

with an average of 0.97 with a standard error of 0.03, which indicates that, in most cases, the
correct solution was the one corresponding to the CJN ranked as the first by Lathe.

Next, we compare the results obtained for Lathe with those published in the compre-
hensive evaluation published by Coffman & Weaver [Coffman and Weaver, 2010a] for the
systems BANKS [Aditya et al., 2002], DISCOVER [Hristidis and Papakonstantinou, 2002],
DISCOVER-II [Hristidis et al., 2003], BANKS-II [Kacholia et al., 2005],
DPBF [Ding et al., 2007], BLINKS [He et al., 2007] and STAR [Kasneci et al., 2009].
Because this comparison uses all 50 keyword queries from the MONDIAL dataset, we
did not include QUEST in the comparison. Figure 9.2 shows the recall and P@1 values
for the raking produced by each system when the golden standard provided by Coffman &
Weaver [Coffman and Weaver, 2010a] is taken into account.

LATHE BANKS DISCOVERDISCOVER-II BANKS-II DPBF BLINKS STAR
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

LATHE BANKS DISCOVERDISCOVER-II BANKS-II DPBF BLINKS STAR
0.0

0.2

0.4

0.6

0.8

1.0

P@
1

Figure 9.2: Comparison with other approaches using Recall and P@1 metrics

Overall, Lathe achieved the best results in Recall and P@1 value. The only systems
achieving a recall value close to Lathe were DPBF and BLINKS, which are based on data
graph. Thus, they require a materialization of the database. The difference in the recall values
between Lathe, DISCOVER, and DISCOVER-II is mainly due to not supporting schema
references. Regarding the P@1, Lathe obtained a value of 0.96 with a standard error of 0.03,
which is significantly higher than the results for other systems. Especially when comparing

9.3. EXPERIMENTAL RESULTS: BAYESIAN RANKING 53

Lathe with DISCOVER and DISCOVER-II, the reason for Lathe’s best performance in P@1
is due to the Lathe’s novel ranking of QMs and the improved ranking of CJNs.

9.3.2 Evaluation of Query Matches Ranking

In this experiment, we evaluate the quality of QMs ranking according to the metrics MRR
and R@K. As shown by the results in Section 9.2, there can be many QMs depending on the
query. As a result, we want to verify how effective the QMRank algorithm is at selecting the
most likely correct QM from among those generated in this experiment. Figure 9.3 shows the
results obtained with R@K up to the tenth ranking position and the MRR metric.

1 2 3 4 5 6 7 8 9 10
Rank Position K

0.6

0.7

0.8

0.9

1.0

R@
K

IMDb
IMDb-DI
MONDIAL
MONDIAL-DI
Yelp

0.0 0.2 0.4 0.6 0.8
MRR

IMDb

IMDb-DI

MONDIAL

MONDIAL-DI

Yelp

Figure 9.3: Evaluation of Query Matches

As shown by R@K plot in Figure 9.3, the correct QM is found at least in the eighth
ranking position for all query sets. However, for MONDIAL and MONDIAL-DI, the relevant
QM is at least in the third position for all queries. Yelp obtained an R@8 of 1 and R@3 of
0.93, which indicates that the system returns the relevant QM by the eighth position, and
in most cases, up to the third position. Regarding the IMDb dataset there is one query in it
whose relevant QM is not minimal. As QMs must be minimal by Definition 5, Lathe does not
support this query. Consequently, the query sets for the IMDb dataset can obtain an R@K
value of 0.98 at most. IMDb and IMDb-DI achieved this value at position 5.

Lathe obtained an MRR of 0.75 for both IMDb and IMDb-DI, 0.83 for Yelp, and 0.96

and 0.95 for MONDIAL and MONDIAL-DI, respectively. This result indicates that the
relevant QM is often in the top positions of the ranking. Notice that the QM ranking impacts
the generation and ranking of CJNs. In practice, a high R@K value with a low K allows
us to generate fewer CJNs without compromising the quality of the CJN ranking. Based on
the obtained results, we set the parameter NQM to 8, which indicates that Lathe will only
generate CJNs for the top-8 query matches.

54 CHAPTER 9. EXPERIMENTS

9.3.3 Evaluation of the Candidate Joining Network Ranking

In this experiment, we evaluate the quality of our approach for CJN generation and ranking.
We used the metrics MRR and R@K for K up to the tenth rank position. We tested several
different setups but to save space we report here only those with representative distinct results.
Specifically, we report the results of four setups without the eager evaluation, that is, 8/1/0,
8/2/0, 8/8/0 and 8/9/0 and two setups with the eager evaluation, that is 8/1/9 and 8/2/9.

MRR R@1 R@2 R@3 R@4 R@5 R@6 R@7 R@8 R@9 R@10
0.0

0.2

0.4

0.6

0.8

1.0
8/1/0
8/2/0
8/8/0
8/9/0
8/1/9
8/2/9

MRR R@1 R@2 R@3 R@4 R@5 R@6 R@7 R@8 R@9 R@10
0.0

0.2

0.4

0.6

0.8

1.0
8/1/0
8/2/0
8/8/0
8/9/0
8/1/9
8/2/9

Figure 9.4: Ranking of Candidate Joining Networks - IMDb (top) and IMDb-DI (bottom)

Figure 9.4 shows the results for the IMDb and IMDb-DI query sets. As it can be seen,
regardless of the configuration, our method was able to place the relevant CJNs in the top
positions in the ranking, and the result is very similar for both IMDb and IMDb-DI query sets.
This shows that in these datasets, our method was able to disambiguate the queries properly,
even without the addition of schema references. It is worth noting that the values of R@1 in
both query sets show that the configurations with the eager evaluation achieved better results
because they place the relevant CJNs in the first ranking position more frequently. The R@K
metric also shows that the quality of the ranking decreases as the number of CJNs per QM
increases, especially for K in the range 2 ≤ K ≤ 6.

Figure 9.5 shows the results for MONDIAL and MONDIAL-DI. In these query sets, the
configurations with the eager evaluation achieved significantly better results. The configura-
tions 8/1/0 and 8/2/0 could not generate the relevant CJN for around 20% of the queries due
to a low number of CJNs per QM, therefore, their results were capped at an MMR and R@K

9.3. EXPERIMENTAL RESULTS: BAYESIAN RANKING 55

MRR R@1 R@2 R@3 R@4 R@5 R@6 R@7 R@8 R@9 R@10
0.0

0.2

0.4

0.6

0.8

1.0
8/1/0
8/2/0
8/8/0
8/9/0
8/1/9
8/2/9

MRR R@1 R@2 R@3 R@4 R@5 R@6 R@7 R@8 R@9 R@10
0.0

0.2

0.4

0.6

0.8

1.0
8/1/0
8/2/0
8/8/0
8/9/0
8/1/9
8/2/9

Figure 9.5: Ranking of Candidate Joining Networks - MONDIAL (top) and MONDIAL-DI
(bottom)

value of 0.8, approximately. The configurations 8/8/0 and 8/9/0 were able to generate the
relevant CJN for most of the cases, although the large number of CJNs per QM negatively
affected the ranking of CJNs. Finally, the configurations 8/1/9 and 8/2/9 produced the
best results because the pruning enables us to generate the relevant CJN with a low number
of CJNs per QM while also placing the relevant CJN in higher rank positions. Notice that
the disambiguation of queries in the MONDIAL-DI query set allowed configurations 8/8/0
and 8/9/0 to have better results, especially for the R@K metric for K above 7. The eager
evaluation configurations were able to disambiguate the queries without relying on the addi-
tion of schema references, therefore, their results were consistent across the MONDIAL and
MONDIAL-DI query sets.

Figure 9.6 shows the results for the Yelp query set. Overall, the eager CJN evaluation
did not affect the results for this query set, probably because the database schema graph was
simple and the ways of connecting the query matches were straightforward. Configurations
8/1/0 and 8/1/9 achieved the best results, obtaining a MRR of 0.85 and R@2 of 0.92 for
the CJN generation. This indicates that the relevant CJNs are often found up to the second
ranking position, with exception of two queries, whose relevant CJN were found in positions
5 and 7, respectively. The other configurations obtained slightly worse results, with an MRR
of 0.84 and an R@2 of 0.89, approximately.

56 CHAPTER 9. EXPERIMENTS

MRR R@1 R@2 R@3 R@4 R@5 R@6 R@7 R@8 R@9 R@10
0.0

0.2

0.4

0.6

0.8

1.0
8/1/0
8/2/0
8/8/0
8/9/0
8/1/9
8/2/9

Figure 9.6: Ranking of Candidate Joining Networks - Yelp

Regardless of the datasets and configurations, our method achieved an MRR value
above 0.7, which indicates that on average, the relevant CJN is found between the first and
the second rank positions. In the IMDb dataset, the decrease of R@K values according to
the number of CJNs taken per QM is also reflected on the MRR metric. However, in the
MONDIAL dataset, the improvement of theR@K values due to the disambiguation of queries
is not reflected on the MRR value, as this improvement only happens in low ranking positions
(K ≤ 8).

The eager CJN evaluation inherently affects the performance of the CJN generation
process. Therefore it is important to look at the trade-off between the effectiveness and the
efficiency in each configuration. We examine this trade-off in the next section.

9.3.4 Performance Evaluation

In this experiment, we aim at evaluating the time spent for obtaining the CJN given a keyword
query, and analyze the trade-offs between efficiency and efficacy of the different configurations
used in Lathe.

Lathe obtained better execution times for the IMDb dataset in all configurations. Also,
the disambiguate variants of query sets yield slower execution times in comparison with the
original counterparts.

Figure 9.7 summarizes the average execution time for each phase of the process:
Keyword Matching, Query Matching and the Candidate Joining Network Generation. In this
first experiment, we used the configuration 8/1/0. Lathe obtained better total execution times
for the IMDb dataset, followed by the Yelp dataset. In addition, the query sets IMDb-DI and
MONDIAL-DI yield slower execution times in comparison with the original counterparts.
Also, it is worth noting that the execution times for each query set are related to the number
of KMs, QMs, and CJNs in the query sets shown in Table 9.3.

Regarding keyword matching, the Yelp dataset yielded the worst execution times,

9.3. EXPERIMENTAL RESULTS: BAYESIAN RANKING 57

0.0 0.2 0.4 0.6 0.8 1.0
Execution Time (s)

IMDb

IMDb-DI

MONDIAL

MONDIAL-DI

Yelp

Keyword Match
Query Match
Candidate Joining Network

Figure 9.7: Average Execution Times for each phase of Lathe. The QM generation time for
the MONDIAL and MONDIAL-DI query sets is in the range of microseconds, therefore this
minimal time does not appear prominently in the chart due to the scale.

with 167ms, probably because of its higher number of attributes and tuples. Although the
MONDIAL dataset has fewer tuples than IMDb, its higher number of schema elements (28
relations and 48 attributes) results in a higher execution time than IMDb.

Due to the combinatorial nature of QM generation, the execution times for the Query
Matching phase are directly related to the number of QMs. While the execution times for
the IMDb and IMDb-DI query sets that produced a high number of QMs are 247 and 256

milliseconds, respectively, the results for the MONDIAL and MONDIAL-DI are around 190

and 202 microseconds. The Yelp dataset achieved 121 miliseconds. It is important to note that
the QM generation time for the MONDIAL and MONDIAL-DI query sets is in the range of
microseconds, orders of magnitude smaller than the times for other query sets. This minimal
time does not appear prominently in the chart due to the scale, contributing to the overall
efficiency of the system.

Concerning the CJN phase, the execution times for MONDIAL are significantly higher
in comparison with the execution times for IMDb and Yelp, despite the lower number of CJNs
for the MONDIAL. Because the CJN generation algorithm is based on a Breadth-First Search,
the greater the number of vertices and edges in the schema graph of the MONDIAL dataset,
the greater the number of iterations and, consequently, the slower the execution times. This
behavior persists throughout different configurations, an issue we analyze below.

9.3.5 Quality versus Performance

Figure 9.8 presents an evaluation of the CJN generation performance, comparing the same
configurations used in the experiment of Section 9.3.3. We present the results for the IMDB,
MONDIAL and Yelp datasets in different scales because they differ by order of magnitude.
Overall, execution times increase as the number of CJNs taken per QM increases. This pattern

58 CHAPTER 9. EXPERIMENTS

is more pronounced in the MONDIAL dataset. Also, the eager CJN evaluation incurs an
unavoidable increase in the CJN generation time as the system has to probe the CJNs running
queries into the database.

IMDb IMDb-DI
0.00

0.05

0.10

0.15

0.20

0.25

El
ap

se
d

Ti
m

e(
s)

MONDIAL MONDIAL-DI
0

1

2

3

4

5

6

7

El
ap

se
d

Ti
m

e(
s)

Yelp
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

El
ap

se
d

Ti
m

e(
s)

8/1/0
8/2/0
8/8/0
8/9/0
8/1/9
8/2/9

Figure 9.8: Performance Evaluation of the CJN Generating phase

As the configurations have an impact on both the quality of the CJN ranking and the
performance, it is important to examine the trade-off between effectiveness and efficiency.
Configuration 8/1/0 and 8/2/0 achieved the best execution times due to the low number
of CJNs per QM and not relying on database accesses. However, these configurations did
not achieve the highest values of MRR and R@K for the IMDb and MONDIAL datasets.
Therefore, they are recommended if one must prioritize efficiency.

Configuration 8/1/9 obtained better results than configurations 8/8/0, 8/9/0 for the
IMDb and MONDIAL datasets and better than 8/2/9 for all datasets. Although this configura-
tion is slower than 8/1/0 and 8/2/0, the significantly better results of MRR and R@K values
for MONDIAL and IMDb datasets make the 8/1/9 configuration an overall recommended
option, especially if one must prioritize effectiveness.

We do not recommend the configurations 8/2/0, 8/8/0, 8/9/0 and 8/2/9 because
their MRR and R@K values do not justify the increase in execution times. Although 8/2/9

obtained the best MRR and R@K values for the MONDIAL dataset, it is 37%-80% slower
than 8/1/9. Configurations 8/8/0 and 8/9/0 achieved a slight increase in the R@K metric
for the MONDIAL dataset, for K ≤ 8, however, they obtained lower values of MRR and
R@K values for the IMDb and Yelp datasets.

It is interesting noting that the configurations with eager CJN evaluation spend time to
probe CJNs while sending queries to the DBMS. However, as they generate a smaller set of
CJNs, the overall performance is not hindered in comparison with the configurations without
it.

9.4. EXPERIMENTAL RESULTS: NEURAL RANKING 59

9.4 Experimental Results: Neural Ranking

This section presents a set of experiments comparing the Bayesian approach with the approach
we developed with modern neural techniques, specifically transformer-based models as
detailed in Chapter 8. We aim to assess the advancements and improvements brought by neural
methods in the context of QM and CJN ranking. The experiments provide a comprehensive
evaluation, highlighting the strengths and potential limitations of both approaches.

9.4.1 Neural QM Ranking

In this section, we evaluate the performance of different models on the task of QM ranking
using the metrics MRR (Mean Reciprocal Rank), Recall, and Max Recall Position. Our
main goal is to assess the effectiveness of transformer-based models for ranking QMs and
benchmark them against the Bayesian model, which serves as the ranking solution in our
Bayesian approach.

A lower Max Recall Position (k) indicates that the relevant QM is found within the
top k positions, requiring the CJN generation only for the first k QMs. Nevertheless, a high
Max Recall Position generates a major amount of CJNs, this ensures that the relevant QM is
generated for most keyword queries, thereby increasing the likelihood of generating the most
relevant CJN. Hence, a high MRR indicates good overall ranking performance.

Table 9.4 shows twenty models analyzed for this experiment, detailing their similarity
function and abbreviation. The letters B, P and F in the abbreviations respectively identify
bayesian, pre-trained and fine-tuned models. The subscript indicator identifies each model,
and in the case of transformer-based models it also identifies their respective variations. The
Bayesian model (BQM) follows the Bayesian approach and serves as a baseline for comparison
against the transformer-based models. The analysis includes both pre-trained and fine-tuned
models.

We evaluated the models on three datasets: IMDB, MONDIAL, and Yelp. Below, we
present the average results for MRR and Recall, and the maximum result for Max Recall
Position across these datasets.

All Datasets Analysis

Figure 9.9 shows the average MRR and Recall across the IMDB, MONDIAL, and Yelp
datasets, along with the maximum Max Recall Position for the same datasets.

The Bayesian model (BQM) achieved an MRR of 0.847, Recall of 0.993, and a Max
Recall Position of 8. Pre-trained models performed worse than the Bayesian model, which

60 CHAPTER 9. EXPERIMENTS

Table 9.4: Neural QM Ranking Models
Model Similarity Abbreviation
Bayesian cos BQM

Model Similarity Abbreviation
Pre-Trained Fine-tuned

paraphrase-albert-small-v2 cos PAlbert FAlbert

all-distilroberta-v1 cos PDistil1 FDistil1

distiluse-base-multilingual-cased-v1 cos PDistil2 FDistil2

distiluse-base-multilingual-cased-v1 dot PDistil3 FDistil3

distiluse-base-multilingual-cased-v2 cos PDistil4 FDistil4

distiluse-base-multilingual-cased-v2 dot PDistil5 FDistil5

multi-qa-distilbert-cos-v1 cos PDistil6 FDistil6

all-MiniLM-L12-v2 cos PMiniLM1 FMiniLM1

all-MiniLM-L6-v2 cos PMiniLM2 FMiniLM2

all-MiniLM-L6-v2 dot PMiniLM3 FMiniLM3

multi-qa-MiniLM-L6-cos-v1 cos PMiniLM4 FMiniLM4

multi-qa-MiniLM-L6-cos-v1 dot PMiniLM5 FMiniLM5

paraphrase-MiniLM-L3-v2 cos PMiniLM6 FMiniLM6

paraphrase-multilingual-MiniLM-L12-v2 dot PMiniLM7 FMiniLM7

paraphrase-multilingual-MiniLM-L12-v2 cos PMiniLM8 FMiniLM8

all-mpnet-base-v2 cos PMPNET1 FMPNET1

all-mpnet-base-v2 dot PMPNET2 FMPNET2

multi-qa-mpnet-base-dot-v1 dot PMPNET3 FMPNET3

paraphrase-multilingual-mpnet-base-v2 cos PMPNET4 FMPNET4

0 1

BQM

PAlbert

PDistil1
PDistil2
PDistil3
PDistil4
PDistil5
PDistil6

PMPNET1
PMPNET2
PMPNET3
PMPNET4
PMiniLM1
PMiniLM2
PMiniLM3
PMiniLM4
PMiniLM5
PMiniLM6
PMiniLM7
PMiniLM8

MRR

0.75 1.00

Recall

0 2 4 6 8 10

Max Recall
Position

0.7 0.8 0.9 1.0

BQM

FAlbert

FDistil1
FDistil2
FDistil3
FDistil4
FDistil5
FDistil6

FMPNET1
FMPNET2
FMPNET3
FMPNET4
FMiniLM1
FMiniLM2
FMiniLM3
FMiniLM4
FMiniLM5
FMiniLM6
FMiniLM7
FMiniLM8

MRR

0.90 0.95 1.00

Recall

0 2 4 6 8 10

Max Recall
Position

(a) Pre-trained Models (b) Fine-tuned Models
Figure 9.9: Evaluation of the Neural QM ranking on all datasets (Average for MMR and
Recall, and Max for Max Recall Position).

indicates they struggled to accurately interpret QM linearization and ranking tasks. However,
fine-tuning these models led to substantial improvements.

Fine-tuned models like FMPNET4, FMiniLM4, and FDistil6 achieved higher MRR scores
than the baseline, indicating their superior capability in ranking relevant QMs higher on

9.4. EXPERIMENTAL RESULTS: NEURAL RANKING 61

average. This highlights the impact of fine-tuning in enhancing the models’ understanding
and ranking abilities for QM tasks.

Regarding Recall, several fine-tuned models, including FMPNET3, FMPNET4,
FMiniLM1, FMiniLM2, FMiniLM5, and FMiniLM6, achieved a Recall of 0.993. This perfor-
mance is on par with the Bayesian baseline, showcasing these models’ ability to retrieve
all relevant QMs effectively. Such results underscore the models’ comprehensive recall
capabilities after fine-tuning.

In terms of Max Recall Position, the fine-tuned models also demonstrated improve-
ments. For instance, FMPNET3 achieved the best performance by retrieving the relevant QM
within the top 6 positions, outperforming the baseline’s position 8. Similarly, FMiniLM1 and
FMPNET4 achieved positions 7 and 8, respectively. These results reflect the models’ enhanced
efficiency in identifying relevant QMs earlier in the ranking list, a crucial factor for user
satisfaction in information retrieval tasks.

Among the evaluated models, FMiniLM1, FMPNET3, and FMPNET4 stand out as the
best performers overall. These models consistently achieve high MRR, Recall, and low Max
Recall Position across all datasets.

Individual Dataset Analysis

The results for individual datasets largely mirror the trends observed in the overall analysis,
with fine-tuned models outperforming pre-trained ones and the Bayesian baseline.

Figure 9.10 shows the results for the IMDB dataset. The Bayesian model (BQM)
achieved an MRR of 0.77, Recall of 0.98, and a Max Recall Position of 5. Pre-trained
models consistently performed worse than the baseline. Fine-tuned models like FMiniLM8

and FMPNET4 achieved MRR scores of 0.91 and 0.9, respectively, indicating their superior
capability in ranking relevant QMs higher on average. Several fine-tuned models, including
FMPNET3, FMPNET4, FMiniLM1, FMiniLM2, FMiniLM5, and FMiniLM6, achieved a Recall
of 0.98, on par with the Bayesian baseline, showcasing these models’ ability to retrieve
all relevant QMs effectively. In terms of Max Recall Position, FMPNET3 achieved the
best performance by retrieving the relevant QM within the top 4 positions, outperforming
the baseline’s position 5. Similarly, FMiniLM1 and FMPNET4 achieved positions 7 and 8,
respectively, reflecting enhanced efficiency in identifying relevant QMs earlier.

Figure 9.11 shows the results for the MONDIAL dataset. The Bayesian model (BQM)
achieved an MRR of 0.94, Recall of 1.0, and a Max Recall Position of 2. Most sentence-
transformer models achieved perfect Recall (1.0) and very low Max Recall Positions (2). The
pre-trained model PMPNET4 obtained a slightly better MRR of 0.95. Fine-tuned models like
FAlbert, FDistil1, FMPNET4, and FMiniLM1 all achieved an MRR of 0.98, making them top

62 CHAPTER 9. EXPERIMENTS

0 1

BQM

PAlbert

PDistil1
PDistil2
PDistil3
PDistil4
PDistil5
PDistil6

PMPNET1
PMPNET2
PMPNET3
PMPNET4
PMiniLM1
PMiniLM2
PMiniLM3
PMiniLM4
PMiniLM5
PMiniLM6
PMiniLM7
PMiniLM8

MRR

0.75 1.00

Recall

0 2 4 6 8 10

Max Recall
Position

0.7 0.8 0.9 1.0

BQM

FAlbert

FDistil1
FDistil2
FDistil3
FDistil4
FDistil5
FDistil6

FMPNET1
FMPNET2
FMPNET3
FMPNET4
FMiniLM1
FMiniLM2
FMiniLM3
FMiniLM4
FMiniLM5
FMiniLM6
FMiniLM7
FMiniLM8

MRR

0.90 0.95 1.00

Recall

0 2 4 6 8 10

Max Recall
Position

(a) Pre-trained Models (b) Fine-tuned Models
Figure 9.10: Evaluation of the Neural QM ranking on the IMDb dataset.

performers for this dataset. Due to MONDIAL having fewer QMs on average, which was
observed in Table 9.3 and discussed in Section 9.2, a pre-trained model achieved a better
MRR score than the baseline, and models based on the Albert and the distilled version of
RoBERTa were among the top performers.

0 1

BQM

PAlbert

PDistil1
PDistil2
PDistil3
PDistil4
PDistil5
PDistil6

PMPNET1
PMPNET2
PMPNET3
PMPNET4
PMiniLM1
PMiniLM2
PMiniLM3
PMiniLM4
PMiniLM5
PMiniLM6
PMiniLM7
PMiniLM8

MRR

0.75 1.00

Recall

0 1 2 3 4

Max Recall
Position

0.7 0.8 0.9 1.0

BQM

FAlbert

FDistil1
FDistil2
FDistil3
FDistil4
FDistil5
FDistil6

FMPNET1
FMPNET2
FMPNET3
FMPNET4
FMiniLM1
FMiniLM2
FMiniLM3
FMiniLM4
FMiniLM5
FMiniLM6
FMiniLM7
FMiniLM8

MRR

0.90 0.95 1.00

Recall

0 1 2

Max Recall
Position

(a) Pre-trained Models (b) Fine-tuned Models
Figure 9.11: Evaluation of the Neural QM ranking on the MONDIAL dataset.

Figure 9.12 shows the results for the Yelp dataset. The Bayesian model (BQM) had an
MRR of 0.83, Recall of 1.0, and a Max Recall Position of 8. Pre-trained models consistently
performed worse than the baseline. Fine-tuned models like FDistil4 and FDistil6 achieved the

9.4. EXPERIMENTAL RESULTS: NEURAL RANKING 63

highest MRR of 0.98 and Recall of 1.0, with a Max Recall Position of 2. However, FMPNET4

and FMiniLM1 also performed well, obtaining MRR scores of 0.97 and 0.95 respectively, and
Max Recall Positions of 4 and 6.

0 1

BQM

PAlbert

PDistil1
PDistil2
PDistil3
PDistil4
PDistil5
PDistil6

PMPNET1
PMPNET2
PMPNET3
PMPNET4
PMiniLM1
PMiniLM2
PMiniLM3
PMiniLM4
PMiniLM5
PMiniLM6
PMiniLM7
PMiniLM8

MRR

0.75 1.00

Recall

0 2 4 6 8 10

Max Recall
Position

0.7 0.8 0.9 1.0

BQM

FAlbert

FDistil1
FDistil2
FDistil3
FDistil4
FDistil5
FDistil6

FMPNET1
FMPNET2
FMPNET3
FMPNET4
FMiniLM1
FMiniLM2
FMiniLM3
FMiniLM4
FMiniLM5
FMiniLM6
FMiniLM7
FMiniLM8

MRR

0.90 0.95 1.00

Recall

0 2 4 6 8 10

Max Recall
Position

(a) Pre-trained Models (b) Fine-tuned Models
Figure 9.12: Evaluation of the Neural QM ranking on the Yelp dataset.

Discussion

The results indicate that sentence-transformer models significantly outperform the Bayesian
baseline in terms of MRR, suggesting that these models provide better overall ranking of
QMs. Fine-tuned models, in particular, demonstrate superior performance in the QM ranking.

Models based on MiniLM and MPNET were consistently among the top perform-
ers across all datasets, a trend also observed in the experiments shown on the Sentence-
Transformers library website5. Specifically, the models FMiniLM1, FMPNET3, and FMPNET4

achieved high MRR, Recall, and low Max Recall Position consistently, making them ideal
candidates for practical applications where efficiency in QM ranking is crucial. Consequently,
these models were chosen as the best performers for the QM ranking task and were utilized in
the Neural CJN ranking experiment.

9.4.2 Neural CJN Ranking

In this section, we evaluate and compare several CJN models using different datasets. Our
goal is to demonstrate the effectiveness of transformer-based models, and compare it to
Bayesian models.

5Sentence Transformers Pretrained Models https://sbert.net/docs/sentence_transformer/pretrained_models.html

64 CHAPTER 9. EXPERIMENTS

Table 9.5 shows twenty-four models analyzed for this experiment, detailing their
similarity function and abbreviation. The letters B, P , and F in the abbreviations respectively
identify Bayesian, pre-trained, and fine-tuned models. The subscript indicator identifies
each model, and in the case of transformer-based models, it also identifies their respective
variations. Each abbreviation consists of its QM model abbreviation followed by a dash, and
then the CJN abbreviation. The CJN abbreviation may also have trailing characters indicating
the aggregation approach used, which can be ‘*’ for the multivalue approach, and ‘+’ for
the mean approach. The CJN abbreviation BCJN indicates that a simple CJN ranking was
applied, where the CJNs were ranked based on their QM score, divided by their size. The
model BQM−BCJN follows the Bayesian approach, and it serves as a baseline for comparison
against the transformer-based models. These models were ranked in the top-10 in at least
one of the datasets. Table G.1 from Appendix G presents a complete list of the CJN Ranking
models.

Table 9.5: CJN Ranking Models
QM Model CJN Model Similarity Agg. Approach CJN Type Abbreviation
BQM Bayesian cos — bayesian BQM−BCJN

BQM paraphrase-albert-small-v2 cos Multivalue fine-tuned BQM−FAlbert∗
BQM all-distilroberta-v1 cos Multivalue fine-tuned BQM−FDistil1∗
BQM multi-qa-MiniLM-L6-cos-v1 dot Mean fine-tuned BQM−FMiniLM5+

BQM paraphrase-multilingual-MiniLM-L12-v2 cos Multivalue fine-tuned BQM−FMiniLM8∗
FMiniLM1 Bayesian cos — bayesian FMiniLM1−BCJN

FMiniLM1 paraphrase-albert-small-v2 cos Multivalue fine-tuned FMiniLM1−FAlbert∗
FMiniLM1 all-distilroberta-v1 cos Multivalue fine-tuned FMiniLM1−FDistil1∗
FMiniLM1 all-distilroberta-v1 cos Mean fine-tuned FMiniLM1−FDistil1+

FMiniLM1 distiluse-base-multilingual-cased-v1 dot Multivalue fine-tuned FMiniLM1−FDistil3∗
FMiniLM1 all-MiniLM-L6-v2 cos Multivalue fine-tuned FMiniLM1−FMiniLM2∗
FMiniLM1 all-MiniLM-L6-v2 dot Multivalue fine-tuned FMiniLM1−FMiniLM3∗
FMiniLM1 paraphrase-MiniLM-L3-v2 cos Mean fine-tuned FMiniLM1−FMiniLM6+

FMiniLM1 paraphrase-multilingual-MiniLM-L12-v2 cos Multivalue fine-tuned FMiniLM1−FMiniLM8∗
FMPNET3 Bayesian cos — bayesian FMPNET3−BCJN

FMPNET3 paraphrase-albert-small-v2 cos Multivalue fine-tuned FMPNET3−FAlbert∗
FMPNET3 all-distilroberta-v1 cos Multivalue fine-tuned FMPNET3−FDistil1∗
FMPNET3 distiluse-base-multilingual-cased-v1 dot Multivalue fine-tuned FMPNET3−FDistil3∗
FMPNET3 all-MiniLM-L6-v2 dot Multivalue fine-tuned FMPNET3−FMiniLM3∗
FMPNET3 paraphrase-MiniLM-L3-v2 cos Mean fine-tuned FMPNET3−FMiniLM6+

FMPNET3 paraphrase-multilingual-MiniLM-L12-v2 cos Multivalue fine-tuned FMPNET3−FMiniLM8∗
FMPNET4 Bayesian cos — bayesian FMPNET4−BCJN

FMPNET4 distiluse-base-multilingual-cased-v1 dot Multivalue fine-tuned FMPNET4−FDistil3∗
FMPNET4 paraphrase-multilingual-MiniLM-L12-v2 cos Multivalue fine-tuned FMPNET4−FMiniLM8∗

Evaluation on All Datasets

We begin by evaluating the performance of various CJN models on all available query sets.
Figure 9.13 presents the Mean Reciprocal Rank (MRR) and Recall@k (R@k) scores for each
model.

9.4. EXPERIMENTAL RESULTS: NEURAL RANKING 65

MRR R@1 R@2 R@3 R@4 R@5 R@6 R@7 R@8 R@9 R@100.0

0.2

0.4

0.6

0.8

1.0 BQM BCJN

FMPNET3 FDistil3*
FMPNET3 FMiniLM3*
FMPNET3 FMiniLM8*
FMPNET4 BCJN

FMPNET4 FMiniLM8*
FMiniLM1 FMiniLM2*
FMiniLM1 FMiniLM3*
FMiniLM1 FMiniLM6+
FMiniLM1 FMiniLM8*

Figure 9.13: Neural CJN Ranking - All Datasets

The baseline model, BQM−BCJN , achieves a decent performance with an MRR of 0.867
and high Recall scores, with R@1 at 0.7833, R@2 at 0.91, reaching a recall plateau of 0.9733
at R@6. However, most of the fine-tuned models show substantial improvements over the
baseline, with MRR values ranging from 0.93 to 0.94. Recall metrics for these models also
indicate enhanced performance, often obtaining a R@1 above 0.883, R@2 above 0.94, and
reaching or exceeding 0.98 by R@4.

Specifically, the models FMPNET3−FDistil3∗, FMPNET3−FMiniLM8∗, and
FMiniLM1−FMiniLM8∗ are the top performers, with MRR values of 0.9333, 0.9367,
and 0.94, respectively. These models demonstrate superior recall performance compared to
the baseline. For instance, FMPNET3−FDistil3∗ achieves an R@1 of 0.8867 and an R@10 of
0.9867, showing consistent improvement over the baseline across all recall points.

Models involving fine-tuning on MiniLM and MPNET consistently outperform oth-
ers, which aligns with trends observed in the pretraining experiments on the Sentence-
Transformers library website6.

Among the top 10 models, one uses the mean aggregation approach, seven use the mul-
tivalue aggregation approach, and one model besides the baseline employs the simple ranking
method. This distribution highlights the superiority of the multivalue aggregation approach
for generating embeddings for CJNs. Additionally, the inclusion of the FMPNET4−BCJN

model among the top performers suggests that the FMPNET4 model is so effective in QM
ranking that there is no need to rank CJNs using another neural model. Instead, we can simply
divide the QM score by the size of the CJN to achieve competitive results.

Furthermore, the combination of models, such as FMPNET3−FMiniLM8∗, indicates that
pairing different fine-tuned models can leverage their strengths, leading to improved ranking
accuracy.

Overall, the fine-tuned models, especially those based on MiniLM and MPNET, exhibit
substantial improvements in MRR and recall metrics, demonstrating their effectiveness in the

6Sentence Transformers Pretrained Models https://sbert.net/docs/sentence_transformer/pretrained_models.html

66 CHAPTER 9. EXPERIMENTS

CJN ranking task. The consistent high performance across various recall points underscores
their potential for practical applications in information retrieval systems.

Evaluation on Specific Datasets

We further evaluate the CJN models on specific datasets to assess their performance in domain-
specific scenarios. The results for individual datasets largely mirror the trends observed in
the overall analysis, with fine-tuned models outperforming pre-trained ones and the Bayesian
baseline.

Figure 9.14 shows the results for the IMDb dataset. The baseline model BQM−BCJN

achieved an MRR of 0.78, highlighting a significant improvement with transformer-based
models. Fine-tuned models demonstrate better performance at lower recall points (R@1 to
R@4), indicating their effectiveness in ranking relevant CJNs higher. Most models achieve a
high recall plateau at R@6. The fine-tuned models BQM−FMiniLM8∗, FMPNET3−FMiniLM8∗,
FMPNET4−FMiniLM8∗, FMiniLM1−FMiniLM8∗ achieved the highest MRR of 0.9 and consis-
tently high recall scores. This indicates that the FMiniLM8∗ model is highly effective for the
CJN ranking, no independent of which model was used for the QM ranking. Furthermore, all
the top 4 performer models used the multivalue (*) approach, indicating its superiority.

MRR R@1 R@2 R@3 R@4 R@5 R@6 R@7 R@8 R@9 R@100.0

0.2

0.4

0.6

0.8

1.0
BQM BCJN

BQM FMiniLM5+
BQM FMiniLM8*
FMPNET3 FMiniLM6+
FMPNET3 FMiniLM8*
FMPNET4 FMiniLM8*
FMiniLM1 FMiniLM2*
FMiniLM1 FMiniLM3*
FMiniLM1 FMiniLM6+
FMiniLM1 FMiniLM8*

Figure 9.14: Neural CJN Ranking - IMDb

Figure 9.15 shows the results for the MONDIAL dataset. The baseline model
BQM−BCJN performs equally well compared to fine-tuned models. This performance equality
might be attributed to the dataset’s nature, where simpler models can achieve high perfor-
mance due to less complexity in the data. All models achieved the same MRR of 0.97, and
reached a recall plateau at R@2, indicating that there is minimal variation in performance
across different CJN models for this dataset.

Figure 9.16 shows the results for the Yelp dataset. The baseline model BQM−BCJN

had an MRR of 0.85, significantly lower than the top-performing fine-tuned models, high-
lighting the efficacy of transformer-based approaches. Several fine-tuned models achieve

9.4. EXPERIMENTAL RESULTS: NEURAL RANKING 67

MRR R@1 R@2 R@3 R@4 R@5 R@6 R@7 R@8 R@9 R@100.0

0.2

0.4

0.6

0.8

1.0
BQM BCJN

BQM FAlbert*
BQM FDistil1*
FMPNET3 BCJN

FMPNET3 FAlbert*
FMPNET3 FDistil1*
FMPNET4 BCJN

FMiniLM1 BCJN

FMiniLM1 FAlbert*
FMiniLM1 FDistil1*

Figure 9.15: Neural CJN Ranking - MONDIAL

perfect recall from R@2 onwards, indicating these models are highly effective at ranking
the most relevant CJNs at the top. Models like FMPNET3−FDistil3∗, FMPNET4−FDistil3∗,
and FMiniLM1−FDistil3∗ achieved an MRR of 0.98, with perfect recall from R@2 onwards,
demonstrating outstanding performance in ranking relevant CJNs.

MRR R@1 R@2 R@3 R@4 R@5 R@6 R@7 R@8 R@9 R@100.0

0.2

0.4

0.6

0.8

1.0 BQM BCJN

FMPNET3 FDistil3*
FMPNET4 BCJN

FMPNET4 FDistil3*
FMiniLM1 BCJN

FMiniLM1 FAlbert*
FMiniLM1 FDistil1*
FMiniLM1 FDistil1+
FMiniLM1 FDistil3*
FMiniLM1 FMiniLM2*

Figure 9.16: Neural CJN Ranking - Yelp

Discussion

The comprehensive evaluation of CJN models across different datasets highlights the superi-
ority of fine-tuned transformer models over traditional Bayesian models. In the IMDB and
Yelp datasets, fine-tuned models demonstrated substantial improvements in Mean Reciprocal
Rank (MRR) and recall scores, particularly at lower recall points. This underscores the ability
of transformer models to effectively rank the most relevant CJNs at the top positions, making
them highly suitable for practical applications in information retrieval systems.

In the IMDB dataset, models like BQM−FMiniLM8∗ and FMPNET3−FMiniLM8∗

achieved the highest MRR of 0.9, far surpassing the baseline’s 0.78. The consistent high
performance across various recall points further demonstrates their reliability in identifying
relevant context join networks. The use of multivalue aggregation approaches played a crucial
role in this success.

68 CHAPTER 9. EXPERIMENTS

For the Yelp dataset, fine-tuned models reached near-perfect or perfect recall scores, with
models such as FMPNET3−FDistil3∗ achieving an MRR of 0.98. These models consistently
ranked the most relevant CJNs at the top positions, showcasing the effectiveness of transformer-
based approaches over traditional Bayesian methods for high-accuracy relevance ranking.

In contrast, the Mondial dataset revealed that both Bayesian and fine-tuned transformer
models performed equally well, with all models achieving an MRR of 0.97. This suggests
that for datasets with less complexity, simpler models can be as effective as more complex
transformer-based approaches. The minimal performance variation across different CJN
models for this dataset highlights the suitability of simpler models in certain contexts, where
the added complexity of fine-tuning may not yield significant advantages.

Overall, the findings indicate that fine-tuned transformer models, particularly those
involving MiniLM and MPNET, offer substantial improvements in MRR and recall metrics
across various datasets. The consistent high performance underscores their potential for
enhancing information retrieval systems. However, the effectiveness of simpler models in
certain datasets suggests that the choice of model should be context-dependent, balancing
complexity and performance based on the dataset characteristics.

9.4.3 Performance Analysis: Neural Models

This section presents the time performance analysis of the models for the QM and CJN
ranking tasks. We compare the baseline Bayesian model with various transformer-based
models to evaluate their efficiency across different datasets.

QM Ranking

In this experiment, we evaluated the time performance of the neural QM ranking models
presented in Section 9.4.1. We compared the baseline Bayesian model (BQM) with several
pre-trained and fine-tuned transformer-based models.

Figure 9.17 shows the time performance evaluation on the IMDb dataset. The Bayesian
model (BQM) exhibited a QM time of 1.13 milliseconds, outperforming all transformer-
based models. Among the fine-tuned transformer models, FMiniLM6 achieved a QM time
of 32.07 milliseconds, FMiniLM1 at 56.86 milliseconds, FMPNET3 at 120.56 milliseconds,
and FMPNET4 at 137.99 milliseconds. The pre-trained models demonstrated similar trends,
with PMiniLM6 at 31.36 milliseconds, PMiniLM1 at 57.45 milliseconds, PMPNET3 at 121.36
milliseconds, and PMPNET4 at 139.06 milliseconds. These results indicate that the Bayesian
model is more efficient in terms of time performance for the IMDb dataset.

Figure 9.18 shows the time performance evaluation on the MONDIAL dataset. The
Bayesian model exhibited a QM time of 0.03 milliseconds, demonstrating superior efficiency

9.4. EXPERIMENTAL RESULTS: NEURAL RANKING 69

0 25 50 75 100 125
QM Time (ms)

BQM

PAlbert

PDistil1
PDistil2
PDistil3
PDistil4
PDistil5
PDistil6

PMPNET1
PMPNET2
PMPNET3
PMPNET4
PMiniLM1
PMiniLM2
PMiniLM3
PMiniLM4
PMiniLM5
PMiniLM6
PMiniLM7
PMiniLM8

0 25 50 75 100 125
QM Time (ms)

BQM

FAlbert

FDistil1
FDistil2
FDistil3
FDistil4
FDistil5
FDistil6

FMPNET1
FMPNET2
FMPNET3
FMPNET4
FMiniLM1
FMiniLM2
FMiniLM3
FMiniLM4
FMiniLM5
FMiniLM6
FMiniLM7
FMiniLM8

(a) Pre-trained Models (b) Fine-tuned Models
Figure 9.17: Evaluation of the performance of Neural QM models on the IMDb dataset.

compared to transformer models. Among the fine-tuned models, FMiniLM6 had a QM time
of 4.18 milliseconds, FMiniLM1 at 10.02 milliseconds, FMPNET3 at 11.72 milliseconds, and
FMPNET4 at 14.81 milliseconds. Pre-trained models also followed this pattern, with PMiniLM6

at 5.22 milliseconds, PMiniLM1 at 9.16 milliseconds, PMPNET3 at 12.18 milliseconds, and
PMPNET4 at 14.10 milliseconds. These results highlight the efficiency of the Bayesian model
for the MONDIAL dataset.

Figure 9.19 shows the time performance evaluation on the Yelp dataset. The Bayesian
model showed the fastest QM time of 0.17 milliseconds. Among the fine-tuned transformer
models, FMiniLM6 achieved a QM time of 8.29 milliseconds, FMiniLM1 at 17.80 milliseconds,
FMPNET3 at 23.82 milliseconds, and FMPNET4 at 33.16 milliseconds. The pre-trained
versions displayed similar trends, with PMiniLM6 at 7.42 milliseconds, PMiniLM1 at 16.51
milliseconds, PMPNET3 at 24.51 milliseconds, and PMPNET4 at 31.77 milliseconds. Again,
the Bayesian model outperformed transformer models in terms of time performance for the
Yelp dataset.

Overall, the time performance evaluations across the IMDb, MONDIAL, and Yelp
datasets indicate that the Bayesian model generally outperforms transformer-based models in
QM time. Transformer models showed relatively slower performance due to factors such as
computational overhead, the self-attention mechanism’s quadratic time complexity, the vast
number of parameters, and the need for multiple layers. Specifically, models like FMiniLM1,

70 CHAPTER 9. EXPERIMENTS

0.0 2.5 5.0 7.5 10.0 12.5
QM Time (ms)

BQM

PAlbert

PDistil1
PDistil2
PDistil3
PDistil4
PDistil5
PDistil6

PMPNET1
PMPNET2
PMPNET3
PMPNET4
PMiniLM1
PMiniLM2
PMiniLM3
PMiniLM4
PMiniLM5
PMiniLM6
PMiniLM7
PMiniLM8

0.0 2.5 5.0 7.5 10.0 12.5 15.0
QM Time (ms)

BQM

FAlbert

FDistil1
FDistil2
FDistil3
FDistil4
FDistil5
FDistil6

FMPNET1
FMPNET2
FMPNET3
FMPNET4
FMiniLM1
FMiniLM2
FMiniLM3
FMiniLM4
FMiniLM5
FMiniLM6
FMiniLM7
FMiniLM8

(a) Pre-trained Models (b) Fine-tuned Models
Figure 9.18: Evaluation of the performance of Neural QM models on the MONDIAL dataset.

0 5 10 15 20 25 30
QM Time (ms)

BQM

PAlbert

PDistil1
PDistil2
PDistil3
PDistil4
PDistil5
PDistil6

PMPNET1
PMPNET2
PMPNET3
PMPNET4
PMiniLM1
PMiniLM2
PMiniLM3
PMiniLM4
PMiniLM5
PMiniLM6
PMiniLM7
PMiniLM8

0 5 10 15 20 25 30
QM Time (ms)

BQM

FAlbert

FDistil1
FDistil2
FDistil3
FDistil4
FDistil5
FDistil6

FMPNET1
FMPNET2
FMPNET3
FMPNET4
FMiniLM1
FMiniLM2
FMiniLM3
FMiniLM4
FMiniLM5
FMiniLM6
FMiniLM7
FMiniLM8

(a) Pre-trained Models (b) Fine-tuned Models
Figure 9.19: Evaluation of the performance of Neural QM models on the Yelp dataset.

FMPNET3, and FMPNET4, although not the fastest, performed well. In the experiments
detailed in Section 9.4.1, these models also achieved the best results for MRR, recall, and

9.4. EXPERIMENTAL RESULTS: NEURAL RANKING 71

max recall position.

CJN Ranking

In this experiment, we evaluated the time performance of neural CJN ranking models, compar-
ing the baseline Bayesian model (BQM−BCJN) with the fine-tuned transformer-based models
presented in Section 9.4.2. Notably, we chose not to consider the CJN generation time in this
evaluation because it is significantly longer than the ranking time, which would complicate the
data analysis on the charts. We anticipated that the Bayesian model would be faster because it
leverages QM ranking and penalizes CJNs by their length, which is a straightforward process.
In contrast, transformer-based models rely on the CJN linearization process, which involves
translating CJNs into SQL queries, executing them against the DBMS, and processing the
results into sentences — a time-consuming process.

Figure 9.20a shows the time performance evaluation on the IMDb Dataset. The
Bayesian model (BQM−BCJN) achieved the fastest time of 0.0000148 milliseconds, sig-
nificantly outperforming all other models. Fine-tuned models showed varied performance,
with FMiniLM1−FMiniLM6+ being the quickest at 39.76 milliseconds. Other fine-tuned mod-
els, such as BQM−FMiniLM8 and FMPNET3−FMiniLM8, also performed well but were slower
compared to the fastest fine-tuned models. This indicates that while the Bayesian approach
is highly efficient for CJN ranking in the IMDb dataset, fine-tuned models, especially those
using MiniLM architectures, provide competitive results, although they remain significantly
slower than the Bayesian model.

Figure 9.20b shows the time performance evaluation on the MONDIAL dataset. For
the MONDIAL dataset, the Bayesian model (BQM−BCJN) achieved the fastest time of
0.0000189 milliseconds. Among the fine-tuned models, BQM−FDistil1 was the fastest at
10.62 milliseconds, followed closely by FMiniLM1−FMiniLM6+ at 8.59 milliseconds. Other
fine-tuned models, such as FMPNET3−FMiniLM3 and FMPNET4−FMiniLM8∗, also performed
well but remained significantly slower than the Bayesian model. However, it is worth noting
that the model BQM−BCJN was slower than FMPNET3−BCJN , FMPNET4−BCJN , and
FMiniLM1−BCJN because these latter models require fewer QMs to be generated, resulting
in slightly faster performance. This dataset highlights that while the Bayesian approach is
the most efficient for CJN ranking, fine-tuned models, particularly those involving Distil
architectures, offer competitive performance, albeit with higher elapsed times.

Figure 9.21 shows the time performance evaluation on the Yelp dataset. The
Bayesian model (BQM−BCJN) achieved the fastest time of 0.0000166 milliseconds. Among
fine-tuned models, FMiniLM1−FAlbert was the fastest at 27.30 milliseconds, followed
by FMiniLM1−FMiniLM2 at 29.17 milliseconds. However, some fine-tuned models, like

72 CHAPTER 9. EXPERIMENTS

10 5 10 3 10 1

CJN Ranking Time (s)

BQM BCJN

BQM FMiniLM5+

BQM FMiniLM8*

FMPNET3 FMiniLM6+

FMPNET3 FMiniLM8*

FMPNET4 FMiniLM3*

FMPNET4 FMiniLM8*

FMiniLM1 FMiniLM2*

FMiniLM1 FMiniLM3*

FMiniLM1 FMiniLM6+

FMiniLM1 FMiniLM8*

(a) IMDb

10 5 10 3 10 1

CJN Ranking Time (s)

BQM BCJN

BQM FAlbert*

BQM FDistil1*

FMPNET3 BCJN

FMPNET3 FAlbert*

FMPNET3 FDistil1*

FMPNET4 BCJN

FMiniLM1 BCJN

FMiniLM1 FAlbert*

FMiniLM1 FDistil1*

(b) MONDIAL
Figure 9.20: Evaluation of the performance of neural CJN ranking models on datasets IMDb
and MONDIAL.

FMiniLM1−FMiniLM6+, showed significantly longer times, up to 2.57 seconds. This dataset
underscores the superior efficiency of the Bayesian model for CJN ranking while highlighting
the variability in fine-tuned model performance.

10 5 10 3 10 1

CJN Ranking Time (s)

BQM BCJN

FMPNET3 FDistil3*

FMPNET4 BCJN

FMPNET4 FDistil3*

FMiniLM1 BCJN

FMiniLM1 FAlbert*

FMiniLM1 FDistil1*

FMiniLM1 FDistil1+

FMiniLM1 FDistil3*

FMiniLM1 FMiniLM2*

FMiniLM1 FMiniLM2+

Figure 9.21: Evaluation of the performance of CJN Ranking models on the Yelp dataset.

Across all datasets, the Bayesian model (BQM−BCJN) consistently demonstrated supe-
rior time performance compared to the fine-tuned transformer-based models. The Bayesian

9.4. EXPERIMENTAL RESULTS: NEURAL RANKING 73

model’s efficient use of QM ranking and straightforward penalization process made it sig-
nificantly faster. The fine-tuned models, while offering competitive performance, generally
exhibited higher elapsed times. This pattern was observed across all datasets, with the
Bayesian model achieving the fastest times in every instance. These findings underscore the
effectiveness of the Bayesian approach for time-efficient CJN ranking, especially in scenarios
where rapid query processing is crucial.

9.4.4 Final Remarks

In the experiments reported, we compared the Bayesian and Neural Ranking approaches for
CJN and QM ranking tasks. The Bayesian ranking method is a fully unsupervised approach,
simplifying its implementation and deployment. On the other hand, the Neural Ranking
approach has shown significant improvements in metrics such as MRR and R@K for CJN
ranking and has also enhanced the QM ranking, although it required fine-tuning to achieve
these results.

Performance-wise, our experiments revealed that the Bayesian approach is faster for
both QM ranking and CJN ranking compared to the transformer-based models. The Bayesian
model consistently demonstrated superior time performance across all datasets, while the
neural models, despite being slower, showed decent performance in other evaluation metrics
like MRR and recall. Nonetheless, with continuous advancements in neural models, we
anticipate that the neural approach will not only become more viable but will also yield
superior results over time.

It is also important to note that we were unable to compare Lathe’s Neural Ranking with
other systems due to the limitations of the results reported in QUEST, which were specific to
the MONDIAL dataset. In this dataset, the neural ranking showed no improvement but also
no setback compared to other methods.

Chapter 10

PyLatheDB

In this chapter, we present PyLatheDB, a Python library for Keyword Search over Relational
Databases[Martins et al., 2023a]. PyLatheDB implements Lathe, and, for this reason, allows
developers to easily run Lathe or incorporate its features, such as keyword matching, into
their own applications. The library is written in Python and implements all the steps from
Lathe. Table 10.1 presents the main modules available in the library, with a brief description
of each function.

Module Description
Database Handler Interfaces the DB connections, evaluates CJNs, and iterates

over the schema and the values of the database
Index Handler Generates and manages the Schema Index, Value Index and

Schema Graph
KM Handler Generates Keyword Matches and manages the Similarity

Functions for the Schema-Keyword Matching
QM Handler Generates and ranks Query Matches
CJN Handler Generates CJNs and translates them to SQL queries

Table 10.1: Main Modules Implemented in PyLatheDB.

To demonstrate PyLatheDB, we have created a Jupyter notebook, which is available
alongside the library source code1. The notebook includes an environment preparation step
and the processing of keyword queries against the IMDb and MONDIAL datasets.

For instance, consider the keyword query “julia roberts films”. Figure 10.1 contains a
screenshot from an execution of this notebook that shows the keyword matches (SKMs and
VKMs) found in the database for the query keyword, and the query matches (QMs) built from
the combinations of the keyword matches. Figure 10.2 presents two possible results generated
by PyLatheDB for the given query. Each result comprises a graph representation of the CJN,
its translation into an SQL query, and the returned answer from the RDBMS.

1https://github.com/bdri-ufam/PyLatheDB

74

https://github.com/bdri-ufam/PyLatheDB

75

SKMs:

MOVIE.s(*{films})

VKMs:

MOVIEINFO.v(info{julia})

PERSON.v(name{julia})

CHARACTER.v(name{julia})

MOVIE.v(title{julia})

MOVIEINFO.v(info{roberts})

PERSON.v(name{roberts})

CHARACTER.v(name{roberts})

MOVIE.v(title{roberts})

MOVIEINFO.v(info{films})

CHARACTER.v(name{films})

MOVIE.v(title{films})

MOVIEINFO.v(info{julia,roberts})

MOVIEINFO.v(info{julia,films})

PERSON.v(name{julia,roberts})

MOVIE.v(title{julia,roberts})

1st QM:

{PERSON.v(name{julia,roberts}), MOVIE.s(*{films})}

2nd QM:

{MOVIE.s(*{films}).v(title{julia,roberts})}

3rd QM:

{MOVIEINFO.v(info{julia,roberts}), MOVIE.s(*{films})}

4th QM:

{PERSON.v(name{roberts}), MOVIE.s(*{films}), PERSON.v(name{julia})}

5th QM:

{PERSON.v(name{julia,roberts}), MOVIE.v(title{films})}

results·=·lathe.keyword_search('julia·roberts·films')

results.kms()

results.qms()

from pylathedb.candidate_network import CandidateNetwork

from pylathedb.query_match import QueryMatch

Figure 10.1: KMs and QMs for the query “julia roberts films”

The first CJN retrieves the movies in which Julia Roberts starred, thus satisfying the
original user intent. On the other hand, the fourth CJN returned by the library retrieves movies
in which two different persons, whose names respectively match the keywords “julia” and
“roberts”, e.g. Raul Julia and Robert Harvey, participated.

1st CJN:

Graph:

PERSON.v(name{roberts,julia})

CASTING

MOVIE.s(*{films})

SQL:

 SELECT

 	 t3.*,

 	 t1.name

 FROM

 	 person t1

 	 JOIN casting t2 ON t2.person_id = t1.id

 	 JOIN movie t3 ON t2.movie_id = t3.id

 WHERE

 	 t1.name_tsvector @@ to_tsquery('roberts & julia');

Results:

6 to 10 of 75 entries Filter

Show 5 per page 1 2 3 10 15

Roberts, Julia 330088 Michael Collins 1996

Roberts, Julia 165628 Everyone Says I Love You 1996

Roberts, Julia 102358 Confessions of a Dangerous Mind 2002

Roberts, Julia 461972 Steel Magnolias 1989

Roberts, Julia 397419 Pretty Woman 1990

name id title year

test()

from pylathedb.candidate_network import CandidateNetwork

from pylathedb.query_match import QueryMatch

from pylathedb.keyword_match import KeywordMatch

from graphviz import Digraph

from IPython.display import display

from pylathedb.utils.printmd import printmd

4th CJN:

Graph:

PERSON.v(name{julia})

CASTING

MOVIE.s(*{films})

CASTING

PERSON.v(name{roberts})

SQL:

 SELECT

 	 t3.*,

 	 t5.name,

 	 t1.name

 FROM

 	 person t1

 	 JOIN casting t2 ON t2.person_id = t1.id

 	 JOIN movie t3 ON t2.movie_id = t3.id

 	 JOIN casting t4 ON t4.movie_id = t3.id

 	 JOIN person t5 ON t4.person_id = t5.id

 WHERE

 	 t1.ctid <> t5.ctid

 	 AND t2.ctid <> t4.ctid

 	 AND t1.name_tsvector @@ to_tsquery('julia')

 	 AND t5.name_tsvector @@ to_tsquery('roberts');

Results:

1 to 5 of 2814 entries Filter

Show 5 per page 1 2 10 100 500 560 563

Dolan, Robert Vera, Julia 393843 Por vida 2009

Harvey, Robert Julia, Raul 527311 The Rookie 1990

Dubac, Robert Julia, Raul 527311 The Rookie 1990

Ellis, Robert Gordon, Julia Swayne 114233 Dark Secrets 1923

Gaillard, Robert Gordon, Julia Swayne 285120 Lady Godiva 1911

name name id title year

test()

from pylathedb.candidate network import CandidateNetwork

Figure 10.2: CJNs for the query “julia roberts films”

76 CHAPTER 10. PYLATHEDB

The library also allows users to tune experimental parameters, such as the maximum
number of QMs, the maximum number of CJN to be considered for each QM, and the number
of CJN probed per QM by the eager evaluation.

Chapter 11

Further Developments

Building on the foundations of Lathe, this chapter explores two key works: SEREIA and
Exverbis. These works extend PyLatheDB’s modular architecture to new domains. SEREIA
translates unstructured queries into document stores’ native languages, enabling efficient
keyword search without requiring users to understand the data structure. Exverbis extracts
keyword queries from natural language queries, then leverages PyLatheDB’s keyword match-
ing and CJN generation modules. Together, these works showcase PyLatheDB’s adaptability
in addressing diverse data retrieval challenges.

11.1 SEREIA

With the modularization of keyword search features provided by PyLatheDB, we proposed
SEREIA [Afonso et al., 2024, Afonso et al., 2021], a system that enables keyword search
over document stores. More specifically, SEREIA aims at generating a structured query in the
document stores’ native language that corresponds to the non-structured query provided by
the user. This approach avoids the necessity of users’ previous knowledge on the document
collections’ structure and organization, besides the document store query language syntax
and operations.

In practice, SEREIA uses PyLatheDB as an underlying system. It adapts the Database
Handler to retrieve information from document stores, such as MongoDB, instead of rela-
tional databases. Furthermore, SEREIA uses a Structured Query Generation, which is more
complex than the CJN Translation present in PyLatheDB, as the former uses the Aggregation

Framework Pipeline1. SEREIA leverages the Keyword Match, Query Matching and the CJN
Generation/Ranking from PyLatheDB.

1https://docs.mongodb.com/manual/aggregation/

77

78 CHAPTER 11. FURTHER DEVELOPMENTS

To illustrate the workflow, consider the simplified excerpt of the Yelp! database, repre-
sented in Figure 11.1, which identifies documents by an ID in the top right corner and, also,
illustrates how documents interconnect.

Business collection Review collection

User collection

 {review_id: 3,

 user_id: 3,

 business_id: 3,

 text: "Very fast delivery!",

 stars: 5.0}

D7

 {review_id: 2,

 user_id: 2,

 business_id: 2,

 text: "Best food in Massachusetts!",

 stars: 5.0}

D6

 { user_id: 3,

 fans: 50,

 name: "David" }

D11

 { user_id: 2,

 fans: 150,

 name: "Michelle" }

D10

 { user_id: 1,

 fans: 100,

 name: "Tom" }

D9

 {business_id: 3,

 name: "The Italian Joint",

 state: "Massachusetts",

 city: "Boston",

 categories: "italian, restaurants",

 stars: 3.5}

D3

 {review_id: 1,

 user_id: 1,

 business_id: 1,

 text: "My favorite restaurant! I eat

 there three times a week!",

 stars: 5.0}

D5

 {business_id: 2,

 name: "Regina Pizzeria",

 state: "Massachusetts",

 city: "Boston",

 categories: "italian, restaurants",

 stars: 4.0}

D2

 {business_id: 1,

 name: "Subway",

 state: "Texas",

 city: "Austin",

 categories: "fast food, restaurants",

 stars: 5.0}

D1

 {review_id: 4,

 user_id: 4,

 business_id: 4,

 text: "Delicious hamburger!",

 stars: 5.0}

D8 {business_id: 4,

 name: "Whataburger",

 state: "Oregon",

 city: "Portland",

 categories: "fast food, burger",

 stars: 3.5}

D4
 { user_id: 4,

 fans: 25,

 name: "Larry" }

D12

Figure 11.1: An excerpt from collections in the Yelp! database

Consider that a user inputs the keyword query “italian restaurants reviewed michelle”,
expecting to retrieve all documents containing data on italian restaurants that were reviewed
by user Michelle. Figure 11.2 shows the Candidate Joining Network that satisfies the user
intent. In this scenario, the structured query that correctly represents the CJN is shown in
Figure 11.3 (left). Then, the expected results are retrieved by issuing the the structured query
to the underlying document store.

USER.v[name{michelle}]

REVIEW.s[self{reviewed}]

BUSINESS.v[categories{italian,restaurants}]

Figure 11.2: CJN for the keyword query

The result that satisfies this keyword query is obtained by joining data from documents
D2, D6 and D10 from the excerpt, resulting in the output shown in Figure 11.3 (right).

11.2. EXVERBIS 79

db.user.aggregate([
{"$match": {"$expr": {"$regexMatch": {

"input": "$user.name", "regex": "michelle",
"options": "i"}}}},

{"$lookup": {"from": "review", "foreignField": "user_id",
"localField": "user_id", "as": "review"}},

{"$unwind": "$review" },
{"$lookup": {"from": "business", "foreignField": "business_id",

"localField": "review.business_id", "as": "business"}},
{"$unwind": "$business" },
{"$match": {"$expr": {"$regexMatch": {

"input": "$categories", "regex": "restaurants",
"options": "i"}}},

{"$match": {"$expr": {"$regexMatch": {
"input": "$categories", "regex": "italian",
"options": "i"}}}}])

 {business_id: 2,

 name: "Regina Pizzeria",

 state: "Massachusetts",

 categories: "italian, restaurants",

 stars: 4.0,

 review: {

 review_id: 2,

 user_id: 2,

 business_id: 1,

 text: "Best food in Massachusetts!",

 stars: 5.0 },
 user" {
 user_id: 2,
 name: "Michelle",
 fans: 150 }}

Figure 11.3: MongoDB Structured Query (left) and its results for the keyword query (right).

11.2 Exverbis

While keyword-based search is adequate for users with exploratory intents, keyword queries
are not as comprehensive as natural language queries (NLQ), which allows users issue more
complex or specific queries. For this reason, Natural Language Interfaces for Databases
(NLIDBs) have also been attracting recent interest in the literature and industry.

The main issues faced by NLIDBs can be summarized into two (1) natural language
parsing and (2) keyword to database matching and join path generation in the database. The
latter is also present in R-KwS systems, which allow us to take advantage of such systems to
improve NLIDBs.

We proposed Exverbis [Citolin, 2021, Ferreira, 2022], a NLIDB system that leverages
the keyword matching and the CJN generation from the PyLatheDB library. More specifically,
Exverbis parses NLQs and translate them into keyword queries. Then, PyLatheDB is used for
the keyword matching and the CJN generation, which is used for the generation of join paths.
Finally, Exverbis generates SQL queries using the join paths generated by PyLatheDB.

To exemplify the process, take as example the query in Figure 11.4. The bold words
in the query indicate keywords, that is, words which are likely to refer to database elements.
The underline texts indicate operations implicitly expressed in the query.

return me the number of papers written by "H. V. Jagadish" in
VLDB conference after 2000 with more than 200 citations

Figure 11.4: Example of a natural language query

Figure 11.5 shows the SQL query returned by PyLatheDB (left), and the returned SQL
query, which was enchanced with implicit operations by Exverbis.

80 CHAPTER 11. FURTHER DEVELOPMENTS

SELECT p.title, a.name, c.name,
p.year, p.citation_num
FROM publications p
JOIN writes w ON w.pid=p.pid
JOIN authors a ON a.aid=w.aid
JOIN conferences c ON c.cid=p.cid
WHERE a.name ILIKE '%h.v.jagadish%'
AND c.name ILIKE '%vldb%'
AND p.year = 2000

SELECT COUNT(DISTINCT p.title)
FROM publications p
JOIN writes w ON w.pid=p.pid
JOIN authors a ON a.aid=w.aid
JOIN conferences c ON c.cid=p.cid
WHERE a.name ILIKE '%h.v.jagadish%'
AND c.name ILIKE '%vldb%'
AND p.year>2000
AND p.citation_num>200

Figure 11.5: SQL query returned by PyLatheDB (left), and SQL query enhanced with implicit
operations (right).

Chapter 12

Conclusions

In this thesis, we presented Lathe, a new relational keyword search (R-KwS) system for
generating suitable SQL queries from keyword queries. Lathe is the first to address the
problem of generating and ranking Candidate Joining Networks (CJNs) based on queries
with keywords that can refer to either instance values or database schema elements, such
as relations and attributes. Additionally, Lathe introduces four key innovations: (i) a novel
Bayesian-based QM ranking algorithm that prioritizes relevant QMs, avoiding the processing
of less likely answers; (ii) an effective Bayesian CJN ranking algorithm leveraging QM
rankings to prioritize and evaluate relevant CJNs; (iii) an eager CJN evaluation strategy that
discards spurious CJNs early; and (iv) a novel transformer-based neural approach for QM
ranking and CJN ranking, leading to improved results on metrics such as Recall and R@k.
We also presented a comprehensive set of experiments performed with query sets and datasets
previously used in experiments with previous state-of-the-art R-KwS systems and methods.
Our experiments indicate that Lathe can handle a wider variety of keyword queries while
remaining highly effective, even for large databases with intricate schemas.

Our experience in the development of Lathe raised several ideas to apply its features in
other R-KwS scenarios. For this reason, we developed PyLatheDB, an open-source Python
library for Keyword Search over Relational Databases. This library allows developers to easily
run Lathe or incorporate its features, such as keyword matching, into their own applications.
For example, with the modularization of keyword search features provided by PyLatheDB, we
proposed SEREIA, a system that enables keyword search over document stores, and Exverbis,
a Natural Language Interface for Databases (NLIDB) system that leverages the keyword
matching and the CJN generation from the PyLatheDB library.

Despite the significant advancements and positive results achieved with Lathe, there
remain several promising directions for future research and development. Building on the
foundation laid in this thesis, these directions aim to further enhance the capabilities and

81

82 CHAPTER 12. CONCLUSIONS

performance of relational keyword search systems.

Future Work

Several possibilities for future research and development can further enhance the capabilities
and performance of Lathe, ensuring its continued relevance and effectiveness in various
contexts.

• Improve the Efficiency of Transformer-Based Models: Implement advanced op-
timization techniques such as knowledge distillation, pruning, and quantization to
reduce the computational load of transformer models without sacrificing effectiveness.
Leveraging the latest transformer architectures such as GPT-3 and their successors can
enhance Lathe’s ability to understand and process complex queries.

• Run Experiments on More Datasets: To validate Lathe’s robustness and generaliz-
ability, experiments should be conducted on datasets from various domains, such as
healthcare, finance, and e-commerce. Testing on databases with more intricate schema
structures can highlight Lathe’s strengths and areas for improvement in handling com-
plex relationships and nested queries.

• Explore Other Models for QM and CJN Ranking: Investigate the potential of large
language models like GPT-4 and beyond for QM and CJN ranking to offer enhanced
contextual understanding and semantic matching capabilities. Combining LLMs with
traditional machine learning models could leverage the strengths of both approaches,
potentially leading to even better performance in ranking tasks.

• Apply Keyword Search Over Relational Databases to Data Lakes: Extend Lathe’s
keyword search capabilities to data lakes, allowing users to query across a more
extensive and diverse set of data sources. Address the scalability challenges of querying
vast amounts of unstructured data in data lakes by exploring techniques such as indexing
and distributed processing to maintain efficient performance.

• Use Semantic Labeling to Infer Schema References: Implement semantic labeling
techniques to improve Lathe’s ability to infer schema references from keyword queries.
Incorporating ontologies and knowledge graphs can provide a richer semantic context,
aiding in more accurate mapping of keywords to database schema elements.

• Use Lathe as an Intermediate System for Text-to-SQL: Leverage Lathe’s capabili-
ties in a Text-to-SQL pipeline to enable users to interact with relational databases using

83

natural language queries. Develop intermediate representations of queries to bridge the
gap between natural language inputs and SQL outputs, making the translation process
more efficient and accurate.

• Extend to Real-Time Querying and Feedback Loops: Enhance Lathe to support
real-time querying, making it more suitable for applications that require instant data
retrieval and analysis. Incorporate user feedback loops to continuously refine and
improve Lathe’s performance.

• Explore Cross-Lingual and Multi-Lingual Capabilities: Expand Lathe to support
multiple languages, making it more versatile and applicable in global contexts. Develop
cross-lingual search capabilities to allow users to query databases in one language
and retrieve relevant information from data stored in another language, enhancing the
system’s utility in multilingual environments.

These future directions aim to build upon the foundation laid by Lathe, pushing the
boundaries of relational keyword search systems and enhancing their applicability and perfor-
mance in real-world scenarios. By addressing these areas, we can continue to improve the
effectiveness and efficiency of keyword search over relational databases, making data more
accessible and usable for a broader range of users.

Bibliography

[Aditya et al., 2002] Aditya, B., Bhalotia, G., Chakrabarti, S., Hulgeri, A., Nakhe, C., Sudar-
shanxe, S., et al. (2002). Banks: Browsing and keyword searching in relational databases.
In VLDB’02: Proceedings of the 28th International Conference on Very Large Databases,
pages 1083–1086. Elsevier.

[Affolter et al., 2019] Affolter, K., Stockinger, K., and Bernstein, A. (2019). A comparative
survey of recent natural language interfaces for databases. The VLDB Journal, 28(5):793–
819.

[Afonso et al., 2021] Afonso, A., Martins, P., and da Silva, A. (2021). Sereia-busca por
palavras-chave em document stores. In Anais do XXXVI Simpósio Brasileiro de Bancos de

Dados, pages 133–144. SBC.

[Afonso et al., 2024] Afonso, A., Martins, P., and da Silva, A. (2024). Sereia: document
store exploration through keywords. Knowledge and Information Systems, pages 1–32.

[Agrawal et al., 2002] Agrawal, S., Chaudhuri, S., and Das, G. (2002). Dbxplorer: A system
for keyword-based search over relational databases. In Proceedings 18th International

Conference on Data Engineering, pages 5–16. IEEE.

[Arik and Pfister, 2021] Arik, S. Ö. and Pfister, T. (2021). Tabnet: Attentive interpretable tab-
ular learning. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pages 6679–6687.

[Badaro et al., 2023] Badaro, G., Saeed, M., and Papotti, P. (2023). Transformers for tabular
data representation: A survey of models and applications. Transactions of the Association

for Computational Linguistics, 11:227–249.

[Baeza-Yates and Ribeiro-Neto, 2008] Baeza-Yates, R. and Ribeiro-Neto, B. (2008). Modern

Information Retrieval: The Concepts and Technology Behind Search. Addison-Wesley
Publishing Company, USA, 2nd edition.

84

BIBLIOGRAPHY 85

[Baid et al., 2010] Baid, A., Rae, I., Li, J., Doan, A., and Naughton, J. (2010). Toward
scalable keyword search over relational data. Proceedings of the VLDB Endowment,
3(1-2):140–149.

[Bergamaschi et al., 2011a] Bergamaschi, S., Domnori, E., Guerra, F., Trillo Lado, R., and
Velegrakis, Y. (2011a). Keyword search over relational databases: a metadata approach. In
Proceedings of the 2011 ACM SIGMOD International Conference on Management of data,
pages 565–576. ACM.

[Bergamaschi et al., 2013] Bergamaschi, S., Guerra, F., Interlandi, M., Trillo-Lado, R., and
Velegrakis, Y. (2013). Quest: A keyword search system for relational data based on
semantic and machine learning techniques. Proc. VLDB Endow., 6(12):1222–1225.

[Bergamaschi et al., 2016] Bergamaschi, S., Guerra, F., Interlandi, M., Trillo-Lado, R., and
Velegrakis, Y. (2016). Combining user and database perspective for solving keyword
queries over relational databases. Information Systems, 55:1–19.

[Bergamaschi et al., 2011b] Bergamaschi, S., Guerra, F., Rota, S., and Velegrakis, Y. (2011b).
A hidden markov model approach to keyword-based search over relational databases. In
International Conference on Conceptual Modeling, pages 411–420. Springer.

[Bhalotia et al., 2002] Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., and Sudarshan,
S. (2002). Keyword searching and browsing in databases using banks. In Proceedings

18th International Conference on Data Engineering, pages 431–440. IEEE.

[Blunschi et al., 2012] Blunschi, L., Jossen, C., Kossmann, D., Mori, M., and Stockinger, K.
(2012). Soda: Generating sql for business users. Proceedings of the VLDB Endowment,
5(10):932–943.

[Borisov et al., 2022] Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk, M., and
Kasneci, G. (2022). Deep neural networks and tabular data: A survey. IEEE transactions

on neural networks and learning systems.

[Bourgeois and Lassalle, 1971] Bourgeois, F. and Lassalle, J.-C. (1971). An extension of the
munkres algorithm for the assignment problem to rectangular matrices. Communications

of the ACM, 14(12):802–804.

[Citolin, 2021] Citolin, L. (2021). Exverbis: Exploiting latent words dependencies to im-
prove natural language interfaces to databases. Master’s thesis, Universidade Federal do
Amazonas.

86 BIBLIOGRAPHY

[Coffman and Weaver, 2010a] Coffman, J. and Weaver, A. C. (2010a). A framework for eval-
uating database keyword search strategies. In Proceedings of the 19th ACM international

conference on Information and knowledge management, pages 729–738. ACM.

[Coffman and Weaver, 2010b] Coffman, J. and Weaver, A. C. (2010b). Structured data
retrieval using cover density ranking. In Proceedings of the 2nd International Workshop

on Keyword Search on Structured Data, page 1. ACM.

[Coffman and Weaver, 2012] Coffman, J. and Weaver, A. C. (2012). An empirical per-
formance evaluation of relational keyword search techniques. IEEE Transactions on

Knowledge and Data Engineering, 26(1):30–42.

[Cormen et al., 2009] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009).
Introduction to algorithms. MIT press.

[de Cristo et al., 2003] de Cristo, M. A. P., Calado, P. P., Da Silveira, M. d. L., Silva, I.,
Muntz, R., and Ribeiro-Neto, B. (2003). Bayesian belief networks for ir. International

Journal of Approximate Reasoning, 34(2-3):163–179.

[de Oliveira et al., 2020] de Oliveira, P., da Silva, A., Moura, E., and de Freitas, R. (2020).
Efficient match-based candidate network generation for keyword queries over relational
databases. IEEE Transactions on Knowledge and Data Engineering, pages 1–1.

[Devlin et al., 2018] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805.

[Ding et al., 2007] Ding, B., Yu, J. X., Wang, S., Qin, L., Zhang, X., and Lin, X. (2007).
Finding top-k min-cost connected trees in databases. In 2007 IEEE 23rd international

conference on data engineering, pages 836–845. IEEE.

[Fang et al., 2024] Fang, X., Xu, W., Tan, F. A., Zhang, J., Hu, Z., Qi, Y., Nickleach, S.,
Socolinsky, D., Sengamedu, S., and Faloutsos, C. (2024). Large language models (llms)
on tabular data: Prediction, generation, and understanding-a survey. arXiv preprint

arXiv:2402.17944.

[Ferreira, 2022] Ferreira, B. C. C. (2022). An ir-based approach to keyword to database
mapping in natural language database interfaces. Master’s thesis, Universidade Federal do
Amazonas.

BIBLIOGRAPHY 87

[He et al., 2007] He, H., Wang, H., Yang, J., and Yu, P. S. (2007). Blinks: ranked keyword
searches on graphs. In Proceedings of the 2007 ACM SIGMOD international conference

on Management of data, pages 305–316. ACM.

[Hearne and Wagner, 1973] Hearne, T. and Wagner, C. (1973). Minimal covers of finite sets.
Discrete Mathematics, 5(3):247–251.

[Herzig et al., 2020] Herzig, J., Nowak, P. K., Müller, T., Piccinno, F., and Eisenschlos, J.
(2020). Tapas: Weakly supervised table parsing via pre-training. In Proceedings of the

58th Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics.

[Hristidis et al., 2003] Hristidis, V., Gravano, L., and Papakonstantinou, Y. (2003). Efficient
ir-style keyword search over relational databases. In Proceedings of the 29th international

conference on Very large data bases-Volume 29, pages 850–861. VLDB Endowment.

[Hristidis and Papakonstantinou, 2002] Hristidis, V. and Papakonstantinou, Y. (2002). Dis-
cover: Keyword search in relational databases. In VLDB’02: Proceedings of the 28th

International Conference on Very Large Databases, pages 670–681. Elsevier.

[Kacholia et al., 2005] Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., and
Karambelkar, H. (2005). Bidirectional expansion for keyword search on graph databases. In
Proceedings of the 31st international conference on Very large data bases, pages 505–516.
VLDB Endowment.

[Kasneci et al., 2009] Kasneci, G., Ramanath, M., Sozio, M., Suchanek, F. M., and Weikum,
G. (2009). Star: Steiner-tree approximation in relationship graphs. In 2009 IEEE 25th

International Conference on Data Engineering, pages 868–879. IEEE.

[Keselj, 2009] Keselj, V. (2009). Speech and language processing daniel jurafsky and james
h. martin (stanford university and university of colorado at boulder) pearson prentice hall,
isbn 978-0-13-187321-6.

[Li et al., 2023] Li, P., He, Y., Yashar, D., Cui, W., Ge, S., Zhang, H., Fainman, D. R., Zhang,
D., and Chaudhuri, S. (2023). Table-gpt: Table-tuned gpt for diverse table tasks. arXiv

preprint arXiv:2310.09263.

[Liu et al., 2006] Liu, F., Yu, C., Meng, W., and Chowdhury, A. (2006). Effective keyword
search in relational databases. In Proceedings of the 2006 ACM SIGMOD international

conference on Management of data, pages 563–574. ACM.

88 BIBLIOGRAPHY

[Luo et al., 2007] Luo, Y., Lin, X., Wang, W., and Zhou, X. (2007). Spark: top-k keyword
query in relational databases. In Proceedings of the 2007 ACM SIGMOD international

conference on Management of data, pages 115–126. ACM.

[Martins et al., 2023a] Martins, P., Afonso, A., and Da Silva, A. (2023a). Pylathedb-a library
for relational keyword search with support to schema references. In 2023 IEEE 39th

International Conference on Data Engineering (ICDE), pages 3627–3630. IEEE.

[Martins et al., 2023b] Martins, P., Da Silva, A., Afonso, A., Cavalcanti, J., and De Moura,
E. (2023b). Supporting schema references in keyword queries over relational databases.
IEEE Access.

[May, 1999] May, W. (1999). Information extraction and integration with FLORID: The
MONDIAL case study. Technical Report 131, Universität Freiburg, Institut für Informatik.
Available from http://dbis.informatik.uni-goettingen.de/Mondial.

[Mesquita et al., 2007] Mesquita, F., da Silva, A. S., de Moura, E. S., Calado, P., and Laender,
A. H. (2007). Labrador: Efficiently publishing relational databases on the web by using
keyword-based query interfaces. Information Processing & Management, 43(4):983–1004.

[Miller, 1998] Miller, G. A. (1998). WordNet: An electronic lexical database. MIT press.

[Oliveira et al., 2015] Oliveira, P., da Silva, A., and de Moura, E. (2015). Ranking candidate
networks of relations to improve keyword search over relational databases. In 2015 IEEE

31st International Conference on Data Engineering, pages 399–410. IEEE.

[Oliveira et al., 2018] Oliveira, P., da Silva, A., de Moura, E., and Rodrigues, R. (2018).
Match-based candidate network generation for keyword queries over relational databases.
In 2018 IEEE 34th International Conference on Data Engineering (ICDE), pages 1344–
1347. IEEE.

[Pearl, 2014] Pearl, J. (2014). Probabilistic reasoning in intelligent systems: networks of

plausible inference. Elsevier.

[Pedersen et al., 2004] Pedersen, T., Patwardhan, S., and Michelizzi, J. (2004). Wordnet::
Similarity: measuring the relatedness of concepts. In Demonstration papers at HLT-NAACL

2004, pages 38–41. Association for Computational Linguistics.

[Ramada et al., 2020] Ramada, M. S., da Silva, J. C., and de Sá Leitão-Júnior, P. (2020).
From keywords to relational database content: A semantic mapping method. Information

Systems, 88:101460.

http://dbis.informatik.uni-goettingen.de/Mondial

BIBLIOGRAPHY 89

[Reimers and Gurevych, 2019] Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sen-
tence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084.

[Ribeiro and Muntz, 1996] Ribeiro, B. A. and Muntz, R. (1996). A belief network model for
ir. In Proceedings of the 19th annual international ACM SIGIR conference on Research

and development in information retrieval, pages 253–260. Citeseer.

[Salton and Buckley, 1988] Salton, G. and Buckley, C. (1988). Term-weighting approaches
in automatic text retrieval. Information processing & management, 24(5):513–523.

[Shwartz-Ziv and Armon, 2022] Shwartz-Ziv, R. and Armon, A. (2022). Tabular data: Deep
learning is not all you need. Information Fusion, 81:84–90.

[Tata and Lohman, 2008] Tata, S. and Lohman, G. M. (2008). Sqak: doing more with key-
words. In Proceedings of the 2008 ACM SIGMOD international conference on Management

of data, pages 889–902. ACM.

[Thakur et al., 2021] Thakur, N., Reimers, N., Daxenberger, J., and Gurevych, I. (2021).
Augmented SBERT: Data augmentation method for improving bi-encoders for pairwise
sentence scoring tasks. In Toutanova, K., Rumshisky, A., Zettlemoyer, L., Hakkani-Tur, D.,
Beltagy, I., Bethard, S., Cotterell, R., Chakraborty, T., and Zhou, Y., editors, Proceedings of

the 2021 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, pages 296–310, Online. Association for
Computational Linguistics.

[Trabelsi et al., 2022] Trabelsi, M., Chen, Z., Zhang, S., Davison, B. D., and Heflin, J. (2022).
Strubert: Structure-aware bert for table search and matching. In Proceedings of the ACM

Web Conference 2022, pages 442–451.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. Advances in neural

information processing systems, 30.

[Wu and Palmer, 1994] Wu, Z. and Palmer, M. (1994). Verbs semantics and lexical selection.
In Proceedings of the 32nd annual meeting on Association for Computational Linguistics,
pages 133–138. Association for Computational Linguistics.

[Yaghmazadeh et al., 2017] Yaghmazadeh, N., Wang, Y., Dillig, I., and Dillig, T. (2017).
Sqlizer: Query synthesis from natural language. Proc. ACM Program. Lang., 1(OOPSLA).

90 BIBLIOGRAPHY

[Yin et al., 2020] Yin, P., Neubig, G., tau Yih, W., and Riedel, S. (2020). TaBERT: Pretraining
for joint understanding of textual and tabular data. In Annual Conference of the Association

for Computational Linguistics (ACL).

[Zaki, 2000] Zaki, M. J. (2000). Scalable algorithms for association mining. IEEE transac-

tions on knowledge and data engineering, 12(3):372–390.

[Zhang and Balog, 2018] Zhang, S. and Balog, K. (2018). Ad hoc table retrieval using
semantic similarity. In Proceedings of the 2018 World Wide Web Conference, WWW ’18,
page 1553–1562, Republic and Canton of Geneva, CHE. International World Wide Web
Conferences Steering Committee.

[Zhang and Balog, 2021] Zhang, S. and Balog, K. (2021). Semantic table retrieval using
keyword and table queries. ACM Transactions on the Web (TWEB), 15(3):1–33.

[Zhang et al., 2023] Zhang, T., Yue, X., Li, Y., and Sun, H. (2023). Tablellama: Towards
open large generalist models for tables. arXiv preprint arXiv:2311.09206.

[Zhang et al., 2024] Zhang, X., Zhang, J., Ma, Z., Li, Y., Zhang, B., Li, G., Yao, Z., Xu, K.,
Zhou, J., Zhang-Li, D., et al. (2024). Tablellm: Enabling tabular data manipulation by llms
in real office usage scenarios. arXiv preprint arXiv:2403.19318.

Appendix A

VKMGen Algorithm

As shown in Algorithm 4, Lathe retrieves tuples from the database in which the keywords
occur and uses them to generate value-keyword matches. Initially, the VKMGen Algorithm
takes the occurrences of each keyword from the Value Index and form partial value-keyword
matches, which are not guaranteed to be disjoint sets yet (Lines 3-8). The pool of VKMs is
represented by the Hash Table P , whose keys are KMs and values are sets of tuple IDs.

Algorithm 4: VKMGen(Q)
Input: A keyword query Q={k1, k2, . . . , km}
Output: The set of value-keyword matches VK

1 let IV the Value Index
2 let P be a Hash Table.
3 for keyword ki ∈ Q do
4 if ki ∈ IV then
5 for relation Rj ∈ IV [ki] do
6 for attribute Ak ∈ IV [ki][Rj] do
7 let KM be the partial keyword match RV

j [A
{ki}
k]

8 P [KM]← IV [ki][Rj][Ak]

9 P ← VKMIter(P)
10 for value-keyword match KMu ∈ P do
11 VK ← VK ∪ {KMu}
12 return VK

Next, Lathe ensures that VKMs are disjoint sets through the Algorithm 5, VKMInter,
which is based on the ECLAT algorithm [Zaki, 2000] for finding frequent itemsets. VKMInter
looks for non-empty intersections of the partial value-keyword matches recursively until all of

91

92 APPENDIX A. VKMGEN ALGORITHM

them are disjoint sets, and thus, proper VKMs. These intersections are calculated as follows:

KM1 ∩KM2 =

{
∅ , if Ra 6= Rb

RV
ab[A

Kab,1

ab,1 , . . . , A
Kab,m

ab,m] , if Ra = Rb

where KMx = RV
x [A

Kx,1

x,1 , . . . , A
Kx,m
x,m] for x ∈ {a, b}, and Kab,i = Ka,i ∪Kb,i.

Algorithm 5: VKMInter(P)
Input: A Hash Table P whose keys are partial value-keyword matches and values

are tuples.
Output: A Hash Table P whose keys are proper value-keyword matches and

values are tuples.
1 let Pnext be a Hash Table.
2 let R be a Hash Table.
3 for value-keyword match KMu ∈ P do
4 R[KMu]← ∅
5 for pair of keyword matches {KMa, KMb} ∈

(
P
2

)
do

6 KMab ← KMa ∩KMb

7 Tab ← P [KMa] ∩ P [KMb]
8 if Tab 6= ∅ and KMab is valid then
9 Pnext[KMab]← Tab

10 R[KMa]← R[KMa] ∪ Tab
11 R[KMb]← R[KMb] ∪ Tab

12 for value-keyword match KMu ∈ R do
13 P [KMu]← P [KMu]−R[KMu]
14 if P [KMu] = ∅ then
15 remove KMu from P
16 P.remove(KMu)

17 Pnext ← VKMInter(Pnext)
18 update P with Pnext

19 return P

VKMInter uses three hash tables: P , Pnext and R. The pool P contains the partial
VKMs of the current iteration. The pool Pnext contains the partial VKMs for the next iteration.
The pool R stores the tuple IDs to be removed from the VKMs of P at the end of the current
iteration, turning the partial VKMs into proper value-keyword matches.

VKMInter first defines the hash tables Pnext and R, then initializes R with empty sets
(Lines 1-4). Next, the algorithm iterates over all pairs {KMa, KMb} of VKMs in P and tries
to create a new keyword match KMab, which is the intersection of KMa e KMb (Lines 5-11).
If KMab is valid, that is, if KMa e KMb are VKMs over the same database relation, and the

93

tuples Tab within KMab are not empty, then we add KMab to the next iteration pool Pnext and
add the tuples Tab to R for removal after the iteration (Lines 8-11). After all the possible
intersections are processed, VKMInter iterates over R and removes the tuples for each VKM
of the pool P , making them proper disjoint keyword matches (Lines 12-16). Lastly, VKMInter
recursively process the pool Pnext for the next iteration, then it updates and returns the current
pool P (Lines 18-19).

After the execution of VKMInter, in Line 9 of VKMGen, we obtained the value-keyword
matches and their tuples. As the sets of tuples are only required for the generation of VKMs,
VKMGen generates and outputs the set of value-keyword matches, ignoring the tuples from
P (Lines 10-11).

Appendix B

SKMGen Algorithm

The generation of schema-keyword matches uses a structure we call the Schema Index,
which is created in a preprocessing phase, alongside with the Value Index. This index stores
information about the database schema and statistics about attributes, which are used for the
ranking of QMs, which will be explained in Chapter 5. The stored information follows the
structure below:

IS = {relation : {attribute : {(norm,maxfrequency)}}}

The generation of SKMs is carried out by Algorithm 6, SKMGen. First, the algorithm
iterates over the relations and attributes from the Schema Index. Then, SKMGen calculates
the similarity between each keyword and schema element. It only considers the pairs with
similarity above a defined threshold ε (Line 8), which are used to generate SKMs (Line 3).

94

95

Algorithm 6: SKMGen(Q)
Input: A keyword query Q={k1, k2, . . . , km}, the Schema Index IS
Output: The set of schema-keyword matches SK

1 SK ← {}
2 for keyword ki ∈ Q do
3 for relation Rj ∈ IS do
4 if sim(ki, Rj) ≥ ε then
5 let KM be the schema-keyword match RS

j [self
{ki}]

6 SK← SK∪ {KM})
7 for attribute Al ∈ IS[Rj] do
8 if sim(ki, Al) ≥ ε then
9 let KM be the schema-keyword match RS

j [A
{ki}
l]

10 SK← SK∪ {KM}

11 return SK

Appendix C

QMGen Algorithm

The generation of query matches is carried out by Algorithm 7, QMGen, which preserves
the ideas proposed in MatCNGen [Oliveira et al., 2018], adapt them to keyword matches
instead of tuple-sets. Let VK and SK be respectively sets of value-keyword matches, and
schema-keyword matches previously generated. The algorithm looks for combinations of
keyword matches in P=VK∪SK that form minimal covers for the query Q. At a first glance,
this statement may suggest that we need to generate the whole power set of P to obtain the
complete set of QMs. However, it can be shown that any minimal cover of a set of n elements
has at most n subsets [Hearne and Wagner, 1973]. Therefore, no match for a query Q can be
formed by more than |Q| keyword matches. Also, as the QM ranking presented in Section 7.1
penalizes QMs with a large number of KMs, we can define a maximum QM size t≤|Q| to
prune QMs which are less likely to be relevant. For this reason, QMGen iterates over all
the subsets of P whose size is less than or equal to a maximum QM size t, which is at most
the size of the query Q (Lines 3-4). Next, QMGen checks whether the combination M of
keyword matches form a minimal cover for the query. The evaluation of minimal cover is
carried out by Algorithm 8.

The algorithm MinimalCover iterates through the KMs from the combination M ,
generating a set CM which comprise all keywords covered by M (Lines 1-5). Next, the
algorithm checks whether M is total, that is, whether CM=Q. Notice that since KMs can
only associate an attribute or relation in the database schema to keyword from the query Q,
that is CM⊆Q, then we can imply that CM=Q if, and only if, |CM |=|Q| (Line 6). Next,
MinimalCover checks whether M is minimal, that is, if we remove any keyword match from
M it will no longer be total. For this reason, MinimalCover iterates again through the KMs
and, for each one, it generates a set CKM which comprise all keywords covered by KM .
Then, the algorithm check whether the set difference of CM\CKM is still equal to Q, which
can be achieved by comparing |CM\CKM |=|Q|.

96

97

Algorithm 7: QMGen(Q, VK, SK)
Input: A keyword query Q={k1, k2, . . . , km}

The set of value-keyword matches VK
The set of schema-keyword matches SK
The maximum QM size t

Output: The set of query matches QM
1 P = VK ∪ SK
2 QM ← ∅
3 for i ∈ {1, . . . ,min(|Q|, t)} do
4 for combination of keyword matches M ∈

(
P
i

)
do

5 if MinimalCover(M,Q) then
6 M ←MergeKeywordMatches(M)
7 QM← QM∪ {M}

8 return QM

Algorithm 8: MinimalCover(Q,M)
Input: A keyword query Q={k1, k2, . . . , km}

The set of keyword matches M
Output: If the set of keywords from M forms a minimal cover over Q

1 CM ← ∅
2 for keyword match KM ∈M do
3 let KM be RX [AK1

1 , . . . , AKm
m], where X ∈ {S, V }

4 for i ∈ {1, . . . ,m} do
5 CM ← CM ∪Ki

6 if |CM | 6= |Q| then
7 return False
8 for keyword match KM ∈M do
9 let KM be RX [AK1

1 , . . . , AKm
m], where X ∈ {S, V }

10 CKM = ∅
11 for i ∈ {1, . . . ,m} do
12 CKM ← CKM ∪Ki

13 if |CM \ CKM | = Q then
14 return False

15 return True

If M forms a minimal cover for Q, then M is considered a query match. However, M
may have some keyword matches which can be merged, especially SKMs. The merging of
KMs from M is carried out by Algorithm 9. Notice that we cannot merge two VKMs since
they are disjoint sets, however we can merge a schema-keyword match with both a SKM or

98 APPENDIX C. QMGEN ALGORITHM

a VKM. The algorithm MergeKeywordMatches uses the two hash tables PVK and PSK to
store, respectively, the VKMs and SKMs based on the relation they are built upon (Lines
1-12). Next, the algorithm iterates through the relations present in PSK and tries to merge all
possible KMs from that relation, resulting in a keyword match KMmerged. KMmerged starts
as a keyword-free match but it is merged with all existent SKMs (Lines 14-17), then it is
merged an arbitrary value-keyword match VKM , if existent (Lines 18-21). Lastly, KMmerged

and all values-keyword matches except VKM are added to the query match M ′, which is
returned at the end of MergeKeywordMatches (Lines 22-23).

After merging all the possible elements from the query match M , QMGen adds M to
the set of query matches QM , which is returned at the end of the algorithm.

Algorithm 9: MergeKeywordMatches(Q,M)
Input: The set of keyword matches M
Output: The set of keyword matches M ′

1 let PVK be a Hash Table.
2 let PSK be a Hash Table.
3 for KM ∈M do
4 let KM be RX [AK1

1 , . . . , AKm
m], where X ∈ {S, V }

5 PVK [R]← ∅
6 PSK [R]← ∅
7 for KM ∈M do
8 let KM be RX [AK1

1 , . . . , AKm
m], where X ∈ {S, V }

9 if X = S then
10 PSK [R]← PSK [R] ∪ {KM}
11 else
12 PVK [R]← PVK [R] ∪ {KM}

13 M ′ ← ∅
14 for R ∈ PSK do
15 let KMmerged be a keyword-free match from R
16 for SKM ∈ PSK [R] do
17 KMmerged ← KMmerged ∩ SKM
18 if PVK [R] 6= ∅ then
19 let VKM be an element from PVK [R]
20 KMmerged ← KMmerged ∩ VKM
21 PVK [R]← PVK [R]− {VKM}
22 M ′ ←M ′ ∪ {KMmerged} ∪ PVK [R]

23 return M ′

Appendix D

Bayesian QMRank Algorithm

The ranking of Query Matches is carried out by Algorithm 10, QMRank. Notice, that,
intuitively, the process of ranking QMs advances part of the relevance assessment of the
CJNs, which was first proposed in CNRank [Oliveira et al., 2015]. This yields to an effective
ranking of QMs and a simpler ranking of CJNs. QMRank uses a value score and a schema
score, which are respectively related to the VKMs and SKMs that compose the QM.

The algorithm first iterates over each query match, assigning 1 to both value_score
and schema_score. Next, QMRank goes through each keyword match from the QM. In the
case of a KM matching the values of an attribute, the algorithm updates the value_score
based on the cosine similarity using TF-IDF weights. QMRank retrieves the term frequency
and inverted attribute frequency from the Value Index , and the norm of an attribute from
the Schema Index, which are all calculated in the preprocessing phase (see Section 3.1).
In the case of a KM matching the name of a schema element, the algorithm updates the
schema_score the average similarity of the keywords with the schema elements based on the
similarity functions presented in Section 4. Once the algorithm aggregates the scores of KMs
to generate the score of QMs, the final step is to sort them in descending order.

99

100 APPENDIX D. BAYESIAN QMRANK ALGORITHM

Algorithm 10: QMRank(QM)
Input: A set of query matches QM
Output: The set of ranked query matches RQM

1 RQM ← []
2 for M ∈ QM do
3 value_score← 1, schema_score← 1
4 for KM ∈M do
5 let KM be RS[A

KS
1

1 , . . . , A
KS

m
m]V [A

KV
1

1 , . . . , A
KV

m
m]

6 for i ∈ {1, . . . ,m} do
7 if |KV

i | ≥ 1 then
8 weight_sum← 0
9 normAi

← IS[R][Ai]
10 for word ∈ KV

i do
11 tf ← |IV [word][R][Ai]|
12 weight_sum← weight_sum+ tf × iaf(word)
13 value_score← value_score× weight_sum/normAi

14 if |KS
i | ≥ 1 then

15 weight_sum← 0
16 for word ∈ KS

i do
17 if Aj = self then
18 schema_element← R
19 else
20 schema_element← Ai

21 weight_sum← weight_sum+ sim(schema_element, word)

22 schema_score← schema_score× weight_sum/|KS
i |

23 final_score← value_score× schema_score
24 RQM .append(〈final_score,M〉)
25 Sort RQM in descending order
26 return RQM

Appendix E

Sound Theorem

Theorem 1. Let GS = 〈R, EG〉 be a schema graph. Let J = 〈V , EJ〉 be a joining network of

keyword matches. We say that J is sound, that is, it does not have more than one occurrences

of the same tuple for every instance of the database if, and only if, the following condition

holds ∀KMa ∈ V ,∀〈Ra, Rb〉 ∈ EG :

RIC(Ra, Rb) ≥ |{KMc|〈KMa, KMc〉 ∈ EJ ∧Rc = Rb}|

where RIC(Ra, Rb) indicates the number of Referential Integrity Constraints from a relation

Ra to a relation Rb.

Proof. Let Ra and Rb be database relations so that there exists n Referential Integrity

Constraint (RICs) from Ra to Rb. Intuitively, a tuple from Ra may refer to at most n
tuples from Rb. Consider a joining network of keyword matches J wherein a keyword
match over Ra is adjacent to m keyword matches over Rb, that is J = 〈V , E〉, where
V = {KM1, . . . , KMm+1}, E = {〈KM1, KMi〉|2 ≤ i ≤ m}, and R1 = Ra ∧Ri = Rb, 2 ≤
i ≤ m. We can translate J into a relational algebra expression wherein the edges are join
operations using RICs and keyword matches are selection operations over relations. For
didactic purposes, we assume, without loss of generality, that all the KMs of J are keyword-
free matches. Let kj be a key attribute from Ri and fi,j be the attribute from Ri that references
kj . The SQL translation of J can be represented by Tm+1, which expands a join operation in
each iteration.

T1 = R1

T2 = T1 ./f1,2=k2 R2

T3 = T2 ./f1,3=k3 R3

101

102 APPENDIX E. SOUND THEOREM

Tn+1= Tn ./f1,n+1=kn+1 Rn+1

Tn+2= Tn+1 ./f1,x=kn+2 Rn+2,where x ∈ {2, . . . , n+ 1}

Notice that by the iteration n+ 2, all RICs from Ra to Rb were already used once. Therefore,
this expansion require that we use one of the RICs twice, which would lead to redundancy.
For instance, if assume x = 2, without loss of generality, then:

T2 = T1 ./f1,2=k2 R2

Tn+2= Tn+1 ./f1,2=kn+2 Rn+2

As the join conditions are stacked in each iteration, we can say that:

f1,2 = k2 ∧ f1,2 = kn+2

which implies that k2 = kn+2 and, thus, all the returning JNTs would have more than one
occurrence of the same tuple for every instance of the database.

Tm+1= Tm ./f1,x=km+1 Rm+1

Appendix F

CJNGen Algorithm

The generation and ranking of CJNs is carried out by Algorithm 11, CJNGen, which uses a
Breadth-First Search approach [Cormen et al., 2009] to expand JNKMs until they compre-
hend all elements from a query match.

Despite being based on the MatCNGen Algorithm [Oliveira et al., 2018], CJNGen
provides support for generating CJNs wherein there exists more than one RIC between one
database relation to another, due to the definition of soundness presented in Theorem 1. Also,
CJNGen does not require an intermediate structure such as the Match Graph in the MatCNGen
system.

We describe CJNGen in Algorithm 11. For each query match, CJNGen generates the
candidate joining networks for this query match using an internal algorithm called CJNInter,
which we will focus on describing in the remainder of this section.

Algorithm 11: CJNGen(RQM,GS)
Input: The set of ranked query matches RQM

The schema graph GS

Output: The set of candidate networks CJN
1 CJN = {}
2 for query match M ∈ RQM do
3 CJNM ← CJNInter(M,GS)
4 CJN ← CJN ∪ CJNM

5 return CJN

In Algorithm 12, we present CJNInter. This algorithm takes as input a query match M
and the schema graph GS . Next, it chooses a KM from the QM as a starting point, resulting
in an unitary graph (Lines 3-4). If the query match M has only one element, we already
generated the one possible candidate joining network (Line 6).

103

104 APPENDIX F. CJNGEN ALGORITHM

Algorithm 12: CJNInter(GS,M, scoreM)
Input: The query match M ; The schema graph GS

Output: A set CJN of candidate networks for the query match M
1 CJN ← []
2 J ← Graph()
3 let KM be an element from M
4 Add KM to J .V
5 if |M | = 1 then
6 return {J}
7 D ← queue()
8 D.enqueue(J)
9 while D 6= {} do

10 J ← D.dequeue()
11 for KMu ∈ J.V do
12 let KMu be RS

u [A
KS

u,1

u,1 , . . . , A
KS

u,m
u,m]V [A

KV
u,1

u,1 , . . . , A
KV

u,mu
u,mu]

13 let GU
S be the undirected version of GS

14 for Ra adjacent to Ru in GU
S do

15 for KMv ∈M\CN.V do
16 let KMv be RS

v [A
KS

v,1

v,1 , . . . , A
KS

v,m
v,m]V [A

KV
v,1

v,1 , . . . , A
KV

v,mv
v,mv]

17 if Rv = Ra then
18 J ′ ← J
19 Expand J ′ with KMv joined to KMu

20 if J ′ /∈ CN and J ′ is sound then
21 if J ′.V ⊇M then
22 CN .append(J ′)

23 else
24 D.enqueue(J ′)

25 J ′ ← J
26 Expand J ′ with RS

a []
V [] joined to KMu

27 D.enqueue(J ′)

28 return CJN

Next, the CJNInter initializes a queue D, which is used to store the JNKMs which are
not CJNs (Lines 7-8). In Loop 9-27, CJNInter takes one JNKM J from the queue and tries to
expand it with KMs. N otice that J can be expanded with incoming and outgoing neighbors,
therefore it uses an undirected schema graph GU

S (Line 14). Also, the elements of M can only
be added once in a JNKM but keyword-free matches can be added several times.

The expansion of J results in a JNKM J ′ (Lines 18-19). Then , CJNInter verifies
whether J ′ was already generated and whether it is sound, according to Definition 9. If J ′

F.1. MAXIMUM NODE DEGREE 105

fails to meet these two conditions it is pruned (Line 20).
If J ′ was not pruned, CJNInter checks whether J ′ covers the query match M . If it does,

J ′ is a candidate joining network and it will be added to the list CJN . If J ′ does not cover M ,
then it will be added to the deque D (Lines 21 -24). At the end of the procedure, CJNInter
returns the set CJN of candidate joining networks for the query match M (Line 28).

The CJN generation algorithm also implements some basic CJN pruning strategies,
which are based on the following parameters: the top-k CJNs, the top-k CJNs per QM and the
maximum CJN size. Also, the algorithm implements a few strategies to prune the JNKMs
which are not minimal or not sound, the maximum node Degree, the maximum number of
keyword-free matches, and the distinct foreign keys.

F.1 Maximum Node Degree

As the leaves of a CJN must be keyword matches from the query match, then a CJN must
have at most |QM | leaves. Also, considering that the maximum node degree in a tree is less
or equal to the number of its leaves, we can safely prune the JNKMs that contains a node with
a degree greater than |QM |.

F.2 Maximum Number of Keyword-free Matches

The size of a CJN is based on the size of the query match and the number of keyword-free
matches, that is, the size of a candidate joining network CJNM for a query match M is given
by |CJNM |=|M |+|F |, where F is a set of keyword-free matches. Thus, if we consider a
maximum CJN size Tmax, we can also set a maximum number of keyword-free matches for
a CJN, given by |F |≤Tmax−|M |. Therefore, we can prune all JNKMs that contain more
keyword-free matches than this maximum number set.

The number of CJNs generated can be further reduced by the pruning and ranking them.
In Section 7.2, we present a ranking of the candidate joining networks returned by CJNGen.
In Section 6.1, we present pruning techniques for the generation of the candidate joining
networks from CJNGen and CJNInter.

Appendix G

Neural Models Table

Table G.1: CJN Ranking Models
QM Model CJN Model Similarity Agg. Approach CJN Type Abbreviation
BTFIDF TF-IDF cos bayesian BTFIDF−BSimple

BTFIDF paraphrase-albert-small-v2 cos Multivalue fine-tuned BTFIDF−FAlbert∗

BTFIDF paraphrase-albert-small-v2 cos Mean fine-tuned BTFIDF−FAlbert+

BTFIDF all-distilroberta-v1 cos Multivalue fine-tuned BTFIDF−FDistil1∗

BTFIDF all-distilroberta-v1 cos Mean fine-tuned BTFIDF−FDistil1+

BTFIDF distiluse-base-multilingual-cased-v1 cos Multivalue fine-tuned BTFIDF−FDistil2∗

BTFIDF distiluse-base-multilingual-cased-v1 cos Mean fine-tuned BTFIDF−FDistil2+

BTFIDF distiluse-base-multilingual-cased-v1 dot Multivalue fine-tuned BTFIDF−FDistil3∗

BTFIDF distiluse-base-multilingual-cased-v1 dot Mean fine-tuned BTFIDF−FDistil3+

BTFIDF distiluse-base-multilingual-cased-v2 cos Multivalue fine-tuned BTFIDF−FDistil4∗

BTFIDF distiluse-base-multilingual-cased-v2 cos Mean fine-tuned BTFIDF−FDistil4+

BTFIDF distiluse-base-multilingual-cased-v2 dot Multivalue fine-tuned BTFIDF−FDistil5∗

BTFIDF distiluse-base-multilingual-cased-v2 dot Mean fine-tuned BTFIDF−FDistil5+

BTFIDF multi-qa-distilbert-cos-v1 cos Multivalue fine-tuned BTFIDF−FDistil6∗

BTFIDF multi-qa-distilbert-cos-v1 cos Mean fine-tuned BTFIDF−FDistil6+

BTFIDF all-MiniLM-L12-v2 cos Multivalue fine-tuned BTFIDF−FMiniLM1∗

BTFIDF all-MiniLM-L12-v2 cos Mean fine-tuned BTFIDF−FMiniLM1+

BTFIDF all-MiniLM-L6-v2 cos Multivalue fine-tuned BTFIDF−FMiniLM2∗

BTFIDF all-MiniLM-L6-v2 cos Mean fine-tuned BTFIDF−FMiniLM2+

BTFIDF all-MiniLM-L6-v2 dot Multivalue fine-tuned BTFIDF−FMiniLM3∗

BTFIDF all-MiniLM-L6-v2 dot Mean fine-tuned BTFIDF−FMiniLM3+

BTFIDF multi-qa-MiniLM-L6-cos-v1 cos Multivalue fine-tuned BTFIDF−FMiniLM4∗

BTFIDF multi-qa-MiniLM-L6-cos-v1 cos Mean fine-tuned BTFIDF−FMiniLM4+

BTFIDF multi-qa-MiniLM-L6-cos-v1 dot Multivalue fine-tuned BTFIDF−FMiniLM5∗

BTFIDF multi-qa-MiniLM-L6-cos-v1 dot Mean fine-tuned BTFIDF−FMiniLM5+

BTFIDF paraphrase-MiniLM-L3-v2 cos Multivalue fine-tuned BTFIDF−FMiniLM6∗

BTFIDF paraphrase-MiniLM-L3-v2 cos Mean fine-tuned BTFIDF−FMiniLM6+

BTFIDF paraphrase-multilingual-MiniLM-L12-v2 dot Multivalue fine-tuned BTFIDF−FMiniLM7∗

BTFIDF paraphrase-multilingual-MiniLM-L12-v2 dot Mean fine-tuned BTFIDF−FMiniLM7+

BTFIDF paraphrase-multilingual-MiniLM-L12-v2 cos Multivalue fine-tuned BTFIDF−FMiniLM8∗

BTFIDF paraphrase-multilingual-MiniLM-L12-v2 cos Mean fine-tuned BTFIDF−FMiniLM8+

BTFIDF all-mpnet-base-v2 cos Multivalue fine-tuned BTFIDF−FMPNET1∗

BTFIDF all-mpnet-base-v2 cos Mean fine-tuned BTFIDF−FMPNET1+

BTFIDF all-mpnet-base-v2 dot Multivalue fine-tuned BTFIDF−FMPNET2∗

106

107

Table G.1 continued from previous page
QM Model CJN Model Similarity Agg. Approach CJN Type Abbreviation
BTFIDF all-mpnet-base-v2 dot Mean fine-tuned BTFIDF−FMPNET2+

BTFIDF multi-qa-mpnet-base-dot-v1 dot Multivalue fine-tuned BTFIDF−FMPNET3∗

BTFIDF multi-qa-mpnet-base-dot-v1 dot Mean fine-tuned BTFIDF−FMPNET3+

BTFIDF paraphrase-multilingual-mpnet-base-v2 cos Multivalue fine-tuned BTFIDF−FMPNET4∗

BTFIDF paraphrase-multilingual-mpnet-base-v2 cos Mean fine-tuned BTFIDF−FMPNET4+

BTFIDF paraphrase-albert-small-v2 cos Multivalue pre-trained BTFIDF−PAlbert∗

BTFIDF paraphrase-albert-small-v2 cos Mean pre-trained BTFIDF−PAlbert+

BTFIDF all-distilroberta-v1 cos Multivalue pre-trained BTFIDF−PDistil1∗

BTFIDF all-distilroberta-v1 cos Mean pre-trained BTFIDF−PDistil1+

BTFIDF distiluse-base-multilingual-cased-v1 cos Multivalue pre-trained BTFIDF−PDistil2∗

BTFIDF distiluse-base-multilingual-cased-v1 cos Mean pre-trained BTFIDF−PDistil2+

BTFIDF distiluse-base-multilingual-cased-v1 dot Multivalue pre-trained BTFIDF−PDistil3∗

BTFIDF distiluse-base-multilingual-cased-v1 dot Mean pre-trained BTFIDF−PDistil3+

BTFIDF distiluse-base-multilingual-cased-v2 cos Multivalue pre-trained BTFIDF−PDistil4∗

BTFIDF distiluse-base-multilingual-cased-v2 cos Mean pre-trained BTFIDF−PDistil4+

BTFIDF distiluse-base-multilingual-cased-v2 dot Multivalue pre-trained BTFIDF−PDistil5∗

BTFIDF distiluse-base-multilingual-cased-v2 dot Mean pre-trained BTFIDF−PDistil5+

BTFIDF multi-qa-distilbert-cos-v1 cos Multivalue pre-trained BTFIDF−PDistil6∗

BTFIDF multi-qa-distilbert-cos-v1 cos Mean pre-trained BTFIDF−PDistil6+

BTFIDF all-MiniLM-L12-v2 cos Multivalue pre-trained BTFIDF−PMiniLM1∗

BTFIDF all-MiniLM-L12-v2 cos Mean pre-trained BTFIDF−PMiniLM1+

BTFIDF all-MiniLM-L6-v2 cos Multivalue pre-trained BTFIDF−PMiniLM2∗

BTFIDF all-MiniLM-L6-v2 cos Mean pre-trained BTFIDF−PMiniLM2+

BTFIDF all-MiniLM-L6-v2 dot Multivalue pre-trained BTFIDF−PMiniLM3∗

BTFIDF all-MiniLM-L6-v2 dot Mean pre-trained BTFIDF−PMiniLM3+

BTFIDF multi-qa-MiniLM-L6-cos-v1 cos Multivalue pre-trained BTFIDF−PMiniLM4∗

BTFIDF multi-qa-MiniLM-L6-cos-v1 cos Mean pre-trained BTFIDF−PMiniLM4+

BTFIDF multi-qa-MiniLM-L6-cos-v1 dot Multivalue pre-trained BTFIDF−PMiniLM5∗

BTFIDF multi-qa-MiniLM-L6-cos-v1 dot Mean pre-trained BTFIDF−PMiniLM5+

BTFIDF paraphrase-MiniLM-L3-v2 cos Multivalue pre-trained BTFIDF−PMiniLM6∗

BTFIDF paraphrase-MiniLM-L3-v2 cos Mean pre-trained BTFIDF−PMiniLM6+

BTFIDF paraphrase-multilingual-MiniLM-L12-v2 dot Multivalue pre-trained BTFIDF−PMiniLM7∗

BTFIDF paraphrase-multilingual-MiniLM-L12-v2 dot Mean pre-trained BTFIDF−PMiniLM7+

BTFIDF paraphrase-multilingual-MiniLM-L12-v2 cos Multivalue pre-trained BTFIDF−PMiniLM8∗

BTFIDF paraphrase-multilingual-MiniLM-L12-v2 cos Mean pre-trained BTFIDF−PMiniLM8+

BTFIDF all-mpnet-base-v2 cos Multivalue pre-trained BTFIDF−PMPNET1∗

BTFIDF all-mpnet-base-v2 cos Mean pre-trained BTFIDF−PMPNET1+

BTFIDF all-mpnet-base-v2 dot Multivalue pre-trained BTFIDF−PMPNET2∗

BTFIDF all-mpnet-base-v2 dot Mean pre-trained BTFIDF−PMPNET2+

BTFIDF multi-qa-mpnet-base-dot-v1 dot Multivalue pre-trained BTFIDF−PMPNET3∗

BTFIDF multi-qa-mpnet-base-dot-v1 dot Mean pre-trained BTFIDF−PMPNET3+

BTFIDF paraphrase-multilingual-mpnet-base-v2 cos Multivalue pre-trained BTFIDF−PMPNET4∗

BTFIDF paraphrase-multilingual-mpnet-base-v2 cos Mean pre-trained BTFIDF−PMPNET4+

FMiniLM1 TF-IDF cos TF-IDF bayesian FMiniLM1−BSimple

FMiniLM1 paraphrase-albert-small-v2 cos Multivalue fine-tuned FMiniLM1−FAlbert∗

FMiniLM1 paraphrase-albert-small-v2 cos Mean fine-tuned FMiniLM1−FAlbert+

FMiniLM1 all-distilroberta-v1 cos Multivalue fine-tuned FMiniLM1−FDistil1∗

FMiniLM1 all-distilroberta-v1 cos Mean fine-tuned FMiniLM1−FDistil1+

FMiniLM1 distiluse-base-multilingual-cased-v1 cos Multivalue fine-tuned FMiniLM1−FDistil2∗

FMiniLM1 distiluse-base-multilingual-cased-v1 cos Mean fine-tuned FMiniLM1−FDistil2+

FMiniLM1 distiluse-base-multilingual-cased-v1 dot Multivalue fine-tuned FMiniLM1−FDistil3∗

FMiniLM1 distiluse-base-multilingual-cased-v1 dot Mean fine-tuned FMiniLM1−FDistil3+

108 APPENDIX G. NEURAL MODELS TABLE

Table G.1 continued from previous page
QM Model CJN Model Similarity Agg. Approach CJN Type Abbreviation
FMiniLM1 distiluse-base-multilingual-cased-v2 cos Multivalue fine-tuned FMiniLM1−FDistil4∗

FMiniLM1 distiluse-base-multilingual-cased-v2 cos Mean fine-tuned FMiniLM1−FDistil4+

FMiniLM1 distiluse-base-multilingual-cased-v2 dot Multivalue fine-tuned FMiniLM1−FDistil5∗

FMiniLM1 distiluse-base-multilingual-cased-v2 dot Mean fine-tuned FMiniLM1−FDistil5+

FMiniLM1 multi-qa-distilbert-cos-v1 cos Multivalue fine-tuned FMiniLM1−FDistil6∗

FMiniLM1 multi-qa-distilbert-cos-v1 cos Mean fine-tuned FMiniLM1−FDistil6+

FMiniLM1 all-MiniLM-L12-v2 cos Multivalue fine-tuned FMiniLM1−FMiniLM1∗

FMiniLM1 all-MiniLM-L12-v2 cos Mean fine-tuned FMiniLM1−FMiniLM1+

FMiniLM1 all-MiniLM-L6-v2 cos Multivalue fine-tuned FMiniLM1−FMiniLM2∗

FMiniLM1 all-MiniLM-L6-v2 cos Mean fine-tuned FMiniLM1−FMiniLM2+

FMiniLM1 all-MiniLM-L6-v2 dot Multivalue fine-tuned FMiniLM1−FMiniLM3∗

FMiniLM1 all-MiniLM-L6-v2 dot Mean fine-tuned FMiniLM1−FMiniLM3+

FMiniLM1 multi-qa-MiniLM-L6-cos-v1 cos Multivalue fine-tuned FMiniLM1−FMiniLM4∗

FMiniLM1 multi-qa-MiniLM-L6-cos-v1 cos Mean fine-tuned FMiniLM1−FMiniLM4+

FMiniLM1 multi-qa-MiniLM-L6-cos-v1 dot Multivalue fine-tuned FMiniLM1−FMiniLM5∗

FMiniLM1 multi-qa-MiniLM-L6-cos-v1 dot Mean fine-tuned FMiniLM1−FMiniLM5+

FMiniLM1 paraphrase-MiniLM-L3-v2 cos Multivalue fine-tuned FMiniLM1−FMiniLM6∗

FMiniLM1 paraphrase-MiniLM-L3-v2 cos Mean fine-tuned FMiniLM1−FMiniLM6+

FMiniLM1 paraphrase-multilingual-MiniLM-L12-v2 dot Multivalue fine-tuned FMiniLM1−FMiniLM7∗

FMiniLM1 paraphrase-multilingual-MiniLM-L12-v2 dot Mean fine-tuned FMiniLM1−FMiniLM7+

FMiniLM1 paraphrase-multilingual-MiniLM-L12-v2 cos Multivalue fine-tuned FMiniLM1−FMiniLM8∗

FMiniLM1 paraphrase-multilingual-MiniLM-L12-v2 cos Mean fine-tuned FMiniLM1−FMiniLM8+

FMiniLM1 all-mpnet-base-v2 cos Multivalue fine-tuned FMiniLM1−FMPNET1∗

FMiniLM1 all-mpnet-base-v2 cos Mean fine-tuned FMiniLM1−FMPNET1+

FMiniLM1 all-mpnet-base-v2 dot Multivalue fine-tuned FMiniLM1−FMPNET2∗

FMiniLM1 all-mpnet-base-v2 dot Mean fine-tuned FMiniLM1−FMPNET2+

FMiniLM1 multi-qa-mpnet-base-dot-v1 dot Multivalue fine-tuned FMiniLM1−FMPNET3∗

FMiniLM1 multi-qa-mpnet-base-dot-v1 dot Mean fine-tuned FMiniLM1−FMPNET3+

FMiniLM1 paraphrase-multilingual-mpnet-base-v2 cos Multivalue fine-tuned FMiniLM1−FMPNET4∗

FMiniLM1 paraphrase-multilingual-mpnet-base-v2 cos Mean fine-tuned FMiniLM1−FMPNET4+

FMiniLM1 paraphrase-albert-small-v2 cos Multivalue pre-trained FMiniLM1−PAlbert∗

FMiniLM1 paraphrase-albert-small-v2 cos Mean pre-trained FMiniLM1−PAlbert+

FMiniLM1 all-distilroberta-v1 cos Multivalue pre-trained FMiniLM1−PDistil1∗

FMiniLM1 all-distilroberta-v1 cos Mean pre-trained FMiniLM1−PDistil1+

FMiniLM1 distiluse-base-multilingual-cased-v1 cos Multivalue pre-trained FMiniLM1−PDistil2∗

FMiniLM1 distiluse-base-multilingual-cased-v1 cos Mean pre-trained FMiniLM1−PDistil2+

FMiniLM1 distiluse-base-multilingual-cased-v1 dot Multivalue pre-trained FMiniLM1−PDistil3∗

FMiniLM1 distiluse-base-multilingual-cased-v1 dot Mean pre-trained FMiniLM1−PDistil3+

FMiniLM1 distiluse-base-multilingual-cased-v2 cos Multivalue pre-trained FMiniLM1−PDistil4∗

FMiniLM1 distiluse-base-multilingual-cased-v2 cos Mean pre-trained FMiniLM1−PDistil4+

FMiniLM1 distiluse-base-multilingual-cased-v2 dot Multivalue pre-trained FMiniLM1−PDistil5∗

FMiniLM1 distiluse-base-multilingual-cased-v2 dot Mean pre-trained FMiniLM1−PDistil5+

FMiniLM1 multi-qa-distilbert-cos-v1 cos Multivalue pre-trained FMiniLM1−PDistil6∗

FMiniLM1 multi-qa-distilbert-cos-v1 cos Mean pre-trained FMiniLM1−PDistil6+

FMiniLM1 all-MiniLM-L12-v2 cos Multivalue pre-trained FMiniLM1−PMiniLM1∗

FMiniLM1 all-MiniLM-L12-v2 cos Mean pre-trained FMiniLM1−PMiniLM1+

FMiniLM1 all-MiniLM-L6-v2 cos Multivalue pre-trained FMiniLM1−PMiniLM2∗

FMiniLM1 all-MiniLM-L6-v2 cos Mean pre-trained FMiniLM1−PMiniLM2+

FMiniLM1 all-MiniLM-L6-v2 dot Multivalue pre-trained FMiniLM1−PMiniLM3∗

FMiniLM1 all-MiniLM-L6-v2 dot Mean pre-trained FMiniLM1−PMiniLM3+

FMiniLM1 multi-qa-MiniLM-L6-cos-v1 cos Multivalue pre-trained FMiniLM1−PMiniLM4∗

FMiniLM1 multi-qa-MiniLM-L6-cos-v1 cos Mean pre-trained FMiniLM1−PMiniLM4+

109

Table G.1 continued from previous page
QM Model CJN Model Similarity Agg. Approach CJN Type Abbreviation
FMiniLM1 multi-qa-MiniLM-L6-cos-v1 dot Multivalue pre-trained FMiniLM1−PMiniLM5∗

FMiniLM1 multi-qa-MiniLM-L6-cos-v1 dot Mean pre-trained FMiniLM1−PMiniLM5+

FMiniLM1 paraphrase-MiniLM-L3-v2 cos Multivalue pre-trained FMiniLM1−PMiniLM6∗

FMiniLM1 paraphrase-MiniLM-L3-v2 cos Mean pre-trained FMiniLM1−PMiniLM6+

FMiniLM1 paraphrase-multilingual-MiniLM-L12-v2 dot Multivalue pre-trained FMiniLM1−PMiniLM7∗

FMiniLM1 paraphrase-multilingual-MiniLM-L12-v2 dot Mean pre-trained FMiniLM1−PMiniLM7+

FMiniLM1 paraphrase-multilingual-MiniLM-L12-v2 cos Multivalue pre-trained FMiniLM1−PMiniLM8∗

FMiniLM1 paraphrase-multilingual-MiniLM-L12-v2 cos Mean pre-trained FMiniLM1−PMiniLM8+

FMiniLM1 all-mpnet-base-v2 cos Multivalue pre-trained FMiniLM1−PMPNET1∗

FMiniLM1 all-mpnet-base-v2 cos Mean pre-trained FMiniLM1−PMPNET1+

FMiniLM1 all-mpnet-base-v2 dot Multivalue pre-trained FMiniLM1−PMPNET2∗

FMiniLM1 all-mpnet-base-v2 dot Mean pre-trained FMiniLM1−PMPNET2+

FMiniLM1 multi-qa-mpnet-base-dot-v1 dot Multivalue pre-trained FMiniLM1−PMPNET3∗

FMiniLM1 multi-qa-mpnet-base-dot-v1 dot Mean pre-trained FMiniLM1−PMPNET3+

FMiniLM1 paraphrase-multilingual-mpnet-base-v2 cos Multivalue pre-trained FMiniLM1−PMPNET4∗

FMiniLM1 paraphrase-multilingual-mpnet-base-v2 cos Mean pre-trained FMiniLM1−PMPNET4+

FMPNET3 TF-IDF cos TF-IDF bayesian FMPNET3−BSimple

FMPNET3 paraphrase-albert-small-v2 cos Multivalue fine-tuned FMPNET3−FAlbert∗

FMPNET3 paraphrase-albert-small-v2 cos Mean fine-tuned FMPNET3−FAlbert+

FMPNET3 all-distilroberta-v1 cos Multivalue fine-tuned FMPNET3−FDistil1∗

FMPNET3 all-distilroberta-v1 cos Mean fine-tuned FMPNET3−FDistil1+

FMPNET3 distiluse-base-multilingual-cased-v1 cos Multivalue fine-tuned FMPNET3−FDistil2∗

FMPNET3 distiluse-base-multilingual-cased-v1 cos Mean fine-tuned FMPNET3−FDistil2+

FMPNET3 distiluse-base-multilingual-cased-v1 dot Multivalue fine-tuned FMPNET3−FDistil3∗

FMPNET3 distiluse-base-multilingual-cased-v1 dot Mean fine-tuned FMPNET3−FDistil3+

FMPNET3 distiluse-base-multilingual-cased-v2 cos Multivalue fine-tuned FMPNET3−FDistil4∗

FMPNET3 distiluse-base-multilingual-cased-v2 cos Mean fine-tuned FMPNET3−FDistil4+

FMPNET3 distiluse-base-multilingual-cased-v2 dot Multivalue fine-tuned FMPNET3−FDistil5∗

FMPNET3 distiluse-base-multilingual-cased-v2 dot Mean fine-tuned FMPNET3−FDistil5+

FMPNET3 multi-qa-distilbert-cos-v1 cos Multivalue fine-tuned FMPNET3−FDistil6∗

FMPNET3 multi-qa-distilbert-cos-v1 cos Mean fine-tuned FMPNET3−FDistil6+

FMPNET3 all-MiniLM-L12-v2 cos Multivalue fine-tuned FMPNET3−FMiniLM1∗

FMPNET3 all-MiniLM-L12-v2 cos Mean fine-tuned FMPNET3−FMiniLM1+

FMPNET3 all-MiniLM-L6-v2 cos Multivalue fine-tuned FMPNET3−FMiniLM2∗

FMPNET3 all-MiniLM-L6-v2 cos Mean fine-tuned FMPNET3−FMiniLM2+

FMPNET3 all-MiniLM-L6-v2 dot Multivalue fine-tuned FMPNET3−FMiniLM3∗

FMPNET3 all-MiniLM-L6-v2 dot Mean fine-tuned FMPNET3−FMiniLM3+

FMPNET3 multi-qa-MiniLM-L6-cos-v1 cos Multivalue fine-tuned FMPNET3−FMiniLM4∗

FMPNET3 multi-qa-MiniLM-L6-cos-v1 cos Mean fine-tuned FMPNET3−FMiniLM4+

FMPNET3 multi-qa-MiniLM-L6-cos-v1 dot Multivalue fine-tuned FMPNET3−FMiniLM5∗

FMPNET3 multi-qa-MiniLM-L6-cos-v1 dot Mean fine-tuned FMPNET3−FMiniLM5+

FMPNET3 paraphrase-MiniLM-L3-v2 cos Multivalue fine-tuned FMPNET3−FMiniLM6∗

FMPNET3 paraphrase-MiniLM-L3-v2 cos Mean fine-tuned FMPNET3−FMiniLM6+

FMPNET3 paraphrase-multilingual-MiniLM-L12-v2 dot Multivalue fine-tuned FMPNET3−FMiniLM7∗

FMPNET3 paraphrase-multilingual-MiniLM-L12-v2 dot Mean fine-tuned FMPNET3−FMiniLM7+

FMPNET3 paraphrase-multilingual-MiniLM-L12-v2 cos Multivalue fine-tuned FMPNET3−FMiniLM8∗

FMPNET3 paraphrase-multilingual-MiniLM-L12-v2 cos Mean fine-tuned FMPNET3−FMiniLM8+

FMPNET3 all-mpnet-base-v2 cos Multivalue fine-tuned FMPNET3−FMPNET1∗

FMPNET3 all-mpnet-base-v2 cos Mean fine-tuned FMPNET3−FMPNET1+

FMPNET3 all-mpnet-base-v2 dot Multivalue fine-tuned FMPNET3−FMPNET2∗

FMPNET3 all-mpnet-base-v2 dot Mean fine-tuned FMPNET3−FMPNET2+

FMPNET3 multi-qa-mpnet-base-dot-v1 dot Multivalue fine-tuned FMPNET3−FMPNET3∗

110 APPENDIX G. NEURAL MODELS TABLE

Table G.1 continued from previous page
QM Model CJN Model Similarity Agg. Approach CJN Type Abbreviation
FMPNET3 multi-qa-mpnet-base-dot-v1 dot Mean fine-tuned FMPNET3−FMPNET3+

FMPNET3 paraphrase-multilingual-mpnet-base-v2 cos Multivalue fine-tuned FMPNET3−FMPNET4∗

FMPNET3 paraphrase-multilingual-mpnet-base-v2 cos Mean fine-tuned FMPNET3−FMPNET4+

FMPNET3 paraphrase-albert-small-v2 cos Multivalue pre-trained FMPNET3−PAlbert∗

FMPNET3 paraphrase-albert-small-v2 cos Mean pre-trained FMPNET3−PAlbert+

FMPNET3 all-distilroberta-v1 cos Multivalue pre-trained FMPNET3−PDistil1∗

FMPNET3 all-distilroberta-v1 cos Mean pre-trained FMPNET3−PDistil1+

FMPNET3 distiluse-base-multilingual-cased-v1 cos Multivalue pre-trained FMPNET3−PDistil2∗

FMPNET3 distiluse-base-multilingual-cased-v1 cos Mean pre-trained FMPNET3−PDistil2+

FMPNET3 distiluse-base-multilingual-cased-v1 dot Multivalue pre-trained FMPNET3−PDistil3∗

FMPNET3 distiluse-base-multilingual-cased-v1 dot Mean pre-trained FMPNET3−PDistil3+

FMPNET3 distiluse-base-multilingual-cased-v2 cos Multivalue pre-trained FMPNET3−PDistil4∗

FMPNET3 distiluse-base-multilingual-cased-v2 cos Mean pre-trained FMPNET3−PDistil4+

FMPNET3 distiluse-base-multilingual-cased-v2 dot Multivalue pre-trained FMPNET3−PDistil5∗

FMPNET3 distiluse-base-multilingual-cased-v2 dot Mean pre-trained FMPNET3−PDistil5+

FMPNET3 multi-qa-distilbert-cos-v1 cos Multivalue pre-trained FMPNET3−PDistil6∗

FMPNET3 multi-qa-distilbert-cos-v1 cos Mean pre-trained FMPNET3−PDistil6+

FMPNET3 all-MiniLM-L12-v2 cos Multivalue pre-trained FMPNET3−PMiniLM1∗

FMPNET3 all-MiniLM-L12-v2 cos Mean pre-trained FMPNET3−PMiniLM1+

FMPNET3 all-MiniLM-L6-v2 cos Multivalue pre-trained FMPNET3−PMiniLM2∗

FMPNET3 all-MiniLM-L6-v2 cos Mean pre-trained FMPNET3−PMiniLM2+

FMPNET3 all-MiniLM-L6-v2 dot Multivalue pre-trained FMPNET3−PMiniLM3∗

FMPNET3 all-MiniLM-L6-v2 dot Mean pre-trained FMPNET3−PMiniLM3+

FMPNET3 multi-qa-MiniLM-L6-cos-v1 cos Multivalue pre-trained FMPNET3−PMiniLM4∗

FMPNET3 multi-qa-MiniLM-L6-cos-v1 cos Mean pre-trained FMPNET3−PMiniLM4+

FMPNET3 multi-qa-MiniLM-L6-cos-v1 dot Multivalue pre-trained FMPNET3−PMiniLM5∗

FMPNET3 multi-qa-MiniLM-L6-cos-v1 dot Mean pre-trained FMPNET3−PMiniLM5+

FMPNET3 paraphrase-MiniLM-L3-v2 cos Multivalue pre-trained FMPNET3−PMiniLM6∗

FMPNET3 paraphrase-MiniLM-L3-v2 cos Mean pre-trained FMPNET3−PMiniLM6+

FMPNET3 paraphrase-multilingual-MiniLM-L12-v2 dot Multivalue pre-trained FMPNET3−PMiniLM7∗

FMPNET3 paraphrase-multilingual-MiniLM-L12-v2 dot Mean pre-trained FMPNET3−PMiniLM7+

FMPNET3 paraphrase-multilingual-MiniLM-L12-v2 cos Multivalue pre-trained FMPNET3−PMiniLM8∗

FMPNET3 paraphrase-multilingual-MiniLM-L12-v2 cos Mean pre-trained FMPNET3−PMiniLM8+

FMPNET3 all-mpnet-base-v2 cos Multivalue pre-trained FMPNET3−PMPNET1∗

FMPNET3 all-mpnet-base-v2 cos Mean pre-trained FMPNET3−PMPNET1+

FMPNET3 all-mpnet-base-v2 dot Multivalue pre-trained FMPNET3−PMPNET2∗

FMPNET3 all-mpnet-base-v2 dot Mean pre-trained FMPNET3−PMPNET2+

FMPNET3 multi-qa-mpnet-base-dot-v1 dot Multivalue pre-trained FMPNET3−PMPNET3∗

FMPNET3 multi-qa-mpnet-base-dot-v1 dot Mean pre-trained FMPNET3−PMPNET3+

FMPNET3 paraphrase-multilingual-mpnet-base-v2 cos Multivalue pre-trained FMPNET3−PMPNET4∗

FMPNET3 paraphrase-multilingual-mpnet-base-v2 cos Mean pre-trained FMPNET3−PMPNET4+

FMPNET4 TF-IDF cos TF-IDF bayesian FMPNET4−BSimple

FMPNET4 paraphrase-albert-small-v2 cos Multivalue fine-tuned FMPNET4−FAlbert∗

FMPNET4 paraphrase-albert-small-v2 cos Mean fine-tuned FMPNET4−FAlbert+

FMPNET4 all-distilroberta-v1 cos Multivalue fine-tuned FMPNET4−FDistil1∗

FMPNET4 all-distilroberta-v1 cos Mean fine-tuned FMPNET4−FDistil1+

FMPNET4 distiluse-base-multilingual-cased-v1 cos Multivalue fine-tuned FMPNET4−FDistil2∗

FMPNET4 distiluse-base-multilingual-cased-v1 cos Mean fine-tuned FMPNET4−FDistil2+

FMPNET4 distiluse-base-multilingual-cased-v1 dot Multivalue fine-tuned FMPNET4−FDistil3∗

FMPNET4 distiluse-base-multilingual-cased-v1 dot Mean fine-tuned FMPNET4−FDistil3+

FMPNET4 distiluse-base-multilingual-cased-v2 cos Multivalue fine-tuned FMPNET4−FDistil4∗

FMPNET4 distiluse-base-multilingual-cased-v2 cos Mean fine-tuned FMPNET4−FDistil4+

111

Table G.1 continued from previous page
QM Model CJN Model Similarity Agg. Approach CJN Type Abbreviation
FMPNET4 distiluse-base-multilingual-cased-v2 dot Multivalue fine-tuned FMPNET4−FDistil5∗

FMPNET4 distiluse-base-multilingual-cased-v2 dot Mean fine-tuned FMPNET4−FDistil5+

FMPNET4 multi-qa-distilbert-cos-v1 cos Multivalue fine-tuned FMPNET4−FDistil6∗

FMPNET4 multi-qa-distilbert-cos-v1 cos Mean fine-tuned FMPNET4−FDistil6+

FMPNET4 all-MiniLM-L12-v2 cos Multivalue fine-tuned FMPNET4−FMiniLM1∗

FMPNET4 all-MiniLM-L12-v2 cos Mean fine-tuned FMPNET4−FMiniLM1+

FMPNET4 all-MiniLM-L6-v2 cos Multivalue fine-tuned FMPNET4−FMiniLM2∗

FMPNET4 all-MiniLM-L6-v2 cos Mean fine-tuned FMPNET4−FMiniLM2+

FMPNET4 all-MiniLM-L6-v2 dot Multivalue fine-tuned FMPNET4−FMiniLM3∗

FMPNET4 all-MiniLM-L6-v2 dot Mean fine-tuned FMPNET4−FMiniLM3+

FMPNET4 multi-qa-MiniLM-L6-cos-v1 cos Multivalue fine-tuned FMPNET4−FMiniLM4∗

FMPNET4 multi-qa-MiniLM-L6-cos-v1 cos Mean fine-tuned FMPNET4−FMiniLM4+

FMPNET4 multi-qa-MiniLM-L6-cos-v1 dot Multivalue fine-tuned FMPNET4−FMiniLM5∗

FMPNET4 multi-qa-MiniLM-L6-cos-v1 dot Mean fine-tuned FMPNET4−FMiniLM5+

FMPNET4 paraphrase-MiniLM-L3-v2 cos Multivalue fine-tuned FMPNET4−FMiniLM6∗

FMPNET4 paraphrase-MiniLM-L3-v2 cos Mean fine-tuned FMPNET4−FMiniLM6+

FMPNET4 paraphrase-multilingual-MiniLM-L12-v2 dot Multivalue fine-tuned FMPNET4−FMiniLM7∗

FMPNET4 paraphrase-multilingual-MiniLM-L12-v2 dot Mean fine-tuned FMPNET4−FMiniLM7+

FMPNET4 paraphrase-multilingual-MiniLM-L12-v2 cos Multivalue fine-tuned FMPNET4−FMiniLM8∗

FMPNET4 paraphrase-multilingual-MiniLM-L12-v2 cos Mean fine-tuned FMPNET4−FMiniLM8+

FMPNET4 all-mpnet-base-v2 cos Multivalue fine-tuned FMPNET4−FMPNET1∗

FMPNET4 all-mpnet-base-v2 cos Mean fine-tuned FMPNET4−FMPNET1+

FMPNET4 all-mpnet-base-v2 dot Multivalue fine-tuned FMPNET4−FMPNET2∗

FMPNET4 all-mpnet-base-v2 dot Mean fine-tuned FMPNET4−FMPNET2+

FMPNET4 multi-qa-mpnet-base-dot-v1 dot Multivalue fine-tuned FMPNET4−FMPNET3∗

FMPNET4 multi-qa-mpnet-base-dot-v1 dot Mean fine-tuned FMPNET4−FMPNET3+

FMPNET4 paraphrase-multilingual-mpnet-base-v2 cos Multivalue fine-tuned FMPNET4−FMPNET4∗

FMPNET4 paraphrase-multilingual-mpnet-base-v2 cos Mean fine-tuned FMPNET4−FMPNET4+

FMPNET4 paraphrase-albert-small-v2 cos Multivalue pre-trained FMPNET4−PAlbert∗

FMPNET4 paraphrase-albert-small-v2 cos Mean pre-trained FMPNET4−PAlbert+

FMPNET4 all-distilroberta-v1 cos Multivalue pre-trained FMPNET4−PDistil1∗

FMPNET4 all-distilroberta-v1 cos Mean pre-trained FMPNET4−PDistil1+

FMPNET4 distiluse-base-multilingual-cased-v1 cos Multivalue pre-trained FMPNET4−PDistil2∗

FMPNET4 distiluse-base-multilingual-cased-v1 cos Mean pre-trained FMPNET4−PDistil2+

FMPNET4 distiluse-base-multilingual-cased-v1 dot Multivalue pre-trained FMPNET4−PDistil3∗

FMPNET4 distiluse-base-multilingual-cased-v1 dot Mean pre-trained FMPNET4−PDistil3+

FMPNET4 distiluse-base-multilingual-cased-v2 cos Multivalue pre-trained FMPNET4−PDistil4∗

FMPNET4 distiluse-base-multilingual-cased-v2 cos Mean pre-trained FMPNET4−PDistil4+

FMPNET4 distiluse-base-multilingual-cased-v2 dot Multivalue pre-trained FMPNET4−PDistil5∗

FMPNET4 distiluse-base-multilingual-cased-v2 dot Mean pre-trained FMPNET4−PDistil5+

FMPNET4 multi-qa-distilbert-cos-v1 cos Multivalue pre-trained FMPNET4−PDistil6∗

FMPNET4 multi-qa-distilbert-cos-v1 cos Mean pre-trained FMPNET4−PDistil6+

FMPNET4 all-MiniLM-L12-v2 cos Multivalue pre-trained FMPNET4−PMiniLM1∗

FMPNET4 all-MiniLM-L12-v2 cos Mean pre-trained FMPNET4−PMiniLM1+

FMPNET4 all-MiniLM-L6-v2 cos Multivalue pre-trained FMPNET4−PMiniLM2∗

FMPNET4 all-MiniLM-L6-v2 cos Mean pre-trained FMPNET4−PMiniLM2+

FMPNET4 all-MiniLM-L6-v2 dot Multivalue pre-trained FMPNET4−PMiniLM3∗

FMPNET4 all-MiniLM-L6-v2 dot Mean pre-trained FMPNET4−PMiniLM3+

FMPNET4 multi-qa-MiniLM-L6-cos-v1 cos Multivalue pre-trained FMPNET4−PMiniLM4∗

FMPNET4 multi-qa-MiniLM-L6-cos-v1 cos Mean pre-trained FMPNET4−PMiniLM4+

FMPNET4 multi-qa-MiniLM-L6-cos-v1 dot Multivalue pre-trained FMPNET4−PMiniLM5∗

FMPNET4 multi-qa-MiniLM-L6-cos-v1 dot Mean pre-trained FMPNET4−PMiniLM5+

112 APPENDIX G. NEURAL MODELS TABLE

Table G.1 continued from previous page
QM Model CJN Model Similarity Agg. Approach CJN Type Abbreviation
FMPNET4 paraphrase-MiniLM-L3-v2 cos Multivalue pre-trained FMPNET4−PMiniLM6∗

FMPNET4 paraphrase-MiniLM-L3-v2 cos Mean pre-trained FMPNET4−PMiniLM6+

FMPNET4 paraphrase-multilingual-MiniLM-L12-v2 dot Multivalue pre-trained FMPNET4−PMiniLM7∗

FMPNET4 paraphrase-multilingual-MiniLM-L12-v2 dot Mean pre-trained FMPNET4−PMiniLM7+

FMPNET4 paraphrase-multilingual-MiniLM-L12-v2 cos Multivalue pre-trained FMPNET4−PMiniLM8∗

FMPNET4 paraphrase-multilingual-MiniLM-L12-v2 cos Mean pre-trained FMPNET4−PMiniLM8+

FMPNET4 all-mpnet-base-v2 cos Multivalue pre-trained FMPNET4−PMPNET1∗

FMPNET4 all-mpnet-base-v2 cos Mean pre-trained FMPNET4−PMPNET1+

FMPNET4 all-mpnet-base-v2 dot Multivalue pre-trained FMPNET4−PMPNET2∗

FMPNET4 all-mpnet-base-v2 dot Mean pre-trained FMPNET4−PMPNET2+

FMPNET4 multi-qa-mpnet-base-dot-v1 dot Multivalue pre-trained FMPNET4−PMPNET3∗

FMPNET4 multi-qa-mpnet-base-dot-v1 dot Mean pre-trained FMPNET4−PMPNET3+

FMPNET4 paraphrase-multilingual-mpnet-base-v2 cos Multivalue pre-trained FMPNET4−PMPNET4∗

FMPNET4 paraphrase-multilingual-mpnet-base-v2 cos Mean pre-trained FMPNET4−PMPNET4+

