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Resumo
Memes são uma forma popular de compartilhar mensagens com grandes audiências.

Embora muitas vezes sejam engraçados ou informativos, memes também podem

espalhar discurso de ódio e conteúdo prejudicial. Isso cria um desafio para as re-

des sociais, que precisam detectar e moderar esse tipo de conteúdo para tornar

os espaços online mais seguros. Esta tese se concentra em melhorar a detecção

de memes com conteúdo nocivo usando métodos avançados de aprendizado de

máquina, incluindo modelos canônicos baseados em transformadores e os mais

recentes modelos multimodais de linguagem de grande escala (MLLMs). O trabalho

começa com uma revisão de literatura, destacando pontos fortes, fracos e desafios

dos métodos existentes. Também é apresentada uma nova taxonomia para ca-

tegorizar esses métodos, facilitando a comparação e a melhoria das técnicas de

detecção. Na sequência, é proposto um método para melhorar o desempenho de

modelos canônicos multimodais baseados em transformadores. Isso é feito ao adi-

cionarmos um módulo chamado Bloco de Parâmetros Compactos nos codificadores

dos transformadores. Os resultados dos nossos experimentos mostram que o

método proposto supera diversos modelos mais complexos. A tese também explora

o uso de modelos generativos, como os MLLMs, para detectar conteúdo agressivo

em memes utilizando prompts especı́ficos para orientar os modelos. Os resultados

mostram que esses modelos conseguem identificar memes com conteúdo agressivo,

mesmo não tendo sido projetados especificamente para essa tarefa. Porém, quando

o nı́vel de raciocı́nio multimodal exigido é muito elevado, o desempenho dos MLLMs

reduz significativamente. Esta pesquisa contribui para a área ao oferecer melho-

rias práticas para os métodos atuais de detecção e ao explorar novas abordagens

usando modelos generativos. Esses avanços são importantes para criar ambientes

online mais seguros, respeitando a liberdade de expressão.



Abstract
Memes are a popular way of sharing messages with large audiences. They are

often funny or informative, but memes can also spread hate speech and harm-

ful content. This represents a challenge for social networks, which need to detect

and moderate this type of content to provide a safer online environment. This

thesis focuses on improving the detection of harmful content in memes using ad-

vanced machine learning methods, including canonical transformer-based models

and recent multimodal large language models (MLLMs). First, the work presents

a literature review that highlights the strengths, weaknesses, and challenges of

current methods. It also introduces a new taxonomy in order to categorize current

methods, making it easier for researchers to compare and improve detection tech-

niques. Then, this work introduces a novel approach to enhance the performance

of canonical multimodal transformer models. This is done by adding a specific

module called Compact Parameter Blocks into the encoder segments of these mod-

els. The experimental results demonstrate that the proposed method outperforms

several more complex approaches. The thesis also explores the use of generative

models, such as MLLMs, to detect aggressive memes by using specific prompts

to guide the models. The results show that these models can identify aggressive

memes, despite not being explicitly designed for this task. However, the perfor-

mance of MLLMs decreases significantly when the level of multimodality reasoning

required is very high. This research contributes to the field by providing practi-

cal improvements to current detection methods and by exploring new approaches

using generative models. These advances are important in creating safer online

environments while respecting freedom of expression.
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1 Introduction

In the current digital age, global communication occurs at an unprecedented pace,

impacting billions of people every day. The world population in 2024 is approxi-

mately 8.2 billion. Of this total, about 67.1% (5.5 billion) are Internet users, and

approximately 63.7% (5.2 billion) are active on social media [1], as highlighted in

Figure 1. In this virtual world, the spread of harmful online content has become

a very important concern. This kind of content involves various forms, includ-

ing hate speech, offensive language, harassment, misinformation, violence, and

sexually explicit material [2]. Despite platform efforts to moderate this content, au-

tomated methods are crucial to managing the large amount of aggressive material

that often goes undetected [3, 4].

Memes, in particular, represent a common way of spreading aggressive content.

They have emerged as a popular form of communication, designed to quickly con-

vey messages to large audiences. Although often humorous or informative, memes

can also transmit hate speech and other forms of harmful content. In this context,

social networks face the challenge of automatically detecting and moderating such

content to ensure a safer and more inclusive online environment.

Figure 1 – Based on data from Statista (2024) [1], the graph provides a visual repre-
sentation of global communication and social media statistics for 2024.
Source: Author.
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The detection of harmful content within memes is critical for online safety, es-

pecially because memes can propagate hate speech subtly or indirectly, through

implicit meanings that are not easily detectable by conventional moderation sys-

tems [5]. Despite having different formats, such as short videos, GIFS, etc, memes

are mostly multimodal, usually formed by images and text. While the meaning of

a meme is highly dependent on context, their images and text often have no clear

connection. Therefore, a thorough understanding of both modals is necessary to

truly understand the message of the meme [6]. This is crucial to provide accurate

tools that do not attack freedom of expression, which is a legitimate and inviolable

right. As a result, identifying harmful memes requires robust machine learning

models capable of effectively integrating multiple modalities.

In this context, the high performance rates reached by the transformer archi-

tecture in natural language processing (NLP) tasks [7] motivated many researchers

to also employ these models to detect harmful memes in a multimodal approach.

Currently, the most advanced methods for identifying harmful memes are based

on the transformer architecture [8, 9, 10, 11, 12, 13]. These techniques use the

transformer encoder component in multimodal models to gather both textual and

image characteristics from memes, resulting in a comprehensive representation

that arises from merging text and image elements.

More recently, multimodal large language models (MLLMs) have emerged as a

promising innovation in natural language processing and computer vision. Models

such as GPT-4V (Generative Pre-trained Transformer) [14], LLaVA (Large Language

and Vision Assistant) [15], and Gemini [16] have demonstrated the ability to under-

stand complex content by analyzing both text and images in an integrated manner.

Therefore, MLLMs can also be used in the task of detecting aggressive content in

memes, particularly at different levels of multimodal reasoning.

1.1 General objective
This thesis aims to enhance aggressive content detection in memes using multi-

modal machine learning models, first using canonical transformer-based multi-
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modal approaches and then using MLLMs.

1.1.1 Specific objectives

The specific objectives are described in the following.

1. Conduct a structured review of the detection of hate speech in memes, iden-

tifying existing challenges and solutions, with a particular focus on the com-

plexities of multimodal analysis (text and image). This includes proposing a

new taxonomy for this topic and creating a foundational framework that can

support future research.

2. Propose improvements to traditional multimodal transformers, identified in

the previous review as the state-of-the-art architecture in this field. The pro-

posed solution involves modifying the encoder blocks of these models by intro-

ducing compact parameter blocks to enhance their performance in detecting

harmful content in memes.

3. Investigate the performance of MLLMs in identifying aggressive content in

memes, assessing different levels of multimodal reasoning, and employing

prompt engineering techniques to improve the models’ overall performance.

4. Conduct a evaluation of the proposed methodology against state-of-the-art

MLLMs. This involves assessing their performance in extracting and analyz-

ing textual and visual features from memes, with an emphasis on detecting

harmful content. The objective is to identify the strengths and limitations of

both approaches in terms of accuracy, efficiency, and multimodal reasoning

capabilities.

1.2 Thesis contributions
This thesis provides important contributions to the field of harmful content detec-

tion in memes, addressing the following key aspects:
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(1) Comprehensive Review: A structured and thorough review of state-of-the-

art research on hateful memes detection using machine learning is presented,

summarizing and analyzing the approaches proposed in existing works.

(2) Taxonomy Development: A taxonomy for the detection of hateful memes

through machine learning methods is introduced, facilitating the analysis of

similar approaches and their respective results.

(3) Innovative Methodology: A novel method for enhancing the performance

of multimodal transformer-based models in the detection of harmful memes

is proposed. This method integrates a Compact Parameters Block (CPB) at

the initial stage of the encoder, simplifying input data to enable the model

to focus on critical multimodal information. This approach aims to improve

the efficiency of encoding the attention mechanisms and the generalization

capabilities.

(4) Generative Models Evaluation: The capabilities of leading generative models,

including GPT-4V [14], Gemini [17], and LLaVA [18], are evaluated to detect

aggressive content in memes. The strengths and limitations of these models,

particularly in handling complex multimodal reasoning, are highlighted.

(5) Zero-Shot Prompt Analysis: The impact of well-designed zero-shot prompts

is explored, demonstrating their ability to enhance classification accuracy in

harmful meme detection.

These contributions are the core outcomes of this thesis and represent signifi-

cant advances in meme analysis and harmful content detection. By addressing key

challenges in this field, the research not only enhances existing detection methods

but also introduces new perspectives on how multimodal and generative models

can be leveraged for this task. The findings of this thesis provide a foundation

for future studies, enabling researchers to develop more effective and robust tech-

niques for identifying harmful memes.
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1.4 Thesis Organization
This thesis is organized as follows: Chapter 2 provides a comprehensive review

of the theoretical foundation that supports the subsequent chapters. Chapter 3

presents a structured review of hate speech detection in memes, highlighting the

challenges and existing solutions in the field. The content of this chapter was pub-

lished in [19]. Then, Chapter 4 proposes the addition of compact parameter blocks

to multimodal transformers to improve meme detection performance. This contri-

bution of this thesis is published in [20]. In sequence, in Chapter 5 we evaluate the

performance of MLLMs in detecting aggressive content in memes, analyzing differ-

ent levels of multimodal reasoning and proposing improvements through prompt

engineering. Finally, Chapter 6 concludes the thesis with a summary of key find-

ings and suggestions for future research.
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2 Background

This chapter presents theoretical aspects of the technologies used in this work.

In Subsection 2.1, memes are defined, considering their format and content. In

Subsection 2.2, the problem of detecting aggressive content in memes considering

multimodal aspects is defined. In Subsection 2.3, the transformer architecture is

described, which, based on the literature review we conducted, is the state of the

art in detecting aggressive content in memes. Then, in Subsection 2.4, AutoEn-

coders are discussed as the foundation for the second main contribution of this

work, which involves the use of compact parameter blocks in the encoder block

of multimodal transformers to enhance performance. Next, in Subsection 2.5, the

concept of MLLMs and generative models is introduced, linked to the third main

contribution of this work, which evaluates the performance of these models in de-

tecting aggressive content in memes. Finally, Subsection 2.7 covers topics related

to prompt engineering.

2.1 The Evolution and Impact of Memes: From Humor to

Harm
Memes have become a defining feature of online culture, acting as vessels for hu-

mor, social commentary, and shared experiences. The term “meme” was first in-

troduced by Richard Dawkins in The Selfish Gene [21] to describe units of cultural

information that spread through imitation. In the digital age, memes have evolved

into multimodal forms of expression, often consisting of an image overlaid with text

to create a blend of visual and verbal humor or meaning.

Although memes are often associated with positive and creative expression, their

capacity for rapid dissemination has also been exploited for negative purposes.

Aggressive content in memes usually targets individuals or groups, perpetuating

stereotypes, hate speech, or misinformation. These memes can be subtle, cloaked

in humor, or overtly offensive, aiming to harm the reputation, emotions, or safety
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of others [22].

Groups frequently targeted by aggressive content often include marginalized

communities, such as racial and ethnic minorities, women, and LGBTQ+ individ-

uals. Such memes can perpetuate harmful social biases, fostering a hostile online

environment that can lead to real-world consequences, including mental health

challenges, discrimination, and even violence.

Below there is a concise summary of these groups, the impacts caused by ag-

gressive memes, and some fundamental approaches for detection.

• Minority Groups

– Description: Includes marginalized communities based on race, ethnicity,

gender, sexual orientation, or religion.

– Impact: Aggressive memes perpetuate stereotypes, incite hatred, or dehuman-

ize individuals.

– Detection:

* Text analysis for discriminatory language.

* Image recognition to detect offensive symbols or gestures.

* Historical or cultural context analysis of the content [23].

Figure 2 shows some examples of memes in this category.

Figure 2 – A sample of aggressive memes targeting minorities. Extracted from
FBHM dataset [24].

• Teenagers and Young Adults
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– Description: This group heavily consumes memes on platforms such as Tik-

Tok, Instagram, and Reddit.

– Impact: May internalize aggressive behaviors or suffer from reduced self-

esteem.

– Detection:

* Identifying cyberbullying in online interactions.

* Humor analysis to detect patterns of symbolic violence [25].

Figure 3 shows examples of memes this category.

Figure 3 – Examples of aggressive memes targeting Teenagers and Young Adult.
Extracted from FBHM dataset [24].

• Professionals and Institutions

– Description: Aggressive memes may target companies, governments, or public

figures.

– Impact: Reputation damage and security threats.

– Detection:

* Monitoring keywords related to institutions.

* Image tracking to verify manipulation or editing of logos, public figures,

etc. [26].

In Figure 4 it is shown a sample of memes from this category.
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Figure 4 – Examples of memes focused on aggressive content against Professionals
and Institutions. Extracted from MultiOFF dataset [27].

• Women

– Description: Frequently targeted by misogynistic content in memes.

– Impact: Reinforcement of gender inequality and online hostility.

– Detection:

* Identifying terms associated with hatred or objectification.

* Tracking hashtags spreading attacks [28].

In Figure 5 there are some examples of memes from this category.

Figure 5 – Examples of aggressive memes targeting women. Extracted from Miso
dataset [29].

• LGBTQIA+ Communities

– Description: Often targeted by aggressive humor that seeks to delegitimize

identities.

– Impact: Promotion of hate speech and social exclusion.
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– Detection:

* NLP to identify phrases or emojis with negative connotations.

* Social network analysis to map meme dissemination in specific groups [30].

In Figure 6 there are examples of aggressive memes in this category.

Figure 6 – Examples of aggressive memes against LGBTQIA+ Communities. Ex-
tracted from the FBHM dataset [24].

2.2 Problem Statement
Considering the multimodal aspect of memes, one way to express a generic multi-

modal representation Xm composed of n different modalities is summarized below:

Xm = f(x1, ..., xn) (2.1)

In this work, the multimodal representation is composed of the following two modal-

ities (n = 2):

1. Visual: x1 = {I1, ..., Ii}, where i is the meme index and I is the meme image.

2. Text: x2 = {T1, ..., Ti}, where T is the meme text.

The meme label is given by Y = {y1, ..., yi}. Here, y ∈ {0, 1}, x1 and x2 are the modality

inputs, and the goal is to find the posterior probability P (Y |x1, x2).

Taking into account these definitions, each modality xi plays a different role

in the general comprehension of the meme. The visual modality x1 captures the

features related to the image, including objects, colors, and spatial arrangements,
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which often contribute significantly to the humor or message of the meme. In its

turn, the modality of text x2 involves analyzing the semantic content of the words,

their syntax, and potential cultural references embedded in the text.

The function f , which combines these modalities into a single representation

Xm, can be implemented using multimodal neural networks, such as transformers

designed to process both images and text simultaneously. This approach aligns

visual and textual information within a shared latent space, enabling a more com-

prehensive understanding of the meme’s intent.

The ultimate goal is to predict the label Y , representing whether the content

is aggressive or non-aggressive. By estimating the posterior probability P (Y |x1, x2),

the model determines the likelihood that the meme is classified as aggressive based

on combined visual and textual inputs. This approach is essential for accurately

capturing the complex and multimodal nature of memes, which often rely on the

interplay between image and text to convey subtle or implicit meanings.

2.3 Transformer Architecture
Transformers [7] are a deep learning model designed to process sequential data. It

relies heavily on the Self-Attention mechanism, which allows the model to focus on

different parts of the input sequence when making predictions. Unlike traditional

models, Transformers process input sequences in parallel rather than sequentially,

making them more efficient. The architecture consists of two main components:

Encoder and Decoder. The encoder processes the input sequence, generating a set

of feature representations, while the decoder generates the output sequence based

on the encoder representations. Each component is composed of multiple layers,

each containing sub-layers for self-attention and feed-forward networks, along with

layer normalization and residual connections to enhance learning stability. Trans-

formers have become a foundational model for tasks such as language translation,

text classification, and multimodal learning.

In this work, we focus only on the encoder block of transformers, as these com-

ponents serve primarily as feature extractors. Consequently, they capture the es-
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sential characteristics of the input data, enabling a more efficient representation of

the multimodal information. Figure 7 shows the components of the encoder block

of a canonical transformer.

Figure 7 – Visual representation of the encoder block of the Transformers Architec-
ture. Source: Author.

Given that xi represents the embedding of the modality used as input to the

initial encoder block, and d denotes the embedding dimension, the attention mech-

anism is defined using three equations, where Wh,q,Wh,k,Wh,v ∈ Rd×d:

Q(h)(xi) = xiW
T
h,q (2.2)

K(h)(xi) = xiW
T
h,k (2.3)

V (h)(xi) = xiW
T
h,v (2.4)

In these equations, h refers to the specific head of attention, which varies from

1 to H, the total number of heads. The matrices Wh,q, Wh,k, and Wh,v represent the

weights for queries, keys, and values, respectively. The query matrix Q, defined in

Equation 2.2, generates queries that identify relevant features of the input. The key

matrix K, described in Equation 2.3, captures essential information from the input

to serve as a reference. The value matrix V , shown in Equation 2.4, represents
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content in specific positions to prioritize key information during the calculation of

attention.

Equation 2.5 illustrates the calculation of attention weights α
(h)
i,j , which deter-

mines the level of attention given by element xi to another element xj, within the

context of head h. This mechanism enables each element of x to focus on other

elements in the input sequence:

α
(h)
i,j = softmaxj


〈
Q(h)(xi), K

(h)(xj)
〉

√
dk

 (2.5)

In Equation 2.6, the embeddings are combined using a weighted sum, using the

computed attention weights. This produces a context vector that captures signifi-

cant elements of the input sequence relevant to the current state of the model:

u′ =
H∑

h=1

W T
c,h

n∑
j=1

α
(h)
i,j V

(h)(xj) (2.6)

where Wc,h ∈ Rk×d. The resulting output u′
i from the attention mechanism is com-

bined with a residual connection and normalized, as represented in Equation 2.7:

ui = LayerNorm(xi + u′) (2.7)

Next, a feedforward layer is applied with a Rectified Linear Unit (ReLU) activation,

as shown in Equation 2.8:

z′i = ReLU(uiW
T
1 )W

T
2 (2.8)

where W1 ∈ Rd×n and W2 ∈ Rm×d. Finally, the output passes through another

normalization layer, combined with a residual connection, as described in Equation

2.9:

zi = LayerNorm(ui + z′i) (2.9)

Equations [2.6], [2.7], [2.8], and [2.9] mathematically define the structure of the

original encoder block.

In summary, the encoder block, as depicted in Figure 7, processes input em-

beddings through multiple layers of self-attention, normalization, and feed-forward



2.4. AUTOENCODERS 30

operations. By combining these mechanisms, the encoder effectively captures and

prioritizes relevant features of the input sequence, aligning them within a shared la-

tent space. This iterative process refines the input representation, creating a robust

feature set that can be used for further downstream tasks, as detecting aggressive

content in memes. The defined equations [2.2] to [2.9] offer a clear mathemati-

cal framework for understanding the core functions of the encoder architecture,

establishing the foundation for more complex multimodal models explored in this

work.

In Chapter 4, we propose to integrate flexible Compact Parameter Blocks into

the encoder segments of transformers. This approach presents similarities to the

functioning of autoencoders, described in the next section.

2.4 Autoencoders
They are a type of neural network designed to learn efficient representations of

data, typically for the purpose of dimensionality reduction, feature extraction, or

data compression [31]. An autoencoder consists of two main parts [32]:

• Encoder: Maps the input x to a hidden representation h.

• Decoder: Reconstructs the original input from the hidden representation, pro-

ducing x̂.

Mathematically, these functions can be represented as:

Encoder :h = fθ(x) (2.10)

Decoder :x̂ = gϕ(h) (2.11)

Where fθ and gϕ are parameterized functions (typically neural networks) with pa-

rameters θ and ϕ.

The goal is to minimize the difference between the original input x and the re-

construction x̂. A common loss function is the Mean Squared Error (MSE):
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L(x, x̂) = ∥x− x̂∥2 (2.12)

min
θ,ϕ

Ex∼pdata(x)[L(x, x̂)] (2.13)

where E denotes the expectation over the data distribution. This process allows the

network to learn the most important features of the data while ignoring noise or less

significant information [33]. Additionally, variants such as denoising autoencoders

have been proposed to make the model more robust by intentionally corrupting the

input data and training the network to recover the original data [34].

Autoencoders have proven to be highly useful in various applications, such as

image denoising, anomaly detection, and data compression, due to their ability

to capture complex structures in the data [35]. When combined with other mod-

els, they can serve as effective feature extractors, enhancing the performance of

multimodal tasks [36].

Besides classical multimodal transformers, we also investigate in this thesis

multimodal large language models. These models are described in the next section.

2.5 Multimodal Large Language Models and Generative

Models
In the introduction we discussed the rapid progress of Large Language Models

(LLMs) [37, 38, 39, 40, 41], and Large Vision Models (LVMs) [42, 43, 44, 45] in

recent years, as shown in Figure 8. LLMs have shown impressive capabilities to

understand text and perform complex reasoning, while LVMs excel in visual tasks,

but often lack advanced reasoning skills. This complementary relationship between

LLMs and LVMs has led to the Multimodal Large Language Models (MLLMs), which

combine the strengths of both and other modalities to handle multimodal data,

including text, images, audio, and video. MLLMs are based on massive LLM ar-

chitectures enhanced with multimodal instruction tuning, allowing them to inter-

pret images, generate website code from visual prompts, and understand complex
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memes.

Figure 8 – The development of multimodal AI models from 2022 to early 2024, high-
lighting key models like GPT-4V, LLaVA, and Gemini. It illustrates the
growing ability of these models to handle multiple types of data (like text,
images, and video) and advancements in areas such as vision-language
understanding and real-world applications. Source: [46].

MLLMs are advanced AI models capable of understanding and processing mul-

tiple modalities within a single framework. They are designed to integrate and

reason across different types of data simultaneously. Figure 9 illustrates the ar-

chitecture of a MLLM. The system receives inputs in different formats (e.g., images,

audio, video, text). Non-text inputs pass through a Modality Encoder to transform

them into a compatible representation (colored boxes), which is aligned with text

data. After encoding, all modality-specific representations are unified through a

Connector module, enabling the model to handle these diverse data types together.

The encoded and unified multimodal data is then fed into the LLM core. The

LLM is responsible for processing and generating responses based on the inte-

grated data, utilizing mechanisms such as Multi-Head Attention (MH-Attn) to at-

tend to different parts of the input as needed. The LLM generates a text output or

transforms the integrated data back into various formats (e.g., image, audio) via a

Generator, allowing it to answer queries or produce results in multimodal formats.

The bottom of the figure shows further details of the model’s internal processing.

An MLP (Multi-Layer Perceptron) for initial transformations and a Q-Former with
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Figure 9 – Architecture of a MLLM: This diagram shows how multimodal inputs,
including images, audio, video, and text, are processed. A Modality
Encoder converts non-text data into compatible representations, which
are unified by a Connector and processed by the MLLM using attention
mechanisms. The system can generate text responses or multimodal
outputs, integrating information across diverse data types for enhanced
understanding and response generation. Source: [46].

Learnable Queries to structure the data into query-key-value (Q, K, V) pairs, which

are then processed through attention mechanisms within the LLM. This architec-

ture enables the LLM to understand and generate responses based on multimodal

inputs, bridging various data types to enhance its reasoning and output capabili-

ties across diverse applications.

In Chapter 5, we evaluate MLLMs for detecting aggressive memes. The models

used are GPT-4V, LLaVA, and Gemini. In this context, we refer to these models

as MLLMs because, in this work, we are not using them to generate new content.

Instead, they are used to identify aggressive content in memes, which involves

analyzing the relationship between text and images.

In contrast, generative models are designed to create new data reminiscent of

the distribution of input data. Their primary focus is to generate new content,

such as text, images, audio, or other formats, by learning patterns from training
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data. While generative models can be multimodal (e.g., generating images from

text prompts or vice versa), they are not necessarily limited to multimodal tasks

and can operate within a single modality, such as generating only text.

MLLMs are commonly used for tasks that require simultaneous interpretation

of language and visual data. For example, an MLLM can generate captions for

images, answer questions based on image-text pairs, or identify specific objects in

visual content based on textual prompts. In contrast, generative models are applied

to generate new instances of data within one or more modalities. For example, a

model like GPT-4V can generate text descriptions based on images, while DALL-E

[47] can create images from text prompts, making it suitable for content creation

and artistic generation.

It is well known in the literature that the main way to use MLLMs in new tasks is

by performing Prompt Engineering, since traditional transfer learning techniques

are often not possible. This involves creating specific instructions or questions for

the models, helping them to give better answers or perform tasks more accurately,

providing relevant and clearer answers. This aspect is discussed next.

2.6 Prompt
A prompt is the input provided to a language model or artificial intelligence system

to elicit a specific response or output. It serves as a guide for the AI to understand

the context, task, or question being posed. Prompts can be as simple as a question

or as complex as structured instructions, depending on the desired outcome. For

example, in natural language processing, a prompt might be a sentence fragment,

a question, or a detailed scenario intended to generate a meaningful continuation

or answer [48].

2.7 Prompt Engineering
Prompt engineering refers to the process of designing, refining, and optimizing

prompts to improve the performance and accuracy of AI models, particularly large
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language models. The goal is to craft prompts that maximize the model’s ability to

understand and respond correctly to a given task or query. This often involves iter-

atively experimenting with phrasing, structure, and context to achieve the desired

output [49].

Prompt engineering has become a critical technique for leveraging the capa-

bilities of large AI models in tasks such as text generation, question answering,

and summarization. Prompt engineering for multimodal models involves designing

and structuring inputs in a way that optimally aligns different data modalities to

produce the desired output. Unlike traditional models that handle a single type of

input, multimodal models require prompts that effectively integrate and guide mul-

tiple types of information simultaneously [50]. The challenge is to create prompts

that not only capture the core content of each modality, but also employ their

interplay to improve model understanding [51].

Figure 10 provides a comprehensive overview of various prompt engineering

techniques designed to improve the performance of the language model in multiple

dimensions. These techniques are organized into categories that address distinct

aspects of model behavior and response generation, including handling new tasks,

enhancing reasoning and logic, reducing hallucination, facilitating user interaction,

optimizing performance, and more [52]. A brief description of each technique is

presented below.

• New Tasks Without Extensive Training

– Zero-shot Prompting: Enables the model to perform new tasks without

needing specific training data for those tasks. Using its general knowl-

edge, the model can generate responses based solely on instructions, even

if it has not been explicitly trained on that specific task.

– Few-shot Prompting: Improves the model’s performance on new tasks

by providing a few examples as context. This approach helps the model

understand the task requirements with minimal examples, reducing the

need for extensive training, and enabling adaptation to new tasks more

effectively.
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Figure 10 – Overview of prompt engineering techniques, organized by categories.
Source: [52].

• Reasoning and Logic

– Chain-of-Thought (CoT) Prompting: Guides the model to reason through

a problem step by step, breaking down complex tasks into manageable

steps. This technique improves logical reasoning by encouraging a sys-

tematic approach to problem solving.

– Automatic Chain-of-Thought (Auto-CoT) Prompting: Automatically gen-

erates intermediate reasoning steps for the model to follow, further en-

hancing its ability to solve complex problems by structuring its approach.
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– Self-Consistency: Encourages the model to generate multiple responses

and evaluates them to choose the most consistent answer. This approach

helps improve reliability by selecting the response that aligns best be-

tween different attempts.

– Logical Chain-of-Thought (LogiCoT) Prompting: It improves logical rea-

soning within chain-of-thought processes, helping the model maintain

consistency and coherence in logical tasks.

– Chain-of-Symbol (CoS) Prompting: Uses symbolic reasoning techniques

to handle tasks involving abstract or mathematical queries. By focusing

on symbolic steps, the model can tackle problems that require manipula-

tion of symbols or numbers.

– Tree-of-Thoughts (ToT) Prompting: Applies a tree-structured reason-

ing approach, allowing the model to explore multiple solution paths and

choose the optimal solution. This approach mimics decision trees, allow-

ing the consideration of alternative solutions.

– Graph-of-Thoughts (GoT) Prompting: Expands on the tree-of-thought

approach by using graph structures, which represent relationships be-

tween different reasoning paths. This structure allows for more complex,

interconnected reasoning.

– System 2 Attention (S2A) Prompting: Mimics human cognitive pro-

cesses by emphasizing deeper, more deliberate reasoning. This technique

encourages the model to reason with higher attention and thoroughness.

– Thread of Thought (ThoT) Prompting: Links various reasoning steps to

create a cohesive, continuous thread of logic. This technique improves

the ability of the model to maintain coherence in extended responses.

– Chain-of-Table Prompting: Organizes reasoning using a tabular struc-

ture to make complex information more manageable. This structured for-

mat helps the model break down information systematically for improved

reasoning.

• Reduce Hallucination
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– Retrieval Augmented Generation (RAG): Integrates external data sources

into the model’s responses, providing them with factual information and

reducing the likelihood of hallucination.

– ReAct Prompting: Combines reasoning with action, allowing the model

to ‘act’ on information, such as verifying facts or retrieving data, before

generating a response. This helps improve the accuracy of the responses.

– Chain-of-Verification (CoVe) Prompting: Introduces a verification step

in the response generation process, enabling the model to fact-check and

confirm details before finalizing the output.

– Chain-of-Note (CoN) Prompting: Encourages the model to take ‘notes’

throughout the response process, which can be cross-referenced for con-

sistency and precision, reducing the likelihood of errors.

– Chain-of-Knowledge (CoK) Prompting: Focuses on a knowledge-based

reasoning process, prompting the model to verify facts by referencing in-

ternal knowledge, thus enhancing the factual accuracy of responses.

• User Interaction

– Active Prompting: Adapts prompts dynamically based on user input or

model responses, creating a more interactive experience. This technique

allows the model to adjust its responses in real time, making interactions

more responsive and contextually relevant.

• Fine-Tuning and Optimization

– Automatic Prompt Engineer (APE): It uses automated methods to opti-

mize prompts for specific tasks, improving model performance by refining

prompt structure and content to produce better responses for particular

use cases.

• Knowledge-Based Reasoning and Generation

– Automatic Reasoning and Tool-use (ART): Allows the model to incor-

porate specialized reasoning techniques and use external tools for task-
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specific accuracy, enhancing the quality of responses in specialized areas

like scientific or technical domains.

• Improving Consistency and Coherence

– Contrastive Chain-of-Thought (CCoT) Prompting: Prompts the model

to evaluate multiple response options and select the most coherent and

consistent answer. This technique improves reliability by reducing the

variability in responses.

• Managing Emotions and Tone

– Emotion Prompting: Provides control over the emotional tone of re-

sponses, enabling the model to match the desired tone, whether formal,

empathetic, or neutral, according to user expectations or context.

• Code Generation and Execution

– Scratchpad Prompting: Encourages the model to maintain a ‘scratch-

pad’ of intermediate steps or notes, which is particularly helpful in gen-

erating and debugging code, as it allows the model to build solutions

iteratively.

– Program of Thoughts (PoT) Prompting: Guides the model through a

structured, step-by-step approach to coding tasks, ensuring logical pro-

gression and improving accuracy in complex programming scenarios.

– Structured Chain-of-Thought (SCoT) Prompting: Uses a highly struc-

tured approach for code generation, breaking down tasks into logical com-

ponents to ensure code accuracy and functionality.

– Chain-of-Code (CoC) Prompting: Break down coding tasks into sequen-

tial steps, allowing the model to generate code in logical segments, thus

improving both accuracy and readability.

• Optimization and Efficiency
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– Optimization by Prompting (OPRO): It helps to simplify model responses

and operations, enhancing computational efficiency by reducing unnec-

essary processing and focusing on essential information.

• Understanding User Intent

– Rephrase and Respond (RaR) Prompting: Helps the model clarify and

rephrase user input, improving comprehension of user intent and gener-

ating more accurate responses by aligning closely with user needs.

• Metacognition and Self-Reflection

– Take a Step Back Prompting: Encourages the model to pause and re-

view its response, promoting self-reflection, and enhancing reliability by

allowing the model to reassess and correct potential errors in its output.

In conclusion, the prompt engineering techniques outlined in this section rep-

resent a diverse toolkit for enhancing language model performance. By catego-

rizing methods into areas such as task generalization, reasoning enhancement,

hallucination reduction, user interaction, and optimization, we gain a structured

understanding of how these techniques address specific challenges in NLP. Each

technique is designed to target particular aspects of model behavior, from improv-

ing the factual accuracy to refining logical consistency, emotional tone, and user

intent comprehension.

2.8 Final Remarks
In this chapter, we detail the theoretical foundation that will be used at various

points in the next chapters of this thesis. We begin with a brief overview of memes

and the various aspects related to their use in propagating aggressive content. We

define the primary problem addressed in this thesis: the automatic detection of ag-

gressive content in memes. Following this, we discuss transformer architectures,

which currently represent the state of the art in this field. We introduce the con-

cepts of Autoencoders and Multimodal Large Language Models, which, together
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with prompt engineering, form the set of tools utilized throughout this work. In the

next chapter, we will explore our first main contribution in detail: a review of the

literature aimed at identifying studies addressing this topic.
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3 Detecting Hate Speech in Memes: a Re-

view

In this chapter, we present the first main contribution of this thesis, which is

a survey discussing several recent researches aimed at detecting hate speech in

memes. We list the most recent research, synthesize and discuss the approaches

proposed in the current literature by providing a critical analysis of these methods,

highlighting their strengths and points to improve. We also introduce a taxonomy

to allow grouping similar approaches. This survey is published in [19].

3.1 Introduction
Memes represent a possible source for spreading hate speech through social net-

works. They have gradually adapted to the internet format and focus on quickly

conveying a message to as many people as possible. Their message can be positive

or funny, but can also carry hate speech toward specific groups within our society.

The hateful aspect can be directly embodied in memes message, but it can also be

indirect by endorsing hateful speech when propagating their message on the in-

ternet. However, developing machine learning-based models to point out whether

or not a meme contains hate speech is highly challenging, especially due to two

reasons. First, hate speech is not clearly defined. For instance, some definitions

can be found in [53, 54, 55, 56, 57, 58]. A hateful meme may contain personal at-

tack, racial abuse, attack on minority, among others. Therefore, this non-standard

definition may limit the entire machine learning process on detecting new memes

with hate speech, even the annotation of datasets is challenging.

The second reason is that memes are mostly multimodal. For instance, the

memes investigated in all works surveyed in this chapter are formed by images and

text [6]. In this case, the analysis of the content of a meme must take into account

both modalities to allow capturing the original meaning of the meme’s content. If

analyzed separately, image and text may have no relation to the original meaning.
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These aspects should be considered while designing a method for detecting hateful

memes, since the task involved is: given an image and the text superimposed on

that image, detect whether this set (image and text) take on hateful meaning or not.

The research results summarized in Figure 11 show that there are several works

providing survey on methods that can detect hate speech. Among these, only the

work in [59] addresses this issue considering memes as propagators of hateful

content. However, such paper does not describe any work that effectively tackles

hateful memes detection, since their focus is driven toward the Visual-Linguistic

domain. In this context, the authors assigned the task of detecting hate speech in

memes as an application problem in the Visual-Linguistic domain. Consequently,

they do not survey innovative methods for hateful memes detection specifically.

Figure 11 – Timeline of surveys publications in hate speech identification. Timeline
showing a significant increase in a few years. Source: Author.

Considering this scenario, the objective of this chapter is to try to fill this gap

in the literature by identifying the most recent works that address hateful memes

detection. The main contributions of the this review can be outlined as follows.

• A structured and comprehensive review of the state-of-the-art research in

hateful memes detection using machine learning is presented. We summa-

rize and discuss the approaches proposed in the reviewed works.

• A taxonomy for hateful memes detection using machine learning methods has

been put forth, allowing us to analyze similar approaches and their achieved

results.
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• A thorough critical analysis of the methods currently available, showing their

strengths and points to be improved, is provided.

• An analysis of the evolution of the research domain to explore the open and

trending research challenges of the hateful memes detection is presented.

3.2 Proposed Taxonomy
In the previous section, we mentioned that the analysis of the content of a meme

must considerate the fact that memes are multimodal data. Therefore, in this

section we analyze only works proposing multimodal approaches. We propose to

categorize these works according to three levels of features, as depicted in the

graphical taxonomy shown in Figure 12.

The first level involves the use of attention mechanisms, providing two main cat-

egories: 1) non-attention mechanism-based methods; and 2) attention mechanism-

based methods. Here, the attention mechanism aspect used to define this level in

our taxonomy considers the perspective of generating multimodal representations

for the memes, i.e. attention-based methods that learn joint representations of

multimodal content. Therefore, works employing models composed by attention

mechanism as feature extractors do not fit into this group. This category is more

related to how attention mechanism is used rather than to its presence in the so-

lution.

In the second level of our categorization, we consider that, broadly, most of

the current research work on hateful memes detection can be grouped taking into

account how text and image from memes are tackled. In this case, two concepts

are introduced here:

• Restricted: These are works that use the information present in the image

and text from the meme directly, using feature extractors for the text and the

image.

• Extended: These are works that use additional data to enforce multimodality.

The additional data are present in the image and meme text but are indirectly
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extracted. Tags of objects, age, gender, emotion, and sentiment analysis are

examples of additional data.

Considering the second level, methods from the attention mechanism-based

group are divided into restricted and extended. In terms of non-attention mechanism-

based methods, all the papers from this group cited in this review fall only under

the restricted category. We may point out at least two main reasons for this do-

main of restricted methods. The first reason is related to the models’ architectures,

since using extended data without attention mechanism requires more complex

architectures because the additional information must be extracted from the text

and image of the meme and then properly combined to generate the expected re-

sult. The second reason refers to the reduced scope of the datasets investigated.

Works included in the non-attention mechanism-based group are mostly focused

on specific categories of memes, such as memes with sexist messages and memes

related to the American elections. In this case, using the complementary informa-

tion provided by external data is expected to be less required. A different scenario is

observed in the attention mechanism-based group, where there is inherent benefit

to performance by using external information in conjunction with the information

present in the image and text from the meme directly due to the very broad range

of categories of memes investigated by works from this category.

Finally, the third level in the proposed taxonomy takes into account the feature

extraction process performed, which is achieved by auto-feature extraction and

hand-crafted techniques.

• Auto-feature Extraction: Refers to techniques that automatically extract fea-

tures, such as representation learning or deep learning-based methods. These

approaches allow models to learn and identify the most relevant features from

the data without direct human intervention.

• Hand-crafted technique: Refers to feature extraction methods manually de-

signed by experts. In these techniques, features are carefully selected and

defined based on prior knowledge of the data and the problem domain, re-

quiring a deep understanding of what may be relevant for the given task.
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Figure 12 – Proposed taxonomy considering three levels of features. Source: Au-
thor.

In terms of the attention mechanism group, all works are clearly grouped into

the auto-feature extraction category because their methods use the Transformer

architecture.

It is important to mention that, given that all studied methods are multimodal

learning models, an obvious category would be defined by the data fusion approach

employed. However, despite having different fusion strategies available in the rele-

vant current literature on data fusion, these strategies do not present specific fea-

tures known to be strongly associated with specific groups of approaches dealing

with hateful meme detection. Consequently, fusion strategies do not differentiate

these approaches because they are widely employed in all groups of methods. On

the other hand, the description of the methods reviewed in this work includes the

fusion approach, since the representativeness of the space resulting from fusion is

fundamental to successfully perform meme classification. Due to this reason, here

we define and describe the three main different fusion strategies, according to [60].

• Early Fusion: It extracts feature vectors (f) from individual modalities i, com-

bining them in a fusion module (FF ) by concatenating or pooling, for instance.

Then, it employs an interpretation unit (IU) to make a final decision (D). This
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strategy is also called feature level fusion. Figure 13 illustrates a generic early

fusion model.

Figure 13 – A generic early fusion model. Each feature vector (fi) is concatenated
in a fusion module (FF ) and the result of the fusion is processed in the
interpretation unit (IU), responsible for generating a final decision (D).
Source: Author.

• Late Fusion: In this approach, also known as decision-level fusion, features

are also extracted from each modality i. Here, however, each feature vector

is used to feed one (IU) per modality. Thus, each (IUi) assigns indiviual de-

cisions (Di) to each input instance. After that, the individual predictions are

grouped in the Decision Fusion (DF ) phase using an aggregation function,

e.g. averaging, majority voting, weighted voting, etc. Finally, another (IU)

processes the result to provide the final decision (D). Figure 14 summarizes a

generic late fusion model.

Figure 14 – A generic late fusion model. Each feature vector (fi) is processed in the
interpretation unit (IUi), generating a partial decision (Di). The deci-
sions feed the decision fusion module (DF ), whose result is processed
by another interpretation unit (IU), which generates the final decision
(D). Source: Author.
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• Hybrid Fusion: It includes early and late fusion at the same time. Figure 15

illustrates a generic hybrid fusion model.

Figure 15 – A generic hybrid fusion model. The early fusion merges with a later
fusion in a last merge module (LF ), whose result is processed by an
interpretation unit (IU), which generates the final decision (D). Source:
Author.

In the next section, each of the nodes of the proposed taxonomy will be explored

and all reviewed works will be detailed and discussed.

3.3 Existing Approaches to Detect Hateful Memes
This section provides an overview of the state-of-the-art of detecting hate speech

in memes. For this, the taxonomy proposed in Section 3.2 is used. In Subsection

3.3.1, we present and discuss approaches that rely on non-attention mechanism,

whereas in Subsection 3.3.2, approaches that use attention mechanisms are ad-

dressed. Subdivisions of these subsections are also performed according to the

taxonomy.

3.3.1 Non-attention Mechanism-based Approaches

This section describes works that do not use attention mechanism to learn joint

representations of the multimodal data. Here, it is important to consider that

some works in this category employ methods which present attention components,

such as Transformers. However, these methods are used as feature extractors,

usually to obtain textual features. In this case, textual and visual features are first

obtained and then combined using a traditional fusion approach, especially early

fusion. In the second level of the proposed taxonomy, these works are all grouped
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into the restricted category. This means that only features directly extracted from

the meme’s image and text are used to represent the memes to the classifier. These

works are further subdivided, depending on the feature extraction method used, as

described in the next subsections.

3.3.1.1 Hand-crafted Feature Extraction-based Methods

There are methods in the literature focused on discovering, understanding, char-

acterizing, and improving features that can be handcrafted from the text and the

image of memes. The handcrafted features are mainly combined with traditional

supervised learning algorithms, such as support vector machines (SVM), decision

trees (DT) and k-nearest neighbors (kNN), to detect hateful memes.

In [61], the authors employ text and image handcrafted features specifically de-

veloped for detecting sexist memes using mono and multimodal approaches. They

used a dataset composed of 800 memes with sexist/non sexist content depending

on visual and/or textual aspects. The memes from this dataset were collected from

social media platforms, such as Facebook, Twitter, Instagram and Reddit. The tex-

tual features are obtained by Bag-of-word [62], providing a 2048-dimensional fea-

ture vector. In terms of visual features, 23 simple techniques are used [63]: Coarse-

ness, Contrast, Differentiability, Line likeness, Roughness, Edge density, Entropy

and Measure of Enhancement, Local Binary Pattern, Histogram of Oriented Gradi-

ents (HoG) ), Chroma variance, Number of regions, Color, Color histogram in HSV

(hue, saturation, value) color space, Mean and Standard deviation of colors in RGB

color space, Auto-correlogram, Resource congestion and Sub band entropy, Im-

age complexity, Measure of the degree of focus, Vector of aesthetic characteristic,

Percentage of skin measure and Number of faces. These extractors generated a

4418-dimensional feature vector.

Four traditional supervised learning algorithms are investigated: SVM, DT, 1NN

and Naive Bayes (NB). In addition, the authors compare both early [64] and late

data fusion approaches. In the first, the textual and visual feature vectors are

concatenated. In this approach, DT reached the best result, precisely accuracy:

0.696, Recall: 0.696 and F1 score: 0.696. In the second approach, SVM obtained
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the best result, which outperformed the early fusion results. The attained rates are

accuracy: 0.759, recall: 0.760 and F1 score: 0.759.

However, when comparing the multimodal results to the unimodal ones, SVM

using only the textual features reached rates similar to the best performing mul-

timodal model. The authors concluded that the high number of visual features

contributed negatively to the result of the multimodal approach. Another aspect is

the fact that the visual feature vector was more than twice higher dimensional than

the textual feature vector, making it difficult to carry out the fusion strategy in a

way that the textual features could compensate errors caused by the visual fea-

tures. Finally, the dataset used to conduct the experiments was composed by 800

memes collected from social media and labeled by volunteers. Since no guidance

was provided to the volunteers to avoid influencing their judgment, labels may be

biased, thereby affecting the result reached.

It is important to note that the choice of the feature extraction method is fun-

damental for the success of the learning models and directly affects the results.

The next category of methods try to avoid this drawback using models that learn

features directly from the raw inputs, as described in the next section.

3.3.1.2 Auto-feature Extraction-based Methods

The process performed in this group of methods is very similar to the process

observed in the previous category. The difference is the feature extraction step,

which is conducted by deep learning models whose deep layers act as a set of

feature extractors. Hence, the set of features is learned directly from observations

of the input data.

The work presented in [27] shows different combinations of deep learning mod-

els employed to extract features from text and image aiming at detecting offensive

memes. For the textual features, GloVe is first used to obtain vector represen-

tations for the words. GloVe is an unsupervised learning algorithm trained to

aggregate global word-word co-occurrence statistics providing word embeddings.

Then, three different approaches are individually employed to extract textual fea-

tures: Long Short Term Memory (LSTM) [65]; Bidirectional LSTM (BiLSTM) [66];
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and Convolutional Neural Network (CNN). In the first, two stacked LSTMs are used

for feature extraction. In the second, only one BiLSTM is applied. Finally, in the

third approach, three convolutional blocks (convolutional layer + maxpooling layer)

compose the CNN responsible for feature extraction. In terms of visual features,

only the CNN VGG-16 [67] is the feature extractor.

The different feature extractors are used to compose three multimodal approaches:

Stacked LSTM + VGG16; BiLSTM + VGG16; and CNNText + VGG16. In the two

first models, visual and textual feature vectors are concatenated before being sent

to the classification layer (a Neural Network), following the early fusion approach.

The CNNText + VGG16 model additionally feeds the final concatenated feature vec-

tor to a stacked LSTM model, whose output is combined with the visual features

to represent the meme to the classification layer. Besides the three multimodal ap-

proaches, they conducted experiments with seven unimodal approaches: Logistic

Regression [68], NB [69], Stacked LSTM [65], BiLSTM [66], and CNNText employing

text features; and VGG16 to perform offensive meme classification solely based on

visual features.

The authors have created a dataset composed with only 743 memes related to

the 2016 United States presidential election to conduct their experiments. The

results indicate that both groups of methods reached very low accuracy, being the

logistic regression model using only text features the highest performing approach

(accuracy = 0.58). According to the authors, the results might be influenced by the

dataset itself due to biases caused by annotators, small number of samples and

unrepresentative data. Although deep learning feature extractors are generally

expected to provide representative features, and working in a multimodal fashion

is the ideal solution when dealing with offensive meme detection, this was not the

case in this paper. Indeed, the authors indicate that human moderation is still

necessary.

In [70], textual and visual features are also obtained separately. First, the text

is isolated from the image using the Tesseract Optical Character Recognition (OCR)

method. Second, visual and textual features are extracted. The Bidirectional En-

coder Representations from Transformers (BERT) [71] is the model used to ex-

tract the features from the text, providing a 768-dimensional feature vector. In
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turn, the authors employ VGG-16 to extract the visual features, returning a 4096-

dimensional feature vector. Then, the two feature vectors are concatenated in an

early fusion fashion. The combined 4864-dimensional feature vector is finally used

as input to a fully connected Neural Network, which is responsible for providing a

score indicating the level of hate speech in the meme.

The authors in [70] have compared their multimodal approach with its uni-

modal counterparts on a dataset composed by hateful memes collected using a

search engine. The dataset contains 5020 memes, being 1695 hate memes of three

categories: 643 with racist content; 551 related to Jews; and 501 to Muslims. The

remaining 3325 instances are memes without hate speech, which were obtained

from the Reddit Memes [72]. The comparison results show equivalent accuracy

rates attained by the multimodal (0.833) and the unimodal (0.830) approaches. In

the latter, the reported accuracy is obtained using the visual features since this

unimodal model outperformed the one trained using only textual features. The

authors conclude that the multimodal approach can filter some memes distributed

on social networks, but the moderation of a human being is still necessary in many

cases. They have also observed that their model can be used to indicate which

image and text combinations provide the highest level of hate speech, allowing the

detection of new hate speech memes.

The comparable results in terms of accuracy reached by the multi and unimodal

approaches can be explained by two reasons. First, the annotation process of the

hateful memes class may compromise the dataset due to biases inherent in the

search engine used to collect the data. Another challenge is the difference between

the dimensionality of visual and textual feature vectors. The visual feature vector

is much higher dimensional than the textual feature vector. This may also explain

the superior performance shown by the unimodal approach trained with only visual

features.

The work presented in [73] reached conclusions different from those achieved

in the previous works. They propose a method to detect hate speech in memes

that extracts textual features using one model, precisely VGCN-BERT [74]; and

three CNNs to extract visual features: ResNet50, ResNet152, and VGG-16. Again,

early fusion is also performed by concatenating in pairs the text embedding with
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each image embedding to create different multimodal models. When comparing

the multimodal models to the unimodal approaches in a dataset created with 1600

memes related to Italian political affairs, the results showed that the best option

was the combination VGCN-BERT + ResNet50, achieving 81.69 of AUCROC.

Despite the multimodal outperformed the unimodal approach, the authors re-

port as problems the presence of concise text in some memes and some subjec-

tivity due to the dataset’s annotators. They also suggest using other architectures

to extract visual features, such as VGG-19 [67], EfficientNet [75], and multilingual

neural networks, like mBERT [76] and XLM-RoBERTa [77]. Moreover, the dataset

investigated contains memes specific to Italy and focused on political content.

One major challenge to works reviewed thus far is that the proposed meth-

ods perform rather poorly compared to human performance. Additionally, these

works do not explore all the potential of multimodality in memes, since multimodal

approaches were less performing than unimodal models, indicating that a more

refined understanding of multimodality is necessary. Works in the next category of

methods focus on studying whether attention mechanism-based models have the

potential to improve both feature extraction and multimodal fusion.

3.3.2 Attention Mechanism-based Approaches

This section describes works whose approaches use attention mechanism to learn

joint representations of multimodal content. Following the proposed taxonomy,

these works are subdivided into two groups. The first groups methods that follow

the restricted approach, i.e. they employ information present directly in the im-

age and text of the memes obtained using feature extractors. The second group

involves extended approach-based methods, which use additional information ex-

tracted indirectly from the image and/or the text of the meme. In terms of the third

level of the taxonomy, all works discussed in this section fall into the auto-feature

extraction category.

It is worthy nothing that the attention-based methods reviewed in this chapter

are all designed according to the Transformer architecture, which is composed by
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Encoder and Decoder layers. The Encoders process the input data and allocate

more weight to the parts that are more relevant. Such an information is passed

to the next Encoder layers, creating a more accurate representation of the input

data. The data obtained as output of the last Encoder are fed into the first Decoder

layer, which does the reverse process to generate the output data. The relative

importance of the Encoder block output, which are the input data to the Decoder,

is also taken into account.

3.3.2.1 Restricted Methods

It is important to observe that all works previously mentioned in this chapter deal

with challenges caused by the datasets, which might be insufficient to widely rep-

resent the problem and might not allow the multimodal information between the

two modals to be fully explored and used. In order to contribute to this matter, the

Hateful Memes Challenge published a dataset composed by a training set of 8500

images, a validation set of 500 images and a test set of 1000 images. The dataset

has 12 categories of hate speech: comparison to animal, comparison to object, com-

parison with criminals, exclusion, expressing disgust/contempt, mental/physical

inferiority, mocking disability, mocking hate crime, negative stereotypes, use of

slur, violent speech and other.

To encourage the proposal of methods capable of truly understanding multi-

modality, the Hateful Memes Dataset (HMDC) [24] provides text and vision con-

founders. These confounders lead to changing a hateful meme to a not-hateful

one, or vice-versa, by swapping either image or text only. In Figure 16 we highlight

this characteristic. The meme in the first column is labeled as hateful, while in the

second and in the third column we see its confounders whose image or text allows

flipping its label to a not-hateful meme. Therefore, a model must be able to tackle

multimodal reasoning so as to classify the original meme and its confounders cor-

rectly. Due to its challenging nature, this is the dataset employed in the next works

discussed in this chapter.

In [78], the authors first added 328 more memes to the HMDC dataset. The ad-

ditional instances were obtained from the Memotion dataset [79]. Their approach
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Figure 16 – Example of confounders memes. Image on the left side shows a hateful
meme, while images on the right side and middle show its confounders
resulting in flipping its label to a not-hateful meme. Source: [24].

involves feeding VisualBERT directly with text tokens. For the visual features, a

ResNeXT-152-based Mask-RCNN model is employed, providing 100 regions from

the main meme image, and a 2048-dimensional feature vector from each region.

In the sequence, the visual embeddings are projected into the textual embedding,

which is then fed to the transformer layers. The VisualBERT model employed was

pretrained on the Conceptual Captions (CC) [80] dataset. An ensemble composed

with 27 base models was obtained by making changes to the values of the Vi-

sualBERT model hyperparameters. Then, the late fusion approach via majority

voting as fusion function was applied to predict a class to the memes. The authors

attained 0.76 as accuracy rate and 81.08 for the AUCROC metric, outperforming

several baselines. On the other hand, this approach is affected by problems caused

by object detectors, which may failure on finding objects in the image.

The work discussed in this section shows results reinforcing that working on

solutions that detect hate speech in memes using attention mechanisms seems

like a promising idea. The ensemble approach employed in [78] was also shown to

reach higher performance than single classifier-based multimodal methods. Works

discussed in the next section employ features indirectly extracted from the memes.

We focus on analyzing whether or not this approach helps to improve results.

3.3.2.2 Extended Methods

The group of works reviewed in this section relies on the hypothesis that it is nec-

essary to take into account more than the image and text description of memes to
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successfully detect hateful memes. In order to accomplish this requirement, these

works extend Transformer models input using new information obtained by exter-

nal models. These information include: caption of objects detected in the image,

sentiments extracted from the text and/or from the image, race and gender ob-

tained from the images, among others. It is worthy noting that all results reported

in this section were obtained in the HMDC dataset.

The most common external information used is object/image captioning, as

is done in [81]. The architecture proposed in this work employs three pieces of

information from each meme: 1) the text–extracted using an OCR; 2) a list of objects

and their labels–extracted from the image using the Faster R-CNN model [82]; and

3) a caption automatically generated to the image. This last information is obtained

using a CNN and a Decoder Sequencer trained using the MSCOCO dataset [83],

which contains 123,000 images and five reference captions per image. These three

sources of information are the input to a triple relationship network, which is a

Transformer network created to model cross-modality relationships between image

features and the two textual features. The authors employ both single-stream

(SS) and dual-stream (DS) visual-linguistic Transformers as base models. In the

former, the two modalities share the same input bus, leading the Transformer

layers to operate on a concatenation of inputs. In the latter, image and text are not

concatenated at the input level so as each modality has its own input bus.

The VisualBERT [84] is the SS model employed, while ViLBERT [85] is the DS

one. When comparing the results reached by both models to other monomodal and

multimodal approaches, the authors point out VisualBert using the three sources

of information as the most performing model: 73.98 AUCROC in the test set. It is

important to mention that VisualBert employing image, text and caption outper-

formed its version that takes into account only text and image. These results con-

firm the hypothesis that augmenting the model with external information related to

the meme improves reasoning and understanding needed to solve the challenging

hateful meme detection problem.

The work described in [8] focuses on adding tags of objects detected in the image

to the input of Transformers, besides the textual and visual features. Moreover, dif-

ferent from the previous work, they create ensemble of classifiers instead of working
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with only individual models. They adopted three multimodal models based on the

Transformer architecture: LXMERT [86] (DS), UNITER [87] (SS) and OSCAR [88]

(SS). The first is a model that processes images and text independently using uni-

modal encoders. The combination of the unimodal representations occurs through

a cross-attention module. The second uses a self-attention mechanism to combine

text and image input, creating a common space. Finally, the third works with a

triple entry, formed by a sequence of words, tag of objects detected in the image,

and features of the object regions. In their initial experiments UNITER attained

better results. As a consequence, they created ensembles of models using only

variants of UNITER. One of the variants adds to the input of the model classes pre-

dicted by the YOLO9000 image object detector [89]. The most performing ensemble

combination was obtained by grouping a set of three different ensemble models.

This approach attained 80.53 AUCROC in the test set, improving the results pre-

sented in [81]. According to the authors, the use of an ensemble of models is the

key issue for this approach achieving high AUCROC rates.

An ensemble of UNITER variants is also the best performing solution proposed

in [12]. They add caption information inferred from the meme image by a model

trained on a different corpus. The original meme text is first extracted using OCR.

Then, the Show and Tell model [90] is used to generate a new image caption, which

replaces the original text. This way each image will be duplicated, one associated

with the original meme text and the other associated with the text generated by the

Show and Tell model. The ensemble of UNITER models is combined in a late fusion

approach performed by averaging the models probability when assigning labels to

the instances. This work focuses on increasing model diversity and data augmen-

tation as approaches to try to improve the results on detecting hateful memes. The

strategy used to generate new text for the meme image provided a significant effect,

doubling the size and diversity of the data set. However, the AUCROC achieved

was 79.43, inferior to the results shown in the previously described work. It is

important to assess how closely the new text aligns with the original meaning of

the meme as a way to increase the results.

In [11], ensemble of models is also employed. The meme text is extracted using

OCR, while Detectron2 [91] is used to detect and extract objects from the meme
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image. Different models are used for the extraction of visual features. Then, visual

features, the object tags predicted from the regions of interest of the image (ROIs),

and the meme text are fed into five different models focused on creating an en-

semble of classifiers. The models employed are: a) ERNIE-ViL (DS) (both small and

large) [92], based on ERNIE and VilBERT; b) VisualBERT; c) UNITER [87]; and d)

OSCAR [88]. Each model generates a multimodal representation combining image

and text. In addition, 3-5 variants of each model were generated by diversifying

the features used to train the models. Finally, an ensemble of 19 members was

obtained, whose outputs are combined using a late fusion function, such as sim-

ple averaging, rank averaging, etc. The best result reported by the authors in the

HMDC dataset is 81.56 (AUCROC) for the test set. This result is superior to the

rates reached by the three previous methods.

Besides image/object captioning, the complementary information can be gen-

erated based on the meme text. For instance, the work [93] initially follows the

common procedure observed in previous works. Precisely, image modality is rep-

resented by three sources: the whole image–ResNet-152 is used to extract these

features; images of all objects contained in the main image–detected by Faster-

RCNN; and the ROIs position embedding present in the main image. For the tex-

tual features, these are extracted by BERT. The complementary textual features

are provided by the Spacy [94] tool as follows. Noun phrases are obtained from the

text. Then, keywords are picked up by filtering out irrelevant word. The resulting

text representation combines BERT and Spacy representations. The authors pro-

pose a Complementary Visual and Linguistic (CVL) network composed by ViLBERT

and VisualBERT, both receiving image and text as input. CVL implements the early

fusion approach by concatenating the two models output, which is then fed into

a fully connected network responsible for predicting whether the meme is hateful

or not. The AUCROC achieved by this approach was 78.48, lower than the rates

reached by previous works that added external visual features.

In order to further exploit the multimodal understanding, the authors in [10]

propose to extend the information provided to the models by adding text and im-

age sentiment analysis. Their hypothesis is that sentiment analysis is a related

task that may enhance the ability of the models to identify hateful memes. To
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accomplish this objective, VisualBert is used to extract a multimodal representa-

tion of the meme text and image. Two additional models are generated: RoBERTa

[95], which extracts sentiments from the text; and VGG [67] to extract sentiments

from the image, both pre-trained with sentiment analysis datasets. The three ob-

tained representations are concatenated following the early fusion approach, and

the result of this concatenation is fed into a fully connected network to classify

the meme. This method is compared to other approach proposed by the authors

that combines the multimodal representation generated by VisualBERT [84] to a

description text of all objects present in the image provided by a caption generator.

The captions serve as input to BERT. The fusion and prediction processes follow

the same strategy used with the sentiment analysis information. However, the best

results were reached by the method that did not take into account sentiment anal-

ysis: 74.00 AUCROC, below previous work’s. One possible reason for this result

may be the fact that sentiment obtained from the images may not have a meaning

by itself closely related to the meme message. In the case of text, the meme words

may mostly not have the sentiment information clearly defined.

Finally, the work presented in [96] goes still further on extending information

provided to Transformers besides the image and text description of memes. For

this, Google Vision Web Entity Detection is used to generate a description of the

image based on its context. Moreover, The FairFace [97] classifier detects and

predicts race and gender of the majority of people whose head is not obscured in

the image. These new tags feed an extended ERNIE-Vil [92] model, which creates

a detailed representation of this entire set of information. After that, the combined

representation is used as input to a fully connected network to assign a label to the

meme. This work attained the highest AUCROC (84.50) among all papers discussed

in this chapter. Therefore, the use of additional information related to the meme

increases the power of transformer-based models, since using extended tags was

the main characteristic of this work. Considering the improved results achieved,

this seems to be a more effective way to tackle the intrinsic multimodality of hateful

memes.
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3.4 Discussion
The hateful meme detection task cannot be considered a trivial problem. The small

number of works dealing with this topic and the usually weak performance attained

confirm this fact.

Non-attention Mechanism-based Approaches Attention Mechanism-based Approaches
Restricted Methods Restricted Methods Extended Methods

Hand-crafted Feature
Extraction-based Methods

Auto-feature
Extraction-based Methods

Auto-feature
Extraction-based Methods

Auto-feature
Extraction-based Methods

(Fersine et al, 2019) [61]
(Sabat et al, 2019) [70],
(Vlad et al, 2020) [73],

(Suryawanshi et all,2020) [27]
(Velioglu and Rose, 2020) [78]

(Zhou et al, 2021) [81],
(Sandulescu, 2020) [12],
(Muennighoff, 2020) [11],
(Zhang et al, 2020) [93],
(Das et al, 2020) [10],

(Zhu, 2020) [96],
(Lippe et al, 2020) [8]

Table 1 – Reviewed works grouped according to the proposed taxonomy.

In this section, we discuss some choices made in current literature and evaluate

other scenarios that can boost the results. Table 1 summarizes works reviewed in

this chapter grouped according to the proposed taxonomy.

• Datasets: There are works that created their own datasets, precisely [61], [70],

[27], and [73]. Some of these authors provided guidelines to the annotators,

composed by examples and clear definitions, to help eliminate doubts during

the annotation process. On the other hand, there are authors who did not

define guidance to the annotators to avoid influencing their judgment. Finally,

there are also cases whose annotations were performed by search engines.

However, in all cases the authors reported problems related to the annotation

process, since defining whether a meme is aggressive can be difficult, even for

a human being. Therefore, creating a new dataset is a very challenging task.

The Hateful Memes Dataset (HMDC) [24] helped to reduce this limitation. In

Table 2, a summary of all datasets used by the reviewed works is shown.

• Data Augmentation: The publicly available datasets are often small-scale

datasets. Due to this limitation, some studies focused on data augmentation,

which was conducted especially in three ways:

1. Using object detector: In this approach, an object detector extracts ob-

jects present in the meme image, usually providing the following infor-
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!ht

Dataset # of Instances Classes Works

[61] 800

sexist,
noSexist,

sexistIronic,
sexistAggressive

[61]

[73] 1K6
hate,

noHate [73]

[70] 5020
hate,

noHate [70]

[27] 743
offensive,

noOffensive [27]

MSCOCO
[90] 123K

5 captions per
image [81]

HMDC
[24] 10K hate, noHate

[8], [10],
[93], [11],
[96], [81],

[78]
MMHS150K

[98]
150K,

only 16K used hate, noHate [12]

Memotion Dataset
[79] 14K

notFunny,
veryTwisted,

hatefulOffensive,
notMotivational

[78]

Table 2 – Datasets employed in the reviewed works. Several works use more than
one dataset.

mation: a) Region of the image where the object was observed; b) object

name; and c) position of the object in the image.

2. Using caption generator: In this case, a caption generation model cre-

ates a new text from the meme image, which is concatenated with the old

text or is used as a superimposed text combined with the meme image to

generate another meme.

3. Using regions from meme image: In this approach, regions are ex-

tracted from meme image to create new images, whose features are ex-

tracted to increase the number of image data.

These three approaches increase the number of input data. However, in the

first and second cases, they are too dependent on the models’ ability to in-

terpret objects’ presence and the image’s content to generate the caption text.

When taking into account the number and variety of memes, the two first ap-

proaches may not cope well with these characteristics. To minimize this risk,

the use of a set of object detectors and different caption generators could in-
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crease the chance of success. The third approach seems to be more promising,

since it does not depend on object detection or caption generation.

• Evolution of the architectures: Although currently there is only a few stud-

ies focused on dealing with hateful meme detection, and most of them made

public very recently, it is possible to observe the proposed solutions’ evolution.

We can define this evolution in four phases:

1. Focus on Feature Extraction: In this phase, the works have evolved

according to the evolution of the feature extractors of both image and

text. Starting with classical extractors and then evolving to deep neural

networks, whose results have shown their capacity to extract complex

semantic information.

2. Focus on Data Augmentation: Here, works focused on increasing the

amount and diversity of data (image and text of the meme) are highlighted.

Different strategies were applied, including object detectors, image cap-

tion generators, etc.

3. Focus on deepening the semantic meaning: In this phase, the objective

is to use better the multiple information generated in previous phases.

This is accomplished by using the Transformer models, since these mod-

els present high capacity to extract semantic information more deeply.

4. Focus on Ensemble of Models and Extended Information: The more

recent works massively employ ensemble of models, combining different

architectures of Transformers, fusing multiple results to finally carry out

the task of predicting the meme class. These models also extend the input

of Transformer-based models by adding information such as: gender,

sentiment analysis, race, among others, to better deal with multimodality.

3.5 Final Remarks
Identifying memes with hate speech is a significant challenge in the real world.

This chapter presents a review of the research focused on this task. The proposed
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methods are explained in detail, with their results thoroughly analyzed. Similarities

among the current approaches were identified, leading to the formation of distinct

groups, which are represented in a proposed taxonomy. Describing each method,

along with its strengths and areas for improvement, we provided insights into the

progression of techniques and highlighted the most promising future directions.

The key takeaway from this review is that relying solely on the meme’s image

and text is insufficient for achieving high performance in hate speech detection.

Notable improvements were observed when researchers incorporated additional in-

formation from the meme and used more sophisticated models, such as ensembles

of Transformer-based architectures. However, these models often require substan-

tial computational resources for training and incorporating additional information

besides the textual and visual components of the memes, making them complex

and challenging to reproduce. Thus, two promising strategies emerge: first, max-

imizing the extraction of direct information from the meme, and second, utilizing

models capable of generating deep and comprehensive representations of all the

extracted data.

The following chapter outlines our second main contribution, which presents

a new method aimed at improving the performance of existing multimodal trans-

former models without requiring additional information. This is achieved by inte-

grating a specialized module, known as Compact Parameter Blocks, into the en-

coders of the Transformer models.
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4 Adding Compact Parameter Blocks to

Multimodal Transformers to Detect

Harmful Memes

The development of tools that can detect and eliminate harmful memes before they

reach a wide audience and cause harm is a very important issue. It was discussed

in the previous chapter that despite being multimodal data, early studies focused

on identifying harmful memes using monomodal methods. For instance, clustering

techniques [99], analyzing the textual content using methods such as bag of words

[100], N-grams [101], similarity of topics [102], etc. The use of visual data in a

monomodal mode was also explored. For instance, object identification [103], web

entity detection [104], caption generation [105], direct extraction of visual features

[106], among others. However, current studies are devoted to tackle the task using

multimodal representations by taking into account the text and image components

of memes together.

It is important to mention that off-the-shelf tools designed for general multi-

modal analysis might not be sufficient to unravel the inherent meaning of these

memes due to several reasons [107]. Firstly, memes frequently rely on their con-

text, which can greatly influence their interpretation. Moreover, their visual and

textual components often lack a direct connection or correlation. The memes mes-

sage can only be fully understood by analyzing both elements together. Modality,

as stated in [6], refers to the manner in which an event occurs and the emotions it

evokes. By combining various modalities, such as sounds, visuals, scents, and tex-

tures, we are able to gain a more comprehensive understanding. Together, different

modalities enhance the meaning and significance of the information received.

In this context, the high performance rates reached by the transformer architec-

ture in NLP tasks [7] motivated many researchers to also employ these models to

detect harmful memes in a multimodal approach. These techniques use the trans-

former encoder component to gather both textual and image characteristics from
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memes. Afterward, these merged features are used as the input to a classifier. The

effectiveness of this strategy arises from the attention mechanism integrated into

the encoder section of these models. This mechanism excels in grasping a com-

prehensive representation that arises from merging text and image elements. Due

to the substantial computational demands and restricted data availability, most of

these techniques employ transfer learning approaches when deploying these mod-

els. Despite yielding positive results, there is space for enhancing their perfor-

mance.

The method presented in this chapter aims to enhance the efficiency of multi-

modal models that utilize the transformer architecture along with transfer learning

techniques to detect harmful memes without requiring additional information. To

achieve this goal, the proposed method involves integrating adjustable Compact

Parameter Blocks (CPBs) into the encoder sections of these models.

The incorporation of CPBs improves performance by dynamically adjusting the

weight distribution within the attention mechanisms of the encoder blocks. These

blocks act as intermediate feature processors, capturing finer details while reduc-

ing reliance on excessive parameters. This is analogous to low-rank adaptations

in transfer learning, where task-specific adjustments enhance efficiency without

requiring full model retraining [108]. Additionally, CPBs enable the model to learn

more targeted and robust representations, particularly for tasks involving subtle

multimodal cues such as harmful meme detection.

While the inclusion of CPBs increases model complexity, this additional com-

plexity functions as a form of implicit regularization. By redistributing learning

capacity across compact parameter spaces, CPBs mitigate overfitting by prevent-

ing the model from overly relying on specific connections or neurons. This behavior

mirrors regularization techniques such as dropout or weight decay, striking a bal-

ance between model complexity and generalization.

Theoretically, CPBs enhance the model’s latent space representation by refin-

ing the features extracted by attention mechanisms. This process is similar to

the structured latent representations produced by variational autoencoders (VAEs),

which learn meaningful variations in data [33]. By prioritizing essential features

and minimizing noise, CPBs improve the quality of the latent space, making the
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model more effective in capturing the multimodal nuances required for harmful

content detection.

The operation of CPBs is further inspired by autoencoders, as described in [109].

Autoencoders are neural networks primarily employed in unsupervised learning to

convert input data into a compressed representation, often referred to as the ”la-

tent space.” This transformation involves a series of layers that gradually extract

abstract features, generating a condensed but informative representation that re-

tains essential data characteristics while discarding nonessential details. However,

unlike traditional autoencoders, CPBs achieve compression and feature refinement

without modifying the existing loss function. Instead, CPBs integrate seamlessly

into the encoder-decoder architecture, leveraging the same supervision mecha-

nisms (e.g., cross-entropy or binary classification loss). This ensures that com-

pression and reconstruction processes enhance intermediate feature processing

without altering the model’s original optimization objectives.

By incorporating CPBs, the method aims to shift some of the harmful meme de-

tection responsibilities to the attention mechanisms embedded within each encoder

block. This adjustment is expected to improve the model’s accuracy, efficiency, and

generalization capabilities in detecting harmful content.

In this chapter, we investigated four distinct datasets, each using predefined

criteria to classify memes as harmful or non-harmful. Similarly, we employed two

pretrained models for meme classification. Considering the limitations of these

models, including inherent inaccuracies stemming from pre-training data, archi-

tecture, and feature extraction methods, our proposed approach seeks to alleviate

these limitations. We hypothesize that the introduction of CPBs will enhance model

performance and reduce classification errors.

In the rest of the chapter, Section 4.1 reviews the related research on detect-

ing harmful memes. In Section 4.3, the proposed approach is outlined. Section

4.4 details the experimental results, demonstrating the advantages of our method.

Section 4.5 presents and discusses our findings. Section 4.6 addresses the method

limitations. Finally, Section 4.7 summarizes the conclusions.
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4.1 Related Work
This section will cover the latest methods designed to identify harmful memes.

Since several related works were previously discussed in Chapter 3, only works not

discussed in the previous chapter are described here.

The approach proposed in [13] focuses on improving the interaction among fea-

tures extracted from the text and the image of the meme. They developed a method

called Hate-CLIPper to identify hateful memes through multiple forms of media.

This method utilizes the encoders of Contrastive Language-Image Pretraining (CLIP)

[51]—a visual-linguistic model—to obtain aligned image and text representations,

which are then fused through bilinear pooling (outer product) to create a Feature

Interaction Matrix (FIM). This FIM representation models the correlations between

the dimensions of the image and text feature spaces, allowing a simple classifier

to achieve high performance on hateful meme classification using only the FIM

representation. Hate-CLIPper does not use additional information as input, how-

ever, the FIM representation incorporated various details for each meme, such as

indications of whether it contained attacks directed at individuals with disabilities,

nationality, race, religion, or gender. Additionally, a descriptive text for the image

of each meme was generated, and all this data was utilized in the model training

process. The design of the architecture involves a component called the CLIPMLP

module. This module includes projection layers that serve the purpose of synchro-

nizing the representations of text and images. The proposed architecture achieved

AUC-ROC of 85.80 on the FBHM dataset.

The CLIP model is also employed in [110] to detect harmful memes, as well as

to identify their intended recipients. The authors validated their method using two

datasets, namely Harm-C and Harm-P [111]. Their technique involves processing a

meme using Google’s OCR Vision API to extract embedded text. Then, CLIP encodes

text and image pairs in order to capture the essence of the meme. Additionally, the

system identifies faces and suggests objects, capturing attributes of subjects within

the image. VGG-19 [112] is used to encode visually relevant regions, while Distil-

BERT [113] encodes textual elements. Given the abstract and contextual nature of

harmful memes, the approach suggests that incorporating identified objects and at-
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tributes enhances the understanding of high-level meme concepts, thus effectively

capturing important contextual details. The subsequent stages involve merging

image and text representations with CLIP features, utilizing intra-model and inter-

modal attention. This results in a context-sensitive multimodal representation that

predicts the level of harm in a meme and identifies potential targets. The authors

achieved accuracy of 83.82 and a F1 score of 82.80 for the Harm-C dataset, and

accuracy of 89.84 and a F1 score of 82.80 for the Harm-P dataset.

Each method discussed in this section, as well as most of the methods discussed

in the previous chapter, shares a common feature: they all incorporate additional

information such as new meme caption generation, gender and race analysis, and

more, alongside the original meme content, which includes both text and images.

In this thesis, however, our proposed method only relies on the objects that can

be identified in the image and the text associated with the meme. In the following

section, we introduce our proposed approach.

4.2 Methodology
Figure 17 illustrates a generic framework for detecting harmful memes using mul-

timodal transformer models. The input consists of memes that typically combine

both text and images. The framework extracts features from these memes in two

parts: text representation and image representation. The text representation ex-

tractor processes the detected text, while an object detection module identifies ob-

jects within the meme image. The detected objects are then passed to an image

representation extractor, which captures visual features.

The extracted text and image features are then combined to create an integrated

multimodal representation of the meme. This fused representation is fed into a

multimodal transformer model, such as VisualBERT [84] or VilBERT [85], which

serves as the core feature extractor. Considering the proposed taxonomy shown in

Figure 12, our approach is based on a transformers architecture using the atten-

tion mechanism. We adopt an expanded approach to the data, where features are

automatically extracted. The key contribution of this work, CPB, is incorporated
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Figure 17 – General framework used for evaluate CPB approach. Source: Author.

into the encoder segments of the transformer to enhance its performance without

requiring additional data. The model generates a final multimodal representation,

which is used by a classifier to determine whether the meme is harmful (1) or

non-harmful (0).

4.3 The Compact Parameter Blocks Approach
We work with two different architectures of multimodal transformer models. The

first is called Single-Stream (SS) and it involves combining all the multimodal data

at the model’s input, separated only by tokens. Examples of models from this cat-

egory are: ImageBERT [114], VisualBERT, ERNIE-Vil, Unicoder-VL, and VL-BERT.

The second is called Double-Stream (DS), having separate inputs for each modal-

ity. LXMERT [86], VilBERT, and CLIP are some models in this category. Our goal

is to demonstrate that the CPB method can be applied to any of these models, as

the CPBs are added to the encoder components, which are a crucial component in

both SS and DS methods. All examples are shown taking into account two modal-

ities, since the memes investigated in this work are bimodal data. In addition, we

add CPBs to the SS model VisualBERT, as well as to the DS model VilBERT. These
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models were selected because they represent a diverse architectural paradigm in

a multimodal context. This strategic choice enhances the generalizability of our

findings to a broader spectrum of models with similar architectures.

The rigorous initial training with extensive datasets allows multimodal transformer-

based models to undergo a comprehensive learning process. During this phase,

they become familiar with complex procedures. When these pre-trained models are

applied to solve tasks using small-sized datasets, the most common procedure is

to use transfer learning, where most of the model remains unchanged, except for

the classifier, which adapts to the new task.

Our proposed methodology involves incorporating an unfrozen block, termed

CPB, with an autoencoder like structure [109, 115], into the transformer model

encoder during the transfer learning phase. We hypothesize that this integration

will substantially enhance the performance of transformer models, particularly in

the multimodal task of establishing relationships between text and image compo-

nents within memes to accurately classify their harmfulness. This modification is

expected to yield several key benefits to the original encoder operations, such as:

• Enhanced Encoding Efficiency: The CPB, positioned at the encoder blocks,

compresses the input text and image into a lower dimensional latent space

representation. This compressed form encapsulates the most representative

information, while filtering out noise and redundancy.

• Optimized Attention Mechanisms: By receiving a refined, information-dense

representation of the input data, the transformer’s attention mechanisms can

more effectively focus on critical aspects, thereby improving contextual un-

derstanding and interrelationships between text and image elements.

• Regularization Effect: The inclusion of the CPB introduces a regularization

effect, mitigating the risk of model over-fitting on training data and conse-

quently enhancing its generalization capabilities to unseen data.

The integration of the CPBs into the encoder block of a transformer model presents

a promising direction on achieving significant gains in efficiency, representation

quality, and robustness. Figure 18b provides a detailed illustration of the CBP
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architecture. In the following subsection, we will provide a detailed explanation of

the implementation of CPB within the VisualBERT model.

Figure 18 – (a) Visual representation of the encoder block of the VisualBERT model,
focusing on the attention mechanism. It is at this block that we will
introduce the structure of the CPB. (b) The CPB structure is a set of lay-
ered components arranged in a sequence where they first decrease and
then increase input data. (c) A VisualBERT encoder featuring a CPB
integrated within its self-attention mechanism. The CPB is intended to
extract the output from the current encoder block and generate a better
representation, which will subsequently serve as input for the attention
mechanism in the following encoder block. (d) VilBERT model encoder
with a CPB. Here, X(A) represents the textual information, while X(B)

represents the visual (image) information. These two sets of data are
combined and fed as input to the final encoder blocks, in which we also
add CPB blocks within their architectural design. Source: Author.

4.3.1 CPB in Single-Stream (SS) multimodal transformer model

In order to present the CPB approach, we use VisualBERT as a foundation. This is

a SS model pre-trained with the MSCOCO [116] dataset. Its architecture resembles
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that of BERT, but it uses a more complex input sequence. This input sequence is

comprised of three main components. Firstly, it includes representations of objects

found within the image, which are detected using object detection techniques like

Faster R-CNN [117]. Secondly, there are tokens that mark the beginning and the

end of these representations. Lastly, the textual content is incorporated. More-

over, the model generates positional representations for each element in the input

sequence. This input is divided into segments, with items enclosed by special

symbols considered part of the same segment. The segment information is also

integrated into the model’s input.

Considering that the CBPs are added to the encoder module of VisualBERT, in

Section 2.3 we describe its encoder blocks. As previously mentioned, the attention

mechanism is a crucial component of the encoder blocks. Therefore, understanding

how this mechanism operates is especially important. For more information related

to the attention mechanism, refer to the reference provided in [7]. Since in Section

2.3 we describe a summary of this module, in this point we only introduce the CPB

in the encoder context.

A CPB is composed of three different linear layers: 1) Down; 2) Middle; and 3)

Up, as depicted in Figure 18b. The objective is first decrease and then increase

the input data. These layers collaborate in a step-by-step manner to condense and

then expand the input embeddings. This entire process helps to create a reliably

stable and uniform representation.

The addition of a CPB occurs as follows. The input representations z′i produced

by the encoder block before the residual connection (Equation 2.8) are passed

through a down linear layer, i, creating the output y, as shown in Equation 4.1. In

this equation, Wi is the randomly generated weight matrix with dimension (dz′ , dy),

with b = 0 and (dy ≈ dz′
10
). Therefore, it takes the input data z′i, and maps it into a

lower-dimensional representation. The objective of this layer is to reduce the input

dimension, similar to the approach used in autoencoders [109], focused on several

advantages this approach present. First, lower-dimensional embeddings tend to

retain the most important aspects and connections within the data while filtering

out less important details. As a result, these representations are simpler to grasp,

making it easier to draw meaningful insights from the data. Additionally, it aids
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in reducing the impact of noise. By compressing the data into a more condensed

form, the influence of noise and less significant features is minimized. This, in

turn, results in more robust and reliable outputs.

y = z′iW
T
i + b (4.1)

The next step of the CPB is the middle layer, as shown in Equation 4.2, located in

the core of the CPB. This layer has fewer neurons (dimensions) than the input data.

Consequently, it is expected to provide a compressed or latent representation of the

input data, forcing the CPB to capture the most essential features of the data.

y′ = yW T
m + b (4.2)

In this equation, y′ feeds a new linear layer m, where Wm is the randomly generated

weight matrix whose dimension is (dy′ , dy), with b = 0 and (dy′ = dy).

Then, in the last CPB layer, y′ feeds a new linear layer j. The objective here is to

use the compressed representation to attempt to reconstruct the original input data

from this lower-dimensional representation. Therefore, the goal is to generate an

output that is as close as possible to the input. Equation 4.3 shows the operations

performed in this layer.

x′ = y′W T
j + b (4.3)

In this equation, x′ is the CPB output, Wj is the randomly generated weight

matrix whose dimension is (dy′ , dx′), with b = 0 and (dx′ ≈ 10dy′). Finally, the second

encoder normal layer receives x′ and the residual ui, as shown in Equation 4.4.

zi = LayerNorm(ui + x′) (4.4)

Figure 18c provides a visual representation of how a CPB is integrated into a Visu-

alBERT encoder. The process continues with the next encoder block, an so on. It is

important to mention that in terms of SS models, which use a single input stream

per modality, there are few choices to integrate the CPB. However, the DS models

have a broader range of options, as discussed in the next section.
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4.3.2 CPB in Double-Stream (DS) multimodal transformers model

When working with DS models, where the input streams of modalities are sep-

arated, there are three potential options for incorporating CPBs. These options

include applying CPB to the text stream only, to the image stream only, or to both

streams simultaneously. In our experiments using VilBERT (pre-trained on the

Conceptual Captions [80] dataset), the best results were achieved when CPBs were

applied to all three options. Therefore, in this work we added CPBs in three parts

simultaneously, as it is illustrated in Figure 18d.

In the next section we demonstrate through experiments that the CPB approach

yields positive results. To achieve this, the detection of harmful memes will be

tested using both VisualBERT and VilBERT.

4.4 Experiments
In this section, we describe the experiments conducted in this work and the results

attained. The experiments are focused on examining the impact of incorporating

CPBs into the models VisualBERT and VilBERT. First, however, we discuss the

datasets investigated.

4.4.1 Datasets

We employed four different datasets to conduct our analysis. These datasets all

share a common theme: they contain instances of memes that feature images

overlaid with text. Although some of these datasets contain information for multi-

ple categories, our approach focused solely on binary classifications for all of them.

Specifically, we assigned two possible labels to each meme instance: 0 to indicate

non-harmful memes and 1 to the harmful ones. We made this choice primarily be-

cause it aligns with the common definitions used in baseline models. The datasets

are described as follows.
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Figure 19 – (a) An instance of a harmful meme extracted from the FBHM, (b)
MMHS150K, (c) MultiOFF and (d) the MEME datasets respectively.
Source: Author

4.4.1.1 FBHM [24]

This dataset is the same called Hateful Memes Dataset (HMDC) in our previous

chapter. It includes a total of 10,000 memes, including memes with content rep-

resenting different types of aggression aimed at groups that are legally protected.

One common form of aggression represented is dehumanization, where individu-

als are compared to non-human objects or animals. The dataset is composed of

memes with various forms of dehumanization. In addition, harmful memes are cat-

egorized into specific groups, including an “other” category. However, in all works

that investigate this dataset, each meme is assigned to only one category of attack,

composing a binary classification problem. One example of a harmful meme from

the FBHM dataset can be seen in Figure 19a.

4.4.1.2 MMHS150K [98]

This dataset is composed of 149,823 memes, which are divided into two categories:

memes that contain hate speech and those with no hate speech. Like the previous

dataset, it offers files containing the written content of every meme. One example

of a meme from the MMHS150K dataset is shown in Figure 19b.
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4.4.1.3 MultiOFF [27]

It includes 743 memes centered around the 2016 United States presidential elec-

tion. These memes have been categorized as either offensive or non-offensive. An

example of a meme from this dataset is shown in Figure 19c.

4.4.1.4 MEME [61]

It is a benchmark dataset composed of 800 memes with sexist and non sexist

content, labeled considering the visual and/or textual aspects. This dataset also

includes both images and related texts. One example of an instance from the

MEME dataset is shown in Figure 19d.

4.4.2 Experimental Protocol

In our experiments, we used all four previously mentioned datasets. Table 3 sum-

marizes their data distribution and partition. While it is worth noting that not all

of these datasets are balanced, we followed the baseline approaches by not under-

taking any measure to address this imbalance.

Table 3 – Summary of the datasets used in the experiments in terms of their divi-
sion into training, validation, and testing sets, along with the counts of
samples in each class.

FBHM MMHS150K MultiOFF MEME

Train 8500 135000 445 600
Val 500 5000 149 100
Test 1000 9823 149 100
Total 10000 149823 743 800
Hate 3756 36978 440 369
Not-hate 6244 112845 303 431

In terms of the two multimodal models used in our experiments, for VisualBERT

we used the model with its 12 encoder blocks in conjunction with a single dense

layer that handled meme classification. A CPB was added in each encoder block.

In its turn, VilBERT is composed of 12 encoder blocks for text, 6 encoder blocks

for images, and 6 encoder blocks that receive the output embeddings from both



4.4. EXPERIMENTS 77

text and image encoder blocks. Again, in each of these encoder blocks we have

incorporated a CPB.

To train VisualBERT and VilBERT on various datasets, we conducted training

for a total of 22,000 steps. The number of epochs required for this process varied

depending on the specific dataset used. As observed in Figure 18b, CPBs are com-

posed of linear layers. The number of parameters P in a linear layer is determined

according to the following equation:

P = (inSize+ 1) ∗ outSize (4.5)

In this equation, inSize represents the number of input features or neurons in

the previous layer, while outSize represents the number of neurons or units in the

current linear layer.

Table 4 – Details of CPB parameters distribution in the VisualBERT model.

VisualBERT Parameters
Layer i (in-out) 768 - 76 58444
Layer m (in-out) 76 - 76 5852
Layer j (in-out) 76 - 768 59136
Total by CPB 123432
Total Model all 12 encoder blocks 1481184

Table 5 – Details of CPB parameters distribution in the Vilbert model.

VilBERT Parameters
Text Encoder blocks (12)
Layer i (in-out) 768 - 76 58444
Layer m (in-out) 76 - 76 5852
Layer j (in-out) 76 - 768 59136
Total by CPB 123432
Image Encoder blocks (6)
Layer i (in-out) 1024 - 102 104550
Layer m (in-out) 102 - 102 10404
Layer j (in-out) 102 - 1024 105472
Total by CPB 220426
Fusion Encoder blocks (6)
Layer i (in-out) 768 - 76 58444
Layer m (in-out) 76 - 76 5852
Layer j (in-out) 76 - 768 59136
Total by CPB 123432
Total Model all 24 encoder blocks 3544332
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Table 4 and Table 5 summarize information related to the additional parame-

ters resulting from the inclusion of CPBs in the VisualBERT and VilBERT models

respectively. To determine the total increase in the number of parameters, we mul-

tiply the number of parameters in one CPB by the total number of encoder blocks

in the model. This accounts for the additional parameters introduced by adding

these blocks multiple times.

In terms of VisualBERT, its original model comprises 112,044,290 parameters.

However, with the incorporation of CPBs, the overall number of parameters in-

creased to 113,525,474. In essence, the incorporation of CPBs in VisualBERT

resulted in a 1.30% expansion in the overall number of parameters compared to

the original model. For VilBERT, its model initially is composed of 247,780,354 pa-

rameters, which increased to 251,324,686 due to the addition of CPBs. Therefore,

there was 1.41% of expansion in the overall parameter number compared to the

original model.

Our experiments were conducted using a research tool known as “Modular Mul-

timodal Framework” (MMF).

4.5 Results and Discussion
In this subsection, we evaluate the impact in the performance of VisualBERT and

VilBERT when CPBs are added to their encoder blocks. Moreover, we compare

our results to the results attained by other methods available in the literature fo-

cused on identifying harmful memes. To determine the baselines, we observed

the overview provided in [19] and [118]. Based on these references, we selected

the works that achieved the top results for each dataset used in our experiments.

The evaluation criteria are accuracy (ACC), F1 score, and AUC-ROC. It should be

noted that some of the baseline studies may not provide all these metrics, but we

will present the available metrics for each of them. Moreover, since all datasets

used present imbalanced class distribution, we focus our comparison on the F1

Score results, due to the fact that F1 Score is a better metric when there are im-

balanced classes in the evaluated problem. We justify the choice of baselines by
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verifying whether they explore textual and visual features extracted from memes.

This evaluation ensures that the selected models effectively capture multimodal

information, allowing for a more comprehensive comparison of their performance.

Table 6 – Summary of the results obtained in the experiments conducted using the
MultiOFF dataset.

MultiOFF Dataset

Approach ACC AUCROC F1 Score
Early fusion: Stacked LSTM/BiLSTM/
CNN-Text + VGG16
[27]

- - 0.50

BERT, Faster-RCNN,
Disentangled representations)
[119]

- - 0.65

VisualBERT 0.60 0.56 0.70
VisualBERT-CPB 0.68 0.67 0.77
VilBERT 0.61 0.62 0.71
VilBERT-CPB 0.66 0.65 0.74

We first analyze the results attained when investigating the proposed method, as

well as the baselines, using the MultiOFF dataset. Table 6 summarizes the results

obtained. In this specific dataset, when we evaluate performance based on the F1

Score, our approach surpasses previous studies, demonstrating superior results.

Notably, the VisualBERT-CPB Model achieved the most substantial improvement,

increasing 15.60% in performance when CPB was applied. It is also evident from

these results that employing either the VisualBERT or VilBERT base models alone,

without CPB, they still yield better results compared to the two baseline methods.

In addition, the results also highlight the positive impact of incorporating CPB into

these models.

In the context of this specific dataset focusing on American presidential candi-

dates, VisualBERT outperformed VilBERT by a small margin. This performance

difference can be attributed to the dataset’s characteristics, which predominantly

contains memes that feature both images of the candidates and their names in

the textual component. This strong association between visual content and tex-

tual information aligns well with VisualBERT’s single-stream architecture, where

it combines both modalities in a unified manner. This synergy between image and

text likely played a significant role in VisualBERT’s better performance on this
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dataset.

Noteworthy is the fact that this dataset represents a very challenging classifi-

cation problem. This aspect is confirmed when we observe the low performance

attained in general. The highest F1 Score was 0.77, reached by VisualBERT-CPB.

The two baselines reached much lower F1 Score results. The work described in

[27], which is not based on transformers, attained the performance of a method

that randomly guesses the instance label (F1 Score = 0.50). The second baseline

[119], reached results slightly higher than random guess (F1 Score = 0.65). The

reason for this behavior may be the small size of this dataset: it contains only 743

instances. This is a serious limitation, preventing learning models to provide better

results.

Table 7 – Results obtained in the MEME dataset.

MEME Dataset

Approach ACC AUCROC F1 Score
Late fusion - Several Hand-Crafted
visual and textual features
[61]

- - 0.76

VisualBERT 0.86 0.92 0.85
VisualBERT-CPB 0.95 0.95 0.88
VilBERT 0.86 0.91 0.83
VilBERT-CPB 0.91 0.95 0.90

Despite containing only few more instances than the previous dataset, the re-

sults attained in the MEME dataset are much better in general. Table 7 shows these

results. Among the investigated methods, our approach again surpasses the base-

line studies, providing superior results. Here, the VilBERT-CPB Model achieved

the highest improvement, increasing in 15.55% its F1 Score when CPB was ap-

plied. However, the F1 Score reached by VilBERT-CPB was only slightly superior

to that from VisualBERT-CPB. One possible reason for this behavior is observed in

[61]. These authors explain that in this particular dataset, the individual modalities

possess substantial discriminatory power to allow distinguishing between hateful

and non-hateful memes. Therefore, since the VilBERT model initially deals with

modalities independently before integrating them, this characteristic may pose a

slight advantage over the VisualBERT model, which combines both modalities into

a unified representation as input since the beginning of the whole learning process.
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On the other hand, it is also possible to observe from this table that employing

either the VisualBERT or VilBERT base models alone, without CPB, still yields

better results compared to the other methods. These results also highlight the

positive impact of incorporating CPB into both models since VilBERT-CPB and

VisualBERT-CPB outperform its original versions.

Table 8 – Results obtained using the MMHS150K dataset.

MMHS150K Dataset

Approach ACC AUCROC F1 Score
FCM (Feature concatenation model),
Inception-V3, LSTM
[98]

0.68 0.73 0.70

VisualBERT 0.74 0.62 0.68
VisualBERT-CPB 0.76 0.77 0.75
VilBERT 0.57 0.65 0.62
VilBERT-CPB 0.65 0.74 0.72

The VilBERT-CPB Model also achieved the highest F1 Score improvement (6.66%)

when CPB was applied in the MMHS150K dataset, as shown in Table 8. It also

increased 10.52% in ACC and 5,20% in AUC-ROC. However, VisualBERT-CPB

reached the best performance. Again, our approach outperformed the baselines.

Surprisingly, however, are the low classification rates attained in this dataset, since

it is the largest one among all investigated in this chapter: it contains an extensive

collection of memes, over 149,000. One possible reason for these results is the

high class distribution imbalance: hate speech memes constitute only 24.56% of

the dataset, making this dataset significantly more unbalanced than the others.

In addition, the instances of this dataset were labeled by three annotators. Ac-

cording to [98], due to the subjective nature of the task and discrepancies among

annotators, achieving high classification rates in this dataset is challenging.

Despite the challenges, VisualBERT-CPB achieved 75% of F1 Score, establish-

ing a robust correlation between text and image for the classification of the memes.

These results suggest that VisualBERT outperformed the VilBERT model, because

it integrates text and image into a unified representation. However, the results also

highlight the positive impact of incorporating CPB into both models.

Finally, the results obtained using the FBHM dataset are presented in Table 9.
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Table 9 – Results obtained in the FBHM dataset.

FBHM Dataset

Approach ACC AUCROC F1 Score
Cross-modal Interaction
of CLIP Features
[13]

0.83 0.85 -

VisualBERT 0.64 0.56 0.65
VisualBERT-CPB 0.68 0.78 0.67
VilBERT 0.63 0.60 0.56
VilBERT-CPB 0.70 0.77 0.71

In this dataset, VilBERT-CPB also achieved the highest F1 Score increase (21,12%)

when CPB was applied. It also outperformed the F1 score obtained by VisualBERT-

CPB. Moreover, the results reinforce the positive impact of incorporating CPB into

these models. However, neither of the two models was better than the baseline

[13], which is the current benchmark for the FBMH dataset. In this baseline,

the authors adopt a cutting-edge approach involving multimodal pre-training to

establish a connection between images and text by representing them in a shared

feature space. They reinforce the significance of modeling interactions between

image and text features through an intermediate fusion process.

It is important to observe that, unlike our method, this baseline incorporates ad-

ditional information, such as indications of whether the meme contains attacks di-

rected at individuals with disabilities, nationality, race, religion, gender, etc. In ad-

dition, the FBHM dataset provides text and vision confounders. These confounders

lead to changing a hateful meme to a not-hateful one, or vice-versa, by swapping ei-

ther image or text only. This characteristic makes the dataset somewhat divergent

from the typical meme content [120] and with a very challenging nature. Therefore,

a model must be able to tackle multimodal reasoning to classify the meme and its

confounder correctly.

Considering all the results provided in this section, it is possible to observe that

incorporating the CPBs into VisualBERT and VilBERT models yields improvements

to the original models. However, the addition of CPBs is apparently more bene-

ficial to VilBERT, since this model reached the highest F1 Score improvement in

three cases out of four by adding the CPBs. On the other hand, the success of

adding these blocks seems to be influenced by the alignment between image and
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text. This effect is evident in scenarios like the MEME dataset, where the focus

is narrow: memes comprising images and text predominantly associated with at-

tacks to women. In this context, the maximum AUCROC gain, considering both

models, is limited to 4.2%. This suggests that the original model possesses suffi-

cient complexity to address the problem, rendering the introduction of CPBs less

beneficial.

The FBHM dataset presents instances with significant misalignment between

text and image, due to the fact that this dataset has memes with identical im-

ages but different texts, and vice-versa. In this challenging scenario, the introduc-

tion of CPBs yielded the most substantial result: VisualBERT-CPB with 28.20%

of AUCROC gain. This suggests that CPBs are more effective in capturing subtle

multimodal relationships between meme images and text than the original models.

4.5.1 Significance Test

Considering the fact that the best results attained by our method were obtained

in the FBHM dataset, we conducted a comparison of these results using the t-test

[121], a statistical tool employed to measure whether the differences between two

groups are statistically significant. There are various types of t-tests, such one-

sample, independent, and paired t-test, each tailored for specific scenarios. In

this work, we performed the paired t-test to compare the two investigated models,

VisualBERT and ViLBERT, to their version with CPB enhancement. The compar-

ison was conducted using three metrics: Accuracy, Area Under the ROC Curve

(AUCROC), and F1 Score. The reported values represent averages over multiple

experimental runs, assuming a normal distribution of differences.

The results summarized in Table 9 were used to determine if the inclusion of

CPB significantly improved the models’ performances. The null hypothesis (H0)

posits no significant difference, while the alternative hypothesis (H1) suggests a

significant difference. With a significance level of 5% (α = 0.05), the p-values cal-

culated for VisualBERT and ViLBERT are approximately 0.000000 and 0.008163,

respectively. These p-values represent the probability of observing the obtained
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results if the null hypothesis were true. Therefore, the p-values obtained for both

models fall below the significance level, thus providing evidence to reject the null

hypothesis. This indicates that incorporating CPB leads to statistically significant

improvements in the performance metrics for both VisualBERT and ViLBERT.

The subsequent section will discuss the limitations of our methodology.

4.6 Method Limitations
While our proposed method demonstrates promising results, certain limitations

must be acknowledged. Firstly, its applicability is confined to models utilizing

transformer architectures, with a particular focus on the encoder block. Secondly,

the incorporation of CPBs inevitably increases the number of model’s parameters,

as evidenced in Tables 4 and 5. However, it is worth noting that for the mod-

els employed in our experiments, this increase remained below 2% of the original

number of parameters. Furthermore, the most significant performance gains were

observed under challenging conditions, where the original model struggled to es-

tablish meaningful relationships between image and text components of the meme.

On the other hand, the contribution of CPBs was less pronounced when the original

model performed well. Consequently, a thorough cost-benefit analysis is indicated

before integrating CPBs, as the potential performance improvement may not always

justify the increased complexity.

Moreover, despite the significant progress made, ethical considerations persist.

As noted in [122], human review of model outputs is recommended prior to full

deployment. To foster trust and accountability within the moderation process, both

automated and human decisions should be transparent and explainable, allowing

users to understand and potentially challenge content moderation actions.

4.7 Final Remarks
In this chapter we proposed a novel approach to enhance the performance of mul-

timodal models based on transformer architectures for detecting harmful content
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in memes. Our contribution lies in introducing the CPB structure within the en-

coder block, a process that refines input data by compression and decompression,

thereby improving the attention mechanism and introducing a data regularization

effect.

To validate our hypothesis, CPB was integrated into two models, VisualBERT

and VilBERT, representative of diverse multimodal architectures. Rigorous evalu-

ation across four meme datasets demonstrated a consistent improvement in model

performance with CPB integration.

In summary, this chapter concluded with a detailed evaluation of the impact of

CPB enhancement on the performance of VisualBERT and ViLBERT models, using

the four different datasets. A paired t-test was employed to statistically compare

the models’ performances across Accuracy, AUCROC, and F1 Score metrics. The

results demonstrated that the inclusion of CPB significantly improved the mod-

els’ performance, with p-values well below the significance threshold of 0.05 for

both models. These findings provide strong evidence to reject the null hypothesis,

highlighting the effectiveness of CPB in enhancing the models’ capabilities.

While acknowledging the limitation of this approach’s applicability solely to

transformer-based models and the increased model complexity it introduces, we

emphasize the significant potential for further exploration and refinement.

Finally, in terms of ethical considerations inherent to the content moderation

process, we reinforce the use of a hybrid approach that combines automated tools

with human oversight to maintain trust and transparency. This balanced strategy

may help to keep ethical standards while allowing technological advancements to

effectively combat harmful content in the digital context.

The following chapter outlines our third main contribution: it tackles the chal-

lenge of detecting aggressive memes by leveraging MLLMs for multimodal analysis.

Using prompt engineering, it categorizes memes by complexity and evaluates model

performance in five datasets.
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5 Exploring the Performance of Multimodal

Large Language Models in Detecting Ag-

gressive Content in Memes

In previous chapters, it was mentioned that, despite the fact that the meaning

of memes is highly dependent on their context, their images and text often have

no clear connection. Therefore, a thorough understanding of both modalities is

necessary to truly understand the message of the meme. This is crucial to provide

accurate tools that do not attack freedom of expression, which is a legitimate and

inviolable right.

In the context of multimodal analysis, MLLMs have become a major innovation

due to advances in artificial intelligence and deep learning [123]. Models such as

GPT-4V [14], LLaVA [18] and Gemini [17] are able to understand complex details

that were difficult for older systems. Considering the improved ability of this mod-

els to work with text and visual data, we investigate in this chapter the possibility

of using them to detect offensive content in memes, since it appears to be very

promising. It is expected that MLLMs analyze both text and images in detail, iden-

tifying patterns and hidden messages that can be offensive. This can help create

better tools for content moderation, making online spaces safer and more inclusive.

However, it is well known in the literature that the main way to use MLLMs

in new tasks is by performing Prompt Engineering [124, 125], since traditional

transfer learning techniques are often not possible. This involves creating specific

instructions or questions for the models, helping them to give better answers or

perform tasks more accurately, providing relevant and clearer answers. There-

fore, in this work, we employ Prompt Engineering to investigate the following three

Generative Models in the task of aggressive meme detection: GPT-4V, LLaVA and

Gemini.

It is important to mention that the generalization capacity of machine learn-

ing models is often measured by evaluating how well they perform specific tasks.
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However, this evaluation is difficult with MLLMs. The lengthy pre-training that

these models undergo and the lack of clarity about the training data used raise

concerns about data overlap — known as data leakage. This makes it difficult to

know whether good results achieved on some datasets are due to real learning or

due to prior data exposure. In order to try to deal with this problem, in this work

we do not use data from the training split of the datasets investigated, only their

test splits. This is a small effort to reduce the data leakage problem.

Finally, in order to broadly evaluate whether MLLMs are capable of truly tackle

multimodal reasoning to perceive the inherent meaning of aggressive memes, we

propose grouping aggressive memes into three multimodality reasoning levels. These

groups, which will be detailed in Section 5.2.2, are intended to establish a scale that

measures how easily aggressive content in memes can be recognized by individuals.

This analysis takes into account the multimodal nature of memes. In summary,

the first group involves memes whose both text and image are overtly aggressive

and are expected to be immediately recognized as such. The second groups memes

that have only one modality with aggressive content, requiring more attentive anal-

ysis, but that are still quickly identified as aggressive. The third group is composed

by the most challenging cases, those where neither modality is independently ag-

gressive, but their combination conveys aggressiveness, requiring more in-depth

contextual analysis for an accurate identification. It is important to highlight that

this categorization was performed by manual annotation. Memes from five different

datasets were submitted to 8 annotators, who were instructed to categorize them

into one of the specific groups of multimodality reasoning level.

In this chapter we seek to answer the following questions:

• RQ1: How can we effectively measure the performance of MLLMs in detecting

aggressive content in memes across different levels of multimodality reason-

ing?

• RQ2: How can prompts be improved, along with meme itself, to help MLLMs

to better identify aggressive content in memes?

The rest of this chapter is organized as follows: Section (5.1) describes related
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work on aggressive meme detection, which were not reported in previous chapters.

Section (5.2) explains our approach. Section (5.3) shows our experimental results.

Section (5.4) discusses our findings. Finally, Section (5.6) presents conclusions.

5.1 Related work
The development of methodologies to detect aggressive content in memes is a grow-

ing field of research, specially due to new meme datasets [126, 127, 29], and to

projects such as the Facebook’s Hateful Memes Challenge [24] that have encour-

aged the creation of new ways to identify aggressive content in memes, especially

hate speech. In this section, we detail some recent approaches whose focus is on

exploring all the potential of multimodality in memes. It is important to mention

that only works not discussed in previous chapters are described here.

In [128], the authors worked with prompts to try to improve the rates of hateful

memes classification. Their goal was to investigate the performance of RoBerta by

providing a monomodal prompt consisting of three texts: 1) the meme text; 2) a

caption generated from the meme image; and 3) the text “This is [MASK]”. During

training, [MASK] takes the value “Good” or “Bad”, and during inference, the model

returns the percentage of each value. They used two datasets in their experiments,

FBHM and HarM [129]. The results obtained were accuracy of 72.98 and AUC-

ROC of 81.45 for FBHM, and accuracy of 90.96 with AUC-ROC of 84.47 for HarM.

While the idea of this method is quite similar to ours, in our methodology we use

a multimodal prompt (text and image) and Generative Models, unlike their use of

RoBerta [130].

The automatic detection of misogynous content in meme is addressed in [131].

They advocate that it is crucial to explore methods for identifying this type of con-

tent from a multimodal perspective. The authors investigate four unimodal and

three multimodal approaches to detect misogyny, using the dataset provided in[61].

The experimental results revealed that a combination of both text and visual ele-

ments is necessary for an effective classification. Additionally, a bias estimation

and mitigation technique using Bayesian Optimization is proposed to correct bi-
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ased model predictions by identifying specific elements in memes that could lead

to unfair classifications. The proposed method shows improved accuracy, cor-

rectly classifying up to 61.43% of cases. Furthermore, the study highlights meme

archetypes that pose significant challenges for existing misogyny detection sys-

tems and suggests that these should be further analyzed with diverse vision and

language models to enhance future research in the field.

The work presented in [132] introduces an enhanced multimodal fusion frame-

work which uses a congruent reinforced perceptron, inspired by human cognition,

to better comprehend and reason about hidden meanings in memes. By divid-

ing multimodal representations into primary semantics and auxiliary contexts and

encoding them through a prefix uniform layer, the framework integrates these rep-

resentations within a shared latent space. This approach strengthens the detection

of subtle metaphors and implicit meanings behind hateful memes. Experimental

results on the benchmark datasets Harm-C and Harm-P [110] achieved accuracy

of 85.03 and F1-Score of 84.24 on the Harm-C dataset, while accuracy of 92.68

and F1-Score of 92.66 were obtained in the Harm-P dataset.

Finally, the authors in [133] introduce a novel multimodal dataset called MI-

MOSA (MultIMOdal aggreSsion dAtaset), which includes 4,848 memes designed to

detect the targets of aggressive Bengali memes across five categories: Politics, Gen-

der, Religion, Others, and Non-aggressive. A Multimodal Attentive Fusion (MAF)

framework is proposed, utilizing CLIP for image feature extraction and a BERT

model trained on Bengali for textual feature extraction. A distinguishing feature

of this approach is the attention mechanism applied before the fusion of textual

and visual data, where text features serve as the Query (Q) and image features

as the Key (K) and Value (V) within the attention fusion mechanism. Experiments

on the MIMOSA dataset demonstrated that MAF significantly outperformed eleven

state-of-the-art unimodal and multimodal baselines, achieving accuracy of 0.741,

weighted F1-Score of 0.642, and mean multimodal average error of 0.645. These

results highlight the effectiveness of the MAF approach in leveraging multimodal

context for identifying aggression targets within memes.

The methods discussed in this section have one thing in common: they try to

correlate visual and textual information to obtain a thorough understanding of both
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modals in order to truly understand the message of the meme. However, they do

not differentiate aggressive memes in terms of levels of multimodality reasoning.

In this chapter, this aspect is taken into account. In the following section, we will

provide a comprehensive explanation of our methodology. Identifying aggressive

memes is a complex and nuanced issue, and evaluating it within the context of

Generative Models requires some adaptations so that these models can achieve

better results.

5.2 Research Methodology
Our methodology is divided into four phases: A, B, C and D, as illustrated in Figure

20. Each phase is detailed in the next subsections.

5.2.1 Phase A - Dataset Fusion

In the first phase, we selected five datasets containing aggressive content memes:

Facebook Harmful Meme [24]; MultiOFF [127]; Sexist Advertisement Database [29];

Harm-C and Harm-P [110]. These datasets were selected due to three reasons:

1) their use in previous research; 2) they have two clear class labels (0 for non-

aggressive and 1 for aggressive memes); and 3) ease access, since they are publicly

available. Details about the chosen datasets and their construction are presented

in Section 5.3.

Once the five datasets have been selected, they were combined to compose only

one dataset. Here, however, we used only the test splits of each individual dataset

to compose the large one. This was done to try to reduce data overlap between

these datasets and those used to train the Generative Models. If any meme dataset

has been used to train this models, it is expected that its training split has been

used only. In addition, since the next phase of our methodology involves manual

annotation of memes from this large dataset into three classes, which is a time-

consuming process, we randomly selected n memes instances from each test split,

being n/2 memes with Label=1–aggressive, and n/2 with Label=0–non-aggressive.
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Figure 20 – The methodology conducted in this paper. First (A), several memes
datasets are combined. Then (B), the grouped dataset is divided into
three different datasets, each with different levels of multimodality rea-
soning to perceive aggressiveness, according to manual annotation. In
sequence (C), a prompt is added to each meme instance. Finally (D),
each meme and its corresponding prompt are presented to a Genera-
tive Model, which will generate an output Label=1 or Label=0, whether
the meme contains aggressive content or not. Source: Author

Considering these instances defined, we are ready to start the next phase of our

methodology, which is explained in the next subsection.

5.2.2 Phase B - Levels of Multimodality Reasoning to Perceive Aggres-

sive Content in Memes

In this phase, the aggressive instances obtained in the previous phase were pre-

sented to a group of annotators who were responsible for assigning them to one

of the three classes representing different levels of multimodality reasoning to per-

ceive aggressive content. Each annotator decided which class to assign to each

instance. At this point, we introduce the concept of Multimodality Reasoning for
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the Presence Perception of Aggressive Content. Our hypothesis is that the presence

of aggressive content in a meme is perceived differently by an individual, depending

on the way in which this content is exposed in the meme. Based on this hypothesis,

we propose the following three levels/classes of multimodality reasoning:

1. Fundamental Perception (FP): Memes in this category have both images and

text that clearly show aggressive content, i.e. each modality separately shows

aggressive tones, as illustrated in the FP example shown in Figure 20. Ma-

chine learning models should easily identify these memes as aggressive.

2. Advanced Cognition (AC): Memes here have one modality (either image or

text) with clear aggressive content, while the other part does not, as can be ob-

served in the AC instance shown in Figure 20. In this example, the text of the

meme clearly indicates aggressive content. However, it is important to men-

tion that the analysis of both modalities reinforces the aggression message.

Therefore, ignoring one modality can cause errors in identifying aggression.

3. Challenging Tasks (CT): Memes in this category have neither the image nor

text showing aggression when looked at separately. However, when combined,

they show aggressive content, as the CT meme illustrated in Figure 20. This

requires a full analysis of both parts together. Therefore, a machine learning

model must rely heavily on multimodal reasoning so as to correctly identify

these memes as aggressive, since memes often do not have a clear connection

between visual and textual elements.

At the end of this phase, three different datasets were created from the large

original dataset obtained in the first phase of our methodology. We call them Qual-

itative Datasets: FP, AC, and CT. Their annotation protocol is described in Section

5.3.3. It is worth noting that this second phase is essential to answer our Research

Question 1. Our proposal is that by creating this subdivision we will be able to

better evaluate the performance of the models in the task.
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5.2.3 Phase C - Prompt Integration

A prompt is a mix of natural language instructions and media content, such as

an image, designed to give models all the information they need to understand

one request correctly. Prompts allow people without deep knowledge in machine

learning to interact with and benefit from Generative Models. For complex tasks,

such as detecting aggressive content in memes, creating effective prompts is not

simple. It is necessary knowledge, experience, and a lot of experimentation to

understand how a model behaves and guide it to achieve the desired results [134].

Figure 20 shows that we propose to integrate prompts with each meme in the

phase C of our methodology. The prompt is presented in text format and, together

with the meme itself, forms the input for the model. One important point is that we

do not need to extract the text present in the meme image, since Generative Models

can obtain this information directly from the meme. In this paper, we created two

different prompts, both using the Zero-Shot approach [135, 52, 134]. The first has

few words and directly describes our request, while the second presents a more

complex content, incorporating a series of features that inform the model different

aspects that should be taken into account during the classification process. We list

the features incorporated into the second prompt model below.

• Comprehensive Analysis: The prompt guides the model to consider various

aspects of the meme, including textual content, tone, visual elements, cultural

context, and target audience.

• Identification of Aggressive Content: It provides specific criteria for identi-

fying aggressive content, such as offensive language, stereotypes, discrimina-

tion, and attacks on individuals or groups.

• Purpose Evaluation: It prompts the model to consider the purpose of the

meme, whether it is meant for entertainment or if it is intended to attack

someone or something.

• Clear Instructions for Categorization: After analyzing the meme, the prompt

instructs the model to categorize it as either aggressive (Label=1) or non-
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aggressive (Label=0), providing clarity on how to label the content based on

the analysis.

• Emphasis on Importance: The prompt highlights the significance of the task,

emphasizing its contribution to understanding and filtering content for appro-

priateness.

These characteristics form the basis for answering our second research ques-

tion, which is how to best optimize prompts to improve the ability of the models

to effectively detect aggressive content within memes. In our experiments, the two

prompts were used to evaluate the models’ performance. In Section 5.3, we present

the two prompts created to perform this task. Finally, after defining the prompts,

the next phase involves using Generative Models, explained in the next subsection.

5.2.4 Phase D - Generative Models

Generative models are neural networks designed to create new data, such as text

or images, based on patterns learned from existing data. Recent advances in these

models have enabled them to perform complex tasks like generating content, rea-

soning, and understanding language. Below, we describe three key models: GPT-

4V, Gemini, and LLaVA.

• The GPT-4V is an enhanced version of the GPT-4 model, developed by Ope-

nAI. It can process both text and images, making it useful for tasks like image

descriptions, interpreting graphs, and integrating visual and text-based infor-

mation. GPT-4V maintains strong text generation capabilities while adding

visual reasoning.

• Gemini, developed by Google DeepMind, is designed to excel at language tasks

and also integrates data from different sources. It uses reinforcement learning

and supervised learning to improve its performance in more complex tasks.

Gemini is similar to models like GPT-4V but focuses more on integrating in-

formation from various inputs.
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• The LLaVA (Large Language and Vision Assistant) model combines vision and

language processing. It is built to handle tasks that require both image anal-

ysis and text interpretation. LLaVA aligns visual and textual information ef-

fectively, making it strong in tasks that involve visual context, like image de-

scriptions.

Therefore, in the final phase of our methodology, all sets of images and prompts

from each qualitative dataset are used to feed the three Generative Model. In our

experiments, we calculated the following metrics for each model: Accuracy, Preci-

sion, Recall, and F1-Score. This allowed us to compare their performances in each

qualitative dataset.

5.3 Experiments
This section details the experiments performed and shows the results. The main

objective is to evaluate the behavior of the models on perceiving aggressive content

in memes by varying the level of multimodality reasoning demanded. These lev-

els are represented by the qualitative datasets. In Subsection 5.3.1, we detail the

original meme datasets chosen to generate the qualitative datasets, while Subsec-

tion 5.3.2 provides information related to the composition and diversity of these

datasets. In Subsection 5.3.3, we describe the process used by the annotators to

assign each meme to a qualitative dataset. In Subsection 5.3.4, we present the

prompts used in our experiments. Then, in Subsection 5.3.5, we show the results

of the experiments.

5.3.1 Original Memes Datasets

During the experiments, five meme datasets were used to create the qualitative

datasets. They were chosen because they are used in many works, such as those

described throughout this thesis. These datasets are as follows:

• Facebook Harmful Meme (FBHM) [24]: This dataset has over 10,000 memes
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showing different types of aggression against legally protected groups. Each

meme is assigned to just one attack category, making it a binary classification

task. See Figure 21 (a) for an example.

• MultiOFF [127]: It is composed of 743 memes whose content is devoted to the

2016 United States presidential election. These memes are classified as either

offensive or non-offensive. An example is shown in Figure 21 (b).

• Sexist Advertisement Database (SAD) [29]: It is composed of 800 memes with

sexist (and non-sexist) content, labeled based on visual and/or textual as-

pects. Figure 21 (c) shows one example of a meme from this dateset.

• Harm-C [110]: It contains 4793 memes related to COVID-19. These memes

are classified as either offensive or non-offensive. Figure 21 (d) shows one

example.

• Harm-P [110]: This dataset contains 5258 memes also focused on the United

States politics. These memes are classified as either offensive or non-offensive.

One example of an instance from this dataset is shown in Figure 21 (e).

Figure 21 – A sample of aggressive memes extracted from the (a) FBHM, (b) Mul-
tiOFF, (c) SAD, (d) Harm-C, and (e) Harm-P datasets respectively.
Source: Author.
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5.3.2 Datasets Composition and Diversity

It is important to observe that, although FBHM, MultiOFF, SAD, Harm-C, and

Harm-P provide useful resources, their scope, as well as the scope of other memes

datasets, is often narrow and focused on specific topics like politics, public health,

or sexism. Consequently, this leaves significant gaps in other important areas. In

this subsection, we present a more detailed analysis of the datasets used in this

work in terms of sources, diversity and potential biases.

Figure 22 illustrates the proportion of aggressive and non-aggressive content

across the five analyzed meme datasets. It is possible to observe that, as expected,

the datasets are unbalanced. However, aggressive memes constitute the majority

class, accounting for 59.9% of the total content. This higher proportion of aggres-

sive memes is probably the result of bias during the organization of the dataset,

given that, when creating a dataset of aggressive and non-aggressive memes, it

is natural that more focus is given to collecting aggressive instances. Therefore,

the higher proportion of aggressive memes may not reflect the reality observed on

social media.

Figure 22 – Proportion of aggressive and non-aggressive memes across the ana-
lyzed meme datasets.

In addition, these aggressive memes include various types of aggressive or harm-

ful themes, often targeting specific groups or individuals. Figure 23 shows the

distribution of meme content between different categories. The largest portion is
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devoted to Politics, representing 27.8% of the total of aggressive memes, reflecting a

significant focus on political themes. Then, the second highest represented theme

is COVID-19-related, representing 22.2% of the datasets, highlighting the impact

of the pandemic on meme culture. Next, three themes related to harmful content

stand out: Dehumanization, which comprises 18.5% and includes memes that por-

tray individuals or groups as less than human; Aggression against groups, also at

18.5%, encompassing memes targeting specific groups with hostility; and Other

Harmful Content, totaling 9.3% of memes whose harmful content does not fit into

the previous two subcategories. Finally, Sexism is the least represented category,

with 3.7%, composed by memes that perpetuate sexist ideas or stereotypes.

Figure 23 – Considering the expanded classification of aggressive meme content,
this chart illustrates the proportional distribution across six distinct
categories.

This distribution provides insights into the thematic focus of meme datasets and

their potential societal implications. It also highlights the prevalence of potentially

concerns due to low diversity content within memes datasets in general. Moreover,

the quality of the existing datasets is often affected by issues such as cultural bias,

under-representation of certain groups or contexts, and overly simplistic classifi-

cation methods (e.g., labeling content as offensive or not). These limitations can

result in biased analyses, reducing the effectiveness and applicability of models
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trained on these datasets.

This also accentuates the urgent need to increase both the quantity and qual-

ity of datasets in this domain. It is fundamental to incorporate perspectives from

different cultures, languages, and social contexts. In addition, improving annota-

tion processes to address inherent biases, and transparently documenting dataset

limitations are critical steps. These efforts are necessary to develop more reliable,

ethical, and effective systems for analyzing and classifying aggressive memes.

5.3.3 Qualitative Datasets Process of Annotation

From the test split of each one of the five datasets described in the previous subsec-

tions, we randomly selected 60 memes labeled 1 and 60 memes labeled 0. There-

fore, the fused dataset obtained in the phase A of our methodology was composed

of 600 instances. Then, a group of 8 annotators reviewed each aggressive meme

(300 instances) and were asked to assign to them one of the three classes of multi-

modality reasoning to perceive aggressive content in memes, defined in our proto-

col, based on the criteria defined in subsection 5.2.2. The class assigned for each

meme was determined by majority voting among the annotators.

Table 10 – Class-wise data distribution of each original dataset obtained as a re-
sult of the manual annotation process. Columns show how each original
meme dataset contributed to the qualitative datasets in the rows. For
example, the 60 memes randomly chosen from the FBMH dataset re-
sulted in 17 memes for FP, 32 for AC, and 11 for CT.

FBHM MultiOFF SAD Harm-C Harm-P Total
FP 17 10 19 19 9 74
AC 32 44 38 27 39 180
CT 11 6 3 14 12 46

Total 60 60 60 60 60 300

Table 10 depicts the class-wise data distribution of each original dataset ob-

tained after the manual annotation process. In addition, Figure 24 summarizes

the proportion of aggressive instances assigned to each qualitative dataset. Some

observations can be made from this table and figure.

• Most memes (60%) belong to the AC category, meaning aggressive content
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Figure 24 – Data distribution of the 300 aggressive memes obtained after the clas-
sification conducted by the annotators into three qualitative datasets
(FP, AC, and CT). Source: Author

may be observed in only one modality (image or text). Although not the most

challenging group, this class represents a difficult classification task, since

the models need to consider both modalities but also need to be able to focus

their attention to the modality providing the aggressive message.

• The FP category represents 24.7% of the memes, where aggressive content is

clearly visible in both modalities. As previously mentioned, these instances

are expected to be easier for models to identify.

• Only 15.3% of the memes fall into the CT category, the most challenging

group, since neither the image nor the text of the meme in this group show

aggression when considered separately, but they do together. This category re-

quires from machine learning models a comprehensive analysis of both modal-

ities to detect aggression content.

Analyzing these results, it can be concluded that memes demanding tackling

both text and image are the majority, precisely 75% combining AC and CT. This

allow us to confirm that the analysis of the content of a meme must take into

account both modalities to allow capturing the original meaning of the meme’s
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content. On the other hand, the vast majority of memes fall into the AC group,

whose message is clearly conveyed and generate immediate understanding when

observing one of the two modalities individually. It is also important to reinforce

that the CT memes are the minority group. Therefore, based on the results provided

by our annotation process, only in less than 16% of memes the models really need

to be able to tackle multimodal reasoning so as to classify the meme as aggressive.

The next subsections present the characteristics defined and incorporated into the

prompts during our experiments, and the results attained.

5.3.4 Prompts

In Subsection 5.2.3, we explained that two prompts were developed following the

Zero-Shot method. The difference between them is the amount of information

transmitted to the model. Zero-Shot was chosen due to its efficiency in addressing

several tasks, benefits in adaptability, generalization and reduced dependence on

labeled datasets. The two prompts used in our experiments are shown below.

• First Prompt: Please, analyze the meme image provided. After your analysis,

categorize the meme according to its content. Return ONLY THE TEXT ‘Label=1’

if the meme is aggressive and ONLY THE TEXT ‘Label=0’ if it is not aggressive.

• Second Prompt: Please, analyze the meme image provided, consider the text

content, look at the words or phrases in the overlaid text. Check for offensive

language, insults, slander, or any language that could be considered aggres-

sive. Consider the tone of the text. Is it sarcastic, humorous, or does it provoke

a negative emotional response? The tone can help determine whether the meme

is harmless or aggressive. Take into account the cultural context of the meme.

What may be considered harmless in one culture could be offensive in another.

Consider the meme’s target audience and the culture in which it exists. Evalu-

ate the visual image. Is the image itself offensive or aggressive? Does it depict

situations or symbols that might be interpreted as aggressive or disrespectful?

Check if the meme contains stereotypes or discrimination based on race, gen-

der, religion, sexual orientation, or any other characteristic. This can make the
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meme aggressive. Consider whether the meme attacks or ridicules a specific in-

dividual, group, or idea in a way that could cause harm or offense. Ask yourself

what the purpose of the meme is. Is it meant to entertain, or is it attacking some-

one or something? The purpose can help determine if the meme is aggressive.

After your analysis, categorize the meme according to its content. Return ONLY

THE TEXT ‘Label=1’ if the meme is aggressive and ONLY THE TEXT ‘Label=0’

if it is not aggressive. Your task is important as it contributes to understanding

and filtering content for appropriateness.

The second prompt for analyzing memes in an MLLM was developed through

a structured process involving reverse engineering, iterative testing, and refine-

ment to ensure comprehensive meme classification. The approach began with data

collection and reverse engineering, where a diverse dataset of memes, including

aggressive and non-aggressive examples, was analyzed. This dataset covered a

variety of meme structures, tonal variations, cultural contexts, and content cate-

gories, allowing for a detailed breakdown of common linguistic and visual patterns

associated with harmful content. By deconstructing these memes, key features

contributing to aggression were identified, forming the basis for the criteria out-

lined in the prompt. Following this analysis, the core analytical components were

established, ensuring that the MLLM evaluated memes holistically rather than re-

lying solely on textual cues. These components included textual content analysis

to extract and assess language, tone analysis to differentiate between sarcasm and

genuine aggression, cultural sensitivity to account for regional variations in meme

interpretation, visual content inspection to identify offensive imagery, stereotype

and discrimination detection to flag implicit biases, and intent assessment to dis-

tinguish between humor and targeted harassment. Structuring the prompt around

these six key areas provided the MLLM with a systematic and robust framework

for meme analysis. Once the first draft of the prompt was created, an iterative

refinement process was initiated. The initial prompt was tested on an MLLM.

Several issues emerged during testing, leading to multiple refinements. Early it-

erations revealed ambiguity in responses, as the model sometimes provided ex-

planations instead of binary classifications. This issue was resolved by explicitly
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instructing the model to return only Label=1 for aggressive memes and Label=0

for non-aggressive memes. Additionally, the model struggled with sarcasm and

implicit aggression, prompting the inclusion of a directive to evaluate tone, hu-

mor, and emotional responses. Similarly, cultural context misinterpretations were

addressed by specifying that the model should consider the meme’s target audi-

ence and cultural relevance. Another refinement involved improving the model’s

ability to detect image-based aggression, as some harmful memes contained of-

fensive symbols without explicit textual cues. To address this, the prompt was

updated to ensure the evaluation of visual elements alongside textual analysis. Fi-

nally, the model occasionally misclassified satirical memes as aggressive, leading

to the incorporation of an intent-based evaluation criterion, ensuring the meme’s

purpose—whether meant for entertainment or harm—was considered in classifica-

tion. Through this iterative testing and refinement process, the final prompt was

optimized to enhance clarity, precision, and adaptability while maintaining a struc-

tured binary classification output. The development of this prompt through reverse

engineering ensured that the MLLM could effectively analyze memes by consider-

ing text, visuals, cultural awareness, and intent, providing a reliable and scalable

approach for automated content moderation.

5.3.5 Experiments Results

The experiments were conducted according to the methodology described in Figure

20. The results attained are presented in this section grouped by each one of the

three models investigated. It is important to mention that a discussion related to

these results is presented in the next section.

In Table 11 we see a summary of the performances reached by the GPT-4V

model. As expected, the best results were obtained using the second prompt (2nd

P.) in all three qualitative datasets. The superiority of the 2nd P. was especially

evident in FP, where the F1-Score increased from 0.58 to 0.75. Even in the most

difficult dataset (CT), the performance improved, although not as much, with the

use of the 2nd P. This indicates that using more detailed prompts helps the model to
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better deal with the complexity and nuances of perceiving aggressiveness in memes.

Considering the qualitative datasets, the results indicate an order relation between

the performances attained: the best results were obtained in FP (F1-Score 0.75),

the second best in AC (F1-Score 0.65) and the worst values were attained in CT (F1-

Score 0.57). This behavior confirms our hypothesis that the difficulty on detecting

aggressive memes increases as the level of multimodality reasoning necessary to

perceive aggressive content also increases.

Table 11 – Results attained by the GPT-4V model using the 1th and 2nd prompts on
the Qualitative Datasets.

Model FP AC CT
GPT-4V 1th P. 2nd P. 1th P. 2nd P. 1th P. 2nd P.
Accuracy 0.58 0.74 0.60 0.64 0.62 0.58
Precision 0.69 0.73 0.64 0.63 0.67 0.59
Recall 0.50 0.77 0.47 0.66 0.45 0.56
F1-Score 0.58 0.75 0.54 0.65 0.54 0.57

Table 12 – Results attained by the LLaVA model using the 1th and 2nd prompts on
the Qualitative Datasets.

Model FP AC CT
LLaVA 1th P. 2nd P. 1th P. 2nd P. 1th P. 2nd P.
Accuracy 0.62 0.60 0.50 0.54 0.45 0.52
Precision 0.62 0.58 0.50 0.53 0.44 0.51
Recall 0.63 0.70 0.48 0.64 0.32 0.63
F1-Score 0.62 0.63 0.50 0.58 0.37 0.56

The superiority of the 2nd P. is also observed when analyzing the LLaVA, shown in

Table 12. Here, however, the difference was smaller, with the CT dataset present-

ing the highest difference: F1-Score increased from 0.37 to 0.56. Again, the same

order of classification difficulty among the three qualitative datasets was observed.

When comparing GPT-4V to LLaVA, it is possible to see that GPT-4V outperformed

LLaVA, especially when using the 2nd P, across all datasets, with GPT-4V attain-

ing higher accuracy and F1-Score. On the other hand, the difference between the

performances presented by both models decreases as the level of multimodality

increases. The smallest difference is in CT, where both models attained perfor-

mances slightly better than the performance of a method that randomly guesses

the instance label (F1-Score of 0.57 and 0.56 for GPT-4V and LLaVA respectively).
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This suggests that these models do not handle successfully the complexity and

subtlety of aggressive memes when more multimodality reasoning is necessary.

Table 13 – Results attained by the Gemini model using the 1th and 2nd prompts on
the Qualitative Datasets.

Model FP AC CT
Gemini 1th P. 2nd P. 1th P. 2nd P. 1th P. 2nd P.
Accuracy 0.73 0.70 0.60 0.60 0.57 0.57
Precision 0.69 0.64 0.58 0.57 0.56 0.55
Recall 0.85 0.89 0.62 0.74 0.63 0.76
F1-Score 0.76 0.75 0.60 0.65 0.59 0.64

Finally, the results reached by Gemini followed a pattern slightly different, as

shown in Table 13. First, the 2nd P. did not help Gemini to improve its results so

effectively as it was observed in the two previous models. The accuracy rates at-

tained by the models using the prompts were similar, while the F1-Score improved

only 0.05 in AC and CT. However, Gemini performed best overall, outperforming

both LLaVA and GPT-4V in most cases, especially when comparing the F1-Score

rates. This suggests that Gemini may be most effective in detecting different ag-

gressive memes and that it is necessary to design a more detailed prompt to help it

to improve its detection capacity. Finally, even though the F1-Score in CT was bet-

ter, the lowest classification rates were again obtained in this dataset. In the next

section, the obtained results are discussed in details, as well as ethical issues.

5.4 Discussion
The experiments conducted in this chapter revealed several important observa-

tions. When we consider the overall performance, Gemini consistently showed the

best results among the three models, across all datasets and with both types of

prompts. Gemini achieved the highest F1-score, especially on the FP dataset (0.76

using the first prompt and 0.75 with the second prompt). GPT-4V performed very

closely to Gemini, particularly on the FP dataset, where it also achieved F1-Score

of 0.75 with the second prompt. However, its performance on the other datasets,

especially AC, was slightly lower. LLaVA attained the lowest overall performance

among the three models, although it showed improvements when using the second
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prompt, as detailed in Figure 25.

Figure 25 – Bar chart comparing the F1-Scores of GPT-4V, LLaVA, and Gemini
across the three datasets (FP, AC, CT) with two different prompts (1th P.
and 2nd P.). The chart illustrates how each model’s performance varies
depending on the dataset and the prompt used. Source: Author

Considering the impact of the prompts, the second prompt helped to signifi-

cantly improve the performance of all models compared to the first prompt, in-

dicating that providing more detailed instructions helps models to better identify

aggressive content. Despite being less impacted than the other two models, Gem-

ini benefited from the second prompt, with improvements in recall and F1-Score,

particularly on CT. GPT-4V presented improvements with the second prompt es-

pecially on FP, where its F1-Score increased from 0.58 to 0.75. Finally, LLaVA

obtained the most substantial improvements with the second prompt on AC, with

an increase in F1-Score from 0.50 to 0.58. These results are detailed in Figure 26.

Finally, when we consider the performance by varying the dataset, all results

confirm our hypothesis that the difficulty on detecting aggressive memes increases

according to the level of multimodality reasoning necessary to perceive aggressive

content. It is detailed in Figure 27 that on FP, where both the image and text of

the memes are aggressive, Gemini and GPT-4V showed F1-Scores superior to 0.70.

This is a very interesting result, especially taking into account that no training
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Figure 26 – Bar chart illustrating the F1-Score of GPT-4V, LLaVA, and Gemini on
FP, AC, CT datasets using the 1th P. and 2nd P. The chart compares
the performance of each model on the same datasets under different
prompts, highlighting the effectiveness of the second prompt (2nd P.) in
improving the models’ ability to detect aggressive content. The Gemini
model consistently outperforms the other models across all datasets
and prompts. Source: Author

was conducted. In its turn, on AC, where only one element (image or text) is

aggressive, all models reduced their performance, but Gemini and GPT-4V were

able to reach F1-Scores superior to 0.60 using the second prompt. However, on the

most challenging dataset (CT), where the combination of image and text results in

aggressiveness, except for Gemini which attained F1-Score of 0.64 using the second

prompt, the models obtained F-Scores slightly superior to 0.50, which is similar to

random guess.

Therefore, based on our results, all three MLLMs demonstrated the ability to

detect aggressive memes using the Zero-Shot approach, despite showing difficulty

in handling complex multimodal content. In order to better understand the extent

of their ability, we compare their results to the results obtained by a multimodal

model trained using transfer learning. This comparison is presented in the next

subsection.
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Figure 27 – The bar chart shows the F1-Scores of Gemini, GPT-4V, and LLaVA
across the three datasets FP, AC, CT using the two different prompts
(1th P. and 2nd P.). Each bar represents the performance of a model
on a specific dataset and prompt, highlighting the variations in model
effectiveness. Source: Author

5.4.1 Comparing MLLMs with a Specialized Multimodal Model

We compare the results achieved by the MLLMs to those reached by the VisualBERT-

CPB, described in the previous chapter. It is important to mention that this model

was trained in the training split of each one of the five original datasets used to

compose our Qualitative Datasets: FP, AC and CT. Therefore, five trained models

were obtained.

To try to provide a fair comparison with the Generative Models, the following

procedure was performed. Each VisualBERT-CPB was used to make predictions

on the test splits corresponding to data from the Qualitative Datasets. For instance,

the model trained on the FBHM dataset was evaluated in three distinct test splits.

The first associated with FP, consisting of 34 memes (17 labeled as 1 and 17 labeled

as 0); the second split is linked to AC, containing 64 memes; and the third split is

linked to CT, with 22 memes. This approach was applied consistently across the

other four models linked to different datasets. Then, the F1-Score was calculated

considering the results of the five models on each Qualitative Dataset. Moreover,

to simplify the comparison, only the results obtained by Gemini, utilizing the 2nd
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prompt, which demonstrated the best performance among the Generative Models,

are reported here. The comparison is summarized in Table 14.

Table 14 – Comparing F1-Scores attained by Gemini (using the second prompt) and
VisualBERT-CPB across the three Qualitative Datasets: FP, AC, and CT.

F1-Score FP AC CT
Gemini - 2nd Prompt 0.75 0.65 0.64
VisualBERT-CPB 0.79 0.64 0.82

These results reinforce the fact that Generative Models are viable for the task of

meme classification via Zero-Shot. Gemini using the second prompt exhibited com-

petitive performance, particularly on the AC dataset. In terms of FP, VisualBERT-

CPB was only slightly superior. On the other hand, VisualBERT-CPB significantly

outperformed Gemini on the CT dataset. These findings suggest that MLLMs can

be effective in meme classification but also highlight the need to explore more ad-

vanced prompt techniques to allow the multimodal information between the two

modals of the memes to be fully explored and used. Refining prompts or devel-

oping new prompt engineering approaches could potentially increase the accuracy

and robustness of MLLMs in future tasks, leading the methods to be capable of

truly understanding multimodality.

5.5 Limitations and ethical issues
The use of Multimodal Large Language Models (MLLMs) for content moderation

presents significant challenges, particularly in detecting aggressive memes. While

these models offer scalability and automation, their application raises concerns re-

garding ethical implications, fairness, and technical reliability. One of the primary

concerns in deploying MLLMs for content moderation is the risk of bias and cen-

sorship. The presence of false positives, where non-aggressive content is flagged as

harmful, and false negatives, where harmful content goes undetected, can lead to

disproportionate restrictions on free speech or the unchecked spread of offensive

material. Automated systems may mistakenly flag satirical, artistic, or politically

critical memes as aggressive, leading to unjustified content removal. Additionally,

memes often rely on coded language or cultural nuances that are difficult for mod-
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els to interpret, allowing harmful content to bypass detection. MLLMs also inherit

biases present in their training datasets, leading to discriminatory moderation that

disproportionately impacts certain groups or ideologies, perpetuating systemic in-

equalities, particularly in politically or culturally sensitive contexts.

The reliance on opaque moderation algorithms raises questions about trans-

parency and accountability. Users often have limited insight into why content is

removed, and the lack of a clear appeals process can result in arbitrary or unfair

decisions. Given the increasing use of MLLMs in moderation, there is a growing

need for ethical guidelines that prioritize fairness, explainability, and user rights.

Despite their advanced multimodal capabilities, MLLMs still face significant limi-

tations in reasoning about complex or highly contextualized memes. Experimental

results reinforce these challenges, with the best-performing model, Gemini, achiev-

ing only a 0.64 F1-score on the CT dataset. This low score suggests that MLLMs

struggle with nuanced multimodal reasoning, particularly in cases where the text

and image components must be interpreted together to determine aggression, the

meme relies on sarcasm, cultural references, or implicit messages that cannot be

easily mapped to explicit rules, or the model encounters ambiguous or edge-case

content that even human moderators may struggle to classify.

A key difficulty in evaluating MLLMs is the lack of a standardized benchmark

that accurately captures multimodal reasoning complexity. Many existing datasets

focus on explicitly aggressive language, but memes often require higher-order in-

ference skills, including an understanding of historical references, humor, and so-

cial dynamics. Without structured evaluation metrics, it is difficult to determine

whether a model’s failure is due to a lack of knowledge, reasoning errors, or dataset

biases. Given these limitations, it is evident that MLLMs alone cannot ensure fully

reliable moderation. Over-reliance on automated systems introduces operational

risks, including the misclassification of sensitive content, as false positives and

false negatives can result in legal and reputational risks for platforms implementing

MLLM-based moderation. Additionally, users may intentionally design memes that

exploit model weaknesses, bypassing moderation rules through subtle modifica-

tions in text or imagery. There is also a trade-off between scalability and accuracy,

as while MLLMs can process large volumes of content efficiently, their inability to
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fully understand context necessitates a hybrid approach that integrates human

moderation.

To mitigate these risks, human-AI collaboration in content moderation is essen-

tial. A hybrid model, where MLLMs assist human moderators rather than replace

them, can help ensure more accurate and context-aware decisions. Transparent

reporting mechanisms, appeals processes, and continuous model evaluation are

crucial to maintaining trust and fairness in automated content moderation. While

MLLMs present great potential for detecting aggressive content in complex formats

like memes, their deployment must be carefully managed to avoid unintended cen-

sorship, bias, and misclassification. Achieving a balance between safety and free-

dom of expression requires not only technological advancements but also ethical

guidelines and collaboration among platforms, governments, and civil society.

5.6 Final Remarks
This study investigated the ability of three leading Generative Models, specifically,

GPT-4V, Gemini, and LAaVA, to identify aggressive content in memes. To achieve

this, we selected a diverse dataset of memes collected from five different sources.

These memes were then categorized into three Qualitative Datasets based on their

levels of multimodality reasoning necessary to perceive aggressive content. The

Qualitative Datasets were obtained by manual annotation conducted by 8 different

annotators. We developed two prompts using the Zero-Shot technique—the first

being simpler and the second being more complex, incorporating key features that

aided the models in the classification process. Our results demonstrate the sig-

nificant potential of Generative Models in detecting aggressive content in memes.

However, all three methods showed difficulty in dealing with high levels of multi-

modality reasoning, since they reached low classification rates on the most chal-

lenging Qualitative Dataset.

Moreover, we acknowledge the inherent limitations of relying solely on auto-

mated detection of aggressive content in memes, and advocate a hybrid approach.

This approach could combine the efficiency of Generative Models with the judg-
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ment of human experts, ensuring higher transparency, accountability, and trust

in the detection process. This research not only highlights the feasibility of using

Generative Models for this challenging task, but also emphasizes the importance of

a careful implementation to address ethical issues.

The scope of this study was intentionally limited to prioritize the establishment

of a robust methodology and the identification of key prompt characteristics that

allow the models to be used at different levels of meme multimodality. Similarly,

while we evaluated three top-performing models in their respective categories, our

focus was not on creating a definitive classification of all existing models. Rather,

we focused on developing a methodology that can be used in future classification

efforts and adaptable to multiple tasks beyond aggressive meme detection.

The next chapter presents the final conclusions of this thesis.
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6 Conclusion

This thesis focused on expanding knowledge and improving the ability to detect

harmful content in memes, a complex but critical task in the online environment

today. Our initial study, “Detecting Hate Speech in Memes: a Review” provided a

comprehensive overview of the latest methods, introducing a specific taxonomy for

hateful meme detection techniques. This structure enables consistent evaluation

of methods and results, identifying strengths and gaps in existing approaches. Ad-

ditionally, the critical analysis offers a solid foundation for future research by high-

lighting emerging trends and challenges in hate speech detection within memes.

The second contribution, “Adding Compact Parameter Blocks to Multimodal

Transformers to Detect Harmful Memes” sought to improve the accuracy of multi-

modal models by incorporating Compact Parameter Blocks (CPBs) into the Trans-

former architecture. This modification not only reduced the processing burden on

attention mechanisms but also strengthened the model’s capacity to identify nu-

anced multimodal signals within harmful memes, proving to be an effective strategy

for enhancing detection accuracy.

Finally, the study “Exploring the Performance of Generative Models in Detecting

Aggressive Content in Memes” explored the potential of Multimodal Large Language

Models in detecting aggressive content in memes when the levels of multimodality

reasoning necessary to classify the meme are varied. By employing prompt en-

gineering, these models were optimized for multimodal analysis, demonstrating a

competitive performance in identifying aggression in memes, especially those with

moderate or low multimodal complexity. The research indicated that, compared to

specialized models, Generative Models can be competitive in the task of detecting

memes with aggressive content as long as the multimodality reasoning level re-

quired is not very high. Moreover, these results also show that it is possible to use

these models in more refined and inclusive moderation tools.

Together, these contributions advance the state-of-the-art in harmful meme de-

tection, providing a robust theoretical foundation, and introducing innovative prac-

tical approaches. These advancements are important to contribute in providing a



6.1. FUTURE WORKS 114

safer online environments while keeping the principle of freedom of expression.

6.1 Future Works
Future research can improve the detection of harmful memes by adding context

and cultural understanding, making models more accurate for different audiences.

Developing tools that distinguish between humor and harmful intent will help in

detecting subtle aggression. Furthermore, creating real-time moderation tools us-

ing multimodal analysis could allow quicker responses to harmful content. Ad-

dressing issues like model transparency and data privacy will be essential as de-

tection methods advance, with the aim of creating a safer and more inclusive online

environment.

Our future research will be divided into two distinct areas of investigation. The

first will concentrate on refining the efficacy of CPBs, encompassing a thorough

examination of potential modifications to the fundamental CPB architecture, an

assessment of the optimal place for the block within the original models, and an

exploration of the potential benefits of incorporating multiple blocks, either with

uniform or diverse attributes, into a single model.

The second area is focused on Generative Models and their performance in the

context of harmful content detection within memes. Our research will investi-

gate how to generalize the identified prompt characteristics to other prompting

techniques for broader applicability across multiple models. Furthermore, we will

refine the methodology to create Qualitative Datasets by expanding segmentation

criteria, exploring different meme categories by considering groupings other than

aggressiveness, and analyzing the model’s behavior in more specific contexts.
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