
FEDERAL UNIVERSITY OF AMAZONAS - UFAM

INSTITUTE OF COMPUTING - ICOMP

POSTGRADUATE PROGRAM IN INFORMATICS - PPGI

A Catalog of Micro Frontends Anti-patterns

Nabson Paiva Souza da Silva

Manaus - AM

2025

Nabson Paiva Souza da Silva

A Catalog of Micro Frontends Anti-patterns

Master’s Thesis submitted for evaluation as a par-
tial requirement for obtaining the title of Master
of Science in Computer Science from the Graduate
Program in Computer Science, Institute of Com-
puting.

Supervisor

Prof. Dr. Tayana Uchôa Conte

Federal University of Amazonas - UFAM

Institute of Computing - IComp

Manaus - AM

2025

Ficha Catalográfica

Elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

 A Catalog of Micro Frontends Anti-patterns / Nabson Paiva Souza da
Silva. - 2025.
 301 f. : il., color. ; 31 cm.

 Orientador(a): Tayana Uchôa Conte.
 Dissertação (mestrado) - Universidade Federal do Amazonas, Programa
de Pós-Graduação em Informática, Manaus, 2025.

 1. Micro frontends. 2. Anti-patterns. 3. Software Architecture. 4.
Microservices. I. Conte, Tayana Uchôa. II. Universidade Federal do
Amazonas. Programa de Pós-Graduação em Informática. III. Título

S586c Silva, Nabson Paiva Souza da

Ministério da Educação
Universidade Federal do Amazonas

Coordenação do Programa de Pós-Graduação em Informática

FOLHA DE APROVAÇÃO

"A CATALOG OF MICRO FRONTENDS ANTI-PATTERNS"

NABSON PAIVA SOUZA DA SILVA

Dissertação de Mestrado defendida e aprovada pela banca examinadora constituída pelos Professores:

Profa. Dra. Tayana Uchôa Conte - PRESIDENTE

Prof. Dr. Márcio de Medeiros Ribeiro - MEMBRO EXTERNO

Prof. Dr. Igor Fábio Steinmacher - MEMBRO EXTERNO

MANAUS, 25 de junho de 2025.

Documento assinado eletronicamente por Márcio de Medeiros Ribeiro , Usuário Externo, em 30/06/2025, às
10:56, conforme horário oficial de Manaus, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de
outubro de 2015.

Documento assinado eletronicamente por Igor Fabio Steinmacher, Usuário Externo, em 30/06/2025, às 15:57,
conforme horário oficial de Manaus, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de
2015.

Documento assinado eletronicamente por Tayana Uchoa Conte, Professor do Magistério Superior , em
02/07/2025, às 12:03, conforme horário oficial de Manaus, com fundamento no art. 6º, § 1º, do Decreto nº 8.539,
de 8 de outubro de 2015.

Anexo 2650311 SEI 23105.026557/2025-64 / pg. 1

A autenticidade deste documento pode ser conferida no site https://sei.ufam.edu.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador 2650311 e o código
CRC 36C8893F.

Avenida General Rodrigo Octávio, 6200 - Bairro Coroado I Campus Universitário Senador Arthur Virgílio Filho,
Setor Norte - Telefone: (92) 3305-1181 / Ramal 1193

CEP 69080-900, Manaus/AM, coordenadorppgi@icomp.ufam.edu.br

Referência: Processo nº 23105.026557/2025-64 SEI nº 2650311

Anexo 2650311 SEI 23105.026557/2025-64 / pg. 2

I dedicate this work to my parents, whose strength,

dedication, and constant support have taught me the true

meaning of perseverance and commitment.

ACKNOWLEDGEMENTS

I thank my family for their unwavering support and encouragement. Christian Silva,

thank you for always standing by my side and being the perfect husband. Francinilda

Silva, thank you for always guiding me along the right path and being such a loving

mother. Rubem Silva, thank you for your patience in raising me and for being a so

protective and worrying father. Natália Ferreira, thank you for being the older sister

who always believed in me and never let me give up. Raykennedy Ferreira, thank

you for being the brother who was always available to help. Anna Letícia Ferreira and

Mannuela Ferreira, thank you for being the best nieces ever and always brightening my

day. Ana Cila Souza and Ana Carolina Souza, thank you for embracing me as part of

your family. Nadir Paiva (in memoriam), thank you for all the love you gave me during

my childhood.

I thank all the friends I have made throughout my entire academic journey. My

undergraduate fellows: Marcos Lopes, Fernando Nogueira, Bianca Dias, and specially

João Lucas Fernandes, who helped me during the web application implementation. To

my companions in the Usability and Software Engineering (USES) Research Group,

especially Eriky Rodrigues, Ayumi Santana, Reine Santos, João Bernardo, Lennon

Chaves, Lucas Araújo, and Marcia Lima. To the friends I have made in life: Alenka

Rocha, Nailson Filho, and Gustavo Gomes. To the researchers who collaborated in some

of the studies presented in this Thesis: Eriky Rodrigues and Matheus de Oliveira.

I am deeply grateful to my supervisor, Prof. Dr. Tayana Conte, for her invaluable

guidance and support throughout my academic journey. Your dedication and care in

teaching me how to be a researcher, professor, and advisor have inspired me to always

strive for excellence. As I always say, thank you for your unwavering belief in me.

Finally, I thank Prof. Dr. Igor Steinmacher and Prof. Dr. Márcio Ribeiro for

accepting the invitation to serve on this Master’s Thesis Committee. I also sincerely

thank Prof. Dr. Bruno Gadelha and Prof. Dr. Sheila Reinehr for agreeing to serve as

alternate members. Your contributions to Software Engineering are genuinely inspiring,

and it is an honor to have you as part of this important milestone in my academic

journey.

This study was financed in part by the Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. This work was partially

supported by Amazonas State Research Support Foundation - FAPEAM - through the

POSGRAD project.

The best preparation for tomorrow is doing your best today.

H. Jackson Brown, Jr.

A Catalog of Micro Frontends Anti-patterns

Author: Nabson Paiva Souza da Silva

Supervisor: Prof. Dr. Tayana Uchôa Conte

Abstract

Micro frontend (MFE) is an architectural style derived from Microservices (MS) that

decomposes a monolithic frontend application into smaller, manageable, and indepen-

dently deployable slices. Despite its increasing adoption, the field remains relatively

underexplored, particularly in terms of identifying challenges and documenting best

practices. Therefore, the goal of this Master’s Thesis is to propose and evaluate an

artifact that supports developers in implementing MFE architectures. We introduce a

catalog of MFE anti-patterns that document common problems and practical solutions.

The initial version of the catalog was developed based on established MS anti-patterns

and real-world issues. To verify the prevalence of these anti-patterns in MFE architec-

tures and assess whether the proposed solutions effectively address them, we conducted

a Personal Opinion Survey with industry practitioners. Additionally, we developed a

web application designed to showcase the anti-patterns and foster collaboration within

the MFE community. Furthermore, we ran a controlled experiment to compare the cata-

log with practitioner-provided examples and guidelines in solving MFE maintenance

challenges, assessing how students used the catalog and whether it enhanced their

perceived learning. Finally, we performed a Multivocal Literature Review to expand the

catalog by adding anti-patterns proposed in grey literature sources. After each study,

we refined the catalog to produce a final version that helps developers identify, solve,

and prevent problems when working with MFE architectures. The contributions of

this Thesis include centralized documentation of common issues and solutions when

developing MFE architectures, empirical evidence on how the catalog can be used, a

web application that showcases the anti-patterns and promotes collaboration within

industry practitioners, and the development of MFE teaching material that instructors

can integrate into software architecture curricula. We believe that the results of this

work have the potential to drive significant advances in both the practice and theory of

MFE, helping shape future research and improve industry adoption. As part of future

work, we aim to evaluate its utility in supporting practitioners as they evolve real-world

MFE architectures and explore automated anti-pattern detection tools.

Keywords: Micro frontends, Anti-patterns, Software Architecture, Microservices.

A Catalog of Micro Frontends Anti-patterns

Author: Nabson Paiva Souza da Silva

Supervisor: Prof. Dr. Tayana Uchôa Conte

Resumo

Micro frontends (MFE) são um estilo arquitetural derivado de microsserviços (MS)

que decompõe uma aplicação frontend monolítica em partes menores, gerenciáveis

e implantáveis de forma independente. Apesar da adoção crescente, o campo ainda

é relativamente pouco explorado, especialmente no que diz respeito à identificação

de desafios e à documentação de boas práticas. Portanto, o objetivo desta dissertação

de mestrado é propor e avaliar um artefato que apoie desenvolvedores na implemen-

tação de arquiteturas MFE. Apresentamos um catálogo de anti-padrões de MFE que

documenta problemas comuns e soluções práticas. A versão inicial do catálogo foi

desenvolvida com base em anti-padrões de MS consolidados e problemas observados

na prática. Para verificar a prevalência desses anti-padrões em arquiteturas MFE e

avaliar se as soluções propostas os resolvem efetivamente, conduzimos um survey com

profissionais da indústria. Além disso, desenvolvemos uma aplicação web projetada

para apresentar os anti-padrões e fomentar a colaboração na comunidade de MFE. Tam-

bém realizamos um experimento controlado para comparar o catálogo com exemplos

e diretrizes fornecidos por profissionais, avaliando como os estudantes utilizaram o

catálogo e se ele contribuiu para sua percepção de aprendizado. Por fim, realizamos

uma Revisão Multivocal da Literatura para expandir o catálogo, incorporando anti-

padrões propostos em fontes de literatura cinzenta. Após cada estudo, refinamos o

catálogo para produzir uma versão final que auxilia desenvolvedores a identificar, re-

solver e prevenir problemas ao trabalhar com arquiteturas MFE. As contribuições desta

dissertação incluem a documentação centralizada de problemas e soluções comuns

no desenvolvimento de MFE, evidências empíricas sobre o uso do catálogo, uma apli-

cação web que apresenta os anti-padrões e promove a colaboração entre profissionais

da indústria, e o desenvolvimento de materiais didáticos sobre MFE que podem ser

integrados a disciplinas de arquitetura de software. Acreditamos que os resultados

deste trabalho têm potencial para gerar avanços significativos tanto na prática quanto

na teoria de MFE, contribuindo para pesquisas futuras e para a adoção da arquitetura

na indústria. Como trabalho futuro, pretendemos avaliar a utilidade do catálogo no

apoio a profissionais na evolução de arquiteturas MFE reais e explorar ferramentas de

detecção automática de anti-padrões.

Palavras-chave: Micro frontends, Anti-padrões, Arquitetura de Software, Microsserviços.

LIST OF FIGURES

Figure 1 – Diagram illustrating the research methodology based on Mafra, Barce-

los & Travassos (2006). Blue rounded items show what we made after

each step. 33

Figure 2 – Diagram exemplifying the composition of a fragment in a screen in

each composition approach. 39

Figure 3 – The three forms of communication in MFEs: (1) Parent to Fragment:

communication initiated by the parent (screen) towards a specific

MFE fragment; (2) Fragment to Parent: communication initiated by a

fragment back to the screen; and (3) Fragment to Fragment: commu-

nication directly between different fragments. 40

Figure 4 – Number of papers returned on the ACM Digital Library. 48

Figure 5 – Number of papers returned on the IEEE Xplore Library. 49

Figure 6 – Number of papers returned on the Google Scholar. 49

Figure 7 – Advanced search in Google Scholar. 50

Figure 8 – Process followed to propose and refine the MFE anti-patterns. 63

Figure 9 – Pie chart illustrating responses to the question: “Are you currently

working with Micro Frontends?”. 68

Figure 10 – Pie chart illustrating responses to the question: “How much profes-

sional experience do you have with Micro Frontends?”. 68

Figure 11 – Bar chart presenting the responses to the question: “What type of role

do you play or have you played when working with Micro Frontends?”. 69

Figure 12 – Boxplot illustrating the harmfulness ratings for each anti-pattern. . . 71

Figure 13 – Resulting themes and meta-themes from the Thematic Analysis on

practitioners feedback. 72

Figure 14 – Cyclic communication between fragments on the same screen. 79

Figure 15 – Communication between fragments using an Event Store. 79

Figure 16 – MFE-A is a central point (Hub) of dependency between the other MFEs. 81

Figure 17 – Home screen is a screen with several fragments, and when Fragment

B raises an error, the entire screen becomes unavailable. 82

Figure 18 – When Fragment B raises an error, an user-friendly fallback message

is rendered so the entire screen remains available. 83

Figure 19 – Home screen of the catalog’s web application. 89

Figure 20 – Search results screen of the catalog’s web application. 90

Figure 21 – Example of the anti-patterns details screen of the catalog’s web appli-

cation. 90

Figure 22 – About screen of the catalog’s website. 91

Figure 23 – Timeline of the experiment execution. 97

Figure 24 – Timeline of the experiment execution. 100

Figure 25 – Boxplots presenting the data distribution on the assessment samples. 105

Figure 26 – Boxplots presenting the data distribution on the perceived learning

before and after engaging with the MFE anti-patterns catalog. 107

Figure 27 – Responses for each sentence in the Perceived Usefulness construct. . 108

Figure 28 – Responses for each sentence in the Perceived Ease Of Use construct. 109

Figure 29 – Responses for each sentence in the Behavioral Intention construct. . . 109

Figure 30 – Responses for each sentence related to the catalog’s utility for learning.110

Figure 31 – To allow physical products payment, optional physical product-specific

attributes are added and digital product-specific attributes become

optional. 116

Figure 32 – General product attributes are non-optional and create optional generic

attributes that can be used by any type of product. 117

Figure 33 – Page from (ANTUNES et al., 2024) with components as MFE, config-

uring nano frontends. 118

Figure 34 – Mega frontend break into two MFEs. 119

Figure 35 – CI and CD cycle. Source: <https://www.abtasty.com/resources/

ci-cd/> . 120

Figure 36 – Micro Frontends and Microservices grouped in cross-functional teams

defined by domain. 121

Figure 37 – Mental map summarizing all references of the Dependent Deploy

Anti-pattern. 131

Figure 38 – Search and selection process. 132

Figure 39 – Scatter plot showing the distribution of publications by type and year. 134

Figure 40 – Final set of MFE anti-patterns from the MLR. New anti-patterns are

marked with a plus symbol (+) and updated ones with an asterisk (*). 135

Figure 41 – Intersections between publications considering the final anti-patterns. 136

Figure 42 – Pie chart showing the distribution of author profiles. 139

Figure 43 – Anti-pattern details page on the web application presenting the Hub-

like Dependency in the new template. 152

Figure 44 – Page with a presentation explaining what micro frontends are. 153

Figure 45 – MFEs with non centralized log stream by Rappl (2024). 154

Figure 46 – Access to different domains through a Federated API. Source: Wessels

(2020). 156

Figure 47 – Unidirectional data flow following the Model-View-Intent (MVI) pat-

tern. 157

Figure 48 – Micro Frontends and Microservices grouped in cross-functional teams

defined by domain. 159

Figure 49 – Cyclic communication between fragments on the same screen. 160

Figure 50 – Communication between fragments using an Event Store. 161

Figure 51 – Wrapper component as a solution to extended libraries. 162

Figure 52 – MFE-A is a central point (Hub) of dependency between the other MFEs.170

Figure 53 – Home screen is a screen with several fragments, and when Fragment

B raises an error, the entire screen becomes unavailable. 171

https://www.abtasty.com/resources/ci-cd/
https://www.abtasty.com/resources/ci-cd/

Figure 54 – When Fragment B raises an error, an user-friendly fallback message

is rendered so the entire screen remains available. 171

Figure 55 – To allow physical products payment, optional physical product-specific

attributes are added and digital product-specific attributes become

optional. 173

Figure 56 – Mega frontend break into two MFEs. 175

Figure 57 – Page from a diagram editing platform with components as MFE,

Nano Frontends. 179

Figure 58 – CI and CD cycle. Source: <https://www.abtasty.com/resources/

ci-cd/> . 180

Figure 59 – Black box pattern to avoid one MFE for all. 182

Figure 60 – Anti-corruption layer to connect to legacy systems. 185

Figure 61 – My profile screen of mfe-users. 206

Figure 62 – Personal data screen of mfe-users. 206

Figure 63 – Login screen of mfe-security. 207

Figure 64 – Two-factor authentication screen of mfe-security. 207

Figure 65 – Products sale screen of mfe-store. 208

Figure 66 – History screen of mfe-store. 208

Figure 67 – Product details screen of mfe-store. 209

Figure 68 – Recommended products fragment of mfe-store. 209

Figure 69 – Purchases screen of mfe-purchase. 210

Figure 70 – Cart screen of mfe-purchase. 210

Figure 71 – Search screen of mfe-search. 211

Figure 72 – Home screen of mfe-search. 211

Figure 73 – Profile screen of mfe-users. 213

Figure 74 – Login screen of mfe-security. 214

Figure 75 – First screen of sign up of mfe-security. 215

Figure 76 – Card invoices screen of mfe-cards. 216

Figure 77 – Limits screen of mfe-cards. 217

Figure 78 – Current card invoice screen of mfe-cards. 218

https://www.abtasty.com/resources/ci-cd/
https://www.abtasty.com/resources/ci-cd/

Figure 79 – Account statement screen of mfe-digital-account. 219

Figure 80 – Account balance screen of mfe-digital-account. 220

Figure 81 – Pix transfer screen of mfe-digital-account. 221

Figure 82 – Loans list screen of mfe-loan. 222

Figure 83 – Loan details screen of mfe-loan. 223

Figure 84 – Loan section fragment of mfe-loan. 223

Figure 85 – Investments list screen of mfe-investment. 224

Figure 86 – Investment details screen of mfe-investment. 225

Figure 87 – Loan section fragment of mfe-investment. 225

Figure 88 – Home screen of mfe-home. 226

Figure 89 – Meli+ Offer Screen: The screen displays the benefits and available

subscription plans. 228

Figure 90 – Subscription Terms and Conditions Screen: The screen shows the

terms and conditions required for the subscription. 228

Figure 91 – Offer Component with Details: This component should be displayed

on the homepage, showing detailed information about the offer. . . . 229

Figure 92 – Simple Offer Component: This component should be displayed in the

user account menu, providing an overview of the offers. 229

Figure 93 – Offer Component for the Header: This component should be dis-

played in the header, highlighting the current offer. 230

Figure 94 – Plan Selection Modal: A modal that allows the user to choose the

desired subscription plan. 230

Figure 95 – Screen showing the list of all favorite items and the user’s product

lists: This screen displays all the favorite items and the product lists

created by the user. 231

Figure 96 – Screen showing products belonging to a specific list: This screen

presents the products that are part of a specific user-created list. . . . 231

Figure 97 – Button to add a product to a list: This button opens a modal allowing

the user to choose which list they want to add the product to or create

a new list. 232

Figure 98 – Modal to create a new list: This modal allows the user to create a new

product list. 232

Figure 99 – Main Screen of NuCoin. 235

Figure 100 – Screen showing NuCoin balance statement. 236

Figure 101 – Screen detailing raffles of NuCoin. 237

Figure 102 – Screen with benefits of NuCoin. 238

Figure 103 – Screen to choose what to charge to the credit. 239

Figure 104 – Screen showing purchases that can be paid in installments. 240

Figure 105 – Fragment with the option to parcel a Pix payment. 240

LIST OF TABLES

Table 1 – Architects Don’t Code Anti-pattern (BRADA; PICHA, 2019) 42

Table 2 – Summary of papers retrieved from Google Scholar 51

Table 3 – MS anti-patterns used to propose the MFE anti-patterns. 52

Table 4 – Summary of the survey participants’ characterization. 67

Table 5 – Overall results from quantitative analysis ranked by harmfulness score. 70

Table 6 – MFE sessions’ content. 98

Table 7 – Adapted TAM constructs and the sentences related to the catalog’s

utility for learning. 102

Table 8 – Summary of the experiment’s participants’ characterization. 104

Table 9 – Quality Assessment checklist for Grey Literature publications. 128

Table 10 – Quality Assessment checklist for Grey Literature publications. 130

Table 11 – Selected publications. 133

Table 12 – Anti-patterns original names and references. 137

LIST OF ABBREVIATIONS AND ACRONYMS

CDN Content Delivery Network

CSC Client–side Composition

DDD Domain–driven Design

DoD Definition of Done

EC Exclusion Criteria

ESC Edge–side Composition

ESI Edge Side Include

GT Grounded Theory

IC Inclusion Criteria

ICR Intercoder Reliability

MFE Micro Frontend

MS Microservice

POC Proof–of–concept

RQ Research Question

RR Rapid Review

SEO Search Engine Optimization

SLR Systematic Literature Review

SSC Server–side Composition

UI User Interface

UX User Experience

CONTENTS

1 INTRODUCTION . 30

1.1 Research Objectives . 32

1.2 Research Methodology . 32

1.3 Organization . 34

2 BACKGROUND . 36

2.1 Microservices . 36

2.2 Micro frontends . 37

2.3 Anti-patterns . 40

2.4 Related work . 42

3 PROPOSAL OF A MICRO FRONTENDS ANTI-PATTERNS CAT-

ALOG . 46

3.1 Rapid Review . 46

3.1.1 Search Protocol . 47

3.1.2 Conducting the Rapid Review . 48

3.1.2.1 ACM Digital Library . 48

3.1.2.2 IEEE Xplore . 48

3.1.2.3 Google Scholar . 49

3.1.3 Results . 51

3.2 Initial version of the catalog . 52

3.2.1 Cyclic Dependency . 53

3.2.2 Knot Micro Frontend . 54

3.2.3 Hub-like Dependency . 55

3.2.4 Nano Frontend . 55

3.2.5 Mega Frontend . 56

3.2.6 Micro Frontend Greedy . 56

3.2.7 No CI/CD . 57

3.2.8 No Versioning . 57

3.2.9 Lack of skeleton . 58

3.2.10 Common Ownership . 59

3.2.11 Golden Hammer . 59

3.2.12 Micro Frontend as the goal . 60

4 CATALOG IMPROVEMENT BASED ON PRACTITIONER’S FEED-

BACK . 62

4.1 Study Design . 62

4.2 Results . 66

4.2.1 Participants’ Characterization . 66

4.2.2 Quantitative Analysis . 68

4.2.3 Thematic Analysis . 72

4.3 Discussion . 75

4.4 Threats to validity . 76

4.5 Improved catalog based on practitioners’ feedback 78

4.5.1 Cyclic Dependency . 78

4.5.2 Knot Micro Frontend . 80

4.5.3 Hub-like Dependency . 81

4.5.4 Nano Frontend . 82

4.5.5 Mega Frontend . 83

4.5.6 Micro Frontend Greedy . 84

4.5.7 No CI/CD . 85

4.5.8 No Versioning . 85

4.5.9 Lack of Skeleton . 86

4.5.10 Common Ownership . 87

4.5.11 Golden Hammer . 88

4.6 Catalog’s web application . 89

5 STUDENT FEEDBACK ON THE CATALOG AND ITS CONTRI-

BUTION FOR LEARNING . 92

5.1 Study Design . 93

5.1.1 Goal and Research Questions . 93

5.1.2 Planning . 94

5.1.2.1 Context Selection . 94

5.1.2.2 Variable selection . 95

5.1.2.3 Hypothesis formulation . 95

5.1.2.4 Selection of subjects . 95

5.1.2.5 Experiment design . 96

5.1.2.6 Instrumentation . 97

5.1.3 Execution . 98

5.1.4 Analysis and Interpretation . 101

5.2 Results . 103

5.2.1 Participants’ Characterization . 103

5.2.2 RQ1: Supporting Materials Comparison 105

5.2.3 Perceived learning Difference . 106

5.2.4 How students used the catalog . 107

5.2.4.1 TAM and learning statements analysis . 107

5.2.4.2 Qualitative feedback analysis . 110

5.3 Discussion . 112

5.4 Threats to validity . 113

5.5 Improved catalog based on students’ feedback 115

5.5.1 Knot Micro Frontend . 116

5.5.2 Nano Frontend . 117

5.5.3 Mega Frontend . 119

5.5.4 No CI/CD . 120

5.5.5 Common Ownership . 121

6 CATALOG EXPANSION THROUGH A MULTIVOCAL LITERA-

TURE REVIEW . 123

6.1 MLR Protocol . 124

6.1.1 Goal and Research Questions . 124

6.1.2 Search String . 124

6.1.3 Sources . 125

6.1.4 Selection Criteria . 126

6.1.5 Search and Selection Process . 126

6.1.5.1 First Filter . 127

6.1.5.2 Quality Assessment . 127

6.1.5.3 Second Filter . 129

6.1.6 Data Extraction . 129

6.1.7 Data Synthesis . 130

6.2 Results . 131

6.2.1 Selected publications . 131

6.2.2 Publications overview . 132

6.2.3 RQ1: Which Micro Frontends anti-patterns have been proposed

in White and Grey Literature? . 133

6.2.4 RQ2: How are Micro Frontends anti-patterns classified? 138

6.2.5 RQ3: Are the proposed Micro Frontend anti-patterns grounded

in theory or based on professional experience? 138

6.2.6 RQ4: What is the profile of the authors who propose Micro

Frontend anti-patterns in Grey Literature? 139

6.3 Discussion . 139

6.4 Threats to Validity . 141

6.5 Catalog’s improvement . 142

6.5.1 Avoiding observability . 142

6.5.2 Access to different domains . 143

6.5.3 Bidirectional Data Flow . 143

6.5.4 Chatty Micro Frontends . 144

6.5.5 Dependent deployment . 144

6.5.6 Dismissing human factors . 145

6.5.7 Distributed Data Inconsistency . 145

6.5.8 Framework Frenzy . 145

6.5.9 Global state communication . 145

6.5.10 Nano Frontend . 146

6.5.11 One Micro Frontend for all . 146

6.5.12 Partial UI Migration . 146

6.5.13 Spaghetti Architecture . 147

6.5.14 Unmediated Legacy Integration . 147

7 FINAL CATALOG . 149

7.1 Template evolution . 149

7.2 Web application evolution . 151

7.3 The Final Micro Frontends Anti-patterns Catalog 153

7.3.1 Avoiding observability . 153

7.3.2 Access to different domains . 154

7.3.3 Bidirectional Data Flow . 155

7.3.4 Chatty Micro Frontends . 157

7.3.5 Common Ownership . 158

7.3.6 Cyclic Dependency . 159

7.3.7 Dependency hell . 161

7.3.8 Dependent deployment . 163

7.3.9 Dismissing human factors . 164

7.3.10 Distributed Data Inconsistency . 165

7.3.11 Framework Frenzy . 166

7.3.12 Global state communication . 167

7.3.13 Golden Hammer . 168

7.3.14 Hammering APIs . 169

7.3.15 Hub-like Dependency . 170

7.3.16 Knot Micro Frontend . 172

7.3.17 Lack of Skeleton . 173

7.3.18 Mega Frontend . 174

7.3.19 Micro Frontends Greedy . 175

7.3.20 Micro Frontend as the goal . 176

7.3.21 Nano Frontend . 177

7.3.22 No CI/CD . 178

7.3.23 No Versioning . 180

7.3.24 One Micro Frontend for all . 181

7.3.25 Partial UI Migration . 182

7.3.26 Spaghetti Architecture . 183

7.3.27 Unmediated Legacy Integration . 184

8 FINAL CONSIDERATIONS . 186

8.1 Research Overview . 186

8.2 Contributions . 188

8.3 Future Work . 189

References . 191

APPENDIX A SURVEY THEMATIC ANALYSIS 198

APPENDIX B CONTROLLED EXPERIMENT OBJECTS 204

B.1 Object 1 - Mercado Livre . 204

B.1.1 mfe-users . 205

B.1.2 mfe-security . 206

B.1.3 mfe-store . 207

B.1.4 mfe-purchase . 209

B.1.5 mfe-search . 210

B.1.6 mfe-home . 211

B.2 Object 2 - Nubank . 212

B.2.1 mfe-users . 212

B.2.2 mfe-security . 213

B.2.3 mfe-cards . 215

B.2.4 mfe-digital-account . 218

B.2.5 mfe-loan . 221

B.2.6 mfe-investment . 224

B.2.7 mfe-home . 226

APPENDIX C CONTROLLED EXPERIMENT ASSESSMENTS . . 227

C.1 Object 1 Questions . 227

C.2 Object 2 Questions . 234

APPENDIX D CONTROLLED EXPERIMENT CODING 243

APPENDIX E MLR PUBLICATIONS 247

APPENDIX F MLR DUPLICATE EXCLUSION 269

APPENDIX G MLR FIRST FILTER 271

APPENDIX H MLR QUALITY ASSESSMENT 279

APPENDIX I MLR SECOND FILTER 281

APPENDIX J MLR DATA EXTRACTION 283

30

1

INTRODUCTION

S oftware architecture focuses on software design at the highest level of abstrac-

tion (KAZMAN et al., 2023). At this level, architects are concerned not with

specific classes or interfaces but how the system’s components, modules, or

layers are integrated (VALENTE, 2020). During the design phase, architects face critical

decisions that shape the system, as these choices are often difficult to modify later. To

support these decisions, architects can rely on architectural styles, which provide guide-

lines on organizing the system’s modules (MEDVIDOVIC; TAYLOR, 2010). Examples

of such architectural styles include Microservices and Micro Frontends.

As a monolithic application grows, it becomes challenging to scale due to limita-

tions like technology constraints, the necessity for vertical scaling only, and the need to

reboot the entire application with each deployment (DRAGONI et al., 2017). To address

these issues, developers are adopting the Microservice (MS) architectural style to create

autonomous, distributed, and loosely coupled services (DMITRY; MANFRED, 2014;

LEWIS; FOWLER, 2014; ERL, 2016). This architecture enables teams to work indepen-

dently, reducing the development time for new features. However, different teams often

still need to share the same codebase for the presentation layer.

Micro Frontend (MFE) is an architectural style that extends the principles of MS

to the frontend, breaking down a complex frontend application into smaller, manageable,

and independently deployable slices (MEZZALIRA, 2021a; PELTONEN; MEZZALIRA;

TAIBI, 2021). This approach facilitates independent testing, development, and deploy-

ment of front-end components, enabling teams to work autonomously and reducing the

Chapter 1. Introduction 31

development time for new features (GEERS, 2020). However, some issues faced when

adopting MFEs are increased payload size, UX consistency, complex monitoring and

debugging, state management, and duplicated code (PELTONEN; MEZZALIRA; TAIBI,

2021). Many companies, such as SAP, Springer, Zalando, NewRelic, Ikea, Starbucks,

and DAZN, have successfully implemented the MFE architecture (TAIBI; MEZZALIRA,

2022), showcasing its potential in diverse domains.

Despite its widespread adoption in the industry, the academic literature about

guidelines and best practices when implementing MFE is relatively limited, especially

when compared to the numerous experience reports and case studies documenting

its implementation (ANTUNES et al., 2024; CAPDEPON et al., 2023; KAUSHIK; KU-

MAR; RAJ, 2024; PERLIN et al., 2023; MÄNNISTÖ; TUOVINEN; RAATIKAINEN, 2023;

PÖLÖSKEI; BUB, 2021; MORAES et al., 2024). This disparity suggests a challenge in

transferring knowledge from industry practice to academic research and underscores a

gap in understanding how enterprises implement MFE in real-world architectures.

Over time, software architecture can deteriorate due to developers’ insufficient

understanding of the specific architectural style (TAIBI; LENARDUZZI; PAHL, 2020).

This issue is particularly critical in MFE architectures, as they are inherently complex,

and there is no well-defined method for evaluating or documenting both good and bad

practices. Therefore, the objective of this master’s thesis is to develop artifacts that can

support developers in implementing and maintaining MFE architectures. We propose a

catalog of MFE anti-patterns to preserve architectural integrity and assist developers

in making well-informed decisions. Anti-patterns address emerging issues, common

mistakes, poorly implemented solutions, misapplied best practices, and deviations from

established process models (BRADA; PICHA, 2019).

To evaluate the catalog, we first conducted a Personal Opinion Survey (KITCHEN-

HAM; BUDGEN; BRERETON, 2015) with practitioners to validate whether the identi-

fied problems are prevalent in MFE architectures and if the proposed solutions address

them effectively. Based on their feedback, we improved the catalog. We then carried

out a controlled experiment with undergraduate students to compare the use of the

catalog to MFE guidelines provided on blogs and evaluate whether the catalog enhances

Chapter 1. Introduction 32

students’ perception of learning. Again, the catalog was refined based on feedback. Our

next steps involve expanding the catalog and empirically evaluating its use by practi-

tioners in real-world architectures. In the following sections, we outline our research

objectives and present the methodology used in this study.

1.1 Research Objectives
The primary objective of this thesis is to develop an artifact to support developers

when implementing and maintaining MFEs architectures. To satisfy the primary

objective, we devised the following specific objectives:

• Build a comprehensive body of knowledge on the real-world challenges develop-

ers face when implementing Micro Frontend architectures.

• Develop and iteratively improve an artifact to support developers when imple-

menting and maintaining Micro Frontend architectures.

• Examine how the artifact supports inexperienced developers in identifying and

avoiding common pitfalls while maintaining Micro Frontend architectures.

1.2 Research Methodology
The research methodology employed in this thesis is an adapted version of the evidence-

based methodology proposed by Mafra, Barcelos & Travassos (2006). Figure 1 illustrates

the steps of our adapted approach. The methodology consists of the following steps:

1. Secondary Study: After conducting an ad hoc review, we identified a Multivo-

cal Literature Review by Peltonen, Mezzalira & Taibi (2021) that maps existing

knowledge on MFEs, highlighting their motivations, benefits, and challenges. The

authors state that MFE anti-patterns have not yet been identified. To complement

their review and verify whether any anti-patterns have been published since its

Chapter 1. Introduction 33

Figure 1 – Diagram illustrating the research methodology based on Mafra, Barcelos &
Travassos (2006). Blue rounded items show what we made after each step.

completion, we conducted a Rapid Review (CARTAXO; PINTO; SOARES, 2018)

and found no documented MFE anti-patterns.

2. Initial proposal of the catalog: To document the challenges faced when imple-

menting and maintaining MFEs architectures, we propose a catalog of MFEs

anti-patterns based on MSs anti-patterns. We propose 12 anti-patterns, each com-

posed by name, category, problem, solution, and example.

3. Feasibility study: We conducted a Personal Opinion Survey (KITCHENHAM;

BUDGEN; BRERETON, 2015) with practitioners to assess and improve the anti-

patterns and evaluate if they represent real problems on MFE architectures. We

improved the catalog anti-patterns based on practitioners’ feedback.

4. Controlled experiment: We conducted a controlled experiment (WOHLIN et al.,

2012) with Computer Science undergraduate students to compare the catalog to

Chapter 1. Introduction 34

the guidelines proposed by practitioners on websites and blogs, and evaluate

whether the catalog improves the perceived learning of students. We improved

the catalog anti-patterns based on students’ feedback.

5. Multivocal Literature Review: To uncover micro frontend (MFE) anti-patterns

proposed by practitioners in informal sources, we plan to conduct a Multivocal

Literature Review (GAROUSI; FELDERER; MÄNTYLÄ, 2019). By incorporating

anti-patterns shared by developers in online communities, blogs, and technical

forums, we aim to enrich and refine our catalog, producing a more comprehensive

and practice-informed final version.

1.3 Organization
This chapter presented the context, research objectives, and methodology of this mas-

ter’s thesis. The remaining chapters are organized as follows:

• Chapter 2: Presents the theoretical background of our research, including def-

inition of MSs, MFEs, and anti-patterns. Additionally, we discuss the related

work.

• Chapter 3: Presents the Rapid Review we conducted to identify published MFE

anti-patterns, details the process of proposing the MFE anti-patterns catalog, and

introduces its initial version.

• Chapter 4: Presents the Personal Opinion Survey we conducted to evaluate and

enhance the catalog based on feedback from practitioners. We also present some

of the improved anti-patterns refined based on the feedback provided by practi-

tioners.

• Chapter 5: Presents the controlled experiment we conducted to compare the

catalog and guidelines proposed by developers and assess whether the catalog

improves the students’ perceived learning. We also present some of the improved

anti-patterns refined based on the feedback provided by students.

Chapter 1. Introduction 35

• Chapter 6: Presents the Multivocal Literature Review conducted to expand the

catalog by adding anti-patterns proposed by developers in grey literature sources.

We present the newly added anti-patterns as well as improvements made to some

of the existing ones based on the review results.

• Chapter 7: Presents the final refinements made to the catalog and introduces its

final version.

• Chapter 8: Presents a summary, the contributions, and concludes this research.

36

2

BACKGROUND

M icro Frontend (MFE) is an architectural style that draws heavily from the

principles of Microservices (MS), making it essential first to understand

the foundational concepts of both. This chapter provides the necessary

background to contextualize and deepen the understanding of this research. Section 2.1

presents the core principles of MS. Section 2.2 delves into the concept and implementa-

tion of MFEs. Section 2.3 introduces the definition of anti-patterns, as our artifact is a

catalog of MFE anti-patterns. Finally, Section 2.4 reviews related work to offer additional

context.

2.1 Microservices
Microservice is an architectural style presented as an alternative to monolith architec-

tures (ABGAZ et al., 2023). Lewis & Fowler (2014) first defined MS as an approach to

developing a single application as a suite of small services, each running in its process

and communicating with lightweight mechanisms. A service is a self-contained, loosely

coupled software unit designed to perform a specific business function. The differ-

ence between this style and other service-based architectures, such as Service-Oriented

Architecture (SOA), is that microservices are smaller in code volume, have access to

only their databases, have lightweight communication patterns, and are defined by

domain (RICHARDSON, 2018).

The modular design of MS ensures that each service has a well-defined and

Chapter 2. Background 37

focused set of responsibilities, which promotes maintainability and scalability (ERL,

2016). Adopting MS provides several benefits, such as enabling Continuous Delivery

and Continuous Integration for large and complex architectures, offering small and

easy-to-maintain services, allowing independent deployment and scaling, fostering

team autonomy, isolating failures, and enabling the adoption of different technologies

based on the needs of each service (GEERS, 2020). However, there are also some ob-

stacles to using MS, such as the challenge of defining the correct set of microservices,

increased complexity in the development, testing, and deployment of the entire sys-

tem, the need for careful coordination when developing features that access multiple

microservices, and the difficulty of deciding when to adopt this architecture (GEERS,

2020; RICHARDSON, 2018; NEWMAN, 2021).

2.2 Micro frontends
The term “Micro Frontend” was first coined by ThoughtWorks in 2016 (THOUGHT-

WORKS, 2016) as an architectural style inspired by MS architecture. The main idea is to

decompose a monolithic frontend application into smaller parts that can be developed,

deployed, and updated independently, promoting greater flexibility and maintainabil-

ity (MEZZALIRA, 2021a; PELTONEN; MEZZALIRA; TAIBI, 2021). MFE can also be

considered an organizational approach. The application is divided into vertical slices

built from the database to the user interface and run by a dedicated team (GEERS, 2020).

In an MFE architecture, the web application integrates different features or business

sub-domains, and each software team should have only one domain to handle (PELTO-

NEN; MEZZALIRA; TAIBI, 2021). Many companies adopted the MFE architecture, such

as SAP, Springer, Zalando, NewRelic, Ikea, Starbucks, and DAZN (TAIBI; MEZZALIRA,

2022).

MFEs share the main principles, benefits, and issues of MS (THOUGHTWORKS,

2016; TAIBI; MEZZALIRA, 2022; MEZZALIRA, 2021a). The motivations are develop-

ment scalability and codebase growth, and the benefits include support for different

technologies, autonomous cross-functional teams, development, deployment, manage-

Chapter 2. Background 38

ment independence, and better testability (PELTONEN; MEZZALIRA; TAIBI, 2021).

However, the primary drawbacks of Micro Frontends include increased payload size, as

each MFE often bundles its dependencies, potentially duplicating libraries and inflating

the assets delivered to the client (PELTONEN; MEZZALIRA; TAIBI, 2021; GEERS, 2020).

Monitoring and debugging also become more complex, as issues may span multiple

independently deployed frontends, making it harder to trace logs and isolate the root

cause. Additionally, state management is challenging, as inconsistencies can arise when

each MFE maintains its state without proper coordination. Finally, duplicated code

is a common issue since UI components are frequently reimplemented across MFEs,

resulting in inconsistencies and increased maintenance effort.

Each MFE implements a set of screens and fragments. Fragments are reusable

User Interface (UI) components that can be combined to form screens across different

MFEs (GEERS, 2020). Some fragments might need context information, but the team,

including the fragment in their MFE, does not have to know the fragments’ state or

implementation details. The MFEs must integrate a coherent application to deliver

a unified User Experience (UX) (GEERS, 2020). Achieving this requires developers

to make informed decisions regarding the composition, communication, and routing

between the MFEs.

The first decision is about composition, the process of requesting the fragments

and putting them in the correct slots in a screen (GEERS, 2020). There are three ap-

proaches to compose MFEs: Server-side, Edge-side, and Client-side. Figure 2 shows a

diagram exemplifying the composition of a screen with one fragment.

1. Client-side Composition (CSC): An application shell loads MicroFrontends in-

side itself. An application shell is technically represented by an HTML file always

present during the user session containing a small JavaScript code for loading and

orchestrating different MFEs (TAIBI; MEZZALIRA, 2022; PELTONEN; MEZZA-

LIRA; TAIBI, 2021; GEERS, 2020). CSC needs MFEs-specific frameworks (MORAES

et al., 2024), such as single-spa (SINGLE-SPA, 2016), qiankun (QIANKUN, 2019)

and Garfish (GARFISH, 2021), or with frameworkless technologies like Webpack,

Module Federation, iFrames, and web components.

Chapter 2. Background 39

Figure 2 – Diagram exemplifying the composition of a fragment in a screen in each
composition approach.

2. Edge-side Composition (ESC): The web page is assembled at the Content Delivery

Network (CDN) level, using an XML-based markup language called Edge Side

Include (ESI) (PELTONEN; MEZZALIRA; TAIBI, 2021). One of the drawbacks of

this implementation is that ESI is not implemented in the same way by each CDN

provider, which can lead to many refactors and new logic implementation.

3. Server-side Composition (SSC): The origin server is composing the view by

retrieving all the different MFEs and assembling the final page. It can happen

at runtime or compile time (PELTONEN; MEZZALIRA; TAIBI, 2021; GEERS,

2020). It is the simplest approach because it enables the development of MFEs

as packages (MORAES et al., 2024). However, this approach does not meet some

of the main principles of MFE, such as technology agnosticism and independent

delivery.

Once the fragments are composed into a screen, the team needs to decide how

the MFEs will communicate with each other. Effective communication outlines how

the screen and fragments interact to deliver a seamless UX (TAIBI; MEZZALIRA,

2022). Geers (2020) defines three primary forms of communication: Parent to Fragment,

Fragment to Parent, and Fragment to Fragment, as shown in Figure 3.

Chapter 2. Background 40

Figure 3 – The three forms of communication in MFEs: (1) Parent to Fragment: commu-
nication initiated by the parent (screen) towards a specific MFE fragment; (2)
Fragment to Parent: communication initiated by a fragment back to the screen;
and (3) Fragment to Fragment: communication directly between different
fragments.

1. Parent to Fragment Communication: A change in the screen is propagated down

to one or more fragments so they can update themselves. This form is also called

Parent-child Communication.

2. Fragment to Parent Communication: A change on a fragment sends a message to

the screen so it can update itself. This form is also called Child-parent Communi-

cation.

3. Fragment to Fragment Communication: A change on a fragment sends a message

to one or more fragments composed on the same screen. This form is also called

Child-child Communication.

The final decision involves routing, which delineates the navigation from one

view to another (TAIBI; MEZZALIRA, 2022). Usually, hyperlinks are necessary to

navigate between screens. When adopting CSC, the application shell manages routing,

which knows all routes and MFEs, mapping URLs to the correct MFE.

2.3 Anti-patterns
Anti-patterns are recurring design practices, choices, or solutions to common problems.

Despite appearing reasonable and effective, they lead to negative consequences and

undermine the system’s overall quality (CERNY et al., 2023). An anti-pattern is similar to

Chapter 2. Background 41

a pattern, but instead of providing a practical solution, it offers an approach that appears

to be a solution on the surface. However, it ultimately leads to more problems (KOENIG,

1998). While a problem and its optimal solution characterize patterns, anti-patterns

involve two solutions (BROWN et al., 1998). The first solution is a commonly occurring

solution that generates overwhelmingly negative consequences. The second solution is a

commonly occurring method in which the anti-pattern can be resolved and reengineered

into a more beneficial form.

Koenig (1998) define three forms to define anti-patterns: (1) Degenerative Form:

the most basic one, is a textual description without any structure, template, or separate

content sections for various aspects of the pattern; (2) Mini-AntiPattern: a more struc-

tured approach, consists of name, problem, and solution; and (3) Formal Definitions:

including the Full AntiPattern Template and the Laplante-Neil Structure, consists of

multiple fields detailing various dimensions of the anti-pattern. Brada & Picha (2019)

discusses the template used in the C2 Wiki repository, which is a Formal Definition.

They also propose a new template to document software process anti-patterns that

balance brevity and information clarity based on the formal definitions. Table 1 presents

an example of a software process anti-pattern from Brada & Picha (2019).

Chapter 2. Background 42

Table 1 – Architects Don’t Code Anti-pattern (BRADA; PICHA, 2019)

Name Architects Don’t Code
Also Known As -
Summary System architects do not participate in development efforts

(e.g., because their time is expensive). Thus they ultimately
create designs just “on paper” which might be flawed but
which the developers are supposed to follow.

Context More likely in waterfall projects. The development orga-
nization has many junior programmers and relatively few
experts, such as senior programmers or solution architects.

Forces (1) Having an expert architect should bring about consis-
tency, cleanliness, modularity, and other characteristics of
efficient software; and (2) Expert time is expensive, rare or
both.

Symptoms and Con-
sequences

(1) People with the architect role do not interact with coding
tasks (tickets); (2) Architects do not generate or modify any
source code artifacts; (3) Architects only interact with non-
coding people, tasks and artifacts; and (4) Code reflects a
design that the architect never thought of because the one
he came up with was flawed.

Causes The architect never codes and is uninterested in “implemen-
tation details”.

Solution Get architects involved at an implementation level to get
their feet wet from time to time and become aware of how
(changes in) their design affect the project. (See the pattern
“Architect Also Implements”.)

Related Anti-
patterns

Viewgraph Engineering – similar in kind (technical role does
not get hands dirty in technical tasks)

Sources Cunningham, W. Management Anti Pattern
Road Map [online]. <http://wiki.c2.com/
?ManagementAntiPatternRoadMap>

2.4 Related work
Several papers present case studies or experience reports on implementing MFE archi-

tectures. Männistö, Tuovinen & Raatikainen (2023) presented their experience through

the migration of a monolithic frontend to the MFE architecture. Capdepon et al. (2023)

proposed an approach to migrate from monolithic mobile architecture to MFE. Moraes

et al. (2024) provided an experience report demonstrating how the same application

can be implemented using different MFE approaches. Perlin et al. (2023) presented a

case study of how to implement a MFE application with Webpack. Kaushik, Kumar &

http://wiki.c2.com/?ManagementAntiPatternRoadMap
http://wiki.c2.com/?ManagementAntiPatternRoadMap

Chapter 2. Background 43

Raj (2024) proposed a framework for the design of web applications with MFEs and

MS. They conducted a case study to empirically analyze and evaluate the effectiveness

of the proposed framework. Pavlenko et al. (2020) implemented MFEs case study to

report and discuss the issues risen during development. All these papers can assist in

making architectural decisions when implementing a MFE architecture. However, they

cannot be used to evaluate an architecture or serve as a guide for identifying hidden

problems within it.

Although some practitioners have shared their experience on anti-patterns in

MFE applications on blogs and keynotes (MEZZALIRA, 2023; SHINDE, 2022; RAPPL,

2024), no scientific studies have been conducted to propose a catalog of MFE anti-

patterns. We conducted a Rapid Review and found no studies proposing anti-patterns

for MFEs (see Chapter 3). Mezzalira (2021a) briefly mentions that sharing any state

between micro-frontends is considered an anti-pattern but does not provide an in-depth

definition or exploration of this or other anti-patterns. Peltonen, Mezzalira & Taibi

(2021) conducted a Multivocal Literature Review and stated that researchers have not

yet deeply investigated MFEs and patterns and anti-patterns have not been defined.

Taibi & Mezzalira (2022) presented a set of development aproaches based on their

experience and reported the lack of pattern and anti-patterns definition. Moraes et al.

(2024) reported a case study findings, which revealed that involuntary anti-patterns may

occur since they are not yet mature, generating severe negative impacts on software

projects.

Given the shared characteristics of MS and MFE architectural styles, we also

searched for papers proposing MS anti-pattern. Through a Systematic Literature Review

(SLR), Cerny et al. (2023) crafted a catalog with 58 disjoint MS anti-patterns grouped into

five categories: Intra-service, Inter-service, Service interaction, Security and Team Anti-

patterns. Tighilt et al. (2020) proposed a catalog with 16 MS anti-patterns based on a SLR

and the analysis of 67 systems, examining them for potential violations of MS principles

and design practices that could be indicative of anti-patterns. Building on practitioner

experience, Taibi, Lenarduzzi & Pahl (2020) introduced a catalog and a taxonomy of

the most common MS anti-patterns. Their three-year interview study identified 20

Chapter 2. Background 44

anti-patterns, including organizational and technical anti-patterns. Bogner et al. (2019)

conducted a SLR to propose a taxonomy of 36 MS anti-patterns. Additionally, they

developed a collaborative web application that allows users to explore and interact with

their catalog. While both architectural styles share common anti-patterns, a dedicated

catalog for MFEs is necessary to identify and address these issues specifically within

the MFEs context.

On the educational side, previous studies have identified several challenges

in teaching software architecture. According to Galster & Angelov (2016), students

accustomed to seeking optimal programming solutions often find the “wicked” nature

of architectural decision-making frustrating. The same study notes that small class-

room examples often fail to convey the importance of architectural decisions, while the

scarcity of realistic examples limits students’ practical learning opportunities. Kazman

et al. (2023) argue that undergraduate students often lack development experience

and tend to think like programmers, which makes it difficult for them to understand

high-level architecture and abstraction, as they focus on implementation details rather

than high-level design. Lago & Vliet (2005) highlight that the absence of stakeholders

to provide clear business rules during the software architecture design process poses a

significant challenge. To improve software architecture courses, Mannisto, Savolainen &

Myllarniemi (2008) state that they should emphasize using existing systems for mainte-

nance and evolution tasks rather than solely designing architectures from scratch. This

approach is more aligned with industry practices, where software architects commonly

work with established systems.

To the best of our knowledge, no papers specifically discuss MFE education,

and only a few report on experiences teaching MSs. Christensen (2022) describe the

curriculum of an undergraduate course centered on DevOps and MSs, with a stronger

emphasis on DevOps. They provide teaching guidelines that include focusing solely on

architectural migration without adding new features to MSs to avoid overcomplication,

using a technology stack familiar to students, and defining a monolith with clear

domains and boundaries. Similarly, Lange, Koschel & Hausotter (2019) report on a

MSs course conducted in collaboration with industry, where students attended lectures

Chapter 2. Background 45

before migrating a monolith to a MSs architecture. Cordeiro et al. (2019) propose an

approach for teaching MSs involving lectures delivered by researchers and industry

professionals. In their approach, students are organized into teams and tasked with

developing different domains of a system, simulating real-world collaboration and

distributed development. Overall, these MSs courses emphasize implementing new

architectures migrated from monoliths but lack focus on exercising architecture design

itself.

46

3

PROPOSAL OF A MICRO FRONTENDS

ANTI-PATTERNS CATALOG

T o support developers during the implementations and maintenance of MFE

architectures, we propose a catalog of MFE anti-patterns to document com-

mon issues and effective solutions to them. This chapter presents a Rapid

Review we conducted to search for MFEs anti-patterns in the literature and proposes

the initial version of our catalog of MFEs anti-patterns. Section 3.1 outlines the protocol,

conduction, and results of the Rapid Review. Section 3.2 explains how we defined the

anti-patterns and presents their initial version.

3.1 Rapid Review
Rapid Reviews (RRs) are lightweight secondary studies focused on delivering evidence

to practitioners in a timely manner (CARTAXO; PINTO; SOARES, 2018). To detail the

process and findings of the RR, Section 3.1.1 outlines the research question, the search

string, and the inclusion and exclusion criteria; Section 3.1.2 presents the conduction of

the search on different libraries; and Section 3.1.3 discusses the results of the RR.

Chapter 3. Proposal of a Micro Frontends Anti-patterns Catalog 47

3.1.1 Search Protocol

This RR was undertaken to identify MFE anti-patterns documented in the scientific

literature. To achieve this objective, we formulated the following Research Question

(RQ): Are there MFE anti-patterns reported within the literature? We designed a

research string to gather all works related to MFE and anti-patterns, considering all

possible variations in the terminology. The resulting search string is:

(“microfrontend” OR “micro frontend” OR “micro–frontend” OR “mfe”) AND

(“antipattern” OR “anti-pattern” OR “anti pattern”)

After defining the search string, the selection procedure followed the steps: (1)

search and extract the studies in the ACM Digital Library1, IEEE Xplore2, and Google

Scholar3 using the search string; (2) eliminate duplicate studies; and (3) filter studies

by title and abstracts using inclusion and exclusion criteria. We included the following

Inclusion Criteria (IC):

• IC1: The paper must be in the context of MFE development;

• IC2: The paper propose or review MFE anti-patterns;

We also added the following Exclusion Criteria (EC):

• EC1: The paper is not a peer–reviewed publications (including preface, book,

editorial, PhD dissertations, Master’s thesis, Graduate thesis, poster, panel, lecture,

roundtable, workshop or demonstration);

• EC2: The paper is not written in english;

• EC3: The paper is a duplicate;

• EC4: The paper does not attend any of the inclusion criteria;
1 <https://dl.acm.org/>
2 <https://ieeexplore.ieee.org/>
3 <https://scholar.google.com/scholar>

https://dl.acm.org/
https://ieeexplore.ieee.org/
https://scholar.google.com/scholar

Chapter 3. Proposal of a Micro Frontends Anti-patterns Catalog 48

3.1.2 Conducting the Rapid Review

This subsection presents the papers retrieved from each digital library. During this

process, we were able to set filters for publication years from 2019 to 2024.

3.1.2.1 ACM Digital Library

We searched the ACM Digital Library and retrieved no papers, as depicted in Figure 4.

We performed the search by restricting it to papers published in the last six years (from

2019 to 2024) and applying search strings in the title and abstract as filters.

Figure 4 – Number of papers returned on the ACM Digital Library.

3.1.2.2 IEEE Xplore

We searched the IEEE Xplore Digital Library and retrieved no papers, as depicted in

Figure 5. We performed the search by restricting it to papers published in the last six

years (from 2019 to 2024) and applying search strings in the title and abstract as filters.

Chapter 3. Proposal of a Micro Frontends Anti-patterns Catalog 49

Figure 5 – Number of papers returned on the IEEE Xplore Library.

3.1.2.3 Google Scholar

We searched the Google Scholar and retrieved 14 papers, as depicted in Figure 6. We

performed the search by restricting it to papers published in the last six years (from

2019 to 2024) and applying search strings in the title and abstract as filters, as shown

in Figure 7. After reviewing all 14 papers, none of them were selected according to the

inclusion and exclusion criteria, as shown in Table 2

Figure 6 – Number of papers returned on the Google Scholar.

Chapter 3. Proposal of a Micro Frontends Anti-patterns Catalog 50

Figure 7 – Advanced search in Google Scholar.

Chapter 3. Proposal of a Micro Frontends Anti-patterns Catalog 51

Table 2 – Summary of papers retrieved from Google Scholar

REF. Title Exclusion Reason
(CAPDEPON et
al., 2023)

Migration Process from Mono-
lithic to Micro Frontend Archi-
tecture in Mobile Applications

Do not propose MFE anti-
patterns (EC4)

(TOKUC, 2024) Suitability of Micro-Frontends
for an AI as a Service Platform

Master’s thesis (EC1)

(MEZZALIRA,
2021a)

Building Micro-Frontends Book (EC1)

(KLIMM, 2021b) Design Systems for Micro Fron-
tends

Graduate thesis (EC1)

(JUMPPONEN,
2021)

Modern Software Architecture Book (EC1)

(VELEPUCHA;
FLORES, 2023)

A Survey on Microservices Ar-
chitecture: Principles, Patterns
and Migration Challenges

The paper is focused on
Microservices anti-patterns
(EC4)

(FORD et al.,
2021)

Software Architecture: The Hard
Parts

Book (EC1)

(MARTINS,
2022)

Development of an e-portfolio
social network using emerging
web technologies

Master’s thesis (EC1)

(KLIMM, 2021a) Design Systems for Micro Fron-
tends

The paper is a duplicate (EC3)

(FORD et al.,
2022)

Building Evolutionary Architec-
tures

Book (EC1)

(TUTISANI,
2023)

Design and Architecture Book chapter (EC1)

(CHAPETON,
2022)

Collaborative Geovisual Analyt-
ics

Book (EC1)

(OBIORA et al.,
2021)

Forecasting Hourly Solar Radia-
tion Using Artificial Intelligence
Techniques

Not related to MFE (EC4)

(SILVA, 2023) Micro frontends numa aplicação
de pré-contabilidade

Graduate thesis not written in
English (EC1 and EC2)

3.1.3 Results

The rapid review conducted did not identify any existing studies focused on MFE anti-

patterns, highlighting a significant research gap in the field. This dearth of dedicated

research underscores the need for further investigation into this critical area of software

development.

Chapter 3. Proposal of a Micro Frontends Anti-patterns Catalog 52

3.2 Initial version of the catalog
We proposed an initial catalog of 12 MFE anti-patterns derived from a conceptual adap-

tation of existing MS anti-patterns (as presented in Table 3) combined with a reflective

analysis of real-world issues encountered in the development of MFE architectures.

This process involved reviewing each anti-pattern from the microservices literature

and evaluating its manifestation in MFE architectures based on the author’s practical

experience in MFE projects.

Table 3 – MS anti-patterns used to propose the MFE anti-patterns.

Anti-pattern References
1 Cyclic Dependency (TAIBI; LENARDUZZI; PAHL, 2020;

TIGHILT et al., 2020; PARKER et al., 2023;
CERNY et al., 2023; BOGNER et al., 2019)

2 Hub-like Dependency (CERNY et al., 2023)
3 The Knot or Knot Service (PARKER et al., 2023; CERNY et al., 2023)
4 Microservice Greedy (TAIBI; LENARDUZZI; PAHL, 2020;

PARKER et al., 2023; CERNY et al., 2023)
5 Nano Service (TIGHILT et al., 2020; PARKER et al., 2023;

CERNY et al., 2023; BOGNER et al., 2019)
6 Mega Service (TAIBI; LENARDUZZI; PAHL, 2020;

TIGHILT et al., 2020; CERNY et al., 2023;
BOGNER et al., 2019)

7 Wrong Cuts (TAIBI; LENARDUZZI; PAHL, 2020;
PARKER et al., 2023; CERNY et al., 2023;
BOGNER et al., 2019)

8 No API Versioning (TAIBI; LENARDUZZI; PAHL, 2020;
TIGHILT et al., 2020; CERNY et al., 2023;
BOGNER et al., 2019)

9 No DevOps Tools or CI/CD (TAIBI; LENARDUZZI; PAHL, 2020;
TIGHILT et al., 2020; CERNY et al., 2023)

10 Microservices as the Goal (TAIBI; LENARDUZZI; PAHL, 2020)
11 Lack of Microservice Skeleton (TAIBI; LENARDUZZI; PAHL, 2020)
12 Golden Hammer (BOGNER et al., 2019)

Each MFE anti-pattern follows the Mini-AntiPattern format (name, problem, and

solution) and includes an example to illustrate the problem within an MFE context. We

classified the anti-patterns into four categories:

1. Intra-fronted category: considers a single MFE component and its design.

Chapter 3. Proposal of a Micro Frontends Anti-patterns Catalog 53

2. Inter-frontend category: considers the structural division and communication

involving two or more MFEs.

3. Operations category: related to the operational practices and continuous mainte-

nance of the application.

4. Development category: related to the development team and their decisions

around the architecture.

Each following subsection presents an anti-pattern, including it category, prob-

lem, example, and solution.

3.2.1 Cyclic Dependency

Category: Inter-frontends

Problem: Two or more MFEs directly or indirectly depend on each other, result-

ing in high coupling between screens and fragments, compromising MFEs’ indepen-

dence and modularity. Thus, changes in one MFE require coordination with the others.

Circular dependencies lead to challenges in a system’s maintenance and evolution,

compromising agility and the ability to scale developments efficiently.

Example: Consider an e-commerce platform with a payment screen implemented

in one MFE. This screen contains a fragment from another MFE used to calculate the

shipping cost. When the screen displays changes to the items in the cart, the fragment

redoes the delivery calculation, which updates the total purchase amount displayed on

the screen. This exchange of information between the screen and the fragment results

in high coupling. It is essential to assess whether the payment screen and shipping

calculation belong to the same domain and if their implementation is part of the same

MFE.

Solution: High coupling between two or more MFEs indicates they should

compose a single MFE. Thus, it is necessary to review the definition of MFE boundaries

and ensure they align with the application domains. A careful analysis of the domains

Chapter 3. Proposal of a Micro Frontends Anti-patterns Catalog 54

and reassessing the functional division of the MFEs can help reduce coupling, improve

modularity, and increase the independence between components.

3.2.2 Knot Micro Frontend

Category: Inter-frontends

Problem: A Knot is a node composed of three or more MFEs whose communi-

cation with each other has a low level of abstraction, exposing the specific details of

each MFE. The navigation or data exchange between screens and fragments strongly

depends on each MFE context. The problem worsens as the addition of new MFEs to

the node occurs without implementing a standardized communication interface. This

results in a strongly coupled node, making it difficult to maintain and deploy new

functionalities.

Example: Suppose an e-commerce system has MFEs for Digital Products (mfe-

digital-products) and Payments (mfe-payments). The product details screen of mfe-

digital-products navigates to the payment screen of mfe-payments, passing the product

data as a parameter. At a later stage, a Physical Products MFE (mfe-physical-products) is

implemented, including screens like delivery tracking, address listing, and address regis-

tration. For the unpaid physical products, a modification in the mfe-payments payment

screen happens for receiving data of either digital or physical products. Later, adding

new product types requires constantly adjusting the payment screen of mfe-payments

to display the data for these products. Implementing a communication interface with

the following fields would allow the addition of new products without requiring adapta-

tions in mfe-payments: imageUrl : string; title : string; description : string[], shippingData :

...|null. This interface definition allows the transmission of product details in a uniform

format for all types of products. Furthermore, it permits the optional transmission of

delivery information and specifies whether delivery information can be provided.

Solution: A practical solution is implementing communication interfaces be-

tween MFEs, allowing an MFE to know what is necessary to integrate with another

while abstracting the specific details of its data or implementations.

Chapter 3. Proposal of a Micro Frontends Anti-patterns Catalog 55

3.2.3 Hub-like Dependency

Category: Inter-frontends

Problem: A screen of an MFE integrates fragments from several other MFEs,

becoming a central point of interdependence. Any issue occurring in the main screen or

one of its fragments can affect all other fragments present on it.

Example: Consider a digital banking system where the main screen is an MFE

that integrates several fragments from other MFEs, such as an investment list, a chart

showing bitcoin value variations, account balance, and credit card statement amount. If

any critical issue happens on the main screen, all its functionalities become inaccessible

to the end-user

Solution: Avoiding screens that serve as a starting point for other functionalities

is recommended. When it is not possible to avoid it, we recommend implementing a

resilient screen, incorporating error-handling procedures for all MFE fragments, along

with a fallback mechanism. The fallback mechanism should allow access to system

functionalities in case of any critical issue with the main screen.

3.2.4 Nano Frontend

Category: Intra-frontends

Problem: The front end decomposes into numerous small MFEs with few screens

or fragments. Small MFEs do not justify the cost of their maintenance. Furthermore, the

presence of nano frontends can lead to issues of high coupling and the manifestation of

other anti-patterns, such as cyclic dependency

Example: In an e-commerce setting, separate MFEs implement the product

listing and product details screens. Since both are part of the product context, their

implementation should happen within a single MFE encompassing all product screens.

Solution: The issue of nano frontends arises when the definition of boundaries

is inadequately and excessively granular. Adhering to Domain-driven Design (DDD)

principles is necessary to ensure an effective decomposition of MFEs. So, redesigning

the architecture by grouping MFEs with the same domain is necessary. It promotes a

Chapter 3. Proposal of a Micro Frontends Anti-patterns Catalog 56

cohesive structure aligned with the business requirements.

3.2.5 Mega Frontend

Category: Intra-frontends

Problem: Decomposing the architecture into a few MFEs encompassing numer-

ous screens and fragments manifest this anti pattern. The MFE inherits the challenges

of a monolithic frontend, such as difficulties in testing, slow builds and deployments,

high coupling between its components, lack of modularity, and limited scalability.

Example: An e-commerce system is decomposed into just two MFEs, with mfe-

users related to users and mfe-shopping related to products and purchases. The latter

MFE includes screens that display product listings, product details, purchase confirma-

tions, and purchase history. Decomposing the mfe-shopping into at least two MFEs is

necessary: one containing the product listing and product details screens, belonging

to the product domain; and another containing the confirmation and purchase history

screens, belonging to the purchase domain.

Solution: Reevaluate the architecture and divide the MFEs into granular units,

separating functionalities into smaller and specialized MFEs. This approach aids in

reducing complexity, enhancing maintainability, and fostering a modular and scalable

architecture.

3.2.6 Micro Frontend Greedy

Category: Intra-frontends

Problem: When a developer is uncertain about creating a new MFE, the common

practice is to opt for its creation. Whenever a need arises to develop a new set of screens

or fragments, a new MFE is instantiated. It can lead to the creation of nano frontends or

mega frontends.

Example: Within a banking application, an MFE encompasses screens for secu-

rity validation, utilizing confirmation code submission via email. Subsequently, the

Chapter 3. Proposal of a Micro Frontends Anti-patterns Catalog 57

need arose to implement a new validation method, now employing facial recognition.

The screens in this new flow differ from those in the previous flow, resulting in its

implementation through a new MFE. Creating a new MFE might not be advisable, as

two MFEs have the same context and functionalities.

Solution: To assess whether a new screen or fragment can integrate an existing

MFE, a comprehensive review of all existing MFEs is essential. It may avoid unnecessary

MFE proliferation, promoting a cohesive and sustainable architecture.

3.2.7 No CI/CD

Category: Operation

Problem: The company lacks an automated Continuous Integration (CI) and

Continuous Delivery (CD) pipeline, so developers must manually execute tests and

perform deployments. This manual process becomes burdensome, especially with the

potential existence of multiple MFEs. It increases development time, reduces productiv-

ity, and raises the risk of errors in the production environment.

Example: Upon releasing a new system version, a developer must conduct

manual tests and ensure all unit tests pass. However, developers may skip the tests and

manually deploy the changes without realizing some tests are failing, introducing bugs,

which is avoidable with an automated CI pipeline. Even if the tests pass, there is still a

risk of making mistakes during deployment, which could render the system unavailable.

Automating the deployment process with CD ensures correct and consistent execution.

Solution: Implement an automated and replicable CI/CD process that extends

for new MFEs, ensuring they will have automated test execution and deployment

consistently and efficiently.

3.2.8 No Versioning

Category: Operation

Problem: The MFEs are not semantically versioned. Small and large changes

Chapter 3. Proposal of a Micro Frontends Anti-patterns Catalog 58

can impact the integration between different MFEs and cause errors. Consequently, the

MFEs become less independent, requiring coordinated deployments.

Example: Consider a payment confirmation page with a fragment for calculating

shipping costs. Whenever the user inputs shipping information into the fragment, the

system generates a delivery charge and adds it to the total purchase amount displayed

on the screen. Suppose the delivery charge’s return value format changes and the

fragment is not versioned. The delivery charge will not be added to the total purchase

amount, potentially resulting in a display error or even mistakenly free deliveries.

However, if the fragment is versioned, the screen will not be affected by the format

change, as it will continue to use the previous version of the fragment and can be

updated later when necessary.

Solution: It is essential to adopt the Semantic Versioning standard for version-

ing MFEs, where the developer must assign a Major version when changes introduce

incompatibilities, create a Minor version for new functionalities that do not cause

incompatibilities, and apply a Patch version for bug fixes that do not introduce incom-

patibilities. The versioning practice ensures that changes do not impact functioning

versions. Consequently, coordinated deployments are unnecessary, as other MFEs can

update their versions as needed.

3.2.9 Lack of skeleton

Category: Operation

Problem: No skeleton or predefined boilerplate is available as a base for creating

new MFEs, which leads to the creation of MFEs from scratch or duplicating an existing

MFE. The consequences include wasted time, increased risk of errors, duplicated code

across MFEs, and a need for more standardization in development.

Example: At the beginning of a specific system development, the developers

create an MFE from scratch without adhering to a specific pattern. The second MFE is

developed by copying files and code blocks from the first, changing specific parts. The

exact process happens when creating new MFEs. Then, a diverse set of MFEs emerges,

Chapter 3. Proposal of a Micro Frontends Anti-patterns Catalog 59

which hampers the establishment of automated pipelines, fosters code duplication, and

complicates developer interchange between teams.

Solution: Create a repository containing the necessary base code to build an

MFE called boilerplate, which includes all the required libraries for the MFE’s operation,

adhere to the code standards established by the team, and have a file with commonly

used commands for developers. It is also crucial to include comprehensive documen-

tation detailing the entire process of creating a new MFE, providing instructions on

how to add automated CI/CD, integrate the MFE into the existing system, and other

relevant aspects.

3.2.10 Common Ownership

Category: Development

Problem: A single team is responsible for managing all MFEs. It happens when

there is no team division or when they are divided based on technical aspects such as

data, front-end, and back-end teams. The team does not leverage the benefits of having

independent teams provided by the MFE Architecture.

Example: A small company chooses to adopt the MFE architecture. Due to the

insufficient number of developers, it is not feasible to create teams by domain. So,

developers compose a single team responsible for all MFEs. In this scenario, the cost of

maintaining different micro frontends is not justified and is only an additional challenge

for the development team.

Solution: Context should be the defining factor when structuring development

teams. Therefore, defining the boundaries of teams and MFEs is essential according to

Domain-driven Design (DDD), so a team will be responsible only for MFEs within its

domain.

3.2.11 Golden Hammer

Category: Development

Chapter 3. Proposal of a Micro Frontends Anti-patterns Catalog 60

Problem: All MFEs utilize the same technology, even if it does not meet the

specific needs of each MFE. It happens due to developers’ familiarity with only one

specific technology. This approach limits the architecture, failing to take advantage of

the benefits of the possibility of a heterogeneous architecture, which is one of the main

attractions of adopting MFEs

Example: A web application contains MFEs implemented using ReactJS frame-

work with Client-side Rendering, even those encompassing essential pages such as the

landing page. This technological uniformity overlooks the necessity for Search Engine

Optimization (SEO) strategies to ensure better rankings on search engines like Google.

It would be advisable to utilize ReactJS with Server-side Rendering or employ a static

rendering framework such as NextJS, enabling better optimization for search engines.

Solution: To choose the most suitable technology that addresses the specific

challenges of each MFE, which includes adopting the correct programming languages,

frameworks, and libraries during its development.

3.2.12 Micro Frontend as the goal

Category: Development

Problem: Adopting the MFE architecture in inappropriate contexts can lead to

more issues than benefits, especially in systems with few screens and low complexity

or in companies lacking a sufficient number of developers to create dedicated teams

for different application domains. In such situations, the maintenance costs of the

architecture may outweigh the expected benefits, making its implementation unfeasible.

Example: A personal notes application is divided into the notes and user do-

mains, each comprising its own MFE. The notes domain contains functionalities for

note management, containing operations such as listing, creating, editing, and deleting

notes. The user’s domain encompasses login, registration, and profile management

functionalities. In this context, using MFEs results in unnecessary maintenance and

development challenges due to the low volume of screens and the low probability of

increasing complexity in the application. Adopting a monolithic frontend is a suitable

Chapter 3. Proposal of a Micro Frontends Anti-patterns Catalog 61

option.

Solution: Software teams must consider carefully different aspects of adopting

MFE architecture. Considering the system’s complexity, the feasibility of maintaining

automated CI/CD pipelines and the team’s restructuring according to different domains

is necessary.

62

4

CATALOG IMPROVEMENT BASED ON

PRACTITIONER’S FEEDBACK

A fter proposing the catalog, we need to validate whether the problems occur

in MFE architectures and the solutions address them effectively. There-

fore, this chapter presents the results of the Personal Opinion Survey we

conducted to gather feedback from 20 industry practitioners with experience in MFE

development on the anti-patterns proposed in Chapter 3. Section 4.1 outlines the study

design. Section 4.2 presents the quantitative and qualitative results. Section 4.3 dis-

cusses the interpretation of the results. Section 4.4 addresses the threats to validity.

Section 4.5 presents some of the improved anti-patterns refined based on practitioners’

feedback. Finally, Section 4.6 introduces the web application we developed to showcase

the anti-patterns.

4.1 Study Design
Figure 8 illustrates the process we followed to refine the MFE anti-patterns based

on practitioners’ feedback. To evaluate the proposed anti-patterns, we conducted a

Personal Opinion Survey (KITCHENHAM; BUDGEN; BRERETON, 2015) that included

open and closed questions. The intended audience for the survey included software

industry practitioners with experience in MFE development. This approach allowed

the validation of different aspects of the anti-patterns by incorporating the insights of

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 63

practitioners specialized in the MFE field. We also included a consent form as part of

our survey instruments, allowing participants to provide their consent to participate.

We assured participants that their participation was voluntary and that they could with-

draw at any time. All collected data was anonymized, ensuring privacy and enabling

participants to share valuable insights without concern. Our survey comprised three

sections.

Figure 8 – Process followed to propose and refine the MFE anti-patterns.

The survey’s first section aims to understand the level of practitioner experi-

ence and the role of participants in the context of MFE development, ensuring that

the feedback provided comes from practitioners with practical knowledge in this area.

Additionally, the questions allowed the definition of a characterization of each partici-

pant. The questions presented below focus on determining whether the practitioners

currently work with MFE, their experience in this area quantified in years, and their

role in MFE-related projects.

• Are you currently working with Micro Frontends?

• How much practitioner experience do you have with Micro Frontends?

• What type of role do you play or have you played when working with Micro

Frontends?

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 64

The survey’s second section aimed to validate each of the 12 anti-patterns pro-

posed in the catalog. This involved analyzing each anti-pattern through a series of

questions designed to: (1) verify whether the descriptions of the problems and proposed

solutions were clear and understandable to participants; (2) determine if the proposed

solution effectively addresses the problem described in the anti-pattern, and if not,

gather alternative solutions; (3) identify the practical occurrence of the anti-pattern

in participants’ projects; and (4) assess participants’ perception of the anti-pattern’s

impact on MFE projects by assigning a harmfulness value. To define the harmfulness

value of each anti-pattern, we used a 10-point Likert scale based on Taibi, Lenarduzzi

& Pahl (2020), where 1 means “Not harmful” and 10 indicates “Extremely harmful”.

Each page of this section included the following questions to evaluate each anti-pattern

individually:

• Is the anti-pattern problem clearly stated?

• If you disagree, please provide a description of what is not clear

• Is the anti-pattern solution clearly stated?

• If you disagree, please provide a description of what is not clear

• Does the proposed solution address the problem presented in the anti-pattern?

• In case you have a different suggestion on the problem solution, please provide a

description

• Have you ever encountered this problem in any project you have previously

worked on or are currently working on?

• How harmful do you think this anti-pattern problem is?

The third section of the survey enabled participants to offer insights based on

their practical experience, providing additional feedback and suggestions for improving

the catalog. The questions were designed to identify any MFE-related issues not covered

in the catalog, assess the potential impact of the catalog on the quality of MFE solutions,

and gather recommendations for enhancing the catalog:

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 65

• Based on your experience, is there any issue related to Micro Frontends not

covered in the presented anti-patterns?

• If you do agree, please provide a description of the problem.

• How do you think this catalog would help improve the quality of micro frontend

architecture in your work?

• Do you have any suggestions for improving the anti-patterns catalog?

After collecting participants’ responses to the survey, we conducted a quanti-

tative analysis to identify the most common anti-patterns and calculated the median

harmfulness score for each. To further investigate the harmfulness scores, we em-

ployed several statistical tests. First, we used the Shapiro-Wilk test (SHAPIRO; WILK,

1965) to determine whether the score samples for each anti-pattern were normally

distributed. Since only half of the samples followed a normal distribution, we opted for

non-parametric tests. As the same participants rated different anti-patterns, we treated

the samples as dependent and selected the Friedman test (FRIEDMAN, 1937), which is

suitable for dependent samples. We applied the av post-hoc Dunn test (DUNN, 1964)

to compare pairs of medians, as it is commonly used following Friedman test when

significant differences are found.

For the qualitative feedback, we performed a thematic analysis grounded in

coding reliability (BRAUN; CLARKE, 2021). Thematic analysis allows for organizing

and categorizing feedback in a structured manner, which helps in identifying recurring

patterns (themes). This approach aids in understanding participants’ perspectives

better and directing improvements based on the specific objectives of each piece of

feedback. We assessed intercoder reliability (ICR) between two researchers to ensure

the robustness of the thematic analysis. The second researcher was included to evaluate

the consistency and objectivity of the coding process. The first researcher conducted

an initial open coding of all responses, resulting in the definition of eight themes.

Subsequently, the second researcher independently applied these themes to the same

quotations. To measure agreement between the researchers, we calculated Cohen’s

Kappa (COHEN, 1960) and resolved any discrepancies through discussion to reach

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 66

a consensus. We used practitioners’ feedback to refine the catalog and finalize the

anti-patterns.

4.2 Results
In this section, we present the analysis of the results obtained from the survey responses.

Subsection 4.2.1 outlines the participants’ characterization; Section 4.2.2 summarizes

the quantitative results; and Subsection 4.2.3 presents the thematic analysis findings

identified from the collected qualitative data.

4.2.1 Participants’ Characterization

We directly contacted a total of 37 practitioners to participate in the survey. However,

due to the open-access nature of the survey link, precise control over participant recruit-

ment was not feasible. As a consequence, we could not determine an exact response

rate (RALPH et al., 2020). A total of 20 practitioners volunteered to participate in the

survey. More than half of the participants work at large companies with over 90 soft-

ware engineers and projects involving 40+ MFEs and 70+ MS, with engineering teams

structured as independent units. The remaining participants work on other software

companies, but in smaller projects. This diversity ensures the identified anti-patterns

are applicable across different scales and organizational structures. Before responding,

each participant signed a consent form, ensuring the confidentiality of the information.

Table 4 presents a summary of participants’ characterization. Each column

presents the answer of one of the characterization question: column “Working with MFE”

refers to “Are you currently working with Micro Frontends?”, column “Experience with

MFE” refers to “How much professional experience do you have with Micro Frontends?”

and column “Role” refers to “What type of role do you play or have you played when

working with Micro Frontends?”. We assigned each participant an identifier ranging

from P1 to P20.

Figure 9 presents a pie chart illustrating responses to the question “Are you

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 67

Table 4 – Summary of the survey participants’ characterization.

ID Working
with MFE Experience with MFE Role

P1 No More than 2 years Fullstack Developer
P2 No Between 1 and 2 years Software Architect
P3 Yes More than 2 years Software Architect
P4 Yes More than 2 years Frontend Developer
P5 Yes More than 2 years Fullstack Developer
P6 Yes More than 2 years Frontend Developer
P7 No More than 2 years Fullstack Developer
P8 Yes More than 2 years Software Engineering Team Leader
P9 No Between 1 and 2 years Fullstack Developer
P10 Yes More than 2 years Fullstack Developer
P11 Yes More than 2 years Frontend Developer
P12 Yes More than 2 years Fullstack Developer
P13 Yes Less than 1 year Fullstack Developer
P14 Yes More than 2 years Frontend Developer
P15 Yes More than 2 years Mobile
P16 Yes More than 2 years Frontend Developer
P17 Yes More than 2 years Frontend Developer
P18 Yes Between 1 and 2 years Fullstack Developer
P19 No Between 1 and 2 years Fullstack Developer
P20 Yes More than 2 years Frontend Developer

currently working with Micro Frontends?”. The results show that 78.9% of the partici-

pants are currently involved in MFE software projects. Figure 10 presents a pie chart

illustrating responses to the question “How much professional experience do you have

with Micro Frontends?”. The results show that 73.7% of the participants have more than

2 years of experiente and 21.1% have between 1 and 2 years of experience. These results

show that participants have a solid knowledge and practical experience with MFEs,

making them capable of evaluating the proposed anti-patterns.

Figure 11 presents a bar chart presenting the responses to the question “What

type of role do you play or have you played when working with Micro Frontends?”.

The results indicate that 8 participants are frontend or mobile developers and 9 are

full stack developers. Additionally, 3 hold roles such as project leaders or software

architects. This distribution suggests that the anti-patterns were primarily evaluated

from a developer’s perspective, but also reflect insights from non-developer roles.

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 68

Figure 9 – Pie chart illustrating responses to the question: “Are you currently working
with Micro Frontends?”.

Figure 10 – Pie chart illustrating responses to the question: “How much professional
experience do you have with Micro Frontends?”.

4.2.2 Quantitative Analysis

Table 5 summarizes our quantitative results, which we ranked according to the harmful

score values. Column 1 presents the titles of the anti-patterns evaluated in the survey.

Columns 2 and 3 report the participants’ agreement rates regarding the clarity of the

problem presentation and the proposed solutions of the anti-patterns. Column 4 presents

the participants’ agreement rates regarding the effectiveness of the proposed solutions

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 69

Figure 11 – Bar chart presenting the responses to the question: “What type of role do
you play or have you played when working with Micro Frontends?”.

for the problems identified in the anti-patterns. Column 5 shows the percentage of

participants who have encountered the problems described in the anti-patterns in their

practitioner experience within the software industry. Column 6 presents the median

values of harmfulness attributed to the anti-patterns by the participants.

Regarding the clarity of the problems and solutions presented in the anti-patterns,

the results show that the participants had a thorough understanding, as demonstrated

by the high values in Columns 2 and 3, which range from 95% up to 100%. Moreover,

the high values presented in Column 3 indicate a positive efficacy of the solutions, on

which a large majority of participants recognized the proposed solutions as effective

means of addressing the issues posed by the anti-patterns.

The values in column 5 indicate that practitioners frequently encounter the anti-

patterns Cyclic Dependency, Knot Frontend, Hub-like Dependency, Mega Frontend and

No CI/CD in software projects. Notably, seven of the remaining eight anti-patterns

were reported by more than 50% of participants, highlighting their common occurrence

as well. The only anti-pattern observed by less than 50% of participants is the Nano

Frontend, in contrast to the Mega Frontend. This suggests that practitioners are more

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 70

Table 5 – Overall results from quantitative analysis ranked by harmfulness score.

Anti-pattern

Problem
clearly
stated
rate

Solution
clearly

stated rate

Solution
addresses

the problem
rate

Seen in
practice

rate
Harmfulness

No CI/CD 100.00% 100.00% 100.00% 90.00% 10
No Versioning 100.00% 100.00% 95.00% 70.00% 9

Common
Ownership 95.00% 95.00% 100.00% 55.00% 8

Cyclic
Dependency 95.00% 95.00% 100.00% 85.00% 8

Hub-like
Dependency 95.00% 90.00% 95.00% 95.00% 8

Knot Micro
Frontend 95.00% 95.00% 100.00% 80.00% 8

Lack of Skeleton 100.00% 100.00% 100.00% 65.00% 8
Micro Frontend

as the Goal 100.00% 100.00% 100.00% 60.00% 8

Mega Frontend 100.00% 100.00% 100.00% 90.00% 7
Micro

Frontends
Greedy

95.00% 100.00% 100.00% 55.00% 7

Nano Frontend 100.00% 100.00% 100.00% 35.00% 7
Golden

Hammer 95.00% 100.00% 100.00% 70.00% 6

likely to create larger MFEs than smaller ones.

Given the limited sample size, we assessed the reliability of the harmfulness

scores using several statistical tests. First, we applied the Shapiro-Wilk Test with a

95% confidence level to determine if the samples were normally distributed. The test

indicated that only half of the anti-patterns (namely Cyclic Dependency, Knot Micro

Frontend, Nano Frontend, Mega Frontend and Golden Hammer) follow a normal

distribution.

We then used the Friedman test to evaluate whether there were statistically

significant differences in the harmfulness scores. The Friedman test yielded a p− value

of 0.0000001581 (< 0.05), which strongly suggests that there are statistically significant

differences in harmfulness scores among the anti-patterns. Subsequently, the post-

hoc Dunn test revealed that only two anti-patterns exhibited statistically significant

differences compared to others: Golden Hammer differed from Hub-like Dependency,

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 71

No CI/CD, Lack of Skeleton and Common Ownership; and Micro Frontend as the Goal

differed from Hub-like Dependency.

Figure 12 – Boxplot illustrating the harmfulness ratings for each anti-pattern.

While Dunn’s test did not indicate significant differences between most pairs,

the boxplot visualization (Figure 12) reveals notable trends. No CI/CD is perceived as

significantly more harmful than other anti-patterns, as evidenced by its higher median

score. Conversely, Golden Hammer is considered the least harmful, with the lowest

median harmfulness score (6). These findings suggest that while statistical significance

was not universally achieved, there is a strong perception that the absence of CI/CD is

particularly harmful, whereas the reuse of familiar technologies is seen as acceptable.

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 72

4.2.3 Thematic Analysis

Based on the open coding quotations, the author of this Thesis defined eight themes

(Figure 13). Subsequently, a research collaborator independently categorized the same

quotations using the established themes. On measuring the ICR, we obtained a Cohen’s

Kappa with a value of 0.84. According to Landis & Koch (1977), this is considered an

almost perfect score, highlighting the reliability of our coding process and the robustness

of the identified themes. In the following paragraphs, we present a brief explanation

of each category and its main findings. The complete thematic analysis results can be

found in Appendix A.

Figure 13 – Resulting themes and meta-themes from the Thematic Analysis on practi-
tioners feedback.

Commendations to the catalog – compliments to the catalog: P2 acknowledged the

novelty of the anti-patterns due to the lack of ones that focus on the MFE development,

as stated in “The term and technology is fairly new, and such patterns are not well

established in the software community yet.” P5 praised the catalog for addressing

practical issues that practitioners face when working with MFE, as commented in “This

catalog highlights several real-world problems encountered in the day-to-day work

with micro frontends.”

How to use the catalog – how the catalog can be used to improve the development and

maintenance of MFE architectures: P2 highlighted that the catalog may provide essential

guidance for best practices and avoidables in MFE development, as stated in “It will

serve as a guide for some ‘Dos’ and ‘Donts’ that are missing in the Micro Frontends

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 73

world.” P7 commented on the practical utility of the catalog in educating and integrating

new team members in MFE software projects, as stated in “Training new team members

and onboarding them to micro frontend projects.” P9 observed that the catalog may

help in whether to use or not MFE architecture in “think about architecture decisions

and the decision to use micro frontends architecture or not.”

Improvements to examples – proposals for new examples or enhancements to the

presented ones: For Cyclic Dependency, P4 suggests that the example should include all

necessary dependencies to fully close the cycle, as noted, “The example only states a

dependency between A and B, but not another that would close the cycle between B

and A.” For Hub-like Dependency, P4 provided a practical scenario that emphasizes

the importance of robust error handling in “A main banking screen that has charts, lists,

and balances. If this screen implements its own data fetch function that fails and renders

the screen useless, then it is a problem.”

Improvements to problem definition – enhancements to anti-patterns problems

definitions: P8 suggested the need for a clearer definition in Micro Frontends Greedy, once

they had difficulty in distinguishing it from the Nano frontend or Mega frontends anti-

patterns, as stated in “I can’t separate this anti-pattern from nano or mega frontends.”

For Common Ownership, P15 pointed out that small teams can also benefit from

characteristics inherent of software modularization, as mentioned in “Naturally, larger

software involves more people, but I believe small teams can also benefit from software

modularization, such as separation of layers and responsibilities, observability and

maintainability.”

Improvements to solutions – enhancements to anti-patterns solutions: P2 suggested

that the Knot Micro frontend anti-pattern should clearly define the difference between

a good communication pattern and a bad one, as stated in “Solution could state what is

a good communication pattern vs a bad one.” For Hub-like Dependency, many partici-

pants suggested that the solution of avoiding aggregator screens does not address the

problem correctly because, in the context of MFE architecture, screens will include many

MFE fragments, as P2 emphasized in “It is inevitable to have aggregators,” and P20 in

“But not use it goes against the main idea of the MFE to be contextually segregated.” P5

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 74

emphasized that the solution for Nano Frontend will rely on the organizational context

it is inserted in, as stated, “The solution here will depend entirely on the organizational

context.”

Improvements to the catalog – enhancements to the catalog as a whole: Most of

the participants focused their suggestions for improving the catalog adding visual aids

for enhancing the readability of the catalog, as P4 suggests in “I would use some flow

charts to exemplify most of the anti-patterns and make it more readable,” and P18

complements in “Add some diagrams and images help to understand some examples.”

New anti-patterns – proposals of new anti-patterns: P2 discussed the importance

of choosing between build-time and runtime integration based on team and user needs,

as stated in “There are mainly two ways to integrate micro frontends: build-time and

runtime. The decision on which to adhere reflects deeply in the teams’ and users’ needs

more than the technical pros and cons each of them offer.” P7 highlighted that data

persistence on MFEs may become an anti—pattern due to the issue when different

MFE manage the state, as commented, “Poor state management: Data persistence on

MFEs when each frontend manages the state independently.” Lastly, P8 suggests that

Inconsistent User Experience is an existing issue in MFE.

Proposal of new solutions – proposals of different solutions for specific anti-patterns:

For Mega Frontend, P4 suggested that better discussions between the product team

and the development team could help define when features should be treated as dif-

ferent products, as stated in “Lack of communication between the product team and

the development team. It should be well discussed between the two teams to define

when two or more features are different products.” For Golden Hammer, P7 proposed

adopting hybrid technology approaches for solving the problem, as commented in

“Adopting a hybrid technology approach supported by a common facade, such as a

Backend for Frontend (BFF) layer, and using feature flags to manage gradual migration

and experimentation might be a better approach.”

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 75

4.3 Discussion
The proposed MFE anti-patterns are closely aligned with their MS counterparts, re-

flecting the inherent similarities between these architectural styles. Given the frequent

evolution of software systems from monolithic architectures to MS and subsequently to

MFE, anti-patterns related to development and operation like No CI/CD and Common

Ownership are likely to persist in MFE if they were previously encountered in MS.

We observed that the proposed anti-patterns have varying impacts on developers

and end users. The No Versioning and Hub-like Dependency anti-patterns significantly

affect end users, potentially causing application crashes. The Golden Hammer anti-

pattern has a moderate impact on both end users and developers, stemming from

poor experiences due to inappropriate technology choices. The remaining anti-patterns

primarily impact developers, complicating architecture maintenance and evolution,

though they have a low direct impact on end users.

By accessing our online catalog, developers can learn how to avoid bad practices

when working with MFE from an organizational and architectural point of view. The cat-

alog can act as a checklist or as a management resource for experienced or new members

of software projects. Moreover, the catalog may also help practitioners recognize bad

practices that have become standardized within their organizations due to their routine

use and familiarity. Anecdotal evidence suggests that the catalog is already valuable

to developers. For instance, some survey participants reported using it in their daily

work, as P12 mentioned: “Every time I have to implement a new feature on a micro

frontend, I consult the catalog to remember the anti-patterns.” This feedback highlights

the catalog’s role in enhancing development practices and fostering awareness of best

practices in MFE design.

While this study has revealed a strong correlation between MS and MFE anti-

patterns, there remain specific anti-patterns unique to MFE architectures that warrant

further exploration. Issues related to UI inconsistency, the management of the state

through global versus local stores, and the selection of inappropriate composition

approaches have not yet been addressed by the proposed anti-patterns. Future research

should focus on identifying and mitigating these and other MFE-specific anti-patterns

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 76

to enhance the overall quality and effectiveness of MFE architectures.

To ensure high-quality system design and prevent software degradation, it is cru-

cial to identify anti-patterns early and perform the necessary refactoring. Automating

the detection of these anti-patterns may allow for early intervention, thus significantly

mitigating their impact on software projects. Therefore, future research should also

prioritize the development of automated detection methods tailored to MFE architec-

tures. Such advancements will not only improve system quality but also help prevent

long-term negative consequences.

Lastly, it is also important to address new anti-patterns that occur during soft-

ware development. As presented in the thematic analysis result, participants proposed

new anti-patterns related to Inconsistent User Experience, Fragmented State Manage-

ment, Complex Inter-MFE Communication, Overhead of Independent Deployments,

Security and Authentication Challenges, Performance Bottlenecks, Security Risks and

Observability. These anti-patterns’ problems and solutions must be clearly defined

and validated by practitioners. It highlights the need for ongoing research to address

emerging challenges in the MFE field, ensuring the development of efficient MFE

architectures.

4.4 Threats to validity
We assessed the Internal, External, Conclusion, and Construct threats to validity accord-

ing to Wohlin et al. (2012).

Internal Validity: (1) The length of the form used to gather practitioner’s feed-

back. A long form may fatigue the participant, affecting their responses. To address

it, we provided an estimated completion time to participants when inviting them and

structured the form to present each anti-pattern on a separate page, allowing partici-

pants to focus on one anti-pattern at a time. We also included a progress bar to give

participants a clear indication of how many anti-patterns remained to be evaluated.

(2) Participants representativeness. To address it, we focused on inviting participants

with previous background in working with MFE in industry. To ensure that participants

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 77

were not biased by the results of previous works, we did not propose a predefined set

of bad practices to the participants.

External Validity: Subjects sample size. To address this threat, we distributed

the survey to a broader pool of software engineers, encompassing frontend developers,

fullstack developers and team leaders. It allowed us to capture a wider range of per-

spectives from practitioners with varying levels of MFE knowledge and involvement.

While the sample size may not be ideal for full population generalization, the diversity

of participant roles strengthens the applicability of our findings to real-world MFE

development practices.

Conclusion Validity: (1) One might reach incorrect conclusions given the data.

On addressing it, multiple researchers were involved in the data interpretation. For both

the quantitative and thematic analysis, two researchers handled the data interpretation

and categorization of themes, and a third, who is an expert in Software Engineering

with more than 20 years of experience, reviewed all the results. (2) The harmfulness

scores calculated using the median may not fully capture the nuances of participants’

perceptions. Although we do not provide enough evidence on harmfulness, on ranking

the anti-patterns we illustrate which of them the practitioners consider the most harmful

during software development. We also emphasize that our survey focuses on validating

the initial anti-patterns, instead of generating the ranking itself.

Construct Validity: Influence of researcher bias on the qualitative results. To

mitigate it, we employed a two-coder approach to the thematic analysis, within the

second researcher independently reviewing the qualitative data and conducting a

separate thematic analysis. Following this, we employed Cohen’s Kappa (COHEN,

1960) to measure the level of agreement between the two coders. The resulting score of

0.84, classified as “excellent agreement,” strengthens our confidence in the objectivity

and trustworthiness of the identified themes.

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 78

4.5 Improved catalog based on practitioners’ feedback
After analyzing practitioners’ feedback, we refined the anti-patterns and generated an

improved version of the catalog. Hub-like Dependency received the most suggestions

for improvement, particularly regarding the problem definition, solution, and example,

but most of the feedback focused on enhancing the solution. Another anti-pattern that

attracted multiple comments was Cyclic Dependency, especially regarding the proposal

of new solutions, which led us to improve its solution. Considering the feedback

regarding the addition of images, we created one image for the problem and another

for the solution of the Cyclic Dependency and Hub-like Dependency anti-patterns.

Other anti-patterns that were refined include Knot Micro Frontend, Nano Fron-

tend, Mega Frontend, No CI/CD, No Versioning, Lack of Skeleton, Common Ownership,

Micro Frontend Greedy, and Golden Hammer. The only anti-pattern we did not updated

was the Micro Frontend as the goal. In the following subsections we present the new

version of all improved anti-patterns.

4.5.1 Cyclic Dependency

Category: Inter-frontends

Problem: Two or more MFEs directly or indirectly depend on each other, result-

ing in high coupling between screens and fragments, compromising MFEs’ indepen-

dence and modularity (Figure 14). Thus, changes in one MFE require coordination with

the others. Circular dependencies lead to challenges in a system’s maintenance and

evolution, compromising agility and the ability to scale developments efficiently.

Example: Consider an e-commerce application featuring a product details screen

implemented on mfe-products. The screen integrates three fragments: one displaying

the shopping cart from “mfe-checkout,” another showing product recommendations

from “mfe-recommender,” and a third calculating shipping costs based on the selected

delivery address from “mfe-delivery.” When a recommended product is added to

the cart, “mfe-recommender” notifies “mfe-checkout,” which subsequently informs

“mfe-delivery” to recalculate the shipping costs. If the shipping address is updated,

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 79

Figure 14 – Cyclic communication between fragments on the same screen.

“mfe-delivery” notifies all other MFEs to verify whether the products they display can be

shipped to the new address; if not, those products are disabled. This interaction between

the screen and its fragments results in high coupling, where changes or updates in one

fragment often necessitate adjustments in others to maintain the overall functionality of

the product details screen.

Solution: High coupling between MFEs can be effectively mitigated through

event-based communication, which removes the need for direct dependencies between

MFEs. Instead, interactions are handled indirectly via a centralized event store. On

implementing the Publish-Subscribe (Pub-Sub) pattern, an MFE can publish an event

to the browser, allowing other MFEs to subscribe and respond when the event occurs

(Figure 15). To ensure consistency and reduce errors, it is recommended to centralize

event definitions in a shared library.

Figure 15 – Communication between fragments using an Event Store.

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 80

4.5.2 Knot Micro Frontend

Category: Inter-frontends

Problem: A Knot is composed of three or more MFEs whose communication

with each other uses a context-specific interface. This means that navigation and data

exchange between screens and fragments heavily depend on the unique context of

each MFE involved. Adding new MFEs exacerbates the problem: as the number of

MFEs grows, the interface complexity increases due to the introduction of new contexts,

creating a highly coupled Knot that becomes difficult to maintain and integrate new

functionalities.

Example: Suppose an e-commerce system has MFEs for Digital Products (mfe-

digital-products) and Payments (mfe-payments). The product details screen of mfe-

digital-products navigates to the payment screen of mfe-payments, passing the product

data as a parameter. At a later stage, a Physical Products MFE (mfe-physical-products) is

implemented, including screens like delivery tracking, address listing, and address regis-

tration. For the unpaid physical products, a modification in the mfe-payments payment

screen happens for receiving data of either digital or physical products. Later, adding

new product types requires constantly adjusting the payment screen of mfe-payments to

display the data for these products. Implementing a communication interface with the

following fields would allow the addition of new products without requiring adapta-

tions in mfe-payments. This interface definition must allow the transmission of product

details in a uniform format for all types of products. Furthermore, it permits the optional

transmission of delivery information and specifies whether delivery information can be

provided.

Solution: A practical solution to address the problem of Knots is to implement

domain-driven communication interfaces that are both generic and flexible. These

interfaces should define a contract based on the domain model, specifying the essential

fields required for each MFE to function correctly and interact with others. On designing

new fields or attributes, it is essential to ensure their consistency and reusability and

minimize tight coupling so other MFEs can utilize them. We recommend including a

generic field in the interface containing a list of objects with standard properties such as

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 81

label, value, and type, allowing each MFE to display data on the screen without needing

to understand the specific meaning or context of the values. This approach reduces

coupling between MFEs, while maintaining benefits such as modularity, scalability, and

adaptability to new requirements.

4.5.3 Hub-like Dependency

Category: Inter-frontends

Problem: A screen of a MFE integrates fragments from several other MFEs,

becoming a central point of interdependence (Figure 16). Any issue occurring in the

main screen or one of its fragments can affect all other fragments present on it.

Figure 16 – MFE-A is a central point (Hub) of dependency between the other MFEs.

Example: Consider a digital banking system where the main screen is an MFE

that integrates several fragments from other MFEs, such as an investment list, a chart

showing bitcoin value variations, account balance, and credit card statement amount.

This structure introduces a significant vulnerability: a single faulty fragment can po-

tentially disrupt the entire main screen (Figure 17). Consider a scenario where an issue

within the investment list fragment causes it to malfunction. This malfunction could

manifest as data display errors, unresponsive controls, or even complete crashes. The

consequences of such an incident extend beyond the affected fragment, rendering the

entire main screen and other fragments unusable and inaccessible to the user.

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 82

Figure 17 – Home screen is a screen with several fragments, and when Fragment B
raises an error, the entire screen becomes unavailable.

Solution: To prevent a single fragment failure from crashing the entire main

screen, the screen should be kept as simple as possible, and each fragment should

implement robust error handling mechanisms. This can be achieved by implementing a

strategy where uncaught errors within a fragment gracefully degrade its functionality,

displaying an user-friendly fallback message (Figure 18). This approach ensures that

users are informed of the issue without hindering their interaction with the remaining

functionalities on the main screen.

4.5.4 Nano Frontend

Category: Intra-frontends

Problem: The frontend decomposes into numerous small MFEs with few screens

or fragments. Small MFEs do not justify the cost of their maintenance. Furthermore, the

presence of nano frontends can lead to issues of high coupling and the manifestation of

other anti-patterns, such as cyclic dependency

Example: In an e-commerce setting, separate MFEs implement the product

listing and product details screens. Since both are part of the product context, their

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 83

Figure 18 – When Fragment B raises an error, an user-friendly fallback message is
rendered so the entire screen remains available.

implementation should happen within a single MFE encompassing all product screens.

Solution: The issue of nano frontends arises when the definition of boundaries

is inadequately and excessively granular. Adhering to Domain-driven Design (EVANS,

2004) principles is necessary to ensure an effective decomposition of MFEs. Therefore,

the development team must work closely with the product team to gain a deep under-

standing of the domains and reflect them accurately in the architecture. To solve this

issue, the architecture must be redesigned by grouping MFEs with the same domain is

necessary. For minor variations within a domain, consider using templates or compo-

nent libraries. This approach avoids creating a separate MFE for each slight variation,

promoting efficiency and code reuse.

4.5.5 Mega Frontend

Category: Intra-frontends

Problem: Decomposing the architecture into a few MFEs encompassing numer-

ous screens and fragments manifest this anti-pattern. The MFE inherits the challenges

of a monolithic frontend, such as difficulties in testing, slow builds and deployments,

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 84

high coupling between its components, lack of modularity, and limited scalability.

Example: An e-commerce system is decomposed into just two MFEs, with mfe-

users related to users and mfe-shopping related to products and purchases. The latter

MFE includes screens that display product listings, product details, purchase confirma-

tions, and purchase history. Decomposing the mfe-shopping into at least two MFEs is

necessary: one containing the product listing and product details screens, belonging

to the product domain; and another containing the confirmation and purchase history

screens, belonging to the purchase domain.

Solution: To avoid this problem, the development team must work closely with

the product team to gain a deep understanding of the domains and reflect them accu-

rately in the architecture. To fix this issue, the team should reevaluate the architecture

and divide the MFEs into more granular units, separating functionalities into smaller

and specialized MFEs based on domains. This approach helps reduce complexity, en-

hance maintainability, and foster a modular and scalable architecture.

4.5.6 Micro Frontend Greedy

Category: Intra-frontends

Problem: When a developer is uncertain about creating a new MFE, the common

practice is to opt for its creation. Whenever a need arises to develop a new set of screens

or fragments, a new MFE is instantiated. This can lead to an explosion in the number of

MFEs, making the system difficult to understand and increasing the likelihood of both

nano and mega frontends emerging.

Example: Within a banking application, an MFE encompasses screens for secu-

rity validation, utilizing confirmation code submission via email. Subsequently, the

need arose to implement a new validation method, now employing facial recognition.

The screens in this new flow differ from those in the previous flow, resulting in its

implementation through a new MFE. Creating a new MFE might not be advisable, as

two MFEs have the same context and functionalities.

Solution: To determine where to implement a new feature composed of a set

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 85

of screens and/or fragments, the domain of the new feature must first be defined. If

it falls within the domain of an existing MFE, it should be implemented there. In this

case, a summary of all MFEs, their contexts, and domains can help identify the best fit

for the new feature. If it belongs to a brand new domain, one or more MFEs should

be defined based on the domain definition. Establishing well-defined domains relies

on the collaboration between the development and product teams to accurately define

boundaries.

4.5.7 No CI/CD

Category: Operation

Problem: The company lacks an automated Continuous Integration (CI) and

Continuous Delivery (CD) pipeline, so developers must manually execute tests and

perform deployments. This manual process becomes burdensome, especially with the

potential existence of multiple MFEs. It increases development time, reduces productiv-

ity, and raises the risk of errors in the production environment.

Example: Upon releasing a new system version, a developer must conduct

manual tests and ensure all unit tests pass. However, developers may skip the tests and

manually deploy the changes without realizing some tests are failing, introducing bugs,

which is avoidable with an automated CI pipeline. Even if the tests pass, there is still a

risk of making mistakes during deployment, which could render the system unavailable.

Automating the deployment process with CD ensures correct and consistent execution.

Solution: Implement an automated and replicable CI/CD process that extends

for new MFEs, ensuring they will have automated test execution and deployment

consistently and efficiently. This should be part of the Definition of Done (DoD) of the

architecture.

4.5.8 No Versioning

Category: Operation

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 86

Problem: The MFEs are not versioned. Small and large changes can impact the

integration between different MFEs and cause errors. Consequently, the MFEs become

less independent, requiring coordinated deployments.

Example: Consider a payment confirmation page with a fragment for calculating

shipping costs. Whenever the user inputs shipping information into the fragment, the

system generates a delivery charge and adds it to the total purchase amount displayed

on the screen. Suppose the delivery charge’s return value format changes and the

fragment is not versioned. The delivery charge will not be added to the total purchase

amount, potentially resulting in a display error or even mistakenly free deliveries.

However, if the fragment is versioned, the screen will not be affected by the format

change, as it will continue to use the previous version of the fragment and can be

updated later when necessary.

Solution: Adopting a versioning approach like Semantic Versioning is essential

to ensure that changes do not impact functioning versions. For example, consider a

fragment that is used in screens across different MFEs in a client-side rendering scenario.

Without versioning, any change to the fragment’s parameters or return values could

break the interaction on all the screens it integrates with. However, with versioning,

such updates would not impact the current versions used by other MFEs, as they can

continue to request the previous version of the fragment and update at their convenience.

This approach helps maintain a stable environment and minimizes disruptions caused

by updates.

4.5.9 Lack of Skeleton

Category: Operation

Problem: No skeleton or predefined boilerplate is available as a base for creating

new MFEs. This leads to the creation of MFEs from scratch or based on an existing MFE

and inheriting its issues. The consequences include wasted time, increased risk of errors,

duplicated code across MFEs, and a need for more standardization in development.

Example: At the beginning of a specific system development, the developers

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 87

create an MFE from scratch without adhering to a specific pattern. The second MFE is

developed by copying files and code blocks from the first, changing specific parts. The

exact process happens when creating new MFEs. Then, a diverse set of MFEs emerges,

which hampers the establishment of automated pipelines, fosters code duplication, and

complicates developer interchange between teams.

Solution: Whenever a new technology is used to implement a MFE, the devel-

opment team must create a repository containing the necessary base code, known as

a boilerplate. The boilerplate should enable the creation of new MFEs with the same

technology by simply cloning it. Keeping the boilerplate updated with new design

patterns and library versions is crucial. Additionally, the development team should

create comprehensive documentation detailing the entire process of creating a new

MFE, regardless of the technology. This documentation should provide instructions on

adding automated CI/CD, integrating the MFE into the existing system, and addressing

other relevant aspects.

4.5.10 Common Ownership

Category: Development

Problem: A single team is tasked with managing all MFEs, which can occur

either due to a lack of team division or when teams are segmented based on technical

aspects such as data, frontend, and backend. However, one of the key benefits of MFE

architecture is independence, so adopting MFE Architecture without distinct teams to

operate independently negates this advantage.

Example: A small company chooses to adopt the MFE architecture. Due to the

insufficient number of developers, it is not feasible to create teams by domain. So,

developers compose a single team responsible for all MFEs. In this scenario, the cost of

maintaining different micro frontends is not justified and is only an additional challenge

for the development team.

Solution: Context should be the defining factor when structuring development

teams. Therefore, defining the boundaries of teams and MFEs is essential according

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 88

to Domain-driven Design (EVANS, 2004), so a team will be responsible only for MFEs

within its domain. Creating shared libraries can facilitate boundary definition and

promote greater team independence.

4.5.11 Golden Hammer

Category: Development

Problem: All MFEs utilize the same technology, even if it does not meet the

specific needs of each MFE. It happens due to developers’ familiarity with only one

specific technology. This approach limits the architecture, failing to take advantage of

the benefits of the possibility of a heterogeneous architecture, which is one of the main

attractions of adopting MFEs.

Example: A web application contains MFEs implemented using ReactJS frame-

work with Client-side Rendering, even those encompassing essential pages such as the

landing page. This technological uniformity overlooks the necessity for Search Engine

Optimization (SEO) strategies to ensure better rankings on search engines like Google.

It would be advisable to utilize ReactJS with Server-side Rendering or employ a static

rendering framework such as NextJS, enabling better optimization for search engines.

Solution: To choose the most suitable technology that addresses the specific

challenges of each MFE, which includes adopting the correct programming languages,

frameworks, and libraries during its development. When uncertain about a particular

technology, conducting a proof-of-concept (POC) can validate its suitability. Testing new

technologies through POCs helps validate their suitability without compromising the

establishment of standardized patterns within the company. However, it’s important

to note that increasing the variety of technologies can increase the complexity of the

architecture.

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 89

4.6 Catalog’s web application
Drawing on the collaborative repository model proposed by Bogner et al. (2019), we

developed an web application to showcase all anti-patterns.1 The web application

allows users to search for any word in the anti-patterns name, problem, solution, and

example. Figure 19 presents the home screen of the web application; Figure 20 presents

the search results screen after searching for “fragment”; Figure 21 presents an example

of the screen that details a anti-pattern; and Figure 22 presents the about screen.

Figure 19 – Home screen of the catalog’s web application.

The application was built with ReactJS (REACT, 2025) and is hosted on GitHub

Pages, making it publicly accessible. Community members can contribute to the catalog

by submitting Pull Requests (PRs) to the GitHub repository2 following the contribution

guidelines outlined in the CONTRIBUTING.md file3. All anti-patterns are stored in

the src/anti-patterns folder4, with each JSON file corresponding to a specific

anti-pattern. Thanks to GitHub Actions (GITHUB, 2025), changes to the codebase are

automatically reflected in the application when a PR is merged. This allows MFE
1 <https://mfe-anti-patterns.online/micro-frontends-anti-patterns/#/catalog>
2 <https://github.com/nabsonp/micro-frontends-anti-patterns>
3 <https://github.com/nabsonp/micro-frontends-anti-patterns/blob/main/CONTRIBUTING.

md>
4 <https://github.com/nabsonp/micro-frontends-anti-patterns/blob/main/src/anti-patterns/

index.ts>

https://mfe-anti-patterns.online/micro-frontends-anti-patterns/#/catalog
https://github.com/nabsonp/micro-frontends-anti-patterns
https://github.com/nabsonp/micro-frontends-anti-patterns/blob/main/CONTRIBUTING.md
https://github.com/nabsonp/micro-frontends-anti-patterns/blob/main/CONTRIBUTING.md
https://github.com/nabsonp/micro-frontends-anti-patterns/blob/main/src/anti-patterns/index.ts
https://github.com/nabsonp/micro-frontends-anti-patterns/blob/main/src/anti-patterns/index.ts

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 90

Figure 20 – Search results screen of the catalog’s web application.

Figure 21 – Example of the anti-patterns details screen of the catalog’s web application.

developers to propose new anti-patterns or update the descriptions of existing ones,

fostering community collaboration.

Chapter 4. Catalog Improvement Based on Practitioner’s Feedback 91

Figure 22 – About screen of the catalog’s website.

92

5

STUDENT FEEDBACK ON THE CATALOG

AND ITS CONTRIBUTION FOR

LEARNING

D espite widespread adoption in the industry, MFE has yet to be incorpo-

rated into the software architecture course curriculum. This gap reflects the

scarcity of academic research on MFE education, contrasting with the abun-

dance of experience reports and case studies detailing its implementation (ANTUNES et

al., 2024; CAPDEPON et al., 2023; KAUSHIK; KUMAR; RAJ, 2024; PERLIN et al., 2023;

MÄNNISTÖ; TUOVINEN; RAATIKAINEN, 2023; PÖLÖSKEI; BUB, 2021; MORAES et

al., 2024). Without formal educational resources, practitioners may encounter challenges

in effectively implementing the architecture, potentially leading to suboptimal outcomes

that hinder the realization of its full benefits.

This chapter addresses the gap in MFE education by reporting our experience

teaching Micro Frontends in an undergraduate Computer Science course. We evaluated

our MFE anti-patterns catalog in comparison to a presentation we designed containing

practitioner-provided guidelines. Both are supporting materials to help students under-

stand Micro Frontends by illustrating real-world scenarios and highlighting common

challenges faced by developers. To assess their effectiveness, we conducted a controlled

experiment comparing the two materials in terms of their impact on students’ learning.

Additionally, we examined whether the anti-patterns catalog improves students’ per-

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 93

ceived learning and how it was used during assessments. Our goal was to investigate

the catalog’s potential as a pedagogical tool to support both learning and architectural

decision-making in the context of MFE development.

This chapter is structured as follows: Section 5.1 describes the study design.

Section 5.2 presents the results of the experiment. Section 5.3 discusses the results.

Section 5.4 examines the threats to validity. Finally, Section 5.5 presents some of the

improved anti-patterns refined based on students’ feedback.

5.1 Study Design
To answer RQ1 and RQ2, we designed a controlled experiment following the guide-

lines proposed by Wohlin et al. (2012). The following subsections provide a detailed

description of each aspect of the study.

5.1.1 Goal and Research Questions

The experiment’s goal is to explore effective teaching strategies for MFE by comparing

the MFE anti-patterns catalog with practitioner-provided guidelines as supporting

materials. Additionally, we aim to analyze whether the MFE anti-patterns catalog

enhance students perceived learning and how it can be used during MFE maintenance.

Therefore, we aim to answer the following Research Questions (RQ):

RQ1

Which supporting material–an MFE anti-patterns catalog or practitioner-provided

guidelines–leads to higher student assessment scores?

To address RQ1, we compared the mean scores from the two MFE assessments.

In the first assessment, students consulted practitioner-provided guidelines; in the

second, they used the MFE anti-patterns catalog.

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 94

RQ2

Does the catalog of MFE anti-patterns enhance students’ perceived learning about

MFE?

For RQ2, we asked students to rate their perceived learning about MFE before

and after engaging with the catalog and then compared the two sets of responses.

RQ3

How do students use the MFE anti-patterns catalog, and do they intend to adopt

it when solving MFE challenges and learning about MFE?

For RQ3, we evaluated the catalog’s utility, ease of use, and students’ inten-

tion to use it in the future by applying the original Technology Acceptance Model

(TAM) (VENKATESH; BALA, 2008). In addition to the TAM constructs, we included

four statements to assess how the catalog supported learning about MFE. We also col-

lected qualitative feedback on how students used the catalog and analyzed it through

Grounded Theory procedures (CORBIN; STRAUSS, 2014).

5.1.2 Planning

We planned the experiment according to the guidelines of Wohlin et al. (2012).

5.1.2.1 Context Selection

We conducted the experiment with undergraduate students learning about MFE for the

first time without prior experience in this architectural style. This setup simulates junior

developers entering a company and needing to work with MFE architectures. Since no

published MFE architecture specifications described complete applications—including

the MFEs implemented, their screens and fragments, and their communication and

composition strategies—we developed two MFE applications for students to analyze

during the experiment.

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 95

5.1.2.2 Variable selection

The independent variable is the supporting material consulted during the assessments,

with two treatments: (1) the catalog of MFE anti-patterns and (2) the practitioner-

provided guidelines. The dependent variables are the students’ assessment scores and

perceived learning scores. The assessment scores are real values ranging from 0 to 10,

reflecting the actual grades students received on the exercises. In contrast, the perceived

learning scores range from 0 to 5. We adopted a different scale to reduce potential

bias in self-assessment, as students might feel uncomfortable assigning themselves the

maximum grade (i.e., 10), fearing it could be misinterpreted as their exercise grade or

lead to penalties. This distinction aimed to encourage more honest and unconstrained

reflections on their perceived learning. We measured perceived learning as real values

to enable statistical comparison between samples (WOHLIN et al., 2012) and evaluate

whether the catalog positively influenced students’ learning perception, following the

approach of meireles2024experience.

5.1.2.3 Hypothesis formulation

We formulated two hypotheses, each corresponding to RQ1 and RQ2. The null hypoth-

esis H0, related to RQ1, states that there is no significant difference in students’ mean

assessment scores when supported by practitioner-provided guidelines compared to

when using the anti-patterns catalog. The second null hypothesis, H ′
0, related to RQ2,

states that there is no significant difference in students’ perceived learning before and

after interacting with the MFE anti-patterns catalog. As RQ3 is addressed through

qualitative methods, we did not define a hypothesis for it.

5.1.2.4 Selection of subjects

Participant selection was based on convenience sampling (WOHLIN et al., 2012), target-

ing undergraduate Computer Science students enrolled in the Systems Analysis and

Design course at UFAM. Participation in the study was voluntary, and only students

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 96

who signed the consent form and attended at least all but one session were included in

the experiment.

5.1.2.5 Experiment design

Students completed two assessments related to MFE, which questions can be found

in Appendix C. We designed two MFE architecture specifications (Objects) to support

the assessments: Object 1 represented an e-commerce web application, while Object

2 represented a mobile application. A full description of the objects can be found in

Appendix B. To compare the proposed supporting materials (treatments), we employed

a crossover design (VEGAS; APA; JURISTO, 2015) applied to the specification Objects,

rather than to the treatments. This decision was necessary because the treatments

required prior instruction and could not be delivered independently for each group

without risking contamination threat validity (WOHLIN et al., 2012). Since students

continued attending shared sessions over time, separating them into different groups

would not prevent cross-influence. Therefore, we alternated only the architecture objects

analyzed in each assessment to maintain comparability, minimizing bias.

The students were divided into two groups, Group A and Group B. Since none of

the students had prior experience with MFE, we balanced the groups based on software

development experience type (backend, frontend, or full-stack) and duration, if any.

We employed a crossover design (VEGAS; APA; JURISTO, 2015) to analyze the two

objects under consideration. During the first assessment, both groups consulted the

presentation from the fourth session, which included practitioner-provided guidelines

and MFE examples. Group A completed the first assessment based on Object 1, while

Group B completed it based on Object 2. For the second assessment, both groups

accessed a web application containing the MFE anti-patterns catalog, with the Objects

reversed: Group A analyzed Object 2, and Group B analyzed Object 1. Figure 23 presents

an overview of the experiment design.

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 97

Figure 23 – Timeline of the experiment execution.

5.1.2.6 Instrumentation

The instruments for this experiment include a set of forms, training session documents,

architecture descriptions, and an activity script that must be followed during the execu-

tion phase. We describe each instrument in detail as follows:

1. Theoretical training: Presentations delivered during lecture sessions and the code

and script presented during the laboratory session.

2. Consent form: form that outlines the purpose of the experiment and details

how it will be conducted. We emphasize that participation is voluntary, allowing

participants to withdraw from the experiment at any time without affecting their

scores on the assessments. Furthermore, we explain that we will use the collected

data for quantitative and qualitative analysis and may include it in scientific

publications. Participants signed the consent form before the experiment.

3. Characterization form: a set of questions designed to gather information about the

participants’ professional experience as software developers and their familiarity

with MFE architectures.

4. Objects: description of two MFE architectures that students will evaluate during

the experiment. The objects include a brief description of the software and its

functionalities, images showcasing its screens, and a comprehensive list of MFEs

detailing their context, screens, and fragments. A full description of the objects

can be found in Appendix B.

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 98

5. Assessment Forms: The two MFE assessment forms, each focused on a different

object. All assessment’s questions can be found in Appendix C.

6. Feedback form: This form includes the TAM constructs, the learning-related

statements, and the open-ended questions that allow participants to provide

further insights.

5.1.3 Execution

To teach students about MFE and MS, we delivered 4 theoretical lecture sessions and 1

laboratory session. Table 6 presents the sessions and its content. Before the first lecture,

students already had knowledge about architectural styles like Layered Architectures,

Data-centered architectures, and Pipers & Filters (VALENTE, 2020), and about architec-

ture visualization with C4 Model (BROWN, 2023).

Table 6 – MFE sessions’ content.

Session Description
1 Microservices Monoliths, microservices, and patterns for

microservices.
2 Micro Frontends Definition, benefits, challenges, and fron-

tend integration.
3 Micro Frontends Hands-on Lab session where students implemented

routing, composition, and communication
in a web e-commerce application.

4 Examples of Micro Frontends
Architectures

Public MFE examples and guidelines from
experience reports, case studies and blogs.

5 Micro Frontends Anti-
patterns

Definition of anti-patterns and an explana-
tion of the 12 MFE anti-patterns.

Since MFE is based on MS, the first lecture session aims to introduce the defi-

nition, benefits, and challenges of MS. The lecture begins by detailing the monolithic

architectural style and the issues that motivated the creation of MS (NEWMAN, 2021).

Then, we presented the concept of MS and their key principles. To illustrate some

architectural examples, we discussed the following patterns: Remote Procedure Invo-

cation, Asynchronous Messaging, API Gateway, Backend for Frontend (BFF), and API

Composition (RICHARDSON, 2018).

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 99

In the second lecture session, we introduced the concept, benefits, and challenges

of MFE primarily based on Geers (2020) and Peltonen, Mezzalira & Taibi (2021). We also

delved into implementing frontend integration through composition, communication,

and routing. Finally, we presented an MFE architecture we developed, which would be

necessary in the hands-on session of the following lecture session. The primary goal of

this lecture was to provide the theoretical foundation of MFE.

Then, during the third session, we conducted a lab session where students could

engage with the implementation of an e-commerce application built using 3 MFEs.1 We

explained how the application uses the Single-SPA framework (SINGLE-SPA, 2016) to

compose the MFEs and then assigned three exercises focused on routing, composition,

and communication. Our goal in this session was to make students see how MFE work

in practice, since it’s concepts may be confusing.

In the fourth lecture session, we showcased the architectures published by An-

tunes et al. (2024), Moraes et al. (2024), and Silva (2024) to analyze their design choices

and discuss potential alternatives. Additionally, we presented the MFE guidelines pub-

lished by Taibi & Mezzalira (2022), Aplyca (2024), Kofler (2020), Anks (2023), and Shukla

(2023). We aimed to present practitioners-provided examples and guidelines on how

MFE has been implemented, enhancing students training to assess MFE architectures

effectively.

Following the fourth lecture, we invited students to voluntarily participate in

the experiment by signing a consent form and completing a characterization form. We

then used the characterization data to balance the groups, ensuring that the number

of participants with expertise in each development area was approximately equal and

that the overall experience level was pretty distributed between the groups. Finally, in

the fifth lecture session, we presented each of the 12 MFE anti-patterns (see Section 4.5).

This lecture was crucial for helping students understand the anti-patterns, enabling

them to apply this knowledge in the assessments effectively.

Figure 24 presents the timeline of the experiment execution. The experiment

consisted of two assessments conducted on different days. In the first assessment,

both groups had access to the guidelines and examples presented in the fourth lecture.
1 <https://github.com/nabsonp/mfe-hands-on>

https://github.com/nabsonp/mfe-hands-on

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 100

Group A analyzed Object 1, while Group B analyzed Object 2. After completing the first

assessment, we delivered the fifth lecture introducing the MFE anti-patterns catalog,

which students would use during the second assessment. In the second assessment,

Group A analyzed Object 2, and Group B analyzed Object 1, with both groups granted

access to the web application containing the anti-patterns catalog. After completing the

second assessment, students also completed the feedback form.

Figure 24 – Timeline of the experiment execution.

We conducted two comparable assessments related to MFE, each containing sim-

ilar questions focused on analyzing two distinct architectures. The questions simulated

tasks a new developer might face when joining a team working with MFE architectures.

The two systems—an e-commerce platform and a digital bank-were inspired by real-

world MFE implementations. We selected these domains because students were already

familiar with them, reducing the risk of confusion due to unfamiliar business contexts.

Each assessment consists of two parts:

1. Architecture Analysis: we asked students to evaluate the proposed MFE architec-

ture and indicate whether they would design it differently, providing justifications

for their decisions.

2. Maintenance and Evolution: eight questions that required students to develop a

new feature, understand and resolve a bug in the application, or refactor a part of

the architecture.

To ensure the realism of the assessments and the proposed architectures, we

asked two experienced MFE professionals to complete the assessments and provide

feedback on whether the problems reflected real-world scenarios and whether the

architectures resembled those commonly seen in the industry. We chose not to ask

students to design a MFE architecture from scratch, as, in practice, they are more likely to

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 101

maintain and evolve an existing architecture than creating one from scratch (GALSTER;

ANGELOV, 2016; KAZMAN et al., 2023; MANNISTO; SAVOLAINEN; MYLLARNIEMI,

2008). We ensured that every question could be answered using either the anti-patterns

catalog or the practitioner-provided guidelines, allowing for a fair comparison between

the two supporting materials.

5.1.4 Analysis and Interpretation

Before conducting the data analysis, we excluded responses from students who missed

more than one lecture to include only those who participated in the majority of the

training sessions. We conducted the quantitative analysis using two groups of paired

samples: (1) student assessment scores when consulting practitioner-provided guide-

lines versus the anti-patterns catalog, and (2) perceived learning scores before and

after engaging with the catalog. We used the assessment score samples to test the null

hypothesis H0 and the perceived learning samples to test the null hypothesis H ′
0.

We began by examining boxplots to visually compare the samples within each

group. Next, we applied the Shapiro–Wilk test (WOHLIN et al., 2012) to determine

whether the samples followed a normal distribution. Based on the results, we selected

appropriate paired statistical tests: the Paired t-Student Test (WOHLIN et al., 2012) for

normally distributed samples, and the Wilcoxon Signed Rank Test (WOHLIN et al.,

2012) for non-normal samples.

To investigate how students (representing novice MFE developers) perceived

the catalog’s usefulness during architectural decision-making in the assessments, we

applied the original TAM (VENKATESH; BALA, 2008). TAM assesses users’ percep-

tions of a technology’s usefulness and ease of use, which are the two primary factors

influencing technology acceptance behavior (LAITENBERGER; DREYER, 1998). We

measured the constructs of perceived usefulness, perceived ease of use, and behavioral

intention using a 5-point Likert scale (LIKERT, 1932), ranging from “Strongly disagree”

to “Strongly agree.” In addition to the TAM constructs, we defined four sentences for

measuring the catalog’s utility for learning MFE. Table 7 presents our adapted version

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 102

of the TAM questionnaire and the four items related to the catalog’s perceived utility

for learning.

Table 7 – Adapted TAM constructs and the sentences related to the catalog’s utility for
learning.

Perceived Usefulness (PU)
PU01 Using the anti-patterns catalog for MFE improves my performance

when developing MFE-oriented architectures.
PU02 Using the anti-patterns catalog for MFE improves my productivity

when developing MFE-oriented architectures.
PU03 Using the anti-patterns catalog for MFE improves my effectiveness

in communicating with other developers when developing MFE-
oriented architectures.

PU04 I consider the anti-patterns catalog for MFE useful for developing
MFE-oriented architectures.

Perceived Ease Of Use (PEOU)
PEOU01 My interaction with the anti-patterns catalog for MFE was clear

and understandable.
PEOU02 Interacting with the anti-patterns catalog for MFE did not require

much mental effort from me.
PEOU03 I consider the anti-patterns catalog for MFE easy to use.
PEOU04 I find it easy to use the anti-patterns catalog for MFE during the

development of MFE architectures.
Behavioral Intention (BI)

BI01 Assuming I have enough time to design and develop an MFE-
oriented architecture, I would use the anti-patterns catalog for
MFE.

BI02 Considering that I can choose other tools to assist in the devel-
opment of MFE-oriented architectures, I intend to use the anti-
patterns catalog for MFE.

BI03 I intend to use the anti-patterns catalog for MFE the next time I
work on an MFE-oriented architecture.

Useful For Learning (UFL)
UFL01 I consider the anti-patterns catalog for MFE useful for learning

about MFE.
UFL02 I find it easy to use the anti-patterns catalog for MFE to learn

about MFE-oriented architectures.
UFL03 The anti-patterns catalog for MFE facilitated learning about best

practices in software architecture.
UFL04 The anti-patterns catalog for MFE contributed to my understand-

ing of common challenges in MFE architectures.

We collected qualitative feedback on how students used the catalog, its perceived

benefits and challenges, how it influenced their learning, and their overall impressions

of the catalog. We analyzed the data using Straussian Grounded Theory (GT) pro-

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 103

cedures (CORBIN; STRAUSS, 2014). We first applied open coding, which involved

creating codes representing relevant concepts to understand how students used the

catalog. Then, when applying axial coding, we identified connections among the codes

and grouped them into broader categories to identify the primary uses of the catalog.

We did not apply the GT’s selective coding, as our objective was not to develop a theory

but to explore how the catalog can be used during MFE development.

5.2 Results
This section presents the participants’ characterization and the results for each RQ. For

RQ1 and RQ2, we analyze the quantitative data collected during the experiment using

boxplots and statistical tests to compare the samples. For RQ3, we present the results of

the TAM evaluation and the learning-related statements, and summarize insights from

the qualitative analysis of students’ feedback.

5.2.1 Participants’ Characterization

The class had 34 students, of which 23 were eligible to participate in the study after

excluding those who missed more than one lecture. All students signed a consent form

and completed the characterization form prior to the experiment. We assigned each

participant an identifier ranging from P1 to P23.

Table 8 presents a summary of experiment participants’ characterization. Each

column presents the answer of one of the characterization question: column “Has

development experience” refers to “Do you have any experience with web development

outside the context of a course (e.g., R&D projects, industry, etc.)?”; column “Experience

Time” refers to “If you have experience in industry or in RD projects, how much

experience do you have?”; column “Experience with MFE” refers to “Before the classes,

had you had any prior exposure to Micro Frontends architectures?”; and column “Group”

informs the group the participant was assigned to. We also asked participants to describe

their experience with MFEs, if any. However, since no participant had prior experience

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 104

with MFEs, all answers were left empty and were therefore omitted from the table.

Table 8 – Summary of the experiment’s participants’ characterization.

ID Has development experience Experience
time

Experience
with MFE Group

P1 No - No A
P2 No - No B
P3 No - No B

P4 Yes, as Backend Developer Between 1 and 2
years No B

P5 No - No B

P6 Yes, as Full Stack Developer Between 1 and 2
years No B

P7 No - No A
P8 No - No A
P9 No - No A

P10 No - No B
P11 No - No A
P12 Yes, as Full Stack Developer Less than 1 year No A
P13 No - No B
P14 No - No B
P15 No - No A
P16 No - No B
P17 No - No B
P18 No - No B
P19 No - No A
P20 No - No A
P21 No - No A
P22 No - No A

P23 Yes, as Frontend Developer Between 2 and 3
years No A

To ensure a fair and balanced distribution of skills among the groups, we con-

ducted the group balancing based on the type and duration of experience in software

development:

• Backend Development: one participant with 1 to 2 years of experience (P4).

• Full Stack Development: 2 participants, one with 1 to 2 years of experience and

one with less than 1 year (P6 and P12).

• Frontend Development: one participant with 2 to 3 years of experience (P23).

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 105

We balanced the groups to ensure that the number of participants in each area

of expertise was approximately balanced. Additionally, the experience levels were

distributed relatively evenly across the groups. Group A included one participant with

less than 1 year of experience in Full Stack Development (P12) and one participant

with 2 to 3 years of experience in Frontend Development (P23). Group B included

one participant with 1 to 2 years of experience in Backend Development (P4) and one

participants with 1 to 2 years of experience in Full Stack Development (P6).

5.2.2 RQ1: Supporting Materials Comparison

To address RQ1, we evaluated the students’ scores from the first and second assessments.

Figure 25 presents the boxplots for the two samples, which show similar distributions

and are close to each other. Performing the Shapiro-Wilk Test on the first sample yielded

a p-value of 0.764. The second sample reported its mean, median, and mode as 3.917,

4.000, and 4.000, respectively. Performing the Shapiro-Wilk Test on the second sample

yielded a p-value of 0.848. With a significance level of α = 0.05, both samples are

considered to follow a normal distribution.

Figure 25 – Boxplots presenting the data distribution on the assessment samples.

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 106

We selected the Paired t-Student Test for the sample comparison, a parametric

test for dependent and normally distributed samples (WOHLIN et al., 2012). With the

significance level set at α = 0.05, the test yielded a p-value of 0.298, indicating that

we cannot reject the null hypothesis H0. Therefore, we conclude that both supporting

materials are equally effective in helping students learn about MFE.

RQ1 Summary

There was no significant difference in students’ assessment scores when using the

MFE anti-patterns catalog versus the practitioner-provided guidelines. This result

indicates that both supporting materials are equally effective in helping students

learn about micro frontends.

5.2.3 Perceived learning Difference

To address RQ2, we evaluated the students’ self-assessed perceived learning before and

after engaging with the catalog. Figure 26 presents the boxplots for the two samples,

indicating that the second sample appears to have higher values than the first one.

Performing the Shapiro–Wilk Test on both samples yielded a p-value of 0.216 for the

first sample and < 0.001 for the second sample. Considering a significance level of

α = 0.05, the second sample is not normally distributed.

As one of the samples is not normally distributed, we selected the Wilcoxon

Signed Rank Test to compare the samples, as it is an appropriate non-parametric test

for comparing dependent samples (WOHLIN et al., 2012). Using a significance level

of α = 0.05, the test yielded a p-value of 0.001, allowing us to reject the null hypothesis

H ′
0. Thus, we can assert a statistically significant difference in students’ self-perceived

learning before and after using the catalog for solving MFE architectural problems.

Since the distribution of perceived learning after engaging with the catalog shows

higher values than before, we conclude that using the catalog enhances students’ self-

perception of learning about MFE.

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 107

Figure 26 – Boxplots presenting the data distribution on the perceived learning before
and after engaging with the MFE anti-patterns catalog.

RQ2 Summary

After using the MFE anti-patterns catalog, students reported a statistically signifi-

cant increase in their perceived learning, suggesting that exposure to real-world

problems and examples helps students feel that they have learned more effectively.

5.2.4 How students used the catalog

To address RQ3, we asked students to answer a online form to respond if they agree

with the TAM and the learning-related statements, and we collected qualitative feedback

on how students used the catalog, its benefits and challenges, how it influenced their

learning, and their overall impressions of the catalog.

5.2.4.1 TAM and learning statements analysis

Figure 27 summarizes the results on the Perceived Usefulness construct. Upon analyzing

PU01, PU02, and PU04, the students generally agreed that the catalog is a useful tool for

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 108

developing MFE architectures, highlighting its potential to improve their performance

and productivity during development. Although they did not create entirely new

architectures during the assignment, they were tasked with proposing new solutions

for existing ones. Regarding PU03, some feedback reflected a neutral stance, which may

be attributed to the fact that the students did not interact with other developers while

proposing their architectural solutions.

Figure 27 – Responses for each sentence in the Perceived Usefulness construct.

Figure 28 presents the Perceived Ease Of Use construct results. Upon analyzing

PEOU02 and PEOU03, all the students agreed that the tool was easy to use and did not

require much mental effort. Regarding PEOU01, only one response indicated a neutral

stance, suggesting that interacting with the catalog was clear and comprehensible. On

PEOU04, its feedback indicates that using the catalog to develop MFE architectures may

be easy, as it presents neutral responses or partial agreements. These results support the

notion that the catalog offers a low-friction experience, which may facilitate its adoption

in educational and professional contexts.

Figure 29 summarizes the results for the Behavioral Intention construct. Upon

analyzing BI01, students generally expressed a positive intention to use the catalog,

especially when given sufficient time for design and development tasks. Most partici-

pants also agreed they would use the catalog to support MFE development (BI02) and

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 109

Figure 28 – Responses for each sentence in the Perceived Ease Of Use construct.

future MFE projects (BI03). These findings suggest that the catalog holds potential as a

valuable tool for both in-training software engineers and practitioners.

Figure 29 – Responses for each sentence in the Behavioral Intention construct.

Figure 30 summarizes the results related to the catalog’s utility for learning

provided by the students through the survey. Regarding the statements in UFL01,

UFL02, UFL03, and UFL04, there were no disagreements or neutral responses, as most

were “Strongly agree” and “Partially agree.” It suggests that students recognized the

catalog’s contribution to the learning process concerning software system architecture

and MFE architectures. We further discuss the enhancement in learning during the

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 110

qualitative analysis results.

Figure 30 – Responses for each sentence related to the catalog’s utility for learning.

5.2.4.2 Qualitative feedback analysis

We analyzed students’ qualitative feedback using ATLAS.ti2, applying open and axial

coding (CORBIN; STRAUSS, 2014) to understand how students used the catalog during

the second assessment. The quotes and the related codes are available in Appendix D.

Based on the relationships among the open codes (highlighted with underlines), we

identified three categories that summarize the main ways in which students interacted

with the catalog:

1. Identify problems and solutions – As anticipated, students used the catalog

to Identify problems and solutions, as expressed by P1: “identify the problems and

the solutions to the respective questions.” However, their approaches to identifying

problems varied according to the features they relied on within the catalog. Some

students emphasized the role of examples in Identify problems by examples, as

noted by P3: “the examples helped me identify the problem.” Additionally, students
2 <https://atlasti.com/>

https://atlasti.com/

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 111

used examples to Understand problems by examples, as stated by P1: “seeing ex-

amples and descriptions helped me understand the problem in some questions.” Others re-

lied on the visual elements, using the catalog to Understand problems by images,

as illustrated by P4: “the use of images in some explanations helped more than just text.”

Additionally, some students also used the solution description, as seen in P5’s

comment about to Identify problems by solutions: “the description of the problems

and solutions in the catalog helped me a lot to draw a parallel with the problems proposed.”

Moreover, the catalog also serves to Guide architectural decisions, as stated by

P7: “allowed me to address these problems and made it easier to make decisions.” These

findings suggest that offering multiple pathways–textual descriptions, examples,

visuals, and solution-based reasoning–can support diverse cognitive strategies

among students. Therefore, the catalog enhances accessibility and understanding

by accommodating different ways of thinking and learning.

2. Support efficient and structured search for MFE problems – The catalog’s web ap-

plication enabled a structured and efficient browsing experience, helping students

access and explore the anti-patterns more effectively. For example, P7 highlighted

the ease of Consulting by categories: “it is easy to visualize, especially with the use of

categories.” Even when facing difficulties in understanding the anti-patterns, P4

used the catalog to Consult several anti-patterns at once and made a suggestion

to improve problem identification: “I had difficulties understanding the description

of each anti-pattern; I had to open all of them to see the description. There could be a

summary in each card of the catalogs on the main screens.” Similarly, P20 suggested

Linking anti-patterns to improve navigability: “when opening an anti-pattern, the

page could show others from the same topic or similar ones.”

3. Reinforce and deepen MFE knowledge – Students revisited and deepened their

understanding of MFE concepts through real-world examples, using the catalog

to consolidate and expand their prior knowledge. The catalog can be used to

Learn based on practical problems, as P17 remarked: “Seeing the anti-patterns in

practice increased my knowledge about the subject.” P13 highlighted that the catalog

was used to Understand common challenges: “I could understand real situations and

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 112

challenges faced during architectural decisions.” In addition, the catalog was useful

to Review MFE concepts, as noted by P21: “[the catalog] helped me remember some

concepts I did not recall.” P4 reinforced this point and suggested improvements to

enhance its role as a learning tool by adding the MFE concepts presented in class:

“[the catalog] helped by centralizing content about MFEs. However, the catalog could

include summaries and slides presented in the classes.” These insights demonstrate the

catalog’s potential as a reference material and an educational tool that reinforces

learning through contextualized, practice-based content.

RQ3 Summary

Students agreed that the MFE anti-patterns catalog is useful, easy to use, and

helpful for learning about MFE. They also expressed an intention to use it in future

development tasks. Qualitative analysis revealed three primary ways students

used the catalog: (1) to identify problems and solutions, (2) to support efficient

and structured searches for MFE issues, and (3) to reinforce and deepen their un-

derstanding of MFE concepts. These findings highlight the catalog’s effectiveness

as a problem-solving aid and an educational resource that accommodates diverse

learning strategies.

5.3 Discussion
Our supporting materials allowed us to teach how MFE is implemented in real-world

scenarios without requiring students to engage with low-level programming details.

Students could effectively learn about MFE without developing a complete MFE-based

system. The course focused primarily on architectural design and included a single lab

session to provide hands-on exposure to an MFE implementation, helping students

better understand MFE in practice. As a result, the supplementary resources enabled

students to grasp key architectural concepts more clearly, without being overwhelmed

by implementation complexity. A potential approach would be to balance high-level

architectural instruction with practical coding exercises, which can aid in consolidat-

ing learning. However, this balance must be carefully managed, as coding exercises

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 113

may detract from architectural understanding, especially for students with limited

development experience.

Students reported greater learning gains when exposed to real-world examples

presented by the two supporting materials. Feedback indicated that the catalog could

even have more examples to support architectural decision-making better. This under-

scores the limitations of relying solely on textbook-based or overly didactic examples,

which often fail to reflect the complexity and nuance of real-world scenarios. Therefore,

integrating practical examples into architecture courses is essential to deepen students’

understanding and prepare them to apply concepts effectively. Given the detail level

of each supporting material, the guidelines are more appropriate for students with

no prior exposure to MFE, whereas the catalog is better suited for those with founda-

tional knowledge who aim to reinforce their learning through practical application and

problem identification.

Students feedback indicated that the catalog served as a quick, easy, and central-

ized source of information, making it an effective support tool. It proved particularly

valuable during architectural decision-making, with students emphasizing the impor-

tance of having easy access to resources that facilitate such processes. Additionally,

students suggested that the catalog could include more information on MFE, further

highlighting its potential as a reference and a learning resource. Teaching students how

to use practical tools that can be seamlessly integrated into their future development

workflows significantly enhances their learning experience.

5.4 Threats to validity
We evaluated the validity of the experiment results based on the four types of threats to

validity defined by Wohlin et al. (2012):

Internal Validity: A potential threat is interactions with selection, where the

sample’s characteristics might influence their response to the treatment. To mitigate

this, we balanced the groups based on participants’ software development experience,

ensuring neither group had an advantage. Diffusion, where one group might replicate

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 114

the other’s treatment, was addressed by placing groups in separate labs, restricting

access to only their assigned object, and renaming the object during the second as-

sessment. Instrumentation, related to experimental artifacts’ quality, was mitigated

by validating all artifacts through a pilot test. To address the learning effect, where

participants acquire knowledge during the experiment, we implemented a crossover of

objects to balance learning across treatments. The catalog was written in english, but

we instructed students to translate the text using Google Translate so it wouldn’t affect

their use. Finally, training could be confounding if the ad-hoc and anti-pattern lectures

were not equivalent. To counter this, we ensured all questions could be answered using

the either materials.

External Validity: One threat to external validity is the interaction of setting and

treatment, as the objects used in the experiment were not real-world architectures and

might not fully represent realistic scenarios. To address this threat and ensure that the

objects are realistic, the author of this Thesis proposed a realistic architecture based on

his professional experience and validated it with industry professionals with previous

MFE expertise. Another threat is the interaction of selection and treatment, as the

participants might not represent real-world developers. To mitigate this, we conducted

training sessions, used a class of students in the major’s sixth semester, and discarded

data from students who missed more than one lecture. These measures ensured that

participants were comparable to novice developers with limited MFE experience.

Construct Validity: A potential construct validity threat is that the measure may

not accurately represent its effect. To address this, we conducted a pilot study with two

practitioners whose feedback aligned with the correction criteria, ensuring its reliability.

Regarding experimenter expectancy, where questions might elicit desired responses,

we based questions on real-world problems and validated them during the pilot study,

avoiding the direct use of catalog examples to reduce bias. To mitigate the effects of

treatment orders, we selected a crossover design and conducted treatments in separate

weeks to reduce carryover. Finally, we did not inform participants that the catalog

originated from our prior work to prevent hypothesis guessing, minimizing biased

feedback.

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 115

Conclusion Validity: Low statistical power, which could hinder the detection

of significant effects, is a significant threat to conclusion validity. We used paired

statistical tests to mitigate this and implemented a crossover design to collect more

data, increasing the analyses’ power. Additionally, fishing and the error rate could be

a concern if one object favored the tool over the other. We designed both objects with

equivalent architectures and similar problems to address this, ensuring fairness between

treatments.

5.5 Improved catalog based on students’ feedback
Students provided general feedback on the catalog instead of commenting on each

anti-pattern individually. The main challenge they highlighted was the large amount of

text. Some students reported difficulties understanding the anti-pattern descriptions,

often needing to open them multiple times to grasp the full context. To address this, we

shortened some descriptions and rewrote unclear phrases to improve readability. Addi-

tionally, students suggested displaying related anti-patterns from the same category or

similar ones at the bottom of the page when viewing an anti-pattern, making it easier

for users to explore connected content. We plan to add this feature in future versions of

the web application.

Several students mentioned that the catalog could benefit from more visual

elements. They suggested adding more images to make the examples more engaging

and easier to remember. Therefore, we added images illustrating problem, example

and/or solution to Knot Micro Frontend, Mega Frontend, Nano Frontend, No CI/CD,

and Common Ownership anti-patterns. Additionally, students recommended incor-

porating the slides and summaries from the classes into the catalog to provide more

relevant and comprehensive content. In the subsequent subsections we present the Knot

Micro Frontend, Nano Frontend, Mega Frontend, No CI/CD, and Common Ownership

anti-patterns.

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 116

5.5.1 Knot Micro Frontend

Category: Inter-frontends

Problem: A Knot is composed of three or more MFEs whose communication

with each other uses a context-specific interface. This means that navigation and data

exchange between screens and fragments heavily depend on the unique context of

each MFE involved. Adding new MFEs exacerbates the problem: as the number of

MFEs grows, the interface complexity increases due to the introduction of new contexts,

creating a highly coupled Knot that becomes difficult to maintain and integrate new

functionalities.

Example: Suppose an e-commerce system has MFEs for Digital Products (mfe-

digital-products) and Payments (mfe-payments). The payment screen of mfe-payments

receives the digital product data as a parameter. At a later stage, a Physical Products

MFE (mfe-physical-products) is implemented, so developers add physical product-

specific attributes to the payment screen to allow digital or physical product payment

(Figure 31). Later, adding new product types requires constantly adding attributes

specific to each product type to the payment screen, so it becomes a highly coupled

knot.

Figure 31 – To allow physical products payment, optional physical product-specific
attributes are added and digital product-specific attributes become optional.

Solution: Implement generic and flexible interfaces based on domain. These

interfaces should have non-optional domain attributes required for each MFE to func-

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 117

tion correctly and interact with others. On adding new attributes, developers must

ensure consistency and reusability so other MFEs can utilize them. For example, the in-

terface may include generic attributes–such as a list of objects with standard properties

like label, value, and type–allowing each MFE to exchange data or render components

without understanding the specific meaning or context of the values (Figure 32). This ap-

proach reduces coupling between MFEs while maintaining benefits such as modularity,

scalability, and adaptability to new requirements.

Figure 32 – General product attributes are non-optional and create optional generic
attributes that can be used by any type of product.

5.5.2 Nano Frontend

Category: Intra-frontends

Problem: The frontend decomposes into numerous small MFEs with few screens

or fragments that do not represent a domain or subdomain of the application. Small

MFEs do not justify the cost of their maintenance. Furthermore, the presence of Nano

Frontends can lead to issues of high coupling and the manifestation of other anti-

patterns, such as cyclic dependency

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 118

Example: In a scientific workflow platform, the UI is decomposed into exces-

sively granular micro frontends: one for the pipeline diagram (pipeline-microfrontend),

another for configuring each phase (phase-parametrization-microfrontend), and a third

for listing executions (execution-table-microfrontend), as shown in Figure 33. Although

these fragments interact closely and all belong to the same workflow domain, they are

split into tiny independent MFEs, leading to high coupling, increased communication

complexity, and duplicated effort across teams. By applying the solution, the architec-

ture is redesigned to consolidate these small MFEs into a single, cohesive workflow

MFE aligned with the domain.

Figure 33 – Page from (ANTUNES et al., 2024) with components as MFE, configuring
nano frontends.

Solution: The issue of Nano Frontends arises when the definition of boundaries

is inadequately and excessively granular. Adhering to Domain-driven Design (EVANS,

2004) principles is necessary to ensure an effective decomposition of MFEs. Therefore,

the development team must work closely with the product team to gain a deep under-

standing of the domains and reflect them accurately in the architecture. To solve this

issue, the architecture must be redesigned by grouping MFEs with the same domain is

necessary. For minor variations within a domain, consider using templates or compo-

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 119

nent libraries. This approach avoids creating a separate MFE for each slight variation,

promoting efficiency and code reuse.

5.5.3 Mega Frontend

Category: Intra-frontends

Problem: Decomposing the architecture into a few MFEs encompassing numer-

ous screens and fragments, typically embracing more than one sub-domain, manifests

this anti-pattern. The MFE inherits the challenges of a monolithic frontend, such as diffi-

culties in testing, slow builds and deployments, high coupling between its components,

lack of modularity, and limited scalability.

Example: An e-commerce system is decomposed into just two MFEs, with mfe-

users related to users and mfe-shopping related to products and purchases. The latter

MFE includes screens that display product listings, product details, purchase confirma-

tions, and purchase history. Decomposing the mfe-shopping into at least two MFEs is

necessary: one containing the product listing and product details screens, belonging

to the product domain; and another containing the confirmation and purchase history

screens, belonging to the purchase domain (Figure 34).

Figure 34 – Mega frontend break into two MFEs.

Solution: To avoid this problem, the development team must work closely with

the product team to gain a deep understanding of the domains and reflect them accu-

rately in the architecture. To fix this issue, the team should reevaluate the architecture

and divide the MFEs into more granular units, separating functionalities into smaller

and specialized MFEs based on domains. This approach helps reduce complexity, en-

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 120

hance maintainability, and foster a modular and scalable architecture.

5.5.4 No CI/CD

Category: Operation

Problem: The company lacks an automated Continuous Integration (CI) and

Continuous Delivery (CD) pipeline, so developers must manually execute tests and

perform deployments. This manual process becomes burdensome, especially with the

potential existence of multiple MFEs. It increases development time, reduces productiv-

ity, and raises the risk of errors in the production environment.

Example: Upon releasing a new system version, a developer must conduct

manual tests and ensure all unit tests pass. However, developers may skip the tests

and manually deploy the changes without realizing some tests are failing, introducing

bugs, which is avoidable with an automated CI pipeline (Figure 35). Even if the tests

pass, there is still a risk of making mistakes during deployment, which could render the

system unavailable. Automating the deployment process with CD ensures correct and

consistent execution.

Figure 35 – CI and CD cycle. Source: <https://www.abtasty.com/resources/ci-cd/>

Solution: Implement an automated and replicable CI/CD process that extends

for new MFEs, ensuring they will have automated test execution and deployment

consistently and efficiently. This should be part of the Definition of Done (DoD) of the

https://www.abtasty.com/resources/ci-cd/

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 121

architecture.

5.5.5 Common Ownership

Category: Development

Problem: A single team is tasked with managing all MFEs, which can occur

either due to a lack of team division or when teams are segmented based on technical

aspects such as data, frontend, and backend. However, one of the key benefits of MFE

architecture is independence, so adopting MFE Architecture without distinct teams to

operate independently negates this advantage.

Example: Consider an organization where a single centralized team is respon-

sible for maintaining all micro frontends, including users, checkout, and products,

regardless of their domain context. This setup leads to bottlenecks, reduces team auton-

omy, and creates friction between domain experts and technical teams. By restructuring

teams according to Domain-driven Design principles, as illustrated in Figure 36, the

organization creates cross-functional teams, each responsible for its micro frontends,

services, and databases.

Figure 36 – Micro Frontends and Microservices grouped in cross-functional teams de-
fined by domain.

Solution: Context should be the defining factor when structuring development

teams. Therefore, defining the boundaries of teams and MFEs is essential according

to Domain-driven Design (EVANS, 2004), so a team will be responsible only for MFEs

Chapter 5. Student Feedback on the Catalog and Its Contribution For Learning 122

within its domain (Figure 36). Creating shared libraries can facilitate boundary definition

and promote greater team independence.

123

6

CATALOG EXPANSION THROUGH A

MULTIVOCAL LITERATURE REVIEW

Although the Rapid Review presented in Chapter 3 showed that the scientific

literature does not document anti-patterns for micro frontends, develop-

ers frequently share such knowledge online through blog posts, technical

documents, and videos based on their professional experience. Sharing knowledge in

non-formally published sources (commonly referred to as Grey literature) is widespread

among software engineering (SE) practitioners, as SE is a practitioner- and application-

oriented field (GAROUSI; FELDERER; MÄNTYLÄ, 2019). However, these anti-patterns

remain scattered, lack a standardized format, and require careful evaluation of credibil-

ity and relevance, especially when the authors are anonymous or their expertise cannot

be verified.

To identify MFE anti-patterns proposed by practitioners in Grey Literature

sources, and to summarize and standardize them, we conducted a Multivocal Literature

Review (MLR) based on the guidelines proposed by Garousi, Felderer & Mäntylä (2019).

Section 6.1 describes the MLR protocol, including its objective, research questions,

search strategy, and data extraction process. Section 6.2 presents the findings of the

MLR, while Section 6.3 discusses their implications. Section 6.4 examines the threats to

the study’s validity. Finally, Section 6.5 presents the newly identified anti-patterns and

some improved anti-patterns based on the results.

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 124

6.1 MLR Protocol
This section presents the MLR protocol and describes our process of retrieving relevant

documents and identifying new anti-patterns.

6.1.1 Goal and Research Questions

This MLR aims to expand our catalog of MFE anti-patterns by incorporating those

proposed by developers in Grey Literature. In doing so, we seek to document more

problems reported by MFE practitioners and enhance the quality and coverage of our

catalog. To guide the search, we defined 4 RQs:

RQ1 Which Micro Frontends anti-patterns have been proposed in White and Grey

Literature?

RQ2 How are Micro Frontends anti-patterns classified?

RQ3 Are the proposed Micro Frontend anti-patterns grounded in theory or based on

professional experience?

RQ4 What is the profile of the authors who propose Micro Frontend anti-patterns?

RQ1 is the main research question, focused on uncovering anti-patterns reported

in Grey Literature. RQ2 aims to identify existing classifications or categories that could

improve the structure of our current catalog. RQ3 investigates the basis of the proposed

anti-patterns, assessing whether they are grounded in theoretical knowledge or derived

from professional experience. Finally, RQ4 explores the background of the authors who

propose these anti-patterns, helping us understand whether they are researchers or

practitioners.

6.1.2 Search String

In the search string, we included all known variations of the terms “micro frontend”

and “anti-pattern”. We selected a set of control publications that address the topic to

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 125

ensure that the search string retrieved relevant publications. The posts from Shinde

(2022), Mezzalira (2020), and Rappl (2024) were written by authors with experience

in MFE and present anti-patterns in a structured format, including both the problem

and the proposed solution. Additionally, we included our paper proposing a catalog of

anti-patterns (SILVA; RODRIGUES; CONTE, 2025) to ensure the string could retrieve

relevant academic publications. We refined the search string iteratively until it retrieved

all control studies. The final version appears below:

(“anti-pattern” OR “anti-patterns” OR “antipattern” OR “antipatterns” OR

“anti pattern” OR “anti patterns”) AND (“microfrontend” OR “microfrontends”

OR “micro frontend” OR “micro frontends” OR “micro-frontend” OR “micro-

frontends”)

6.1.3 Sources

We conducted the automated search across both academic and non-academic sources to

retrieve publications from white and Grey Literature. We selected the IEEE Explore1 and

the ACM Digital Library 2 for academic sources, as these digital libraries cover the most

relevant journals and conference proceedings in software engineering (KITCHENHAM;

BUDGEN; BRERETON, 2015). We used Google 3, Medium 4, and X (formerly known

as Twitter) 5 to capture Grey Literature, encompassing the leading platforms where

developers typically share technical knowledge. Additionally, we selected Google

Scholar 6 to retrieve preprints of academic papers that had not yet been formally

published.
1 <https://ieeexplore.ieee.org/Xplore/home.jsp>
2 <https://dl.acm.org/>
3 <https://www.google.com.br/>
4 <https://medium.com/>
5 <https://x.com>
6 <https://scholar.google.com.br/>

https://ieeexplore.ieee.org/Xplore/home.jsp
https://dl.acm.org/
https://www.google.com.br/
https://medium.com/
https://x.com
https://scholar.google.com.br/

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 126

6.1.4 Selection Criteria

We defined one inclusion criterion (IC) encompassing publications presenting one or

more MFE anti-patterns, each described with its associated problem and proposed

solution(s):

• IC1: Document one or more MFE anti-patterns by describing their problem and

proposing one or more solutions.

We designed an exclusion criteria (EC) to remove publications that do not docu-

ment MFE anti-patterns or fail to describe both the problem and at least one solution;

that are not written in English or Portuguese; that are not related to MFE; or for which

full access was not available. Finally, we included a criterion to exclude duplicate

publications. Therefore, the EC are:

• EC1: Does not document MFE anti-patterns by describing their problem and

proposing one or more solutions;

• EC2: Publication is not in English or Portuguese;

• EC3: Publication is not about MFEs;

• EC4: Full access to the publication was not possible;

• EC5: Duplicate publication.

6.1.5 Search and Selection Process

We conducted the automated search from November 28th, 2024, to December 1st, 2024.

After conducting the automated search on all selected sources, we conducted the

selection process in three phases: the first filter, the quality assessment, and the second

filter. The following sections describe each of these phases.

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 127

6.1.5.1 First Filter

First, we removed duplicates based on similar titles and URLs. Then, we conducted

the first filter by applying the selection criteria to the publication’s title, abstract, and

body, in this order. If a publication was not included based on its title, we read the

abstract (in the case of academic papers) or the first paragraph (in the case of Grey

Literature publications) to decide whether to include it. For textual Grey Literature

publications not included based on the abstract or initial paragraph, we searched for the

terms “antipattern”, “anti-pattern”, and “anti pattern” in the body. We read the whole

paragraph in which the term appeared to determine whether it satisfied IC1. If the

publication was not included after these three steps, we excluded it based on EC1. For

videos, we evaluated inclusion based only on their titles. In cases of doubt, we included

the publication for complete evaluation during the second filter.

To avoid single-researcher bias, we first evaluated the selection criteria in collabo-

ration with another researcher before applying the first filter to all publications resulting

from the duplicate removal. The author of this thesis and the research collaborator

independently applied the first filter to a sample of 19 publications. We then measured

the level of agreement between the two researchers using Cohen’s Kappa (COHEN,

1960) to ensure the criteria were clear and well-defined. The result indicated an almost

perfect agreement (k = 0.881), according to the interpretation proposed by Landis &

Koch (1977).

6.1.5.2 Quality Assessment

We performed the Quality Assessment (QA) to evaluate the extent to which the Grey

Literature publications are valid and unrestricted from bias (GAROUSI; FELDERER;

MÄNTYLÄ, 2019). The QA phase is essential for assessing publications that have not

undergone peer review to ensure the quality of the results. We defined a QA checklist

based on the guidelines proposed by Garousi, Felderer & Mäntylä (2019), which includes

a set of questions grouped under specific criteria. However, we excluded the Impact

and Novelty criteria, as our goal was not to search for novel research results. We

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 128

also discarded some questions from the remaining criteria as they were not relevant

to our research goal. Each question has a set of possible answers associated with a

corresponding score. The resulting in the checklist presented in Table 9.

Criteria Questions Possible Answer

Date Q1: Does the post have a clearly stated date? 0: No
1: Yes

Authority of
the Producer

Q2: Has the author published other posts
about Micro Frontends?

0: No
1: Yes

Q3: Does the author have experience in
real-world Micro Frontend architectures?

0: No
1: Yes

Methodology Q4: Does the anti-patterns have a clearly
stated origin or reference?

0: Not
1: Yes

Impact Q5: Does the post have positive comments,
likes or have more than 5 back links?

0: Not
1: Yes

Position w.r.t.
related sources

Q6: Have key related Grey Literature or
formal sources linked to or discussed?

0: Not
1: Yes

Outlet type Q7: What is the level of the publication’s
outlet control?

0: Low
0.5: Moderate
1: High

Table 9 – Quality Assessment checklist for Grey Literature publications.

We answered Q1 with “Yes” only if we could identify the publication’s year.

To answer Q2 and Q3, we searched the authors’ profiles on LinkedIn 7 and reviewed

their other publications related to MFE to assess their background and expertise in the

field. If we could not identify the author, both questions were answered with “Not.” We

answered Q4 with “Yes” only if the author explicitly stated whether the anti-patterns

were based on their professional experience or referenced other publications. To address

Q5, we examined the publication’s comments and likes and measured backlinks using

a backlink checker 8. For Q6, we verified whether the publication referenced relevant

MFE literature. Finally, we classified the publications according to the types of grey

literature sources in Software Engineering proposed by Garousi, Felderer & Mäntylä

(2019), which define three ordered tiers based on the level of outlet control:

1. High: books, magazines, government reports, white papers;
7 <https://www.linkedin.com>
8 <https://www.seoreviewtools.com/valuable-backlinks-checker/>

https://www.linkedin.com
https://www.seoreviewtools.com/valuable-backlinks-checker/

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 129

2. Moderate: annual reports, news articles, presentations, videos, Q&A sites (such

as Stack Overflow), wiki articles; and

3. Low: blogs, emails, tweets.

To determine which publications would proceed to the next phase, we calculated

each publication’s average score ranging from 0 to 1 and established a threshold of

0.5. A researcher collaborator evaluated each publication score to ensure the quality of

the assessment. In cases of disagreement, we discussed the differences until reaching a

consensus.

6.1.5.3 Second Filter

During the second filter, we thoroughly reviewed the 36 publications (reading them

entirely or watching them in the case of videos) to decide whether to include them for

data extraction, based on the selection criteria. Two researchers conducted the filtering

independently and discussed differences until reaching a consensus.

6.1.6 Data Extraction

To conduct the data extraction from the selected publications, we defined the extraction

form presented in Table 10. We designed the last four fields to answer the RQs, while the

remaining fields aim to summarize the results. Since almost all selected publications are

from grey literature (except for the paper we published proposing the second version of

our catalog) the authors did not follow a structured approach for documenting the anti-

patterns. Therefore, we extracted the problems and solutions by identifying relevant

quotes that describe them. Additionally, we identified the names and categories of each

anti-pattern. Two researchers independently performed this extraction and discussed

the results to reach a consensus.

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 130

Table 10 – Quality Assessment checklist for Grey Literature publications.

Field RQ Expected Outcome
Title

-

Publication’s title
Source Source retrieved from
Author Author’s name and filiation
Publication type Video, blog, post, or paper
Publication Date Date
Author’s Profile RQ4 Researcher or practitioner
Anti-patterns origin RQ3 Theory or professional experience
Anti-patterns categories RQ2 List of categories

Proposed Anti-patterns RQ1
List of anti-patterns with their names, category
(if any), and quotes describing their problem and
proposed solutions

6.1.7 Data Synthesis

To answer RQ1, we listed all extracted anti-patterns and unified the definition of similar

anti-patterns proposed in different publications. We identified similar anti-patterns and

linked them to support the creation of a consolidated description of their problems

and solutions. Based on the anti-pattern description, we retained its original name or

renamed them to better reflect the underlying problem. To assist in analyzing similar

anti-patterns and reaching a unified description, we designed mind maps that included

the consolidated anti-pattern name, the names given in each source as children nodes,

and the corresponding problem and solution quotes as subnodes (see Figure 37). We

then reviewed each anti-pattern and defined a final description of its problem and

solutions. A senior researcher reviewed this process to ensure fidelity to the original

publications.

Regarding RQ2, we listed the extracted categories. Since only our publication

classified the anti-patterns, we applied this same classification to all identified anti-

patterns. The categorization was also reviewed by a senior researcher. To answer RQ3,

we examined the references cited in the publications to determine whether the pro-

posed anti-patterns were grounded in the authors’ professional experience or based on

theoretical sources. As for RQ4, we relied on the answers to the questions under the

Authority of the Producer criterion in the Quality Assessment checklist.

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 131

Figure 37 – Mental map summarizing all references of the Dependent Deploy Anti-
pattern.

6.2 Results
In this section, we present the results of the search and selection processes, including

the answers to the RQs.

6.2.1 Selected publications

Figure 38 presents the search and selection processes. The search string returned 352

publications, primarily from sources of Grey Literature: Google returned 148, Medium

returned 106, X returned 13, and Google Scholar returned 52. In contrast, academic

sources yielded only 3 publications, 2 from ACM and 1 from IEEE. We identified each

publication using an ID in the format PN, where N represents the position in which

the publication was retrieved during the search process. The full list of publications

can be found at Appendix E. Among the retrieved results, we excluded 37 duplicates,

resulting in 284 unique publications. The excluded duplicate publications can be found

at Appendix F

During the first filter, we excluded 228 publications based on the inclusion and

exclusion criteria, leaving 56 publications for the QA phase. The results of the first filter

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 132

Figure 38 – Search and selection process.

can be found at Appendix G. After applying the QA criteria, only 36 publications were

considered to meet the quality standards and advanced to the second filter. The results

of the quality assessment can be found at Appendix H. In the second filter, we excluded

14 publications, resulting in 12 publications used for data extraction. The results of the

second filter can be found at Appendix I and the data extraction forms of each selected

publication can be found at Appendix J. Table 11 presents the 12 resulting publications

from the selection process.

6.2.2 Publications overview

Figure 39 summarizes the distribution of publication types and years. Publications from

Rappl (2024), Mezzalira (2020), Shinde (2022), and Silva, Rodrigues & Conte (2025) are

the control publications we selected during the search string refinement process. The

selected publications were published between 2020 and 2025. All of them are from

Grey Literature, except the last one, our peer-reviewed paper proposing the MFE anti-

patterns catalog. Blogs are the most common publication types (RAPPL, 2024; SHINDE,

2022; CASAS, 2020; GKAMPERLO, 2020; WESSELS, 2020). The two videos correspond

to technical presentations, and the audio refers to a podcast about MFE. Among the Grey

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 133

Table 11 – Selected publications.

ID Title #Anti-patterns Reference
P01 Top 10 Micro Frontend Anti-Patterns 10 (RAPPL, 2024)

P02 Microfrontends Anti-Patterns: Seven
Years in the Trenches 7 (MEZZALIRA,

2020)

P07 Micro-Frontends anti-patterns by
Luca Mezzalira 8 (MEZZALIRA,

2024)
P08 4 Micro-Frontend Anti-Patterns 4 (SHINDE, 2022)

P30 Chapter 4. Discovering
Micro-Frontend Architectures 2 (MEZZALIRA,

2021b)
P38 Rules of Micro-Frontends 1 (CASAS, 2020)

P41
Understanding and implementing
microfrontends on AWS - AWS
Prescriptive Guidance

2

(FIGUS
ALEXAN-

DER GUEN-
SCHE;

MEZZALIRA,
2024)

P55
TechLead Journal: 47 -
Micro-Frontends and the
Socio-Technical Aspect

2 (MEZZALIRA,
2021c)

P58 Compositional Qualities of
Microfrontends: The LdoD Archive 5 (RAIMUNDO,

2023)

P108 Micro-frontend “Blackbox Pattern” 1 (GKAMPERLO,
2020)

P155 Micro Front-End Architecture at
Enterprise Scale 1 (WESSELS,

2020)

P309 A Catalog of Micro Frontends
Anti–patterns 12

(SILVA;
RODRIGUES;
CONTE, 2025)

Literature sources, the most structured publications are from Figus Alexander Guensche

& Mezzalira (2024), Raimundo (2023), and Mezzalira (2021b), a technical document, a

master’s thesis, and a book chapter, respectively.

6.2.3 RQ1: Which Micro Frontends anti-patterns have been pro-

posed in White and Grey Literature?

After data extraction, we identified a total of 47 MFE anti-patterns. To ensure accuracy

and minimize redundancy, we thoroughly reviewed all identified anti-patterns and

consolidated similar entries, resulting in 27 distinct final MFE anti-patterns. Figure 40

presents a mind map displaying the final anti-patterns grouped by category. We in-

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 134

Figure 39 – Scatter plot showing the distribution of publications by type and year.

cluded two anti-patterns in the inter-frontends, operations, and development categories

and eight anti-patterns in the intra-frontends category. Additionally, we refined the

description of the Nano Frontend based on similar anti-patterns identified. We did

not modify the Hub-like Dependency anti-pattern, as its original formulation already

encompassed the problem and solution of the similar anti-pattern we identified. The

complete description of the newly added anti-patterns and the improvements made

based on the MLR results can be found in Section 6.5.

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 135

Figure 40 – Final set of MFE anti-patterns from the MLR. New anti-patterns are marked
with a plus symbol (+) and updated ones with an asterisk (*).

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 136

Figure 41 – Intersections between publications considering the final anti-patterns.

Table 12 presents the new and improved anti-patterns, their original names (if

any), and the publications in which they were referenced. Eight anti-patterns recur

frequently across several publications. These were initially proposed by Mezzalira

(2020) in P2. We also selected additional publications by Mezzalira (P07, P30, P41, and

P55), which propose the same anti-patterns. We did not exclude these publications as

duplicates since each offers distinct explanations that help provide a deeper under-

standing of the anti-patterns. Figure 41 depicts the intersections of anti-patterns among

the publications. The most cited anti-patterns are Framework frenzy (P01, P02, P08, P55,

and P58) and Global state communication (P02, P08, P30, P55, and P58).

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 137

Table 12 – Anti-patterns original names and references.

Name Author’s name Publication
Avoiding observability Avoiding observability P01

Access to different domains - P155
Bidirectional Data Flow A Return Ticket, Please P02
Chatty Micro Frontends Chatty Frontends P01

Dependency hell

The Dependencies Hell P02
Dependency Hell P08
Poor Dependency Management
in Micro Frontends P41

Dependency Hell P58

Dependent deployment
Hidden Monolith P01
The deployment queue of hell P38
Dependent Deploy P41

Dismissing human factors Dismissing human factors P01
Distributed Data Inconsistency Distributed Data Inconsistency P01

Framework Frenzy

Framework Madness P01
Hydra of Lerna -
(Multi-Frameworks Approach) P02

Multi-Frameworks Approach P08
Multiple technologies in the
same application P55

Multi-Frameworks Approach P58

Global state communication

Relax, It’s just Code P02
Global state communication P08
Sharing state across Micro
Frontends P30

Global State P55
Shared Global State P58

Hammering APIs Let’s Hammer the APIs P02

Hub-like Dependency Tight Coupling P30
Hub-like Dependency P309

Nano Frontend

Yin and Yang (Micro Frontends
and Components) P02

Micro-Frontend Vs Component P08
Micro-Frontend versus
Component P58

Nano Frontend P309
One Micro Frontend for all - P108

Partial UI Migration Bye Bye big-bang - Iterative
deployment P07

Spaghetti Architecture Spaghetti Architecture P01
Tight Coupling P01

Unmediated Legacy Integration The Swiss Army Knife P02
Integration Bottleneck
Anti-Pattern P58

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 138

6.2.4 RQ2: How are Micro Frontends anti-patterns classified?

The Grey Literature publications did not follow a consistent structure for documenting

anti-patterns, and none included categorization. The only publication that presents anti-

pattern categories is our paper, P309. Based on it, the categories of MFE anti-patterns

are:

1. Intra-fronted category: considers a single MFE component and its design.

2. Inter-frontend category: considers the structural division and communication

involving two or more MFEs.

3. Operations category: related to the operational practices and continuous mainte-

nance of the application.

4. Development category: related to the development team and their decisions

around the architecture.

6.2.5 RQ3: Are the proposed Micro Frontend anti-patterns grounded

in theory or based on professional experience?

All identified anti-patterns are grounded in professional experience. The same individ-

ual authored publications P02, P07, P41, and P55: Luca Mezzalira, an active practitioner

in the MFE community who also wrote a book on MFE (MEZZALIRA, 2021a). In addi-

tion, the anti-patterns presented in P58 reference those from P07, meaning Mezzalira

contributed to five resulting publications. The author of P01, Florian Rappl, is also an

active practitioner and has likewise written a book on MFE (RAPPL, 2021). We consider

the anti-patterns proposed in our previous work (SILVA; RODRIGUES; CONTE, 2025)

grounded in professional experience. Although inspired by MS anti-patterns, they are

mainly based on our MFE professional experience. The remaining authors all have

hands-on experience working with MFE, and the proposed anti-patterns are based

on that practical knowledge. This indicates that the catalog reflects issues developers

encounter in real-world architectures and offers solutions derived from practice.

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 139

6.2.6 RQ4: What is the profile of the authors who propose Micro

Frontend anti-patterns in Grey Literature?

Figure 42 presents a pie chart showing the distribution of author profiles. When a

publication had more than one author, we considered the profile of the majority of the

authors. The majority of authors are practitioners, accounting for 77.8% of the total.

Only two authors are researchers: one is ourselves, and the other is a master’s candidate

who references anti-patterns drawn from a Grey Literature publication. These results

demonstrate that practitioners are predominantly proposing MFE anti-patterns but

still require consolidation and validation through formal studies, underscoring the

contribution of this research.

Figure 42 – Pie chart showing the distribution of author profiles.

6.3 Discussion
This study identified 352 publications through the automated search process. After

applying the selection criteria, we selected 12 publications for data extraction. From

these, we extracted 47 anti-patterns, which were reviewed and consolidated to eliminate

overlaps. This resulted in 27 distinct final anti-patterns, comprising both new additions

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 140

and improved descriptions of previously cataloged ones. The methodological processes

we followed to reach these results provide evidence of the relevance and rigor of our

findings.

Among the resulting anti-patterns, the Inter-Frontend category increased from

3 to 15 anti-patterns, which may indicate that the most common issues in MFE are

related to decisions about composition and communication. Additionally, two anti-

patterns were added to the Development category and one to the Operations category,

thereby introducing more problems related to the development team and the operational

practices employed to maintain the architecture. No anti-patterns were added to the

Intra-Frontend category; however, the Nano Frontend anti-pattern is one of the most

cited, indicating that, when considering a single MFE, the most recurring problem is

defining MFEs that are too small. The identification of anti-patterns similar to those

we had previously proposed, such as the Nano Frontend and Hub-like Dependency,

further strengthened the validity of the catalog.

Since no other author proposing MFE anti-patterns has structured them into

categories, our work stands out by introducing a systematic organization. We used the

categories of our original catalog to group the newly identified anti-patterns, demon-

strating their applicability. As a result, these categories can now serve as a framework

for organizing and classifying future anti-patterns, providing a solid foundation for

researchers and practitioners.

During the data extraction of the proposed solutions, some of them may inadver-

tently lead to the emergence of other anti-patterns. For example, when implementing

the solution of the Access to different domains Anti-patterns, developers may create

a centralized state to store the Federation API responses, leading to the Global state

communication Anti-pattern. These findings underscore the need for further research to

investigate the inter-dependencies among anti-patterns and to assess whether the appli-

cation of the anti-pattern solutions might unintentionally introduce new architectural

problems.

The main implications of these results are the consolidation of knowledge scat-

tered across grey literature into a structured and comprehensive catalog, addressing

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 141

the fragmentation of MFE anti-pattern discussions on the internet. Incorporating anti-

patterns drawn from grey literature into the catalog also fosters greater collaboration, as

we can now engage directly with the original authors to encourage their contributions

and validations. This collaborative potential strengthens the catalog as a living resource

that evolves alongside the community’s needs and innovations. Adding new and im-

proving anti-patterns expands the catalog’s coverage and positions it as a valuable

reference point for advancing research and practice in the MFE domain.

6.4 Threats to Validity
We considered the threats to validity outlined by Ampatzoglou et al. (2019), who

categorize them into threats to study selection, data, and research validity.

Study Selection Validity: This category encompasses threats that can influence

the search and selection processes. One such threat is the Selection of Digital Libraries,

which refers to the risk of choosing sources that are either too specific, too broad or lack

credibility. We mitigated this by selecting the central scientific databases commonly used

in Software Engineering (IEEE Xplore and ACM DL) and general-purpose databases,

such as Google and Google Scholar, to cover Grey Literature. Another threat is the

Construction of the Search String, which involves potential issues when researchers

formulate the search string. To address this, we defined a set of control publications

representing the expected retrieval scope and iteratively refined the search string based

on them. Study Inclusion/Exclusion Bias refers to errors that may occur during selection.

We mitigated this by carefully analyzing the inclusion and exclusion criteria, measuring

agreement between two researchers to ensure clarity, and reviewing the results of each

selection phase collaboratively to ensure quality. Finally, given the unstructured nature

of Grey Literature, we avoided excluding relevant documents based solely on their titles

by examining the first paragraph as a proxy for the abstract and scanning for keywords

to assess relevance.

Data Validity: This category includes threats arising during data extraction and

analysis. One such threat is Data Extraction Bias, which refers to issues that may occur in

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 142

the extraction phase. To mitigate this, we defined an extraction form aligned with all

RQs and specified the expected data for each field, ensuring that the extraction process

would capture relevant and structured information, thereby facilitating later analysis.

Additionally, one researcher performed the initial data extraction, while another re-

viewed the quotes related to the anti-patterns’ problems and solutions. Another threat is

Unverified Data Extraction, where external or internal evaluators do not review extracted

data. To address this, a senior researcher reviewed the extracted problems and solutions,

as well as the synthesis into unified definitions, to ensure that the final anti-patterns

accurately reflected their original descriptions.

Research Validity: This category encompasses threats that can arise across all

phases of the study and concern the overall research design. One such threat is Repeata-

bility, which refers to the ability to replicate the secondary study. To mitigate this, we

involved three researchers throughout the MLR, thoroughly documented the protocol,

and made all results publicly available. Another threat is the Selection of Research Method,

which relates to choosing a method that does not align with the study’s objectives.

Given that, aside from our work, no scientific publications had proposed anti-patterns,

we selected the Multivocal Literature Review (MLR) as the research method to enable

the inclusion of Grey Literature results. We also followed the guidelines provided

by (GAROUSI; FELDERER; MÄNTYLÄ, 2019) to support the planning and execution

of the study.

6.5 Catalog’s improvement
The following subsections present the newly added anti-patterns incorporated into the

catalog and a new version of the Nano Frontend anti-pattern, which was refined based

on similar instances found in the literature.

6.5.1 Avoiding observability

Category: Operations

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 143

Problem: No observability was implemented anywhere. You can not debug an

error or identify the micro frontend that originated it because no performance metrics

or error logs were implemented.

Solution: Collect metrics and traces and implement centralized logs to debug a

problem and identify its cause efficiently.

6.5.2 Access to different domains

Category: Inter-frontend

Problem: A micro frontend that directly accesses APIs from multiple business

domains leads to tightly coupled and hard-to-maintain architectures. Over time, this ap-

proach results in unmanageable dependencies, hinders API deprecation, and introduces

issues such as over-fetching and cache synchronization problems.

Solution: Apply the principle of API Federation to expose data from multiple

domain APIs through a single, centralized, and strongly typed interface. Implement

a local state that is updated by a unified gateway using GraphQL, which defines

the available Query, Mutation, and Subscription interfaces to interact with the

backend and combines all APIs into a single federated API that all micro front-ends

can consume. MFEs can consume these interfaces by sending queries, mutations, and

subscriptions to their local state, which communicates with the backend through the

unified GraphQL API, acting as the single point of access to all backend APIs.

6.5.3 Bidirectional Data Flow

Category: Intra-frontend

Problem: Bidirectional communication between the host application (container)

and remote micro frontends.

Solution: Adopt a unidirectional data flow inspired by patterns like Flux or

Model-View-Intent (MVI). In this model, data flows in a single direction: Action → State

Update → View Update. This reduces coupling, simplifies debugging, and makes the

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 144

system more predictable.

6.5.4 Chatty Micro Frontends

Category: Inter-frontend

Problem: Excessive communication between fragments caused by broadcasting

events for every action, leading to performance overhead.

Solution: Emit only meaningful events and introduce them gradually, based on

the presence of interested consumers. Avoid broadcasting events for every action. This

approach reduces noise, minimizes coupling, and helps maintain a clear and intentional

event-driven architecture.

6.5.5 Dependent deployment

Category: Inter-frontend

Problem: Micro frontends become so tightly coupled that their deployment

requires coordination across multiple teams. In some cases, one MFE cannot be de-

ployed or rolled back without affecting another. In others, features must be released

simultaneously across MFEs, forcing teams into synchronized release cycles. This leads

to deployment queues, where MFEs must be deployed in a specific order to avoid

breaking the application, increasing operational complexity and risk.

Solution: Promote independent deployment for each micro frontend. Ensure

that every MFE has its own CI/CD pipeline and can be deployed or rolled back without

relying on other MFEs. When a coordinated release is necessary, use feature flags

that all relevant MFEs can check at runtime, allowing features to be toggled on or off

independently of the deployment timeline. Additionally, apply Domain-Driven Design

principles to define proper boundaries between MFEs, reducing tight coupling and

enabling true autonomy at the deployment level.

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 145

6.5.6 Dismissing human factors

Category: Development

Problem: Teams pursue technical goals and deadlines without considering the

well-being, morale, or work-life balance of their members. Micro frontends are misused

as a technical solution, while their true potential to improve team autonomy and

structure is neglected.

Solution: Strengthen teams and avoid central management as much as possible.

6.5.7 Distributed Data Inconsistency

Category: Inter-frontend

Problem: Inconsistency in the data shared across micro frontends due to lack of

change propagation. If the original data changes, those changes must be propagated.

However, if a micro frontend holds a replicated version of the data, it’s unclear whether

it is allowed to update it. This causes divergence between the original and the duplicate.

Solution: Keep data where it belongs. Do not allow other micro frontends to

access the data directly; instead, expose it indirectly through attributes or properties.

6.5.8 Framework Frenzy

Category: Development

Problem: Introducing multiple frameworks without a real need, disregarding the

complexity of communication between components built with different technologies.

Solution: Whenever possible, use a single framework across all micro frontends.

If there is an opportunity to standardize, prefer consistency over unnecessary flexibility.

6.5.9 Global state communication

Category: Inter-frontend

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 146

Problem: Using shared states violates the principle of segregation, compromising

the independence of each micro frontend and increasing coupling.

Solution: Each micro frontend should have its own event store. To enable com-

munication, use an event emitter-based approach instead of sharing state directly.

6.5.10 Nano Frontend

Category: Intra-frontend

Problem: A micro frontend is created with only a few screens or fragments. This

typically occurs when teams confuse micro frontends with UI components, resulting in

fragmented and ineffective architectural decomposition.

Solution: Define micro frontend boundaries based on business subdomains, fol-

lowing Domain-Driven Design principles. Micro frontends should encapsulate cohesive

sets of features aligned with domain-level concerns. Avoid creating MFEs for isolated

UI fragments or for purely technical reasons. Each MFE should represent a meaningful

subdomain within the organization.

6.5.11 One Micro Frontend for all

Category: Inter-frontend

Problem: A single micro frontend is created and imported by all other MFEs.

Solution: Use the blackbox pattern to encapsulate shared functionality. In this

model, the component exposes a clear input, renders itself into the DOM with its own

internal workflow, and provides an output that other micro frontends can consume.

This preserves the independence of MFEs while still enabling interoperation through

well-defined boundaries.

6.5.12 Partial UI Migration

Category: Operations

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 147

Problem: Extracting a portion of the UI to create a micro frontend and embedding

it back into the legacy monolith often slows down the system and provides no real

benefit from adopting micro frontends.

Solution: Follow a path-based migration strategy, which allows gradual migra-

tion of frontend segments by switching versions through URL base paths. This enables

progressive adoption of micro frontends without entangling them with the monolith.

6.5.13 Spaghetti Architecture

Category: Inter-frontend

Problem: Micro frontends are structured in a disorganized way, leading to a

tangled web of dependencies and interactions. This high degree of coupling between

MFEs makes the system difficult to scale, test, and maintain. Maintain loose coupling

between micro frontends.

Solution: Avoid direct references that rely on internal implementation details of

other MFEs, such as URLs, module paths, or internal names. Instead, design MFEs to

interact through well-defined contracts, events, or shared interfaces.

6.5.14 Unmediated Legacy Integration

Category: Intra-frontend

Problem: Integrating a legacy system into a micro frontend architecture without

proper isolation often leads to architectural misalignment and increased complexity.

Legacy systems may use incompatible technologies or communication mechanisms that

do not fit the micro frontend model. A common mistake is to modify or extend the main

integration layer of the application to accommodate these differences, introducing tight

coupling, pollution of domain boundaries, and long-term maintainability issues.

Solution: Introduce an Anti-Corruption Layer (ACL) between the micro fron-

tend application and the legacy system. This layer acts as a translator, isolating the

legacy system and ensuring that its communication model and domain concepts do

Chapter 6. Catalog Expansion Through a Multivocal Literature Review 148

not leak into the modern architecture. By encapsulating the integration logic in a dedi-

cated boundary, teams can preserve the integrity of the micro frontend system without

modifying its core integration layer.

149

7

FINAL CATALOG

After collecting feedback from participants and incorporating new anti-patterns from

grey literature, we evolved our catalog by introducing a new template designed to

add more details and simplify descriptions for easier understanding. Consequently,

we refined all anti-pattern entries to align with and fully populate the new template

and updated the web application to support it. Section 7.1 presents the new template

and explains how we addressed the additional fields. Section 7.2 describes the updated

page format of the web application showcasing the new template. Finally, Section 7.3

presents the final version of the catalog, which documents all anti-patterns using the

new structure.

7.1 Template evolution
After improving the anti-patterns based on the results of the Personal Opinion Survey

(see Chapter 4), some anti-patterns now have lengthy descriptions, which were iden-

tified as an issue by the students who used the catalog in the controlled experiment

(see Chapter 5). Additionally, after the MLR (see Chapter 6), we discovered new anti-

patterns and relationships between similar ones. Considering the catalog’s growth in

both quantity and complexity, we decided to adopt an extended template to document

them. Based on the Full AntiPattern Template (BROWN et al., 1998), the general tem-

plate adopted in the C2 Wiki repository 1, and the template defined by Brada & Picha
1 <https://wiki.c2.com/?AddAntiPatternToTheAntiPatternsCatalog>

https://wiki.c2.com/?AddAntiPatternToTheAntiPatternsCatalog

Chapter 7. Final Catalog 150

(2019) to document Software Process anti-patterns, we defined an anti-pattern template

that includes the following fields to structure the description of our anti-patterns:

• Name: the original or most commonly name adopted to refer the anti-pattern;

• Also Known As: other names (aliases) under which the anti-pattern is known, if

any (optional);

• Category: category used to group anti-patterns;

• Problem: description of a problem and a bad solution commonly adopted;

• Symptoms and Consequences: identifiable phenomena signifying the presence

of the anti-pattern, describing the negative effects of the problem;

• Solution: the improved solution that should be implemented to more effectively

address the identified problem;

• Resulting Context: what happens when you implement the solutions, good con-

sequences, and possible bad ones that must be analyzed; and

• Example: how the anti-pattern has occurred in real world, may include diagrams

and illustrations;

• Solution Pitfalls: potential problems or other anti-patterns that can occur after

implementing the solution (optional);

• Related Anti-Patterns: the more generic or specific variants of the same anti-

pattern, opposite extremes of the same bad practice, patterns sharing several

similar symptoms, etc. (optional);

• References: references to literature in which a description of the particular anti-

pattern was found.

To address the new fields, we restructured the problem and solution descriptions,

adding additional information based on the MLR results. The Also Known As field

was populated based on similar anti-patterns identified during the MLR. The original

Problem field was split into two, Problem and Symptoms and Consequences, to

Chapter 7. Final Catalog 151

simplify the problem definition and highlight its consequences. Similarly, we split the

original Solution field into Solution and Resulting Context to describe the solution and

its benefits or risks separately. We addressed the Example field of the new anti-patterns

added after the MLR by including examples from their original publications or by

creating examples based on the identified problem and solution. We also added the

Solution Pitfalls field to complement the anti-pattern description and indicate which

anti-patterns may arise after the solution is implemented. The Related Anti-Patterns

field includes anti-patterns that address similar problems, or that may emerge after

solution implementation. Finally, the References field provides links to all publications

citing the anti-pattern based on the MLR results. The simplified descriptions will make

the anti-patterns easier to understand, and the connections between them will enhance

the catalog’s overall usability.

7.2 Web application evolution
To present the anti-patterns using the new template, we made several updates to the

web application. We also incorporated some feedback provided by students during

the controlled experiment. First, we added the new fields to the anti-pattern details

page, as shown in Figure 43. We also updated the JSON file format used to persist the

anti-patterns and guidelines, enabling the addition of new anti-patterns according to the

updated template. Finally, to help novice developers understand key MFE concepts, we

added a page containing the presentation used to train students during the controlled

experiment. Figure 44 shows the page with the MFE training presentations.

Chapter 7. Final Catalog 152

Figure 43 – Anti-pattern details page on the web application presenting the Hub-like
Dependency in the new template.

Chapter 7. Final Catalog 153

Figure 44 – Page with a presentation explaining what micro frontends are.

7.3 The Final Micro Frontends Anti-patterns Catalog
In this section, we present the final catalog of MFE anti-patterns, with each anti-pattern

described in one table structured based on the new template.

7.3.1 Avoiding observability

Also Known As: -

Category: Operations

Problem: No observability is implemented anywhere.

Symptoms and Consequences: You can not debug an error or identify the

micro frontend that originated it because no performance metrics or error logs were

implemented.

Solution: Collect metrics, traces, and implement centralized logs.

Resulting Context: Developers can debug a problem and identify its cause

efficiently by consulting traces and logs from all MFEs in a centralized way.

Chapter 7. Final Catalog 154

Example: Consider a system with three micro frontends: MF A, MF B, and MF

C. Each performs user interactions, backend requests, and updates its internal state.

However, none of them send logs, errors, or performance metrics to a centralized

logging system, as illustrated in Figure 45. When a production issue occurs, such as a

failed API call or a broken UI interaction, developers cannot determine which micro

frontend caused the problem because no data is available in the logging layer. This lack

of observability leads to delayed debugging, frustrated users, and increased operational

costs. After applying the solution, all MFEs emit structured logs, metrics, and traces

to a centralized observability layer. As a result, developers can efficiently identify the

source of issues, monitor performance trends, and proactively resolve problems.

Figure 45 – MFEs with non centralized log stream by Rappl (2024).

Solution Pitfalls: -

Related Anti-Patterns: -

References: Rappl (2024)

7.3.2 Access to different domains

Also Known As: -

Category: Inter-frontend

Problem: A micro frontend directly accesses APIs from multiple business do-

mains.

Symptoms and Consequences: The problem leads to tightly coupled and hard-

to-maintain architectures. Over time, this approach results in unmanageable dependen-

Chapter 7. Final Catalog 155

cies, hinders API deprecation, and introduces issues such as over-fetching and cache

synchronization problems.

Solution: Apply the principle of API Federation to expose data from multiple

domain APIs through a single, centralized, and strongly typed interface. Implement a

local state that is updated by a unified gateway using GraphQL, which defines interfaces

to interact with the backend and combines all APIs into a single federated API that all

micro front-ends can consume.

Resulting Context: MFEs can consume these interfaces by sending queries,

mutations, and subscriptions to their local state, which communicates with the backend

through the unified GraphQL API, acting as the single point of access to all backend

APIs.

Example: Consider a system where the product MFE directly queries multiple

backend APIs, such as the employees domain, assets domain, billing domain, and user

domain, tightly coupling the frontend to each domain’s implementation. This results in

a brittle architecture, making it challenging to update APIs and leading to issues like

over-fetching and inconsistent caching across domains. After applying the solution,

the system introduces a GraphQL API as a federated API layer, as illustrated in Fig-

ure 46. The MFEs interact only with the GraphQL API, sending queries, mutations,

and subscriptions to a single point of access. The federated API aggregates and

orchestrates calls to the underlying domain APIs, simplifying the frontend architecture,

reducing coupling, and ensuring that MFEs only retrieve the data they need.

Solution Pitfalls: Developers must consider the Global state communication

Anti-pattern consequences after implementing the solution.

Related Anti-Patterns: Global state communication

References: Wessels (2020)

7.3.3 Bidirectional Data Flow

Also Known As: A Return Ticket, Please

Category: Inter-frontend

Chapter 7. Final Catalog 156

Figure 46 – Access to different domains through a Federated API. Source: Wessels
(2020).

Problem: Bidirectional communication between the host application (container)

and remote micro frontends.

Symptoms and Consequences: Difficult to maintain when it happens across the

entire application.

Solution: Adopt a unidirectional data flow inspired by patterns like Flux or

Model-View-Intent (MVI). In this model, data flows in a single direction: Action → State

Update → View Update.

Resulting Context: Unidirectional data flow reduces coupling, simplifies debug-

ging, and makes the system more predictable.

Example: Consider a dashboard application where the host container and several

remote micro frontends (such as analytics, notifications, and user profile widgets) con-

tinuously exchange data back and forth. For example, when the analytics MFE updates

a filter, it sends data to the host, which then propagates it back to the notifications MFE

and others. Over time, this bidirectional communication creates complex dependencies,

Chapter 7. Final Catalog 157

making it difficult to trace the origin of state changes or debug unexpected behaviors.

After applying the solution, the team restructures the system to follow a unidirectional

data flow pattern inspired by the Model-View-Intent (MVI) design pattern, as illustrated

in Figure 47. In this pattern, the user interacts with the system, generating actions that

flow through the intent and model layers, thereby updating the model’s state. The view

then observes these state changes and updates the UI accordingly.

Figure 47 – Unidirectional data flow following the Model-View-Intent (MVI) pattern.

Solution Pitfalls: -

Related Anti-Patterns: -

References: Mezzalira (2020)

7.3.4 Chatty Micro Frontends

Also Known As: Chatty Frontends

Category: Inter-frontend

Problem: Excessive communication between fragments caused by broadcasting

events for every action.

Symptoms and Consequences: Performance overhead by broadcasting several

events.

Chapter 7. Final Catalog 158

Solution: Emit only meaningful events and introduce them gradually, based on

the presence of interested consumers. Avoid broadcasting events for every action.

Resulting Context: Publishing only meaningful events reduces noise, minimizes

coupling, and helps maintain a clear and intentional event-driven architecture.

Example: Consider that a search MFE broadcasts every keystroke event, causing

unnecessary load on the analytics and recommendation MFEs, which listen but do not

need to react to such fine-grained updates. This leads to increased performance overhead

and unnecessary processing. After applying the solution, the development team revises

the event system to emit only meaningful events, such as “search submitted” or “filter

applied,” and only when there are known consumers registered to handle those events.

This change reduces event noise, improves performance, and simplifies the event-driven

architecture, making the system easier to understand and maintain.

Solution Pitfalls: -

Related Anti-Patterns: -

References: Rappl (2024)

7.3.5 Common Ownership

Also Known As: -

Category: Development

Problem: A single team is tasked with managing all MFEs.

Symptoms and Consequences: Can occur either due to a lack of team division or

when teams are segmented based on technical aspects such as data, frontend, and back-

end. Adopting MFE without distinct teams compromises the intended independence of

the architecture.

Solution: Define the boundaries of teams and MFEs according to Domain-driven

Design (DDD). Creating shared libraries can facilitate boundary definition and promote

greater team independence.

Resulting Context: Each team will be responsible only for MFEs within its

domain and the MFEs will share components and code through shared libraries.

Chapter 7. Final Catalog 159

Example: Consider an organization where a single centralized team is respon-

sible for maintaining all micro frontends, including users, checkout, and products,

regardless of their domain context. This setup leads to bottlenecks, reduces team auton-

omy, and creates friction between domain experts and technical teams. By restructuring

teams according to Domain-driven Design principles, as illustrated in Figure 48, the

organization creates cross-functional teams, each responsible for its micro frontends,

services, and databases.

Figure 48 – Micro Frontends and Microservices grouped in cross-functional teams de-
fined by domain.

Solution Pitfalls: The shared libraries must be carefully handled to avoid De-

pendency hell.

Related Anti-Patterns: Dependency hell

References: Silva, Rodrigues & Conte (2025)

7.3.6 Cyclic Dependency

Also Known As:

Category: Inter-frontend

Problem: Two or more MFEs directly or indirectly depend on each other (Fig-

ure 49).

Symptoms and Consequences: High coupling between screens and fragments,

compromising MFEs’ independence and modularity. Thus, changes in one MFE require

Chapter 7. Final Catalog 160

Figure 49 – Cyclic communication between fragments on the same screen.

coordination with the others. Circular dependencies lead to challenges in a system’s

maintenance and evolution, compromising agility and the ability to scale developments

efficiently.

Solution: Implement event-based communication, which removes the need for

direct dependencies between MFEs. Instead, interactions are handled indirectly via a

centralized event store.

Resulting Context: On implementing the Publish-Subscribe (Pub-Sub) pattern,

an MFE can publish an event to the browser, allowing other MFEs to subscribe and

respond when the event occurs. To ensure consistency and reduce errors, it is recom-

mended to centralize the the the event definitions in a shared library.

Example: Consider an e-commerce application that features a product details

screen implemented in mfe-products. The screen integrates three fragments: one display-

ing the shopping cart from “mfe-checkout,” another showing product recommendations

from “mfe-recommender,” and a third calculating shipping costs based on the selected

delivery address from “mfe-delivery.” When a recommended product is added to

the cart, “mfe-recommender” notifies “mfe-checkout,” which subsequently informs

“mfe-delivery” to recalculate the shipping costs. If the shipping address is updated,

“mfe-delivery” notifies all other MFEs to verify whether the products they display can be

shipped to the new address; if not, those products are disabled. Adopting the Pub-Sub

pattern, all components (screen or fragments) would dispatch events to the Event Store,

with would notify only the components subscribed in the event (Figure 50).

Solution Pitfalls: The shared libraries must be carefully handled to avoid De-

pendency hell.

Chapter 7. Final Catalog 161

Figure 50 – Communication between fragments using an Event Store.

Related Anti-Patterns: Dependency hell

References: Silva, Rodrigues & Conte (2025)

7.3.7 Dependency hell

Also Known As: The Dependencies Hell; Poor Dependency Management in Micro

Frontends.

Category: Inter-frontend

Problem: Micro frontends share external libraries without consistent dependency

management.

Symptoms and Consequences: Version mismatches, compatibility issues, and

broken functionality. These problems are amplified when teams extend shared libraries

to meet specific needs of individual MFEs, resulting in forks or diverging implementa-

tions that no longer align with the original library.

Solution: Adopt clear and consistent strategies for managing shared dependen-

cies in distributed frontend architectures. Use techniques such as import maps, module

federation, or even share-nothing approaches when appropriate.

Resulting Context: All MFEs use the same versions of shared libraries to avoid

extending core libraries for specific use cases—instead, favoring composition over

extension. External dependencies are wrapped in internal abstractions to reduce tight

Chapter 7. Final Catalog 162

coupling and minimize the risk of breakage. Modular and well-separated libraries are

created, and version control, integration, and testing are automated to detect divergence

early and maintain alignment across teams.

Example: Consider all micro frontends initially relying on a core library at

version 1.1.0. Later, the library released version 1.2.0, which included new features. One

micro frontend (MFE-A) wants to adopt these features and upgrades to the new version.

At the same time, another micro frontend (MFE-B) extends the core library by adding

custom code on top of it. When the core library eventually releases a major update

(version 2.1.0), the extension built by MFE-B breaks, creating conflicts and forcing the

team to maintain a separate, extended version of the library. To avoid this type of

dependency hell, teams should decouple feature extensions from core libraries by using

internal wrappers that isolate custom functionality from the base library (Figure 51).

Additionally, it is crucial to ensure that all micro frontends utilize consistent versions of

shared libraries, employing centralized dependency management strategies to maintain

alignment across the system.

Figure 51 – Wrapper component as a solution to extended libraries.

Solution Pitfalls: Be careful using wrappers to change components locally be-

cause it can lead to UI inconsistency. Always try to keep the same dependencies between

all MFEs.

Related Anti-Patterns: No CI/CD

References: Mezzalira (2020), Shinde (2022), Figus Alexander Guensche & Mez-

Chapter 7. Final Catalog 163

zalira (2024), Raimundo (2023)

7.3.8 Dependent deployment

Also Known As: Hidden Monolith, The deployment queue of hell, Dependent Deploy

Category: Inter-frontend

Problem: Micro frontends become so tightly coupled that their deployment

requires coordination across multiple teams.

Symptoms and Consequences: One MFE cannot be deployed or rolled back

without affecting another. Features must be released simultaneously across MFEs,

forcing teams into synchronized release cycles. This leads to deployment queues, where

MFEs must be deployed in a specific order to avoid breaking the application, increasing

operational complexity and risk.

Solution: Promote independent deployment for each micro frontend. Implement

feature flags using a tool like Flagsmith 2 that all relevant MFEs can check at runtime

when a coordinated release is necessary, allowing features to be toggled on or off

independently of the deployment timeline.

Resulting Context: Every MFE has its own CI/CD pipeline and can be deployed

or rolled back without relying on other MFEs. MFE boundaries are defined according to

Domain-Driven Design principles, reducing tight coupling and enabling true autonomy

at the deployment level.

Example: In a SaaS application, a new feature—team-based project tagging—is

developed across three MFEs: MFE-projects, MFE-teams, and MFE-dashboard. The

MFE-projects team finishes its part early and needs to deploy it soon because other

unrelated fixes and improvements are queued for release. However, the MFE-teams

and MFE-dashboard teams are still finalizing their portions of the feature and cannot

yet release. Without a proper mechanism, the MFE-projects team is blocked, forced

to wait for the others, creating a deployment queue and increasing risk. By applying

the solution, the MFE-projects team deploys its changes immediately but guards the
2 https://www.flagsmith.com/

Chapter 7. Final Catalog 164

new feature behind a feature flag, keeping it off in production until all dependent

MFEs are ready. Once all teams have deployed their parts, the feature flag is toggled

on, activating the new functionality across the system without requiring perfectly

synchronized deployments.

Solution Pitfalls: Be careful when defining the boundaries to avoid Nano and

Mega Frontends.

Related Anti-Patterns: Nano Frontend, Mega Frontends, Spaghetti Architecture,

No Versioning

References: Rappl (2024), Casas (2020), Figus Alexander Guensche & Mezzalira

(2024)

7.3.9 Dismissing human factors

Also Known As: -

Category: Development

Problem: Teams pursue technical goals and deadlines without considering the

well-being, morale, or work-life balance of their members.

Symptoms and Consequences: Micro frontends are misused as a technical

solution, while their true potential to improve team autonomy and structure is neglected.

Developers suffer from overworking, micro management and unrealistic expectations.

Solution: Strengthen teams and avoid central management as much as possible.

Resulting Context: Superiors empowering teams to work independently and

without controlling every action or demanding unrealistic deadlines.

Example: In a company migrating to a micro frontend architecture, leadership

pressures all teams to quickly break apart a monolithic frontend, assigning technical

tasks like splitting components and wiring up module federation without giving teams

the time or autonomy to reorganize around domain ownership. Developers are micro-

managed, expected to coordinate constant cross-team changes, and overloaded with

deadlines, turning the migration into a stressful technical exercise rather than an oppor-

tunity to improve team autonomy. The company should be refocusing on empowering

Chapter 7. Final Catalog 165

teams, allowing them to control their micro frontends, align work with their domain

expertise, and set realistic delivery goals.

Solution Pitfalls: Make sure that micro frontend is the right architectural style

for your scenario and divide teams according to domains to avoid Micro Frontend as

the goal and Common Ownership anti-patterns, respectively.

Related Anti-Patterns: Common Ownership, Micro Frontend as the goal

References: Rappl (2024)

7.3.10 Distributed Data Inconsistency

Also Known As: -

Category: Inter-frontend

Problem: Inconsistency in the data shared across micro frontends due to lack of

change propagation.

Symptoms and Consequences: The original data changes and those changes are

not propagated. If a micro frontend holds a replicated version of the data, it’s unclear

whether it is allowed to update it. This causes divergence between the original and the

duplicate.

Solution: Keep data where it belongs. Do not allow other micro frontends to

access the data directly; instead, expose it indirectly through attributes or properties.

Resulting Context: MFEs do not duplicate data and always access the source

MFE to retrieve it, which exposes the data through attributes or properties.

Example: In a financial platform, the MFE-account is responsible for managing

the account balance, while the MFE-transactions handles user-initiated fund transfers.

Instead of querying the up-to-date balance from MFE-account, the transactions MFE

relies on a locally stored copy of the balance retrieved during a previous session. When

a user attempts to transfer funds, MFE-transactions validates the operation based on

its outdated balance, believing sufficient funds are available. However, since the actual

balance in MFE-account has already decreased due to other transactions, the transfer

request ultimately fails when it reaches the backend. By applying the solution, the

Chapter 7. Final Catalog 166

transactions MFE no longer duplicates the balance but always queries the authoritative

source (MFE-account or a backend API) at the moment of the operation.

Solution Pitfalls: Avoid implementing centralized states to avoid the Global

state communication Anti-pattern.

Related Anti-Patterns: Global state communication

References: Rappl (2024)

7.3.11 Framework Frenzy

Also Known As: Framework Madness, Hydra of Lerna, Multiple frameworks approach,

Multiple technologies in the same application, Multiple-frameworks approach.

Category: Development

Problem: Introducing multiple frameworks without a real need, disregarding the

complexity of communication between components built with different technologies.

Symptoms and Consequences: Several MFE are implemented with different

frameworks and developers must be expert in several frameworks, loading may take

long time to load all dependencies from each framework.

Solution: Whenever possible, use a single framework across all micro frontends.

If there is an opportunity to standardize, prefer consistency over unnecessary flexibility.

Resulting Context: All MFEs are implemented using the same framework and

technologies, facilitating maintenance and onboarding of new developers.

Example: In a content management platform, the MFE-editor is built using React,

the MFE-dashboard uses Angular, and the MFE-analytics is implemented in Vue.js.

Although the teams initially chose the best technology for their specific needs, over

time, the project became increasingly difficult to maintain: developers need expertise

in three frameworks to work across MFEs, shared libraries must be rewritten for each

framework, and the application’s startup time grows due to loading the dependencies of

all three frameworks. By applying the solution, the organization gradually standardizes

all MFEs onto React, simplifying development, improving team flexibility, reducing

duplicated effort, and streamlining application performance by minimizing unnecessary

Chapter 7. Final Catalog 167

framework overhead.

Solution Pitfalls: Be careful to avoid the Golden Hammer Anti-pattern when

using the same framework every time.

Related Anti-Patterns: Golden Hammer

References: Rappl (2024), Mezzalira (2020), Shinde (2022), Mezzalira (2021c),

Raimundo (2023)

7.3.12 Global state communication

Also Known As: Relax, It’s just code; Sharing state across Micro Frontends; Global State;

Shared Global State.

Category: Inter-frontend

Problem: Using shared states violates the principle of segregation, compromising

the independence of each micro frontend and increasing coupling.

Symptoms and Consequences: Changes in the shared state need coordination

with every MFEs, otherwise you may introduce bugs in the ones reading the state,

which decreases independence.

Solution: Each micro frontend should have its own event store. To enable com-

munication, use an event emitter-based approach instead of sharing state directly.

Resulting Context: Every MFE may have a local state (if needed), and they

communicate by subscribing in the events dispatched by other MFEs, not directly

accessing their state.

Example: In a financial platform, the MFE-account maintains the current account

balance in a shared global state, allowing other MFEs to directly access it when needed.

When the team decides to internationalize the app and extend currency support, MFE-

account updates the global state structure to include both the numeric balance and

its associated currency. Since other MFEs directly depend on the shared state without

proper contracts or decoupling, these changes break their logic. By applying the solution,

each MFE stops directly depending on shared state and instead subscribes to events or

queries data through well-defined, versioned interfaces, ensuring that updates in one

Chapter 7. Final Catalog 168

MFE do not unexpectedly break others.

Solution Pitfalls: When creating local states, be careful to avoid the Distributed

Data Inconsistency Anti-pattern.

Related Anti-Patterns: Distributed Data Inconsistency

References: Mezzalira (2020), Shinde (2022), Mezzalira (2021b), Mezzalira (2021c),

Raimundo (2023)

7.3.13 Golden Hammer

Also Known As: -

Category: Development

Problem: All MFEs utilize the same technology, even if it does not meet the

specific needs of each MFE.

Symptoms and Consequences: It happens due to developers’ familiarity with

only one specific technology. This approach limits the architecture, failing to take

advantage of the benefits of the possibility of a heterogeneous architecture, which is

one of the main attractions of adopting MFEs.

Solution: To choose the most suitable technology that addresses the specific

challenges of each MFE, which includes adopting the correct programming languages,

frameworks, and libraries during its development. When uncertain about a particular

technology, conducting a proof-of-concept (POC) can validate its suitability.

Resulting Context: Testing new technologies through POCs to validate their

suitability without compromising the establishment of standardized patterns within

the company.

Example: A web application contains MFEs implemented using ReactJS frame-

work with Client-side Rendering, even those encompassing essential pages such as the

landing page. This technological uniformity overlooks the necessity for Search Engine

Optimization (SEO) strategies to ensure better rankings on search engines like Google.

It would be advisable to utilize ReactJS with Server-side Rendering or employ a static

rendering framework such as NextJS, enabling better optimization for search engines.

Chapter 7. Final Catalog 169

Solution Pitfalls: Increasing the variety of technologies can increase the com-

plexity of the architecture and lead to the Framework Frenzy Anti-pattern.

Related Anti-Patterns: Framework Frenzy

References: Silva, Rodrigues & Conte (2025)

7.3.14 Hammering APIs

Also Known As: Let’s hammer the APIs

Category: Inter-frontend

Problem: Multiple micro frontends independently call the same API endpoint.

Symptoms and Consequences: Duplicated requests, unnecessary load on back-

end services, and scalability issues.

Solution: Evaluate whether the concerned micro frontends truly belong to sepa-

rate domains. If not, consider merging them into a single MFE that handles the request

once. If separation is justified, redesign the architecture to centralize the API call in a

shared container or parent component, which makes the request once and distributes

the data to the dependent micro frontends.

Resulting Context: Every MFE make calls to routes related to their domains.

Example: In an e-commerce platform, both the MFE-list and the MFE-recommendations

independently call the same product details API to fetch pricing and availability infor-

mation for the same set of items. As a result, every time a user visits the product page,

the backend receives duplicated requests from both MFEs, unnecessarily increasing load

and degrading performance. By applying the solution, the architecture is redesigned

so that a shared parent container makes a single API call to retrieve the product data

and passes the relevant pieces down as props or events to the child MFEs, reducing re-

dundant traffic and improving scalability without sacrificing the separation of frontend

concerns.

Solution Pitfalls: When merging MFEs, be careful to not fall into the Mega

Frontends Anti-pattern. When redesigning the architecture, consider using GraphQL,

as proposed in the solution of the Access to different domains Anti-pattern.

Chapter 7. Final Catalog 170

Related Anti-Patterns: Access to different domains, Mega Frontend, Nano Fron-

tend

References: Mezzalira (2020)

7.3.15 Hub-like Dependency

Also Known As: Tight coupling

Category: Inter-frontend

Problem: A screen of a MFE integrates fragments from several other MFEs,

becoming a central point of interdependence (Figure 52).

Figure 52 – MFE-A is a central point (Hub) of dependency between the other MFEs.

Symptoms and Consequences: Any issue occurring in the main screen or one of

its fragments can affect all other fragments present on it.

Solution: The screen should be kept as simple as possible, and each fragment

should implement robust error handling mechanisms.

Resulting Context: Implementing a strategy where uncaught errors within

a fragment gracefully degrade its functionality, displaying a user-friendly fallback

message.

Example: Consider a digital banking system where the main screen is an MFE

that integrates several fragments from other MFEs, such as an investment list, a chart

showing bitcoin value variations, account balance, and credit card statement amount.

This structure introduces a significant vulnerability: a single faulty fragment can poten-

Chapter 7. Final Catalog 171

tially disrupt the entire main screen (Figure 53). To avoid it, all fragments must display

a fallback message if unavailable and not raise the error to the screen (Figure 54).

Figure 53 – Home screen is a screen with several fragments, and when Fragment B
raises an error, the entire screen becomes unavailable.

Figure 54 – When Fragment B raises an error, an user-friendly fallback message is
rendered so the entire screen remains available.

Solution Pitfalls: Be sure that the components are well defined and do not fall

into the Nano Frontend Anti-pattern.

Chapter 7. Final Catalog 172

Related Anti-Patterns: Nano Frontend

References: Mezzalira (2021b), Silva, Rodrigues & Conte (2025)

7.3.16 Knot Micro Frontend

Also Known As: -

Category: Inter-frontend

Problem: Three or more micro frontends communicate directly using context-

specific interfaces.

Symptoms and Consequences: The tight coupling between MFEs leads to brittle

integrations, duplicated contract logic, and increased complexity when extending or

replacing individual MFEs. The lack of a shared communication protocol prevents

scalability and maintainability.

Solution: Implement a domain-driven communication interface that is both

generic and flexible. Define essential shared fields required for interoperability while

allowing each MFE to include context-specific data through a structured, extensible

payload (e.g., a generic field containing a list of typed objects).

Resulting Context: Implementing generic interfaces reduces coupling and en-

ables each MFE to evolve independently while still supporting collaboration across the

architecture.

Example: Suppose an e-commerce system has MFEs for Digital Products (mfe-

digital-products) and Payments (mfe-payments). The payment screen of mfe-payments

receives the digital product data as a parameter. At a later stage, a Physical Products

MFE (mfe-physical-products) is implemented, so developers add physical product-

specific attributes to the payment screen to allow digital or physical product payment

(Figure 55). Later, adding new product types requires constantly adding attributes

specific to each product type to the payment screen, so it becomes a highly coupled

knot.

Solution Pitfalls: This anti-pattern is a case of the Spaghetti Architecture.

Related Anti-Patterns: Spaghetti Architecture, Dependent deployment

Chapter 7. Final Catalog 173

Figure 55 – To allow physical products payment, optional physical product-specific
attributes are added and digital product-specific attributes become optional.

References: Silva, Rodrigues & Conte (2025)

7.3.17 Lack of Skeleton

Also Known As: -

Category: Operations

Problem: No skeleton or predefined boilerplate is available as a base for creating

new micro frontends.

Symptoms and Consequences: This leads to inconsistencies across projects,

repeated setup work, and increased onboarding time for new team members.

Solution: Whenever a new technology is adopted for implementing a micro

frontend, the development team should create a boilerplate repository containing the

necessary base code. In addition, maintain comprehensive documentation that outlines

every step required to create a new MFE, regardless of the technology stack.

Resulting Context: The skeleton promotes consistency, reduces setup time, and

accelerates adoption across teams. Developers can create new MFE based on a documen-

tation with instructions for cloning the skeleton repository, configuring CI/CD pipelines,

setting up monitoring tools, applying required design patterns during development,

and other relevant guidelines.

Chapter 7. Final Catalog 174

Example: At the beginning of a specific system development, the developers

create an MFE from scratch without adhering to a specific pattern. The second MFE is

developed by copying files and code blocks from the first, changing specific parts. The

exact process happens when creating new MFEs. Then, a diverse set of MFEs emerges,

which hampers the establishment of automated pipelines, fosters code duplication, and

complicates developer interchange between teams.

Solution Pitfalls: -

Related Anti-Patterns: No CI/CD

References: Silva, Rodrigues & Conte (2025)

7.3.18 Mega Frontend

Also Known As: -

Category: Intra-frontend

Problem: A single micro frontend takes on multiple responsibilities or concerns

that should be separated.

Symptoms and Consequences: This often happens when an MFE includes

several screens or unrelated fragments, resulting in a bloated unit.

Solution: Each micro frontend should focus on a specific subdomain of the

application. Reevaluate and decompose large MFEs into smaller, more specialized units

based on domain concerns.

Resulting Context: Development teams collaborate closely with product teams

to gain a clear understanding of domain boundaries and reflect them in the system’s

architecture.

Example: An e-commerce system is decomposed into just two MFEs, with mfe-

users related to users and mfe-shopping related to products and purchases. The latter

MFE includes screens that display product listings, product details, purchase confirma-

tions, and purchase history. Decomposing the mfe-shopping into at least two MFEs is

necessary: one containing the product listing and product details screens, belonging

to the product domain; and another containing the confirmation and purchase history

Chapter 7. Final Catalog 175

screens, belonging to the purchase domain (Figure 56).

Figure 56 – Mega frontend break into two MFEs.

Solution Pitfalls: When redesigning the architecture, be careful to not create

Nano Frontends. Additionally, analyze whether you should be implementing MFEs at

all and not fall into the Micro Frontends as the Goal Anti-pattern.

Related Anti-Patterns: Nano Frontend, Micro Frontends as the Goal

References: Silva, Rodrigues & Conte (2025)

7.3.19 Micro Frontends Greedy

Also Known As: -

Category: Intra-frontend

Problem: When a developer is uncertain about creating a new MFE, the common

practice is to opt for its creation.

Symptoms and Consequences: Whenever a need arises to develop a new set

of screens or fragments, a new MFE is instantiated. This can lead to an explosion in

the number of MFEs, making the system difficult to understand and increasing the

likelihood of both nano and mega frontends emerging.

Solution: To determine where to implement a new feature composed of a set

of screens and/or fragments, the domain of the new feature must first be defined. If

it falls within the domain of an existing MFE, it should be implemented there. In this

case, a documentation summarizing of all MFEs, with descriptions their contexts and

links or screenshots of their screens and fragments can help identify the best fit for the

Chapter 7. Final Catalog 176

new feature. You can use a tool like Backstage 3 to document all MFE automatically.

If it belongs to a brand new domain, one or more MFEs should be defined based on

the domain definition. Establishing well-defined domains relies on the collaboration

between the development and product teams to accurately define boundaries.

Resulting Context: Well-defined MFEs increase independence between teams

and ease maintenance.

Example: Within a banking application, an MFE encompasses screens for secu-

rity validation, utilizing confirmation code submission via email. Subsequently, the

need arose to implement a new validation method, now employing facial recognition.

The screens in this new flow differ from those in the previous flow, resulting in its

implementation through a new MFE. Creating a new MFE might not be advisable, as

two MFEs have the same context and functionalities.

Solution Pitfalls: Be careful to not create Mega Frontends when adding new

features to existing MFEs or Nano Frontends when creating a new MFE with a domain

too small.

Related Anti-Patterns: Nano Frontend, Mega Frontend

References: Silva, Rodrigues & Conte (2025)

7.3.20 Micro Frontend as the goal

Also Known As: -

Category: Development

Problem: Adopting the MFE architecture in inappropriate contexts.

Symptoms and Consequences: Can lead to more issues than benefits, especially

in systems with few screens and low complexity or in companies lacking a sufficient

number of developers to create dedicated teams for different application domains. In

such situations, the maintenance costs of the architecture may outweigh the expected

benefits, making its implementation unfeasible.

Solution: Software teams must consider carefully different aspects of adopting
3 https://backstage.io/

Chapter 7. Final Catalog 177

MFE architecture. Considering the system’s complexity, the feasibility of maintaining

automated CI/CD pipelines and the team’s restructuring according to different domains

is necessary.

Resulting Context: Adoption of MFE only when feasible.

Example: A personal notes application is divided into the notes and user do-

mains, each comprising its own MFE. The notes domain contains functionalities for

note management, containing operations such as listing, creating, editing, and deleting

notes. The user’s domain encompasses login, registration, and profile management

functionalities. In this context, using MFEs results in unnecessary maintenance and

development challenges due to the low volume of screens and the low probability of

increasing complexity in the application. Adopting a monolithic frontend is a suitable

option.

Solution Pitfalls: -

Related Anti-Patterns: No CI/CD

References: Silva, Rodrigues & Conte (2025)

7.3.21 Nano Frontend

Also Known As: Yin and Yang (Micro Frontends and Components), Micro Frontends

Vs Components, Micro Frontends versus Components

Category: Intra-frontend

Problem: A micro frontend is created with only a few screens or fragments.

Symptoms and Consequences: This typically occurs when teams confuse micro

frontends with UI components, resulting in fragmented and ineffective architectural

decomposition.

Solution: Define micro frontend boundaries based on business subdomains,

following Domain-Driven Design principles. Avoid creating MFEs for isolated UI

fragments or for purely technical reasons.

Resulting Context: The defined MFEs encapsulate cohesive sets of features

aligned with domain-level concerns. Each MFE represent a meaningful subdomain

Chapter 7. Final Catalog 178

within the organization. The development team must work closely with the product

team to gain a deep understanding of the domains and reflect them accurately in the

architecture. For minor variations within a domain, MFEs use templates or compo-

nent libraries. This approach avoids creating a separate MFE for each slight variation,

promoting efficiency and code reuse.

Example: In a diagram editing platform, the UI is split into excessively granular

micro frontends: one for the header menu and document actions (mfe-header), one for

managing the shape objects (mfe-objects), another for the canvas where diagrams are

drawn (mfe-drawer), one for styling and configuration options (mfe-style), and yet an-

other for the footer navigation tabs (mfe-footer), as shown in Figure 57. Although these

elements are all part of the same diagramming domain and operate in tight coordination,

they are unnecessarily separated into fine-grained MFEs. This decomposition increases

communication overhead, requires tight synchronization between teams, and makes UI

maintenance more complex than necessary. By applying the solution, the architecture

is redesigned to consolidate these micro frontends into a single domain-aligned MFE

responsible for the diagramming experience while reusing internal components where

variation is needed.

Solution Pitfalls: When redesigning nano frontends, be careful to not create

Mega Frontends by merging unrelated MFEs.

Related Anti-Patterns: Micro Frontends Greedy, Mega Frontend

References: Mezzalira (2020), Shinde (2022), Raimundo (2023), Silva, Rodrigues

& Conte (2025)

7.3.22 No CI/CD

Also Known As: -

Category: Operations

Problem: The company lacks an automated Continuous Integration (CI) and

Continuous Delivery (CD) pipeline, so developers must manually execute tests and

perform deployments.

Chapter 7. Final Catalog 179

Figure 57 – Page from a diagram editing platform with components as MFE, Nano
Frontends.

Symptoms and Consequences: This manual process becomes burdensome,

especially with the potential existence of multiple MFEs. It increases development time,

reduces productivity, and raises the risk of errors in the production environment.

Solution: Implement an automated and replicable CI/CD process that extends

for new MFEs, ensuring they will have automated test execution and deployment

consistently and efficiently. This should be part of the Definition of Done (DoD) of the

architecture.

Resulting Context: Updated in MFEs always trigger CI pipelines to run tests

and the deployment of them is made automatically by the CD pipeline, which eases the

maintenance and evolution of the MFEs.

Example: Upon releasing a new system version, a developer must conduct

manual tests and ensure all unit tests pass. However, developers may skip the tests

and manually deploy the changes without realizing some tests are failing, introducing

bugs, which is avoidable with an automated CI pipeline (Figure 58). Even if the tests

pass, there is still a risk of making mistakes during deployment, which could render the

Chapter 7. Final Catalog 180

system unavailable. Automating the deployment process with CD ensures correct and

consistent execution.

Figure 58 – CI and CD cycle. Source: <https://www.abtasty.com/resources/ci-cd/>

Solution Pitfalls: Make sure to document how to implement the CI/CD pipelines

to new MFE according to the solution of the Lack of Skeleton Anti-pattern.

Related Anti-Patterns: Lack of Skeleton

References: Silva, Rodrigues & Conte (2025)

7.3.23 No Versioning

Also Known As: -

Category: Operations

Problem: Micro frontends are not versioned.

Symptoms and Consequences: Without proper version control, changes in one

MFE can inadvertently affect others, leading to instability, incompatibility between

components, and difficulties in rollback or maintenance.

Solution: Adopt a clear versioning strategy, such as Semantic Versioning, to

track and communicate changes effectively.

Resulting Context: Versioning ensures that updates are predictable and that

existing versions continue to function without disruption, enabling safe evolution and

better coordination across teams.

https://www.abtasty.com/resources/ci-cd/

Chapter 7. Final Catalog 181

Example: Consider a payment confirmation page with a fragment for calculating

shipping costs. Whenever the user inputs shipping information into the fragment, the

system generates a delivery charge and adds it to the total purchase amount displayed

on the screen. Suppose the delivery charge’s return value format changes and the

fragment is not versioned. The delivery charge will not be added to the total purchase

amount, potentially resulting in a display error or even mistakenly free deliveries.

However, if the fragment is versioned, the screen will not be affected by the format

change, as it will continue to use the previous version of the fragment and can be

updated later when necessary.

Solution Pitfalls: -

Related Anti-Patterns: Spaghetti Architecture

References: Silva, Rodrigues & Conte (2025)

7.3.24 One Micro Frontend for all

Also Known As: -

Category: Inter-frontend

Problem: A single micro frontend is created and imported by all other MFEs.

Symptoms and Consequences: Misuse of local storage, pub/sub mechanisms,

and web socket mechanisms to implement communication between the MFE for all and

others. Having a single point of failure that can breaks the entire application.

Solution: Use the blackbox pattern to encapsulate shared functionality. In this

model, the component exposes a clear input, renders itself into the DOM with its own

internal workflow, and provides an output that other micro frontends can consume.

Resulting Context: This preserves the independence of MFEs while still enabling

inter operation through well-defined boundaries.

Example: In a banking application, several MFEs—such as MFE-accounts, MFE-

cards, and MFE-loans—need to display a UI for executing money transactions. Instead

of having a tightly coupled shared micro frontend imported directly by all others, the

system applies the blackbox pattern using a TransactionsProvider component

Chapter 7. Final Catalog 182

(Figure 59). When a transaction is needed, an MFE triggers an openTransaction

event with the needed arguments. The TransactionsProvider renders itself into the

DOM, manages the transaction flow independently, and, upon completion, dispatches

a transactionFinished event with the result (success or failed).

Figure 59 – Black box pattern to avoid one MFE for all.

Solution Pitfalls: -

Related Anti-Patterns: Global state communication

References: Gkamperlo (2020)

7.3.25 Partial UI Migration

Also Known As: Bye Bye Big Bang - Iterative Deployment

Category: Inter-frontend

Problem: Extracting a portion of the UI to create a micro frontend and embedding

it back into the legacy monolith.

Symptoms and Consequences: It often slows down the system and provides no

real benefit from adopting micro frontends.

Solution: Follow a path-based migration strategy, which allows gradual migra-

tion of frontend segments by switching versions through URL base paths.

Chapter 7. Final Catalog 183

Resulting Context: This enables progressive adoption of micro frontends without

entangling them with the monolith.

Example: In an e-commerce platform, the development team begins migrating

the checkout process to a new micro frontend but embeds it inside the legacy monolithic

frontend using an iframe. Although technically the checkout is now isolated, every

time the monolith renders the checkout page, it loads both the heavy legacy app and

the micro frontend, causing performance degradation and offering little of the true

independence or scalability benefits promised by micro frontends. By applying the

solution, the team switches to a path-based migration strategy, routing /checkout

directly to the new micro frontend via a separate deployment, while the monolith

continues serving other routes like /home and /products, enabling gradual migration

without tightly coupling the systems.

Solution Pitfalls: -

Related Anti-Patterns: Unmediated Legacy Integration

References: Mezzalira (2024)

7.3.26 Spaghetti Architecture

Also Known As: Tight coupling

Category: Inter-frontend

Problem: Micro frontends are structured in a disorganized way.

Symptoms and Consequences: leading to a tangled web of dependencies and

interactions. This high degree of coupling between MFEs makes the system difficult to

scale, test, and maintain.

Solution: Maintain loose coupling between micro frontends. Avoid direct refer-

ences that rely on internal implementation details of other MFEs, such as URLs, module

paths, or internal names.

Resulting Context: MFEs designed to interact through well-defined contracts,

events, or shared interfaces.

Example: In a travel booking platform, the MFE-flights, MFE-hotels, and MFE-

Chapter 7. Final Catalog 184

packages reference each other directly using hardcoded module imports, internal URLs,

and shared utility functions not exposed through official interfaces. For instance, MFE-

hotels directly imports a pricing formatter from MFE-flights, and MFE-packages calls

internal APIs exposed only for local use by MFE-hotels. Over time, this creates a tangled

web of dependencies where any change in one MFE risks breaking others, making the

system fragile, hard to test, and difficult to scale. By applying the solution, the teams

refactor the system to remove internal references, replacing them with well-defined

contracts, shared interfaces, or event-based communication, restoring clear boundaries

and reducing coupling between MFEs.

Solution Pitfalls: -

Related Anti-Patterns: Knot Micro Frontend

References: Rappl (2024)

7.3.27 Unmediated Legacy Integration

Also Known As: The Swiss Army Knife, Integration Bottleneck Anti-pattern

Category: Inter-frontend

Problem: Integrating a legacy system into a micro frontend architecture without

proper isolation often leads to architectural misalignment and increased complexity.

Symptoms and Consequences: Legacy systems may use incompatible tech-

nologies or communication mechanisms that do not fit the micro frontend model. A

common mistake is to modify or extend the main integration layer of the application

to accommodate these differences, introducing tight coupling, pollution of domain

boundaries, and long-term maintainability issues.

Solution: Introduce an Anti-Corruption Layer (ACL) between the micro frontend

application and the legacy system. This layer acts as a translator, isolating the legacy

system and ensuring that its communication model and domain concepts do not leak

into the modern architecture.

Resulting Context: By encapsulating the integration logic in a dedicated bound-

ary, teams can preserve the integrity of the micro frontend system without modifying

Chapter 7. Final Catalog 185

its core integration layer.

Example: In a retail platform migrating to micro frontends, the team needs

to integrate a legacy UI module responsible for managing product promotions, built

years ago using jQuery and global JavaScript variables. Instead of isolating this legacy

module, the developers directly import its scripts into the new React-based micro

frontend container and wire up shared states and callbacks, causing tight coupling,

polluting the modern architecture with outdated patterns, and increasing the risk of

breaking the entire system with any legacy update. By applying the solution, the team

wraps the jQuery-based promotion module inside an Anti-Corruption Layer (ACL)

component (Figure 60), which handles mounting, unmounting, and communication

through well-defined events or props, ensuring the legacy logic stays isolated and the

modern React micro frontends remain clean, maintainable, and decoupled.

Figure 60 – Anti-corruption layer to connect to legacy systems.

Solution Pitfalls: -

Related Anti-Patterns: Partial UI Migration

References: Mezzalira (2020), Raimundo (2023)

186

8

FINAL CONSIDERATIONS

C oncluding this Master’s Thesis, this chapter provides a summary of our work

(Section 8.1), highlights the contributions of this thesis (Section 8.2), and

presents future work (Section 8.3).

8.1 Research Overview
This research presents a catalog of MFE anti-patterns derived from MS anti-patterns.

To validate whether the identified problems are prevalent in MFE architectures and

whether the proposed solutions effectively address them, we conducted a Personal

Opinion Survey with 20 industry practitioners. Based on their feedback, we improved

the anti-patterns and showcased them in a web application to foster community col-

laboration. Then, we conducted a controlled experiment to compare the effectiveness

of an MFE anti-patterns catalog with publicly available examples and guidelines as

teaching materials. In this study, we also evaluated how students used the catalog,

their perceptions of its utility, and whether it enhanced their perceived learning about

MFE architectures. Finally, we conducted a Multivocal Literature Review to expand the

catalog by adding anti-patterns proposed by practitioners in Grey Literature sources.

The survey results show that all identified anti-patterns have been encountered

by participants in real-world MFE projects, each receiving varying harmfulness scores.

Participants emphasized the catalog’s utility as a valuable resource for improving MFE

architecture, highlighting its potential to guide both novice and experienced developers

Chapter 8. Final Considerations 187

in avoiding common pitfalls. Additionally, participants provided valuable insights by

suggesting new anti-patterns. This highlights the importance of creating a collaborative

platform where researchers and practitioners can jointly propose, discuss, and validate

new anti-patterns. Our web application facilitates this process by enabling practitioners

to share their knowledge and experiences, ensuring the catalog remains comprehensive

and up-to-date.

Before the controlled experiment, we conducted sessions to teach students about

MFE, which we presented as a teaching report. When analyzing the experiment results,

statistical tests indicated that both supporting materials were equally effective in helping

students learn about MFE and supporting decision-making. The practitioner-provided

guidelines supported students in understanding how MFE is applied in real-world

scenarios, offering a practical and comprehensive perspective beyond traditional text-

book content. Access to the MFE anti-patterns catalog significantly increased students’

perceived learning. Students also reported positive experiences using the catalog, em-

phasizing its usefulness in identifying problems and solutions, conducting efficient

searches for architectural issues, and reviewing core MFE concepts. Overall, the feed-

back suggests that engaging with tools grounded in real-world architectural challenges

can effectively prepare in-training software engineers to address practical issues in MFE

development.

As a result of the MLR, we expanded our catalog from 12 to 27 anti-patterns,

making it a comprehensive source of knowledge on common MFE issues and effective

solutions based on practitioners’ experience. After consolidating similar entries, the

Inter-frontend category faced the most significant growth, indicating that the main

challenges in MFE are related to how micro frontends are composed and how communi-

cation between them is implemented. Additionally, we identified anti-patterns related

to those we had previously proposed, which allowed us to improve and refine their

descriptions. This study concludes our research by contributing to both researchers and

practitioners, offering a central source of knowledge that helps identify, understand,

and address recurring problems in the design and implementation of MFE architectures.

Chapter 8. Final Considerations 188

8.2 Contributions
This research has made several contributions to the MFEs field, spanning theoretical

and practical aspects. We have already submitted two papers, one of which has been

accepted, and we plan to submit one more. Below, we categorize and describe the

contributions of this thesis thus far:

• Theoretical contributions:

1. A Catalog of Micro Frontends Anti-patterns, highlighting common problems

and effective solutions, bridging knowledge from industry to academia.

2. Empirical evidence on the use of the Micro Frontends anti-patterns catalog

by students while learning Micro Frontends.

3. Empirical evidence comparing the Micro Frontends anti-patterns catalog with

Micro Frontends guidelines, focusing on students’ ability to make informed

decisions regarding the maintenance of a Micro Frontends architecture.

4. A Multivocal Literature Review that consolidates previously scattered prac-

titioner knowledge on Micro Frontends, strengthening and enriching the

theoretical and practical understanding of the field.

• Practical contributions:

1. Development of a web application to present the Micro Frontends anti-

patterns catalog, allowing developers to access it during the implementation

and maintenance of Micro Frontends architectures while also enabling col-

laboration on the catalog.

2. Development of Micro Frontends teaching materials that integrate theoretical

and practical content, allowing instructors to incorporate this topic into

Software Architecture courses seamlessly.

• Accepted papers:

1. A Catalog of Micro Frontends Anti-patterns (SILVA; RODRIGUES; CONTE,

2025): Catalog’s proposal and evaluation by practitioners through a Personal

Chapter 8. Final Considerations 189

Opinion Survey. This paper was accepted for publication at the IEEE/ACM

International Conference on Software Engineering (ICSE) 2025 – Research

Track.

• Submitted papers:

1. Evaluating Strategies for Teaching Micro Frontends: Do Anti-patterns Help?: Ex-

perience report on teaching Micro Frontends to undergraduate Computer

Science students, along with a controlled experiment comparing the cata-

log to guidelines provided by developers on the internet. This paper was

submitted for publication at the XXXIX Brazilian Symposium on Software

Engineering (SBES) 2025 – Education Track.

• Planned papers:

1. A Comprehensive Catalog of Micro Frontends Anti-patterns: A Multivocal Liter-

ature Review: Report of the Multivocal Literature Review we conducted to

expand the catalog by adding anti-patterns proposed by practitioners in Grey

Literature sources. We intend to submit this paper to the Journal of Software

and Systems (JSS).

8.3 Future Work
For future work, we plan to conduct a participatory case study to analyze how practi-

tioners use the catalog and to provide empirical evidence of its impact on the overall

quality of MFE architectures. We also aim to examine the effects of the proposed solu-

tions, both positive and negative, investigating whether their application may introduce

new anti-patterns. Based on this analysis, we plan to develop evolution maps that orga-

nize solutions according to the presence of specific anti-patterns, offering structured

paths for architectural improvement.

Regarding anti-pattern detection, we intend to formalize the definition of anti-

patterns using a formal notation or specification language, enabling precise represen-

tation and systematic analysis. We plan to develop automated detection tools to help

Chapter 8. Final Considerations 190

identify anti-patterns efficiently. We will analyze public MFE repositories on GitHub

using both manual inspection and automated techniques. Finally, we aim to explore

how the catalog can serve as a foundational knowledge base for building AI-powered

agents that assist practitioners in making informed architectural decisions in micro

frontends.

191

REFERENCES

ABGAZ, Y. et al. Decomposition of monolith applications into microservices
architectures: A systematic review. IEEE Transactions on Software Engineering, IEEE, v. 49,
n. 8, p. 4213–4242, 2023. 36

AMPATZOGLOU, A. et al. Identifying, categorizing and mitigating threats to validity
in software engineering secondary studies. Information and software technology, Elsevier,
v. 106, p. 201–230, 2019. 141

ANKS, D. Mastering micro frontends: Best practices, pitfalls to avoid, tools and scaling
strategies. DEV Community, nov 2023. Accessed: 2024-11-04. 99

ANTUNES, F. et al. Investigating benefits and limitations of migrating to a
micro-frontends architecture. arXiv preprint arXiv:2407.15829, 2024. 14, 31, 92, 99, 118

APLYCA. Best practices for micro frontends. 2024. <https://www.aplyca.com/en/blog/
best-practices-for-micro-frontends>. Accessed: 2024-11-03. 99

BOGNER, J. et al. Towards a collaborative repository for the documentation of
service-based antipatterns and bad smells. In: IEEE. 2019 IEEE International Conference
on Software Architecture Companion (ICSA-C). [S.l.], 2019. p. 95–101. 44, 52, 89

BRADA, P.; PICHA, P. Software process anti-patterns catalogue. In: Proceedings of the
24th European Conference on Pattern Languages of Programs. [S.l.: s.n.], 2019. p. 1–10. 19, 31,
41, 42, 150

BRAUN, V.; CLARKE, V. One size fits all? what counts as quality practice in (reflexive)
thematic analysis? Qualitative research in psychology, Taylor & Francis, v. 18, n. 3, p.
328–352, 2021. 65

BROWN, S. The C4 Model for Visualising Software Architecture. [S.l.]: Leanpub, 2023. 98

BROWN, W. H. et al. AntiPatterns: refactoring software, architectures, and projects in crisis.
[S.l.]: John Wiley & Sons, Inc., 1998. 41, 149

CAPDEPON, Q. et al. Migration process from monolithic to micro frontend architecture
in mobile applications. In: Proceeding of the International Workshop on Smalltalk
Technologies. [S.l.: s.n.], 2023. 31, 42, 51, 92

CARTAXO, B.; PINTO, G.; SOARES, S. The role of rapid reviews in supporting
decision-making in software engineering practice. In: Proceedings of the 22nd International

https://www.aplyca.com/en/blog/best-practices-for-micro-frontends
https://www.aplyca.com/en/blog/best-practices-for-micro-frontends

References 192

Conference on Evaluation and Assessment in Software Engineering 2018. [S.l.: s.n.], 2018. p.
24–34. 33, 46

CASAS, R. Rules of Micro-Frontends. 2020. <https://www.infoxicator.com/
rules-of-micro-frontends>. Blog. 132, 133, 164

CERNY, T. et al. Catalog and detection techniques of microservice anti-patterns and bad
smells: A tertiary study. Journal of Systems and Software, Elsevier, v. 206, p. 111829, 2023.
40, 43, 52

CHAPETON, G. G. Collaborative geovisual analytics. 2022. 51

CHRISTENSEN, H. B. Teaching microservice architecture using devops—an experience
report. In: SPRINGER. European Conference on Software Architecture. [S.l.], 2022. p.
117–130. 44

COHEN, J. A coefficient of agreement for nominal scales. Educational and psychological
measurement, Sage Publications Sage CA: Thousand Oaks, CA, v. 20, n. 1, p. 37–46, 1960.
65, 77, 127

CORBIN, J.; STRAUSS, A. Basics of qualitative research: Techniques and procedures for
developing grounded theory. [S.l.]: Sage publications, 2014. 94, 103, 110

CORDEIRO, R. et al. Teaching complex systems based on microservices. GROUP, v. 1,
p. 1, 2019. 45

DMITRY, N.; MANFRED, S.-S. On micro-services architecture. International Journal of
Open Information Technologies, , v. 2, n. 9, p. 24–27, 2014. 30

DRAGONI, N. et al. Microservices: yesterday, today, and tomorrow. Present and ulterior
software engineering, Springer, p. 195–216, 2017. 30

DUNN, O. J. Multiple comparisons using rank sums. Technometrics, Taylor & Francis,
v. 6, n. 3, p. 241–252, 1964. 65

ERL, T. Service-oriented architecture: analysis and design for services and microservices. [S.l.]:
Prentice Hall Press, 2016. 30, 37

EVANS, E. Domain-driven design: tackling complexity in the heart of software. [S.l.]:
Addison-Wesley Professional, 2004. 83, 88, 118, 121

FIGUS ALEXANDER GUENSCHE, H. H. M.; MEZZALIRA, L. Understanding
and implementing microfrontends on AWS - AWS Prescriptive Guidance. 2024. <https:
//docs.aws.amazon.com/pdfs/prescriptive-guidance/latest/micro-frontends-aws/
micro-frontends-aws.pdf>. Technical Document. 133, 162, 163, 164

FORD, N. et al. Building Evolutionary Architectures. [S.l.]: " O’Reilly Media, Inc.", 2022. 51

FORD, N. et al. Software Architecture: The Hard Parts. [S.l.]: " O’Reilly Media, Inc.", 2021.
51

FRIEDMAN, M. The use of ranks to avoid the assumption of normality implicit in the
analysis of variance. Journal of the American Statistical Association, Taylor & Francis, v. 32,
n. 200, p. 675–701, 1937. 65

https://www.infoxicator.com/rules-of-micro-frontends
https://www.infoxicator.com/rules-of-micro-frontends
https://docs.aws.amazon.com/pdfs/prescriptive-guidance/latest/micro-frontends-aws/micro-frontends-aws.pdf
https://docs.aws.amazon.com/pdfs/prescriptive-guidance/latest/micro-frontends-aws/micro-frontends-aws.pdf
https://docs.aws.amazon.com/pdfs/prescriptive-guidance/latest/micro-frontends-aws/micro-frontends-aws.pdf

References 193

GALSTER, M.; ANGELOV, S. What makes teaching software architecture difficult? In:
Proceedings of the 38th International Conference on Software Engineering Companion. [S.l.:
s.n.], 2016. p. 356–359. 44, 101

GARFISH. Garfish. 2021. Disponível em: <https://www.garfishjs.org>. 38

GAROUSI, V.; FELDERER, M.; MÄNTYLÄ, M. V. Guidelines for including grey
literature and conducting multivocal literature reviews in software engineering.
Information and software technology, Elsevier, v. 106, p. 101–121, 2019. 34, 123, 127, 128, 142

GEERS, M. Micro Frontends in Action. [S.l.]: Simon and Schuster, 2020. 31, 37, 38, 39, 99

GITHUB. GitHub Actions: Automate your workflow from idea to production. 2025. Accessed:
2025-02-15. Disponível em: <https://github.com/features/actions>. 89

GKAMPERLO, N. Micro-frontend “Blackbox Pattern”. 2020. <https://medium.com/
@ngkamperlo/micro-frontend-blackbox-pattern-295c40b681e4>. Blog. 132, 133, 182

JUMPPONEN, R. Modern software architecture. 2021. 51

KAUSHIK, N.; KUMAR, H.; RAJ, V. Micro frontend based performance improvement
and prediction for microservices using machine learning. Journal of Grid Computing,
Springer, v. 22, n. 2, p. 1–26, 2024. 31, 43, 92

KAZMAN, R. et al. A better way to teach software architecture. In: Software Architecture:
Research Roadmaps from the Community. [S.l.]: Springer, 2023. p. 101–110. 30, 44, 101

KITCHENHAM, B. A.; BUDGEN, D.; BRERETON, P. Evidence-based software engineering
and systematic reviews. [S.l.]: CRC press, 2015. v. 4. 31, 33, 62, 125

KLIMM, M. C. Design Systems for Micro Frontends. Tese (Doutorado) — University of
Applied Sciences, 2021. 51

KLIMM, M. C. Design Systems For Micro Frontends-An Investigation Into The Development
Of Framework-Agnostic Design Systems Using Svelte And Tailwind Css. Tese (Doutorado) —
Hochschulbibliothek der Technischen Hochschule Köln, 2021. 51

KOENIG, A. Patterns and antipatterns. In: The patterns handbooks: techniques, strategies,
and applications. [S.l.: s.n.], 1998. p. 383–389. 41

KOFLER, J. Como os microfrontends podem ajudar a focar nas necessidades de
negócios. InfoQ Brasil, 2020. Accessed: 2024-11-03. 99

LAGO, P.; VLIET, H. V. Teaching a course on software architecture. In: IEEE. 18th
Conference on Software Engineering Education & Training (CSEET’05). [S.l.], 2005. p. 35–42.
44

LAITENBERGER, O.; DREYER, H. M. Evaluating the usefulness and the ease of use
of a web-based inspection data collection tool. In: IEEE. Proceedings Fifth International
Software Metrics Symposium. Metrics (Cat. No. 98TB100262). [S.l.], 1998. p. 122–132. 101

LANDIS, J. R.; KOCH, G. G. The measurement of observer agreement for categorical
data. biometrics, JSTOR, p. 159–174, 1977. 72, 127

https://www.garfishjs.org
https://github.com/features/actions
https://medium.com/@ngkamperlo/micro-frontend-blackbox-pattern-295c40b681e4
https://medium.com/@ngkamperlo/micro-frontend-blackbox-pattern-295c40b681e4

References 194

LANGE, M.; KOSCHEL, A.; HAUSOTTER, A. Microservices in higher education. In:
International Conference on Microservices. [S.l.: s.n.], 2019. 44

LEWIS, J.; FOWLER, M. Microservices a definition of this new architectural term. 2014.
Disponível em: <https://www.martinfowler.com/articles/microservices.html>. 30, 36

LIKERT, R. A technique for the measurement of attitudes. Archives of psychology, 1932.
101

MAFRA, S. N.; BARCELOS, R. F.; TRAVASSOS, G. H. Aplicando uma metodologia
baseada em evidência na definição de novas tecnologias de software. In: SBC. Anais do
XX Simpósio Brasileiro de Engenharia de Software. [S.l.], 2006. p. 239–254. 13, 32, 33

MÄNNISTÖ, J.; TUOVINEN, A.-P.; RAATIKAINEN, M. Experiences on a
frameworkless micro-frontend architecture in a small organization. In: IEEE. 2023 IEEE
20th International Conference on Software Architecture Companion (ICSA-C). [S.l.], 2023. p.
61–67. 31, 42, 92

MANNISTO, T.; SAVOLAINEN, J.; MYLLARNIEMI, V. Teaching software architecture
design. In: IEEE. Seventh Working IEEE/IFIP Conference on Software Architecture (WICSA
2008). [S.l.], 2008. p. 117–124. 44, 101

MARTINS, P. J. P. Development of an e-portfolio social network using emerging web
technologies. Tese (Doutorado), 2022. 51

MEDVIDOVIC, N.; TAYLOR, R. N. Software architecture: foundations, theory, and
practice. In: Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 2. [S.l.: s.n.], 2010. p. 471–472. 30

MEZZALIRA, L. Micro Frontends Anti-Patterns. 2020. InfoQ Conference Talk.
Accessed: 2025-03-17. Disponível em: <https://www.infoq.com/presentations/
microfrontend-antipattern/>. 125, 132, 133, 136, 157, 162, 163, 167, 168, 170, 178, 185

MEZZALIRA, L. Building Micro-Frontends. [S.l.]: O’Reilly Media, Inc., 2021. 30, 37, 43,
51, 138

MEZZALIRA, L. Chapter 4. Discovering Micro-Frontend Architectures. 2021.
<https://www.oreilly.com/library/view/building-micro-frontends/9781492082989/
ch04.html>. Book. 133, 168, 172

MEZZALIRA, L. TechLead Journal: #47 - Micro-Frontends and the Socio-Technical Aspect.
2021. <https://techleadjournal.dev/page/16/>. Audio. 133, 167, 168

MEZZALIRA, L. Microfrontends Anti-Patterns: Seven Years in the Trenches. 2023.
Disponível em: <https://www.infoq.com/presentations/microfrontend-antipattern/>.
43

MEZZALIRA, L. Micro-Frontends anti-patterns by Luca Mezzalira. 2024. <https:
//www.youtube.com/watch?v=3jygY3LGTKc&ab_channel=Apiumhub>. Video. 133,
183

MORAES, F. et al. Micro frontend-based development: Concepts, motivations,
implementation principles, and an experience report. In: Proceedings of the 26th
International Conference on Enterprise Information Systems. [S.l.: s.n.], 2024. v. 2, p. 175–184.
31, 38, 39, 42, 43, 92, 99

https://www.martinfowler.com/articles/microservices.html
https://www.infoq.com/presentations/microfrontend-antipattern/
https://www.infoq.com/presentations/microfrontend-antipattern/
https://www.oreilly.com/library/view/building-micro-frontends/9781492082989/ch04.html
https://www.oreilly.com/library/view/building-micro-frontends/9781492082989/ch04.html
https://techleadjournal.dev/page/16/
https://www.infoq.com/presentations/microfrontend-antipattern/
https://www.youtube.com/watch?v=3jygY3LGTKc&ab_channel=Apiumhub
https://www.youtube.com/watch?v=3jygY3LGTKc&ab_channel=Apiumhub

References 195

NEWMAN, S. Building microservices. [S.l.]: O’Reilly Media, Inc., 2021. 37, 98

OBIORA, C. N. et al. Forecasting hourly solar radiation using artificial intelligence
techniques. IEEE Canadian Journal of Electrical and Computer Engineering, IEEE, v. 44, n. 4,
p. 497–508, 2021. 51

PARKER, G. et al. Visualizing anti-patterns in microservices at runtime: A systematic
mapping study. IEEE Access, IEEE, v. 11, p. 4434–4442, 2023. 52

PAVLENKO, A. et al. Micro-frontends: application of microservices to web front-ends. J.
Internet Serv. Inf. Secur., v. 10, n. 2, p. 49–66, 2020. 43

PELTONEN, S.; MEZZALIRA, L.; TAIBI, D. Motivations, benefits, and issues for
adopting micro-frontends: a multivocal literature review. Information and Software
Technology, Elsevier, v. 136, p. 106571, 2021. 30, 31, 32, 37, 38, 39, 43, 99

PERLIN, R. et al. An approach to follow microservices principles in frontend. In: IEEE.
2023 IEEE 17th International Conference on Application of Information and Communication
Technologies (AICT). [S.l.], 2023. p. 1–6. 31, 42, 92

PÖLÖSKEI, I.; BUB, U. Enterprise-level migration to micro frontends in a multi-vendor
environment. Acta Polytechnica Hungarica, v. 18, n. 8, p. 7–25, 2021. 31, 92

QIANKUN. qiankun: Probably the most complete micro-frontends solution you ever met. 2019.
Disponível em: <https://qiankun.umijs.org>. 38

RAIMUNDO, J. L. P. Compositional Qualities of Microfrontends: The LdoD Archive.
2023. <https://fenix.tecnico.ulisboa.pt/downloadFile/281870113706102/
49372-joao-raimundo.pdf>. Master’s Thesis. 133, 162, 163, 167, 168, 178,
185

RALPH, P. et al. Empirical standards for software engineering research. arXiv preprint
arXiv:2010.03525, 2020. 66

RAPPL, F. The Art of Micro Frontends: Build websites using compositional UIs that grow
naturally as your application scales. [S.l.]: Packt Publishing Ltd, 2021. 138

RAPPL, F. Top 10 Micro Frontend Anti-Patterns. 2024. DEV Commu-
nity. Accessed: 2025-03-17. Disponível em: <https://dev.to/florianrappl/
top-10-micro-frontend-anti-patterns-3809>. 15, 43, 125, 132, 133, 154, 158, 164, 165, 166,
167, 184

REACT. React: A JavaScript library for building user interfaces. 2025. Accessed: 2025-02-15.
Disponível em: <https://react.dev>. 89

RICHARDSON, C. Microservices patterns: with examples in Java. [S.l.]: Simon and
Schuster, 2018. 36, 37, 98

SHAPIRO, S. S.; WILK, M. B. An analysis of variance test for normality (complete
samples). Biometrika, Oxford University Press, v. 52, n. 3-4, p. 591–611, 1965. 65

SHINDE, S. 4 Micro-Frontend Anti-Patterns. 2022. <https://levelup.gitconnected.com/
four-micro-frontend-anti-patterns-58aaa9fe19d5>. Blog. 43, 125, 132, 133, 162, 163, 167,
168, 178

https://qiankun.umijs.org
https://fenix.tecnico.ulisboa.pt/downloadFile/281870113706102/49372-joao-raimundo.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/281870113706102/49372-joao-raimundo.pdf
https://dev.to/florianrappl/top-10-micro-frontend-anti-patterns-3809
https://dev.to/florianrappl/top-10-micro-frontend-anti-patterns-3809
https://react.dev
https://levelup.gitconnected.com/four-micro-frontend-anti-patterns-58aaa9fe19d5
https://levelup.gitconnected.com/four-micro-frontend-anti-patterns-58aaa9fe19d5

References 196

SHUKLA, V. A comprehensive guide to micro frontend architecture. Medium, jul 2023.
Accessed: 2024-11-04. 99

SILVA, M. R. d. Arquitetura reativa cognitiva baseada em microsserviços e
micro-frontends para melhorar a experiência do usuário em aplicações bancárias por
meio de interfaces adaptativas. 2024. 99

SILVA, N.; RODRIGUES, E.; CONTE, T. A Catalog of Micro Frontends Anti-patterns. In:
2025 IEEE/ACM 47th International Conference on Software Engineering (ICSE). [S.l.: s.n.],
2025. p. 616–616. ISSN 1558-1225. 125, 132, 133, 138, 159, 161, 169, 172, 173, 174, 175, 176,
177, 178, 180, 181, 188

SILVA, N. R. Micro frontends numa aplicação de pré-contabilidade. Tese (Doutorado), 2023.
51

SINGLE-SPA. single-spa: A javascript router for front-end microservices. 2016. Disponível
em: <https://single-spa.js.org>. 38, 99

TAIBI, D.; LENARDUZZI, V.; PAHL, C. Microservices anti-patterns: A taxonomy.
Microservices: Science and Engineering, Springer, p. 111–128, 2020. 31, 43, 52, 64

TAIBI, D.; MEZZALIRA, L. Micro-frontends: Principles, implementations, and pitfalls.
ACM SIGSOFT Software Engineering Notes, ACM New York, NY, USA, v. 47, n. 4, p.
25–29, 2022. 31, 37, 38, 39, 40, 43, 99

THOUGHTWORKS. Micro frontends. ThoughtWorks Technology Radar, 2016. Disponível
em: <https://www.thoughtworks.com/pt-br/radar/techniques/micro-frontends>. 37

TIGHILT, R. et al. On the study of microservices antipatterns: A catalog proposal. In:
Proceedings of the European Conference on Pattern Languages of Programs 2020. [S.l.: s.n.],
2020. p. 1–13. 43, 52

TOKUC, K. Suitability of Micro-Frontends for an AI as a Service Platform. Tese (Doutorado)
— Hochschule für Angewandte Wissenschaften Hamburg, 2024. 51

TUTISANI, T. Design and architecture. In: Effective Software Development for the
Enterprise: Beyond Domain Driven Design, Software Architecture, and Extreme Programming.
[S.l.]: Springer, 2023. p. 105–175. 51

VALENTE, M. T. Engenharia de software moderna. Princípios e Práticas para
Desenvolvimento de Software com Produtividade, v. 1, n. 24, 2020. 30, 98

VEGAS, S.; APA, C.; JURISTO, N. Crossover designs in software engineering
experiments: Benefits and perils. IEEE Transactions on Software Engineering, IEEE, v. 42,
n. 2, p. 120–135, 2015. 96

VELEPUCHA, V.; FLORES, P. A survey on microservices architecture: Principles,
patterns and migration challenges. IEEE Access, IEEE, 2023. 51

VENKATESH, V.; BALA, H. Technology acceptance model 3 and a research agenda on
interventions. Decision sciences, Wiley Online Library, v. 39, n. 2, p. 273–315, 2008. 94, 101

https://single-spa.js.org
https://www.thoughtworks.com/pt-br/radar/techniques/micro-frontends

References 197

WESSELS, B. Micro Front-End Architecture at En-
terprise Scale. 2020. <https://medium.com/swlh/
micro-front-end-architecture-at-enterprise-scale-updated-july-2020-9159a4e0cc49>.
Blog. 15, 132, 133, 155, 156

WOHLIN, C. et al. Experimentation in software engineering. [S.l.]: Springer Science &
Business Media, 2012. 33, 76, 93, 94, 95, 96, 101, 106, 113

https://medium.com/swlh/micro-front-end-architecture-at-enterprise-scale-updated-july-2020-9159a4e0cc49
https://medium.com/swlh/micro-front-end-architecture-at-enterprise-scale-updated-july-2020-9159a4e0cc49

198

A

SURVEY THEMATIC ANALYSIS

This Appendix provides the complete thematic analysis performed during the qualita-

tive analysis on practitioners feedback presented in Chapter 4.

Thematic Analysis
Anti Pattern Question Participant Answers Quotations Final theme

Cyclic
Dependency

If you disagree, please
provide a description of
what is not clear

P4
The Problem is correctly explained but not as
much exemplified. The example only states a
dependency between A and B, but not another
that would close the cycle between B and A.

The example only states a
dependency between A and B, but
not another that would close the
cycle between B and A.

Improvements to examples

If you disagree, please
provide a description of
what is not clear

P11
Alternative solutions can be considered for this
problem, such as creating a single interface to
access the functionalities shared between the
MFEs.

creating a single interface to access
the functionalities shared between
the MFEs

Proposal of new solutions

In case you have a
different suggestion on
the problem solution,
please provide a
description

P5

I agree with the solution; however, microfrontends
inherently have the characteristic of being more
oriented toward an organizational context (not
always, but often), unlike microservices, which are
more focused on solving software issues such as
cost and scalability. The solution of composing
microfrontends based on domain analysis can be
valid in an organizational context where the
responsible parties are close (or preferably the
same team). In very large companies, due to the
distances between teams, duplication may be a
worse solution in terms of software but better in
organizational terms. In highly coupled systems,
creating intermediary layers can be a solution to
avoid merging the MFEs, which could eventually
turn these MFEs into a monolith due to the
system's high coupling characteristic.

So, in general, the presented solution makes
technical sense, but the business context might
require a solution that is not "optimal."

composing microfrontends based on
domain analysis can be valid in an
organizational context where the
responsible parties are close

Improvements to solutions

creating intermediary layers can be a
solution to avoid merging the MFEs Proposal of new solutions

eventually turn these MFEs into a
monolith due to the system's high
coupling characteristic

Proposal of new solutions

P7
Employing an event-driven architecture can
address the issue of high coupling between MFEs
without necessarily merging them into a single
MFE

event-driven architecture can
address the issue of high coupling
between MFEs

Proposal of new solutions

P18

maybe, instead of changing informations directly
between the calculation fragment and component
that shows a calculate value, its possible to use a
global state or global event that "consume" this
information without dependency each other

use a global state or global event
that "consume" this information
without dependency each other

Proposal of new solutions

P20

It does address the problem correctly although it
can have others solutions, for example a shared
lib between the MFEs that can specifically handle
this situation, a "bridge module" to manage
dependent states/values, etc.

shared lib between the MFEs that can
specifically handle this situation Proposal of new solutions

a "bridge module" to manage
dependent states/values Proposal of new solutions

Knot Micro
Frontend

If you disagree, please
provide a description of
what is not clear

P2

I'm a bit confused if the problem is communicating
among multiple MFEs or just stablishing a
communication contract. If the problem is with
stablishing clear communication contracts, than
the number of MFEs involved is not important to
the problem definition. It's similar to implementing
APIs in Microservices where you should keep a
clear contract between them.

confused if the problem is
communicating among multiple MFEs
or just stablishing a communication
contract

Improvements to problem
definitions

If the problem is with stablishing
clear communication contracts, than
the number of MFEs involved is not
important to the problem definition

Improvements to problem
definitions

If you disagree, please
provide a description of
what is not clear

P2

It's related to the first question. I think the solution
could state what is a good communication pattern
vs a bad one. In the mentioned example, the MFE
payments should be aligned with the domain level
of Product, agnostic to wether it is digital or
physical. Stablishing communication
patterns/contracts aligned to the domain level
seems a good proposal in my opinion.

solution could state what is a good
communication pattern vs a bad one Improvements to solutions

Stablishing communication
patterns/contracts aligned to the
domain level

Proposal of new solutions

In case you have a
different suggestion on
the problem solution,
please provide a
description

P13
I see that there are room to explain how this
interface can be prepared to accommodate future
changes

explain how this interface can be
prepared to accommodate future
changes

Improvements to solutions

Hub-like
Dependency

If you disagree, please
provide a description of
what is not clear

P5

Here I have a few points: any screen, whether it is a
microfrontend or not, should be resilient and have
good error handling. The fallback solution will
depend on many factors, such as if the error is
being caused by one of the MFEs that makes the
entire screen stop functioning and if it is a critical
MFE that must be present on the screen.

So in general, although the path presented for
solving the problems makes sense, this type of
issue is not specific to MFEs but rather to "hub
screens" in any type of context.

any screen, whether it is a
microfrontend or not, should be
resilient and have good error
handling

Improvements to solutions

The fallback solution will depend on
many factors Improvements to solutions

this type of issue is not specific to
MFEs but rather to "hub screens"

Improvements to problem
definitions

If you disagree, please
provide a description of
what is not clear

P2

"Avoiding screens that serve as a starting point for
other functionalities is recommended" how can
this be avoided? If the MFE is seen from the same
perspective of a component composition, it is
inevitable to have aggregators. What can be done
to avoid aggregators? (and can they be avoided at
all?)

how can this be avoided? Improvements to solutions

it is inevitable to have aggregators Improvements to solutions

P20

Is understandable to avoid this type of screens
due to his heavy use of other MFEs, having
multiple dependencies and allowing a screen to be
heavier by consuming external resources to mount
the screen. But not use it goes against the main
idea of the MFE to be contextually segregated,
that when a module is updated, there has to be no
worries about the liveness of other modules that
are mounted together with the module updated on
that screen. Is expected due to the idea of the MFE
that nothing is going to be affected and that the
main change must affect and be tested in it's own
context, event that is consumed in a starting-point
screen.

But not use it goes against the main
idea of the MFE to be contextually
segregated

Improvements to solutions

In case you have a
different suggestion on
the problem solution,
please provide a
description

P4

The solution solves only a part of the problem.
While proper error-handling is a must in any given
environment, if we are talking about front-end, it's
possible for each MFE to have it's own error
handling functions, that should:

A - Disable the feature whenever needed;
B - Warn the user of any inconveniences.

A main screen would simply import everything that
is already done and aggregate it on the same
screen.

It is also very important to make this "hub screen" a
very simple one, without tasks that can
compromise all the other MFEs. For instance, let's
use the same example: A main banking screen that
has charts, lists and balances. If this screen
implements its own data fetch function that fails
and renders the screen useless, then it is a
problem.

But if the crypto chart fails by itself, and displays
its own error message while all the other ones are
still functional, then its not much of an issue.

error-handling is a must in any given
environment, Improvements to solutions

Hub-like
Dependency

In case you have a
different suggestion on
the problem solution,
please provide a
description

P4

The solution solves only a part of the problem.
While proper error-handling is a must in any given
environment, if we are talking about front-end, it's
possible for each MFE to have it's own error
handling functions, that should:

A - Disable the feature whenever needed;
B - Warn the user of any inconveniences.

A main screen would simply import everything that
is already done and aggregate it on the same
screen.

It is also very important to make this "hub screen" a
very simple one, without tasks that can
compromise all the other MFEs. For instance, let's
use the same example: A main banking screen that
has charts, lists and balances. If this screen
implements its own data fetch function that fails
and renders the screen useless, then it is a
problem.

But if the crypto chart fails by itself, and displays
its own error message while all the other ones are
still functional, then its not much of an issue.

A main screen would simply import
everything that is already done and
aggregate it on the same screen.

Proposal of new solutions

very important to make this "hub
screen" a very simple one Improvements to solutions

A main banking screen that has
charts, lists and balances. If this
screen implements its own data fetch
function that fails and renders the
screen useless, then it is a problem.

Improvements to examples

But if the crypto chart fails by itself,
and displays its own error message
while all the other ones are still
functional, then its not much of an
issue.

Improvements to examples

P8 The fallback should haven't call the issued
fragments

The fallback should haven't call the
issued fragments Improvements to solutions

P20

I agree that the solution is addressed to the
problem but i don't think it's the best solution.
Maybe segregate even more the contexts of each
module so that one don't effect the other so
drastically even that they share some data and
states. The interdependencies must be reviewed so
that they don't affect modules that didn't even was
changed.

segregate even more the contexts of
each module so that one don't effect
the other so drastically even that
they share some data and states

Proposal of new solutions

Nano Frontend

In case you have a
different suggestion on
the problem solution,
please provide a
description

P5
Just like in the first question, the solution here will
depend entirely on the organizational context, but
it makes sense.

the solution here will depend entirely
on the organizational context Improvements to solutions

P10
I agree, but the solution can be a interface or
abstraction on main domain like a super domain
and the little fragments can be used like a
template

I agree, but the solution can be a
interface or abstraction on main
domain like a super domain and the
little fragments can be used like a
template

Proposal of new solutions

Mega Frontend
In case you have a
different suggestion on
the problem solution,
please provide a
description

P4

The solution indeed solves the problem. But we
could also look from another perspective and try
to prevent the problem.

In my opinion, the main issue that makes
monoliths come into existence, is a lack of
communication between the product team and the
development team. It should be well discussed
between the two teams to define when two or more
features are different products.

lack of communication between the
product team and the development
team. It should be well discussed
between the two teams to define
when two or more features are
different products

Proposal of new solutions

Micro
Frontends

Greedy

If you disagree, please
provide a description of
what is not clear

P8 I can't separate this anti-pattern from nano or
mega frontends

I can't separate this anti-pattern from
nano or mega frontends

Improvements to problem
definitions

If you disagree, please
provide a description of
what is not clear

P2
I don't disagree but I'd be bold and state micro
frontends always are born from refactor and never
from feature.

I'd be bold and state micro frontends
always are born from refactor and
never from feature.

Improvements to solutions

In case you have a
different suggestion on
the problem solution,
please provide a
description

P7

1) In this case, i'd focus on the business context.
Instead of conducting a comprehensive review of
all existing MFEs to determine the best fit for the
new functionality, it's more effective to evaluate
the business context of the feature in
collaboration with the relevant teams.
By doing so, we can ensure that the feature is
integrated into an MFE managed by the
appropriate team, avoiding boundary issues and
ensuring cohesive development.
2) In addition to evaluating the business context
and team boundaries, it is important to consider
how MFEs are named and categorized. Proper
naming and handling of MFEs based on broader
business domains rather than specific features
can significantly simplify the decision-making
process when integrating new functionalities
That means, naming MFEs based on broader
business domains (like "payment mfe," "user mfw,"
or "security mfe") as opposed to specific features
(like "login mfe," "OTP mfe," etc.) can help maintain a
more coherent and manageable architecture, in a
way that avoids the greediness

Instead of conducting a
comprehensive review of all existing
MFEs to determine the best fit for the
new functionality, it's more e ective to
evaluate the business context of the
feature in collaboration with the
relevant teams.

Proposal of new solutions

Proper naming and handling of MFEs
based on broader business domains
rather than specific features can
significantly simplify the decision-
making process when integrating new
functionalities

Proposal of new solutions

naming MFEs based on broader
business domains (like "payment mfe,"
"user mfw," or "security mfe") as
opposed to specific features (like
"login mfe," "OTP mfe," etc.) can help
maintain a more coherent and
manageable architecture, in a way
that avoids the greediness

Proposal of new solutions

P13

It would be beneficial to have the domain and all
responsibilities of each MFE documented and
summarized. This way, when making decisions like
this, the information can support whether or not to
create a new MFE.

have the domain and all
responsibilities of each MFE
documented and summarized. This
way, when making decisions like this,
the information can support whether
or not to create a new MFE.

Proposal of new solutions

No CI/CD

In case you have a
different suggestion on
the problem solution,
please provide a
description

P2 CI/CD should be included as definition of done of
a micro frontend.

CI/CD should be included as
definition of done of a micro
frontend.

Improvements to solutions

No Versioning

In case you have a
different suggestion on
the problem solution,
please provide a
description

P5

Here, I see the following problem: versioning for
micro frontends does not work as well as it does
for libraries because the final build is usually
unique. If we consider the Knot Micro Frontend
anti-pattern, where there are versions where two
screens, A and B, are present, and screen B
changes its communication interface, screen A
could not continue to depend on the previous
version of screen B because there would be "two"
screen Bs in the final build.
For "smaller" dependencies, like an isolated
component or a shared function, versioning might
work well, but in this case, versioning might only
partially solve the problem.

versioning for micro frontends does
not work as well as it does for
libraries because the final build is
usually unique

Improvements to solutions

For "smaller" dependencies, like an
isolated component or a shared
function, versioning might work well

Improvements to solutions

P12

"It is essential to adopt the Semantic Versioning",
não é essencial considerando que o
versionamento semantico não é a única opção
viável. Em projetos que possuem release
diariamente, talvez o ideal seja usar de fato o
calendar versioning.

considerando que o versionamento
semantico não é a única opção
viável. Em projetos que possuem
release diariamente, talvez o ideal
seja usar de fato o calendar
versioning

Improvements to solutions

Lack of
Skeleton

If you disagree, please
provide a description of
what is not clear

P2

The solution seems to be restrict in terms of
technology decisions. One of the big advantages
of Micro Frontends is being able to be tech
agnostic, and have different MFEs in dffierent
technologies to better suit its needs. Is this still a
problem if such freedom is intended? How to
provide boiler plates agnostic of frameworks?

Is this still a problem if such freedom
is intended?

Improvements to problem
definitions

How to provide boiler plates agnostic
of frameworks? Improvements to solutions

In case you have a
different suggestion on
the problem solution,
please provide a
description

P15 I add that keeping the skeleton updated is also
very important

keeping the skeleton updated is also
very important Improvements to solutions

Common
Ownership

If you disagree, please
provide a description of
what is not clear

P15

I don't believe software should be modularized due
to team size. Naturally, larger software involves
more people, but I believe small teams can also
benefit from software modularization, such as
separation of layers and responsibilities,
observability and maintainability

Naturally, larger software involves
more people, but I believe small
teams can also benefit from software
modularization, such as separation
of layers and responsibilities,
observability and maintainability

Improvements to problem
definitions

If you disagree, please
provide a description of
what is not clear

P15

Yes and No, teams with knowledge in more than
one context tend to do better when solving
unusual problems. In my opinion, I don't believe
that the responsibility of a team that works with
micro frontends should be restricted to its own
context

I don't believe that the responsibility
of a team that works with micro
frontends should be restricted to its
own context

Improvements to solutions

In case you have a
different suggestion on
the problem solution,
please provide a
description

P7

If the problem of a single team managing all (or a
lot of) MFEs persists even with context definition,
defining shared components and libraries can
make boundary definition easier. Shared
components reduce duplication and standardize
functionalities, simplifying boundary definition.
And by standradizing functionalities, it could be
possible to get rid of some MFEs after some
refactoring.

defining shared components and
libraries can make boundary
definition easier.

Proposal of new solutions

Shared components reduce
duplication and standardize
functionalities, simplifying boundary
definition.

Proposal of new solutions

by standradizing functionalities, it
could be possible to get rid of some
MFEs after some refactoring.

Proposal of new solutions

Golden
Hammer

If you disagree, please
provide a description of
what is not clear

P11

Manter padrões de desenvolvimento comuns na
organização, no meu ponto de vista é benéfica:
1- Tecnologias podem ser reutilizáveis em vários
projetos.
2 - Melhoram as experiências de engenharia de
software.
3 - Fornecem transparência ao design das
aplicações.
4 - Acelera o processo de desenvolvimento.

Manter padrões de desenvolvimento
comuns na organização, no meu
ponto de vista é benéfica:
1- Tecnologias podem ser
reutilizáveis em vários projetos.
2 - Melhoram as experiências de
engenharia de software.
3 - Fornecem transparência ao
design das aplicações.
4 - Acelera o processo de
desenvolvimento.

Improvements to solutions

In case you have a
different suggestion on
the problem solution,
please provide a
description

P7

It is hard to define the right technology on stone
at one point in time and having it stay the most
adequate during the product evolution. To
address the specific needs of each MFE, adopting
a hybrid technology approach supported by a
common facade, such as a Backend for Frontend
(BFF) layer, and using feature flags to manage
gradual migration and experimentation might be
a better approach (and would also save a lot of
time on decision-making processes for big
companies).
This allows each MFE to utilize the most suitable
technology, while maintaining overall architectural
coherence. Feature flags enable testing and
gradual rollout and routing of new technologies
without disrupting the entire system

adopting a hybrid technology
approach supported by a common
facade, such as a Backend for
Frontend (BFF) layer, and using
feature flags to manage gradual
migration and experimentation might
be a better approach

Proposal of new solutions

Final
Considerations

If you do agree, please
provide a description of
the problem.

P2

Selecting the wrong type of micro frontends based
on the user needs. There are mainly two ways to
integrate micro frontends: buildtime and runtime.
The decision on which to adhere reflects deeply in
the teams' and users' needs more than the
technical pros and cons each of them offer.

For example. in my experience each team dealt
with its own MFE in a scilo, with the integrations
happening only at the API level. Depending on
other teams for frontend development in any way
would only slow them down, so the runtime
integration was the chosen integration strategy. If
build time was chosen, they would still depend on
each other for deployment even though the
integration of the screens were minimum.

Same thing could happen otherwise, when there is
heavy integration that is safe to do it in buildtime.
Choosing runtime integration strategy could
generate multiple bugs and instability in different
environments.

There are mainly two ways to
integrate micro frontends: buildtime
and runtime. The decision on which
to adhere reflects deeply in the
teams' and users' needs more than
the technical pros and cons each of
them o er

New anti-patterns

in my experience each team dealt
with its own MFE in a scilo, with the
integrations happening only at the
API level. Depending on other teams
for frontend development in any way
would only slow them down, so the
runtime integration was the chosen
integration strategy. If build time was
chosen, they would still depend on
each other for deployment even
though the integration of the screens
were minimum

New anti-patterns

P3

Inconsistent User Experience
Fragmented State Management
Complex Inter-MFE Communication
 Overhead of Independent Deployments
Security and Authentication Challenges

Inconsistent User Experience
Fragmented State Management
Complex Inter-MFE Communication
 Overhead of Independent
Deployments
Security and Authentication
Challenges

New anti-patterns

P5

- Performance Bottlenecks: addressing solutions
for dynamic loading can be a good topic.
- Security Risks: especially in the context where
micro frontends use different technologies, which
means each one can introduce different types of
risk.

Performance Bottlenecks: addressing
solutions for dynamic loading can be
a good topic

New anti-patterns

Security Risks: especially in the
context where micro frontends use
different technologies, which means
each one can introduce different
types of risk.

New anti-patterns

P6
Vários times pequenos cuidando de muitos mfes
por vez. Imaginando um time que tenha 3 devs e
mantém 5 mfes

Vários times pequenos cuidando de
muitos mfes por vez. Imaginando um
time que tenha 3 devs e mantém 5
mfes

New anti-patterns

P7

1) Poor state management: Data persistence on
MFEs when each frontend manages the state
independently.
For example, when a user navigates back to a
page with different data or state, inconsistent or
unexpected behavior can occur, leading to a poor
user experience. This issue arises because each
micro frontend typically manages its state
independently,

Poor state management: Data
persistence on MFEs when each
frontend manages the state
independently.

New anti-patterns

Final
Considerations

If you do agree, please
provide a description of
the problem.

P7

1) Poor state management: Data persistence on
MFEs when each frontend manages the state
independently.
For example, when a user navigates back to a
page with different data or state, inconsistent or
unexpected behavior can occur, leading to a poor
user experience. This issue arises because each
micro frontend typically manages its state
independently,

For example, when a user navigates
back to a page with dfferent data or
state, inconsistent or unexpected
behavior can occur, leading to a
poor user experience. This issue
arises because each micro frontend
typically manages its state
independently

New anti-patterns

P10

One of the patters is related to include use more
than one technology to extract more from SEO or
something else, that could cause a more complex
architecture.

I think if you include observability overwhelmed, or
patterns in observability that would be nice.

that could cause a more complex
architecture Improvements to solutions

I think if you include observability
overwhelmed, or patterns in
observability that would be nice

New anti-patterns

How do you think this
catalog would help
improve the quality of
micro frontend
architecture in your
work?

P1
This catalog can act as a checklist to ensure good
practices and avoid anti-patterns in the micro
frontend context

This catalog can act as a checklist to
ensure good practices and avoid
anti-patterns in the micro frontend
context

How to use the catalog

P2

It will serve as a guide for some DOs and DONTs
that are missing in the Micro Frontends world. The
term and technology is fairly new and such
patterns are not well stablished in the software
community yet. This is great work!

It will serve as a guide for some DOs
and DONTs that are missing in the
Micro Frontends world

How to use the catalog

This is great work Commendations for the
catalog

The term and technology is fairly new
and such patterns are not well
stablished in the software community
yet

Commendations for the
catalog

P4

It's a well detailed "bible", containing the most
essentials "don'ts" of working with micro frontends.
It is a nice guide for any new or experienced
developer and would definitely read it and pass it
along if it is ever published.

containing the most essentials
"don'ts" of working with micro
frontends

How to use the catalog

It is a nice guide for any new or
experienced developer How to use the catalog

P5

This catalog highlights several real-world
problems encountered in the day-to-day work with
micro frontends. Many proposed solutions are
sensible in various contexts, and even those that
seem less practical from my perspective serve as
valuable discussion points. These discussions can
help us develop effective solutions to the identified
issues.

This catalog highlights several real-
world problems encountered in the
day-to-day work with micro frontends

Commendations for the
catalog

Many proposed solutions are
sensible in various contexts, and even
those that seem less practical from
my perspective serve as valuable
discussion points

Commendations for the
catalog

These discussions can help us
develop e ective solutions to the
identified issues

How to use the catalog

P6

Ajudando a perceber alguns anti padrões que por
conta do dia-a-dia de trabalho se tornam
"padrões" na empresa, dando uma visão geral do
problema e como podemos solucionar e evitar
que eles se propaguem ainda mais.

Ajudando a perceber alguns anti
padrões que por conta do dia-a-dia
de trabalho se tornam "padrões" na
empresa

How to use the catalog

dando uma visão geral do problema
e como podemos solucionar e evitar
que eles se propaguem ainda mais

How to use the catalog

P7

As a valuable resource for training new team
members and onboarding them to micro frontend
projects, also to keep up to date with latest
patterns and to encounter possible problems as
the architecture evolves

training new team members and
onboarding them to micro frontend
projects

How to use the catalog

keep up to date with latest patterns
and to encounter possible problems
as the architecture evolves

How to use the catalog

P8
Creating moments with teams to discuss this
catalog and sharing this knowledge to improve the
frontend architecture.

discuss this catalog and sharing this
knowledge to improve the frontend
architecture

How to use the catalog

P9

Ajuda a pensar nas decisões de arquitetura e na
decisão de usar a arquitetura de micro frontends
ou não. Vi muitos problemas que já presenciei no
dia a dia, porém não era um problema
identificado e por isso era apenas ignorado.
Acredito que possa ajudar a identificar problemas
em andamento e trabalhar na solução.

pensar nas decisões de arquitetura e
na decisão de usar a arquitetura de
micro frontends ou não

How to use the catalog

Vi muitos problemas que já
presenciei no dia a dia, porém não
era um problema identificado e por
isso era apenas ignorado

How to use the catalog

Acredito que possa ajudar a
identificar problemas em andamento
e trabalhar na solução

How to use the catalog

P10 That will be a guide to think about our MFE and
communication to back-end to.

guide to think about our MFE and
communication to back-end to. How to use the catalog

P13
It makes a perfect checklist to use when designing
a new MFE project or even to review an already
existing one

checklist to use when designing a
new MFE project How to use the catalog

review an already existing one How to use the catalog

P14
By listing directly many issues we may find while
developing micro frontend architecture, it helps to
avoid such mistakes

By listing directly many issues we may
find while developing micro frontend
architecture, it helps to avoid such
mistakes

How to use the catalog

P15 Help mainly with mega frontends and single
technology in all micro frontends

Help mainly with mega frontends and
single technology in all micro
frontends

How to use the catalog

P17

I think this anti-pattern catalog is very useful for
sharing information about micro frontend, both
for developers who do not have experience with
micro frontend and for developers with
experience. Helps make decisions about when to
adopt this pattern or not, and when to break into
a new MFE.

sharing information about micro
frontend How to use the catalog

both for developers who do not have
experience with micro frontend and
for developers with experience

How to use the catalog

P18

I think that a catalog for micro frontend
architecture can significantly enhance the quality
of development, a lot of points that were
addressed in this form creates a lack of efficiency
and scalability in all development and maintaining
process, furthermore, have a catalog like a guide
before thinking in MFE and during the
development is a very useful tool for a dev team

significantly enhance the quality of
development

Commendations for the
catalog

have a catalog like a guide before
thinking in MFE How to use the catalog

P20

It will help by making me more self-aware of the
possible breaches that the use of MFE can make.
Also, the last few questions were about the use (or
not) of a MFE and where it is necessary and where
it isn't, a very important point to be raised due to
the "hype" that the use of a technology can have,
and is not always the use case of the
architecture/solution that is being made.

making me more self-aware of the
possible breaches that the use of
MFE can make

How to use the catalog

Final
Considerations

How do you think this
catalog would help
improve the quality of
micro frontend
architecture in your
work?

P20

It will help by making me more self-aware of the
possible breaches that the use of MFE can make.
Also, the last few questions were about the use (or
not) of a MFE and where it is necessary and where
it isn't, a very important point to be raised due to
the "hype" that the use of a technology can have,
and is not always the use case of the
architecture/solution that is being made.

the last few questions were about the
use (or not) of a MFE and where it is
necessary and where it isn't, a very
important point to be raised due to
the "hype" that the use of a
technology can have

How to use the catalog

Do you have any
suggestions for
improving the anti-
patterns catalog?

P4

Don't know if this is an issue with Forms, but a "wall
of text" is never too friendly, specially on a bright
computer screen. I would use some flow charts to
exemplify most of the anti-patterns and make it
more readable.

Or event some prototyped examples, since most of
the examples uses a lot of terms such as "screens".
Would be nice to see a picture of it instead of plain
description.

I would use some flow charts to
exemplify most of the anti-patterns
and make it more readable

Improvements to the
catalog

Would be nice to see a picture of it
instead of plain description

Improvements to the
catalog

P7
 Addressing common challenges faced by
development teams according to their experience
in real world scenarios and by technology

 Addressing common challenges
faced by development teams
according to their experience in real
world scenarios and by technology

Improvements to the
catalog

P8 This catalog need to be shared in a website after
this study have finished like refactoring.guru

shared in a website after this study
have finished like refactoring.guru

Improvements to the
catalog

P9 Não, achei ótima a separação por categorias. ótima a separação por categorias Commendations for the
catalog

P10 Like I said, observability patters is a good start observability patterns is a good start New anti-patterns

P15
I believe that the problem of managing
dependencies between modules would be a good
anti-pattern to solve.

managing dependencies between
modules would be a good anti-
pattern to solve

New anti-patterns

P17
Maybe if there were images for some anti-pattern
it would be interesting. Showing the MFEs, the
communication between them, etc.

images for some anti-pattern it would
be interesting

Improvements to the
catalog

P18 maybe add some diagrams and images help to
understanding some examples

add some diagrams and images help
to understanding some examples

Improvements to the
catalog

204

B

CONTROLLED EXPERIMENT OBJECTS

This Appendix presents the description of two objects used in the controlled experi-

ment described in Chapter 5. These objects are specifications of two compatible Micro

Frontend architectures, which include a description of the application and the proposed

Micro Frontends.

B.1 Object 1 - Mercado Livre
Mercado Livre is one of the largest e-commerce platforms in Latin America, where

users can buy and sell a wide variety of products, ranging from electronics, clothing,

and accessories to home and gardening items. The site offers a secure payment system,

Mercado Pago, and shipping services through Mercado Envios, facilitating logistics and

product delivery. Additionally, Mercado Livre features a user-friendly interface, seller

ratings, special offers and promotions, and is known for the vast number of products

available from both individual sellers and large companies.

Here is a list of the main features of Mercado Livre that will be considered during

this exercise:

• Buying and Selling Products: Users can buy and sell a wide variety of products,

from new items to used ones.

• Search System and Filters: Allows users to search for specific products using

filters such as price, location, condition (new/used), and more.

APPENDIX B. Controlled Experiment Objects 205

• Mercado Pago: Integrated payment platform offering various payment options,

such as credit card, boleto (bank slip), bank transfer, and account balance.

• Mercado Envios: Logistics and delivery service that allows order tracking, auto-

matic shipping cost calculation, and nationwide delivery, with different shipping

options.

• Purchase and Sales History: Users can track the history of their purchases and

sales, managing past and current transactions.

• Shopping Cart: A feature that allows users to add multiple items from different

sellers and purchase them in a single order.

• Offers and Promotions: A page dedicated to promotions and flash sales, with

discounts and free shipping on certain products.

Consider that the website was developed using the Micro Frontends listed in

the subsections below. Note that not all the screens of each are listed, only a few for

illustration.

B.1.1 mfe-users

Includes screens that show the registered user’s data, such as personal data, account

information, address list, card list, etc. Figure 61 and Figure 62 present screens of the

mfe-users.

APPENDIX B. Controlled Experiment Objects 206

Figure 61 – My profile screen of mfe-users.

Figure 62 – Personal data screen of mfe-users.

B.1.2 mfe-security

Includes screens related to the security of the user’s data and account, such as login,

privacy policies, two-factor authentication, registration, etc. Figure 63 and Figure 64

present screens of the mfe-security.

APPENDIX B. Controlled Experiment Objects 207

Figure 63 – Login screen of mfe-security.

Figure 64 – Two-factor authentication screen of mfe-security.

B.1.3 mfe-store

Includes screens related to the stores and the products sold by them, such as: prod-

uct details, search history, product sales, store registration. Figure 65, Figure 66, and

Figure 67 present screens of the mfe-store. Figure 68 presents a fragment exported by

APPENDIX B. Controlled Experiment Objects 208

mfe-store.

Figure 65 – Products sale screen of mfe-store.

Figure 66 – History screen of mfe-store.

APPENDIX B. Controlled Experiment Objects 209

Figure 67 – Product details screen of mfe-store.

Figure 68 – Recommended products fragment of mfe-store.

B.1.4 mfe-purchase

Includes the implementation of all screens related to purchases, deliveries, and pay-

ments in Mercado Livre, including Cart, Payment Confirmation, Order Confirmation,

Purchase History, Delivery Tracking, shipping cost calculation with different partners,

among others. Figure 69 and Figure 70 present screens of the mfe-purchase.

APPENDIX B. Controlled Experiment Objects 210

Figure 69 – Purchases screen of mfe-purchase.

Figure 70 – Cart screen of mfe-purchase.

B.1.5 mfe-search

Includes the implementation of the search screen and is used by all MFEs that want to

display a list of products, whether to show offers (mfe-store), or list products from a

store. Figure 71 presents a screen of the mfe-search.

APPENDIX B. Controlled Experiment Objects 211

Figure 71 – Search screen of mfe-search.

B.1.6 mfe-home

Includes the implementation of the main Mercado Livre screen, which contains several

fragments that lead to different MFEs. Figure 72 presents a screen of the mfe-search.

Figure 72 – Home screen of mfe-search.

APPENDIX B. Controlled Experiment Objects 212

B.2 Object 2 - Nubank
Nubank is a Brazilian digital bank that offers financial services through an intuitive

mobile app with no bureaucracy. The Nubank app is a central piece of this experience

and provides a range of features that allow users to manage their finances independently

and efficiently, without the need to interact with physical branches.

• Credit card: management of physical card, credit limit management, virtual credit

card management, access to card statements.

• Digital account: transfers via PIX and TED to the Nubank digital account (Nu-

Conta), as well as a detailed statement of account transactions.

• CDB investments: creation of personalized investment boxes, where the balance

earns 100% of the CDI.

• Payments: payment of bills or PIX QR Codes directly in the app using the account

balance or credit card limit.

• Loans: offering of personal loans, payroll loans, or FGTS anticipation through

Nubank.

Consider that the app was developed using the following Micro Frontends listed

in the subsections below. Note that not all screens of each one are listed, just some for

illustration.

B.2.1 mfe-users

mfe-users: Possui a implementação da tela de dados do usuário e alteração de foto de

perfil. Figure 73 presents a screen of the mfe-users.

APPENDIX B. Controlled Experiment Objects 213

Figure 73 – Profile screen of mfe-users.

B.2.2 mfe-security

Includes the implementation of screens related to the security of the user’s data and

account, such as login, forgot my password, registration, etc. Figure 74 and Figure 75

present screens of mfe-security.

APPENDIX B. Controlled Experiment Objects 214

Figure 74 – Login screen of mfe-security.

APPENDIX B. Controlled Experiment Objects 215

Figure 75 – First screen of sign up of mfe-security.

B.2.3 mfe-cards

Includes the implementation of all screens related to credit cards (physical or virtual),

including screens such as card statement, bill payment, limit adjustment, bill summary,

bill details, automatic debit setup, among others. Figure 76, Figure 77, and Figure 78

present screens of mfe-cards.

APPENDIX B. Controlled Experiment Objects 216

Figure 76 – Card invoices screen of mfe-cards.

APPENDIX B. Controlled Experiment Objects 217

Figure 77 – Limits screen of mfe-cards.

APPENDIX B. Controlled Experiment Objects 218

Figure 78 – Current card invoice screen of mfe-cards.

B.2.4 mfe-digital-account

Includes all screens related to the user’s digital account, including user data, transfers

via PIX, PIX key management, digital account statement, and bill payments. Figure 79,

Figure 80, and Figure 81 present screens of mfe-digital-account.

APPENDIX B. Controlled Experiment Objects 219

Figure 79 – Account statement screen of mfe-digital-account.

APPENDIX B. Controlled Experiment Objects 220

Figure 80 – Account balance screen of mfe-digital-account.

APPENDIX B. Controlled Experiment Objects 221

Figure 81 – Pix transfer screen of mfe-digital-account.

B.2.5 mfe-loan

Includes the screens related to Nubank’s loan service, such as the loan list, loan simula-

tion screen, loan option details screen, among others. Figure 82 and Figure 83 present

screens of mfe-loan. Figure 84 presents a fragment of mfe-loan.

APPENDIX B. Controlled Experiment Objects 222

Figure 82 – Loans list screen of mfe-loan.

APPENDIX B. Controlled Experiment Objects 223

Figure 83 – Loan details screen of mfe-loan.

Figure 84 – Loan section fragment of mfe-loan.

APPENDIX B. Controlled Experiment Objects 224

B.2.6 mfe-investment

Includes the screens related to CDB investment boxes, such as the main investment

screen, box details, box editing, saving and redeeming money from a box, among

others. Figure 85 and Figure 86 present screens of mfe-investment. Figure 87 presents a

fragment of mfe-investment.

Figure 85 – Investments list screen of mfe-investment.

APPENDIX B. Controlled Experiment Objects 225

Figure 86 – Investment details screen of mfe-investment.

Figure 87 – Loan section fragment of mfe-investment.

APPENDIX B. Controlled Experiment Objects 226

B.2.7 mfe-home

Includes the implementation of the main screen of Nubank, which contains several

fragments that lead to different MFEs. Figure 88 presents a screen of mfe-investment.

Figure 88 – Home screen of mfe-home.

227

C

CONTROLLED EXPERIMENT

ASSESSMENTS

This Appendix presents the questions of the two assessments of the controlled exper-

iment described in Chapter 5. We defined nine questions and adjusted them to each

object.

C.1 Object 1 Questions
Consider that you are a Junior Developer who will start working at the company that

maintains the system being evaluated. You have just learned more about the system’s

architecture, and you have been asked to analyze the system in terms of MFE.

1. Would you model the system using Micro Frontends differently? Would you keep

the same MFEs, create new ones, or alter the existing ones? Consider also the

screens and fragments.

Consider that you are a Junior Developer who will start working at Mercado

Livre. Answer how you would solve each of the tasks below. Feel free to propose new

MFEs, shared libraries, screens, and/or fragments, as well as modify existing ones.

1. Mercado Livre is launching Meli+ (meliplus), the loyalty program offering free

shipping on all purchases, cashback, exclusive installment options, and free access

to Disney+. The feature consists of the visual components presented in Figures

APPENDIX C. Controlled Experiment Assessments 228

89, 90, 91, 92, 93, and 94. What architectural changes are necessary to develop the

above components?

Figure 89 – Meli+ Offer Screen: The screen displays the benefits and available subscrip-
tion plans.

Figure 90 – Subscription Terms and Conditions Screen: The screen shows the terms and
conditions required for the subscription.

APPENDIX C. Controlled Experiment Assessments 229

Figure 91 – Offer Component with Details: This component should be displayed on the
homepage, showing detailed information about the offer.

Figure 92 – Simple Offer Component: This component should be displayed in the user
account menu, providing an overview of the offers.

APPENDIX C. Controlled Experiment Assessments 230

Figure 93 – Offer Component for the Header: This component should be displayed in
the header, highlighting the current offer.

Figure 94 – Plan Selection Modal: A modal that allows the user to choose the desired
subscription plan.

2. Mercado Pago has realized that it is important for the website to allow users to

maintain one or more lists of favorite products. A user can have one or more

lists and assign a name to each. The feature consists of the visual components

presented in Figures 95, 96, 97, and 98. What architectural changes are necessary

to develop the above components?

APPENDIX C. Controlled Experiment Assessments 231

Figure 95 – Screen showing the list of all favorite items and the user’s product lists: This
screen displays all the favorite items and the product lists created by the
user.

Figure 96 – Screen showing products belonging to a specific list: This screen presents
the products that are part of a specific user-created list.

APPENDIX C. Controlled Experiment Assessments 232

Figure 97 – Button to add a product to a list: This button opens a modal allowing the
user to choose which list they want to add the product to or create a new
list.

Figure 98 – Modal to create a new list: This modal allows the user to create a new
product list.

3. Suppose that mfe-store is updated, and now the fragment displaying products the

user is interested in needs a new parameter to be composed, the items in the cart,

so it can offer related products. The mfe-store is deployed (sent to production),

and the cart screen starts showing an error because mfe-purchase has not been

updated to pass the parameter. What would you do to ensure the change in the

APPENDIX C. Controlled Experiment Assessments 233

fragment does not generate an error on the cart screen, allowing the adjustment of

the screen code to be done later, gradually and safely?

4. Suppose that every time you make a change to mfe-security, manual tests are

required to ensure the application continues functioning. Note that these tests

could be programmed as unit or integration tests. How would you ensure quality

without the need for manual testing?

5. Suppose the fragment that shows products of interest to the user in mfe-store has

been correctly deployed on the cart screen and has been working as expected for

months without being altered. However, the fragment presents a bug whenever

the cart has more than 10 items, and this list is passed as a parameter. When

this happens, the cart screen shows an error, and the user cannot complete the

purchase. What would you do to prevent the error in the fragment from affecting

the entire screen?

6. Consider you are working on creating a new MFE. You need to create a new

application-type component with single-spa and import all shared libraries, follow

common coding patterns and structure, and register the new MFE in the root-

config. You spent a lot of time setting up the new MFE before starting actual

feature development. How could you streamline the creation of a new MFE next

time?

7. Consider the following communication order between mfe-purchase, mfe-store,

and mfe-users: (1) After successfully completing a purchase, mfe-purchase calls

a function that receives a parameter from mfe-store to update the user’s list to

which the purchased product belongs (if in any list); (2) mfe-purchase also calls

a function that receives a parameter from mfe-users to update the user’s points

based on the purchase value; and (3) the update of the user’s total points causes

mfe-users to call a function from mfe-store that informs the new total points so

that new offers can be calculated for the user. Currently, there is difficulty in

updating this flow, as a change can impact communication between all fragments.

How would you increase the independence between MFEs while maintaining

communication between them?

APPENDIX C. Controlled Experiment Assessments 234

8. Initially, mfe-store was designed to support only physical products, such as elec-

tronics, clothing, and everyday items. Now, Mercado Livre wants to add a new

type of product: services (such as consulting, private lessons, and technical ser-

vices). The code for mfe-store was developed specifically for physical products,

with rules involving freight calculation, stock, and handling, none of which apply

to services, making development difficult. What would you do during the devel-

opment of physical product sales to make mfe-store more generic and facilitate

the implementation of new types of products?

C.2 Object 2 Questions
Consider that you are a Junior Developer who will start working at Nubank. You have

just learned more about the architecture of the application, and you have been asked to

analyze the architecture in terms of Micro Frontends (MFE):

1. Would you model the system using Micro Frontends differently? Would you keep

the same MFEs, create new ones, or alter the existing ones? Also, consider the

screens and fragments.

Consider that you are a Junior Developer who will start working at Nubank.

Answer how you would solve each of the following tasks. Feel free to propose new

MFEs, shared libraries, screens, and/or fragments, as well as alter the existing ones.

1. Nubank is launching a new investment method called NuCoin, a proprietary app

currency that users accumulate by making purchases on their credit card. The

feature consists of several screens and fragments, some of which are presented

in Figures 99, 100, 101, and 102. What architectural changes are necessary for

developing the components above?

APPENDIX C. Controlled Experiment Assessments 235

Figure 99 – Main Screen of NuCoin.

APPENDIX C. Controlled Experiment Assessments 236

Figure 100 – Screen showing NuCoin balance statement.

APPENDIX C. Controlled Experiment Assessments 237

Figure 101 – Screen detailing raffles of NuCoin.

APPENDIX C. Controlled Experiment Assessments 238

Figure 102 – Screen with benefits of NuCoin.

2. Nubank is launching a new feature called "Pass everything on credit", which

allows sending Pix transfers and paying bills using the credit card. Additionally,

cash purchases on the card can also be split into installments. This feature includes

the visual components presented in Figures 103, 104, and 105. What architectural

changes are necessary for developing the components above?

APPENDIX C. Controlled Experiment Assessments 239

Figure 103 – Screen to choose what to charge to the credit.

APPENDIX C. Controlled Experiment Assessments 240

Figure 104 – Screen showing purchases that can be paid in installments.

Figure 105 – Fragment with the option to parcel a Pix payment.

3. Suppose that mfe-loan is updated, and now the loan section fragment requires

a new mandatory parameter, the user’s current account balance. The mfe-loan

APPENDIX C. Controlled Experiment Assessments 241

is deployed (sent to production), and the app’s home screen, which imports

this fragment in mfe-home, shows an error for not passing the new mandatory

parameter to the fragment. What would you do to ensure that the deployment of

mfe-loan does not cause an error on the home screen, allowing the screen code to

be adjusted gradually and safely later?

4. Suppose that every time you make a change in mfe-cards, you need to access

the server where the application is deployed and manually upload the code

changes. Note that the deployment could be done using an automated sequence

of commands. How would you ensure that the deployment of new code is not

manual?

5. Suppose that the home screen implemented in mfe-home shows an error that is

not related to any component implemented directly on the page, indicating that it

might be caused by one of the screen fragments. What would you do to ensure

that an error in a fragment does not make the entire screen unavailable?

6. Consider that you have completed the implementation of a new MFE, and now

you need to deploy it and connect it with other MFEs in production. You encounter

many difficulties in this process and realize that these are recurring problems.

How could you speed up the deployment of a new MFE next time?

7. Consider the following communication order between ‘mfe-digital-account‘, ‘mfe-

loan‘, and ‘mfe-home‘: (1) After a successful Pix transfer, ‘mfe-digital-account‘

calls a function that receives a parameter from ‘mfe-home‘ to update the account

balance shown on the home screen; (2) ‘mfe-home‘ updates the account balance

and changes the parameter passed to the loan section fragment of ‘mfe-loan‘;

and (3) ‘mfe-loan‘ then recalculates the loan offer based on the user’s current

balance. Currently, there is difficulty in updating this flow, as one change can

impact communication between all the fragments. How would you increase the

independence between the MFEs while maintaining communication between

them?

8. Consider that mfe-investment is treated as the module that should offer various

investment products. It started as a module exclusively for CDB investments,

and now it has been adjusted to allow investments in Treasury Direct. Nubank

APPENDIX C. Controlled Experiment Assessments 242

wants to implement a new investment model that operates very differently from

CDB and Treasury Direct (it has specific screens and a different purchasing flow).

This implementation will be problematic because the mfe-investment code is too

specific to how CDB and Treasury Direct purchases work, and adding a new

product won’t be easy. What would you do during the development of CDB

and Treasury Direct sales to make mfe-investment more generic and facilitate the

implementation of new investment products?

243

D

CONTROLLED EXPERIMENT CODING

This Appendix provides the complete open coding performed during the qualitative

analysis on the students feedback presented in Chapter 5.

Open Coding on Students Feedback
Question ID Answer Quote Code

Did you use or not use the
anti-pattern catalog for MFE
during the evaluation
exercise? If so, how? If not,
why did you not use it?

P1

I used it. I opened the catalog and read the described problems
because, as they are anti-patterns, it means it is very likely that
the problem I have is similar to one that has already occurred
before, and then I just needed to read the solution to see if it
was what I wanted to solve the initial problem.

I opened the catalog and read the
described problems because, as they are
anti-patterns, it means it is very likely that
the problem I have is similar to one that
has already occurred before
read the solution to see if it was what I
wanted to solve the initial problem

P2 I used it to review certain concepts. review certain concepts

P3
Yes, the catalog helped a lot because, besides explaining the
anti-patterns, it showed a practical example and then the
solution to the problem, which greatly helped in identifying how
I would solve the proposed problems.

it showed a practical example and then
the solution to the problem, which greatly
helped in identifying how I would solve
the proposed problems.

P4 I used it; with it, it was possible to have a description of common
problems in MFE implementation and their solutions.

it was possible to have a description of
common problems in MFE
implementation and their solutions

P5
Yes, I was looking for problems similar to those presented in the
exercise, and after that, I saw how they were solved. Of course,
even with similar problems, some solutions proved to be very
incompatible.

I was looking for problems similar to
those presented in the exercise
even with similar problems, some
solutions proved to be very incompatible

P6 Yes, I used it because it helped me understand the problems
and know how to solve them in the best possible way.

it helped me understand the problems
and know how to solve them in the best
possible way

P7
Yes, confirming what I learned in class and knowing how to
better segment problems found in MFE. It allowed me to
address these problems and made it easier to make decisions.

confirming what I learned in class
how to better segment problems found in
MFE. It allowed me to address these
problems and made it easier to make
decisions.

P8 Yes, as an aid to understanding some issues and developing
their solutions.

understanding some issues

developing their solutions

P9 Yes, I used it to solve scenarios that can occur in the
development of an MFE-oriented architecture.

I used it to solve scenarios that can occur
in the development of an MFE

P10 Yes, I used it to identify the problems and the solutions to the
respective questions.

identify the problems and the solutions
to the respective questions

P11
I used it a lot, seeking to understand the different types of
anti-patterns and their possible solutions. It makes problems
that can be prevented much more visible before a product is
80%-100% complete, avoiding rework.

seeking to understand the different types
of anti-patterns and their possible
solutions
It makes problems that can be prevented
much more visible before a product is
80%-100% complete, avoiding rework.

P12
Yes, checking solutions for the problems I encountered during
the exercise and seeing examples and descriptions helped me
understand the problem in some questions.

checking solutions for the problems I
encountered during the exercise
seeing examples and descriptions helped
me understand the problem in some
questions

P13
Yes, I used it a lot to understand if the situation proposed by
the question resembled any example described by the
anti-patterns. Besides analyzing my possible architectural
decisions, avoiding falling into a possible listed case.

understand if the situation proposed by
the question resembled any example
described by the anti-patterns.
possible architectural decisions, avoiding
falling into a possible listed case

P14 Yes, I used it; it served as a reminder. it served as a reminder

P15
Yes, analyzing the addressed problems and the examples cited
in the catalog to associate them with the scenario proposed in
the exercise.

analyzing the addressed problems and
the examples cited in the catalog to
associate them with the scenario

P16 Yes, it helped me a lot when answering the questions because I
could identify the problems that appeared as anti-patterns.

I could identify the problems that
appeared as anti-patterns

P17
I used it. It was very useful to see how the presented problems fit
into the anti-patterns. Seeing the anti-patterns in practice
increased my knowledge about the subject.

useful to see how the presented problems
fit into the anti-patterns
Seeing the anti-patterns in practice
increased my knowledge about the
subject

P18
Yes, I looked at the descriptions on the homepage. I checked if
there was something similar to what I wanted, clicked to confirm
through the example, and used the solution if that was the case.

I checked if there was something similar
to what I wanted

clicked to confirm through the example

P19
Yes, to check if any of the examples were in the catalog,
considering that the catalog contains the most common
anti-patterns, I believe it is useful to consult it to avoid errors
that have already been documented.

to check if any of the examples were in
the catalog
avoid errors that have already been
documented.

P20 I used it as a reference to see if someone had already reported
the same problem and how they solved it.

reference to see if someone had already
reported the same problem and how they
solved it

P21 Yes, it helped me identify problems and demonstrate the best
solutions.

identify problems and demonstrate the
best solutions.

P22 Yes, I used it to identify the proposed problems in the questions. identify the proposed problems in the
questions

P23 Yes, I used it a lot. When faced with questions about changing
the architecture, I often found myself consulting the catalog.

When faced with questions about
changing the architecture, I often found
myself consulting the catalog

Did you notice benefits or
challenges when using the
anti-pattern catalog for
MFE? Ease or difficulties of
use? If so, what were they?

P1

Benefits and conveniences. Since the catalog has several short
descriptions of problems that have occurred before, it is very
productive to check if the problem I face is in the catalog to see
the solution other developers had, instead of thinking of one on
my own.

catalog has several short descriptions of
problems that have occurred before, it is
very productive to check if the problem I
face is in the catalog to see the solution
other developers had

P3
Using the catalog helped standardize MFE creation, as I could
see possible errors that could occur when creating an MFE and
avoid them.

helped standardize MFE creation, as I
could see possible errors that could
occur when creating an MFE and avoid
them

P4
I had difficulties understanding the description of each
anti-pattern; I had to open all of them to see the description.
There could be a summary in each card of the catalogs on the
main screens.

difficulties understanding the description
of each anti-pattern; I had to open all of
them to see the description. There could
be a summary in each card of the
catalogs on the main screens

P5 The benefits were the solutions shown in each concept, which
are straightforward.

solutions shown in each concept, which
are straightforward

P6
Yes. As benefits, I noticed it is easy to understand and has great
examples of occurrences that help us understand the correct
way we can proceed.

easy to understand and has great
examples of occurrences that help us
understand the correct way we can
proceed

Identify common problems

Check if the solution is
suitable

Identify problems by
examples

Identify common problems

Identify problems similar to
the presented
Identify problems by
solutions

Guide architectural
decisions

Solving common problems

Solving common problems

Identify problems and
solutions

Prevent problems

Identify problems and
solutions

Understand problems by
examples

Identify problems by
examples

Guide architectural
decisions

Identify problems by
examples

Identify problems and
solutions

Identify common problems

Identify problems similar to
the presented
Identify problems by
examples
Identify problems and
solutions

Prevent problems

Identify common problems

Identify problems and
solutions
Identify problems and
solutions

Guide architectural
decisions

Identify common problems

Guide architectural
decisions

Check straightforward
solutions

Understand problems by
examples

Review MFE concepts

Understand common
challenges

Review MFE concepts

Understand common
challenges

Understand common
challenges

Review MFE concepts

Learn based on practical
problems

Consult several
anti-patterns at once

P7

Yes, conveniences because it is easy to visualize, especially with
the use of categories. However, one thing is that I believe some
situations are not very clear. Maybe there is no anti-pattern
that explicitly shows the problem, but their combination can
clarify what needs to be done.

it is easy to visualize, especially with the
use of categories
I believe some situations are not very
clear. Maybe there is no anti-pattern that
explicitly shows the problem, but their
combination can clarify what needs to be
done

P8
The benefits I noticed were that it was an easy, quick, and
accessible way to obtain information. A challenge was that
some examples were not very clear, and I had to reread them
several times.

an easy, quick, and accessible way to
obtain information
some examples were not very clear, and I
had to reread them several times

P9 It is very intuitive, easy to navigate, with simple and direct
examples followed by their respective solutions. It is a great tool.

P10
Conveniences. The anti-pattern catalog is very intuitive. That
way, I had no difficulties locating anything. Moreover, its division
into concept, example, and solution greatly facilitates
understanding.

its division into concept, example, and
solution greatly facilitates understanding

P11
Benefits and conveniences. Interaction is very easy, and having
the material with the set definition, example, and solution is
much more intuitive and positive.

P12
Benefits because with the descriptions, I was able to identify the
problems during the exercises, as well as possible solutions, and
it was very easy to use, very intuitive.

with the descriptions, I was able to
identify the problems during the
exercises, as well as possible solutions

P13
I believe the biggest challenge is the amount of text present.
Perhaps using more images for the examples would be more
effective.

the biggest challenge is the amount of
text present. Perhaps using more images
for the examples would be more effective

P14 The only negative point I noticed was that the anti-pattern tags
were not very useful, at least for the exercise we did.

P15
Benefits due to the clarity presented in the catalog and
convenience because it was possible to associate the exercise
context with the contexts, descriptions, and solutions shown in
the catalog.

possible to associate the exercise context
with the contexts, descriptions, and
solutions shown in the catalog

P16 It was very easy to use; the explanations were good, especially
those with images.

the explanations were good, especially
those with images

P17 I found it easy to use.
P18 Yes, benefits, the site is very direct in what it proposes.

P19

I noticed benefits because, for me, it is more advantageous to
avoid an error that is already documented than to end up
reproducing an error that is already documented. The main
conveniences I observed were: a practical example of the
anti-patterns, their solution, and the categorization.

more advantageous to avoid an error
that is already documented than to end
up reproducing an error that is already
documented
a practical example of the anti-patterns,
their solution

P20

Several benefits due to the simplicity of the page and its
objectivity. However, navigation bothered me a bit. If I perform a
filtered search and return to the previous page, I go to where all
are, not where the filters are. Another thing that could help is
that, when opening an anti-pattern, the page could show others
from the same topic or similar ones at the bottom.

when opening an anti-pattern, the page
could show others from the same topic or
similar ones at the bottom.

P21 Ease of use.

P22 Benefits and conveniences. It is simple to consult, and the
examples helped me identify the problem

and the examples helped me identify the
problem

P23
Initially, it was in English, and that made it a bit difficult, but I
found that the button filters helped a lot. I practically did not
use the search input at the top of the screen.

I found that the button filters helped a lot

Describe here if and how the
anti-pattern catalog for MFE
helped or hindered your
learning about Micro
Frontends.

P1
It helped because various problems and solutions are
documented, thus contributing to sharing solutions for
recurring problems instead of leaving the developer to think of
a solution on their own.

various problems and solutions are
documented, thus contributing to
sharing solutions for recurring problems

P2 It provided a simpler and faster way to access information
about the anti-patterns.

simpler and faster way to access
information about the anti-patterns

P3
The catalog helped me learn about MFE because, in it, I saw
possible errors that can occur in MFE creation and how to solve
these problems.

learn about MFE because, in it, I saw
possible errors that can occur in MFE
creation and how to solve these problems

P4

It helped by centralizing content about MFEs. However, the
catalog could include summaries and slides presented in the
classes, as I believe the purpose of the catalog would be to
centralize MFE content. This way, it would be friendlier to new
users.

helped by centralizing content about
MFEs. However, the catalog could include
summaries and slides presented in the
classes

P5
A better description of the problems and solutions in the
catalog helped me a lot to draw a parallel with the problems
proposed in the activity.

 better description of the problems and
solutions in the catalog helped me a lot
to draw a parallel with the problems
proposed in the activity

P6

Yes, it helped. I confess that it was even a bit easier to
understand the anti-pattern catalog than the design patterns I
learned in Assignment 2. But understanding the subject became
easier, and I was able to learn and will try to use these patterns
and anti-patterns in my future projects.

easier to understand the anti-pattern
catalog than the design patterns I
learned in Assignment 2
will try to use these patterns and
anti-patterns in my future projects

P7
It helped describe better the problems encountered and how to
solve them. I missed more examples and visual elements, which
help to remember each anti-pattern.

describe better the problems
encountered and how to solve them
missed more examples and visual
elements, which help to remember each
anti-pattern

P8
It helped me understand in an organized, clear, and effective
way. By reading the problem, I could easily choose which
anti-pattern to use.

understand in an organized, clear, and
effective way
reading the problem, I could easily
choose which anti-pattern to use

P9 It helped me because it helped me avoid common mistakes that
I would definitely have made if I did not know about them.

avoid common mistakes that I would
definitely have made if I did not know
about them

P10
With a good division in the catalog, I was able to understand,
given that the way it is divided allows me to associate and
identify the anti-patterns more easily.

given that the way it is divided allows me
to associate and identify the
anti-patterns more easily.

P11 It helped in problem abstraction. It became much easier to
visualize and solve possible problems.

It became much easier to visualize and
solve possible problems

P12 It helped, especially with practical examples and solutions for
each type of anti-pattern.

especially with practical examples and
solutions for each type of anti-pattern

P13
It helped a lot because, with it, I could understand real
situations and challenges faced during architectural decisions
of a system with MFEs.

I could understand real situations and
challenges faced during architectural
decisions of a system with MFEs

P14 It helped, but I believe the classes were more important for my
understanding; the catalog served as a review. the catalog served as a review

Consult by categories

Linking anti-patterns

Understand by structured
anti-patterns

Linking anti-patterns

Consult by categories

Understand by structured
anti-patterns

Understand by structured
anti-patterns

Review MFE concepts

Review MFE concepts

Learn based on practical
problems

Review MFE concepts

Understand common
challenges

Understand common
challenges

Review MFE concepts

Understand problems by
examples

Identify problems and
solutions

Understand by image

Identify problems similar to
the presented

Understand by image

Prevent problems

Understand problems by
examples

Identify problems by
examples

Identify common problems

Identify problems by
solutions

Guide architectural
decisions
Identify problems and
solutions

Understand by image

Identify problems and
solutions

Prevent problems

Identify common problems

Understand problems by
examples

P16 The catalog helped because it was very explanatory regarding
common errors in MFE architecture.

P17 It helped a lot. It is good to see what we should not do when
developing software.

good to see what we should not do when
developing software

P18
After reading a problem description, checking if that problem is
caused by a design issue helps a lot because then I can already
see if it can be solved in a way that has already been
experimented with by someone more experienced than me.

After reading a problem description,
checking if that problem is caused by a
design issue helps a lot because then I
can already see if it can be solved in a
way that has already been experimented

P19
The catalog helped me identify common patterns that could be
harmful to me in the future, potentially causing an error in a
project's architecture, as it describes, exemplifies, and suggests
a solution for these anti-patterns.

identify common patterns that could be
harmful to me in the future, potentially
causing an error in a project's
architecture

P20

It helped especially when contextualizing myself with the
problem. Many times, I had difficulty identifying problems
because I did not know all the problems, whether it was indeed
a problem, and if it was, how would I solve it? All these questions
were greatly minimized by using the catalog. The catalog helped
me diagnose problems I did not previously know.

I had difficulty identifying problems
because I did not know all the problems,
whether it was indeed a problem, and if it
was, how would I solve it? All these
questions were greatly minimized by
using the catalog.
The catalog helped me diagnose
problems I did not previously know.

P21
MFE catalog helped me remember some concepts I did not
recall, in addition to being very clear in its explanations and
using examples.

helped me remember some concepts I
did not recall
being very clear in its explanations and
using examples

P22
It helped me due to the ease of accessing the anti-patterns that
I probably would not have if I were searching for them on
websites.

ease of accessing the anti-patterns that I
probably would not have if I were
searching for them on websites

P23
The catalog helped a lot when looking for categories of
anti-patterns. It was a bit inconvenient to translate from English
to Portuguese.

The catalog helped a lot when looking for
categories of anti-patterns

Do you have any suggestions
for improving the
anti-pattern catalog for
MFEs? If you encountered
any difficulty understanding
the definition of an
anti-pattern (considering the
fields for problem, solution,
and example), please
indicate which anti-pattern it
was and describe what was
unclear.

P3 Availability of translation into other languages increases
accessibility for people who do not master English very well.

P4
As I mentioned in the previous response, it would be possible to
add summaries and slides presented in the classes to the
catalog, as I believe the purpose of the catalog is to centralize
MFE-related content, making it more user-friendly for new users.

add summaries and slides presented in
the classes to the catalog

P5 If there is at least one more scenario as an application example,
that would be ideal.

at least one more scenario as an
application example, that would be ideal

P6 More figures and, if possible, code examples in any language.
More figures

code examples in any language

P7
I suggest adding more visual elements and more examples for
each anti-pattern, as well as a description of the "domain" of the
category

adding more visual elements

more examples for each anti-pattern

P8 I did not understand the Micro Frontend Knot very well.

P9
I might have missed it, but I could not find the anti-pattern that
addresses error handling. If it is indeed not present in the
catalog, I believe its inclusion would be a good addition.
However, I might have just failed to locate it.

P10 Only adding of more anti-patterns for other types of systems.

P13
I believe using more visual resources could be very helpful to
avoid the overwhelming amount of text in each listed
anti-pattern.

using more visual resources could be
very helpful to avoid the overwhelming
amount of text

P14 Within the definitions of the anti-patterns, I did not find any
difficulty in understanding.

P16 It is a good catalog as it is, but the use of images in some
explanations helped more than just text.

but the use of images in some
explanations helped more than just text

P19 I believe a dictionary of key terms related to architecture in the
catalog could facilitate understanding, but it was easy to use.

dictionary of key terms related to
architecture in the catalog could
facilitate understanding

P21 The catalog is perfect, no improvements are needed.

P22 Perhaps more examples and bibliographic references where it is
possible to delve deeper into the anti-patterns.

more examples

bibliographic references where it is
possible to delve deeper into the
anti-patterns

Prevent problems

Identify problems and
solutions

Prevent problems

Identify problems and
solutions

Identify common problems

Understand problems by
examples

Identify common problems

Understand problems by
examples
Understand by image
Understand problems by
examples
Understand by image
Understand problems by
examples

Understand by image

Understand by image

Identify problems by
keywords

Understand problems by
examples

Review MFE concepts

Review MFE concepts

Review MFE concepts

Consult by categories

247

E

MLR PUBLICATIONS

This Appendix provides the complete list of publications retrieved during the search

process from the MLR presented in Chapter 6.

ID Base Acesso em Título Link

P1 28/11/2024 06:56:00 Top 10 Micro Frontend
Anti-Patterns

P2 28/11/2024 06:57:00 Microfrontends Anti-Patterns:
Seven Years in the Trenches

P3 28/11/2024 06:58:00 Entendendo os anti-patterns na
arquitetura de Micro-Frontends

P4 28/11/2024 06:58:00 Micro Frontends Anti-Patterns

P5 28/11/2024 06:58:00
Frontend Nation 2024: Luca
Mezzalira - Micro-Frontends

Anti-Patterns

P6 28/11/2024 06:59:00
10 Deadly Sins of Micro Frontend
Anti-Patterns That Could Derail

Your Success

P7 28/11/2024 06:59:00 Micro-Frontends anti-patterns by
Luca Mezzalira (#GSAS24)

P8 28/11/2024 07:00:00 4 Micro-Frontend Anti-Patterns

P9 28/11/2024 07:00:00
How Micro-Frontends are
reshaping Modern Web

Architecture

P10 28/11/2024 07:00:00 Micro frontends anti-patterns –
Luca Mezzalira

P11 28/11/2024 07:01:00 Choosing the right architecture
for your business

P12 28/11/2024 07:02:00 Micro-Frontends anti-patterns by
Luca Mezzalira (#GSAS24)

P13 28/11/2024 07:03:00 Micro-frontends and composable
frontend architectures

P14 28/11/2024 07:03:00 Micro-Frontends anti-patterns by
Luca Mezzalira (#GSAS24)

P15 28/11/2024 07:03:00 -

P16 28/11/2024 07:04:00
Building Micro Frontends with
React 18: Develop and deploy

scalable applications using micro
frontend strategies

P17 28/11/2024 07:04:00
Multi-Framework and -Version
Micro Frontends with Module

Federation: Your 4 Steps Guide

P18 28/11/2024 07:04:00 The Micro-Frontends future

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

https://dev.to/florianrappl/top-10-micro
-frontend-anti-patterns-3809

https://www.infoq.com/presentations/m
icrofrontend-antipattern/

https://thedevconf.s3.sa-east-1.amazon
aws.com/presentations/TDC2023BUS/w
ebfrontend/JUR-3676_2023-09-15T10554

5_MFEs+anti-pattern.pdf
https://www.geeksforgeeks.org/micro-fr

ontends-anti-patterns/

https://www.youtube.com/watch?v=lCiQ
b1DC6t4&ab_channel=VueSchool

https://medium.com/@cannon_circuit/
10-deadly-sins-of-micro-frontend-anti-p
atterns-that-could-derail-your-success

-1186cc631aed
https://www.youtube.com/watch?v=3jyg

Y3LGTKc&ab_channel=Apiumhub
https://javascript.plainenglish.io/four-
micro-frontend-anti-patterns-58aaa9fe

19d5
https://lucamezzalira.medium.com/how
-micro-frontends-are-reshaping-moder

n-web-architecture-0259ce7dfb7f
https://www.youtube.com/watch?v=T3NI
NYCP9gg&ab_channel=BECFinancialTe

chnologies
https://www.mulesoft.com/sem/lp/white
paper/api/top-microservices-patterns
?d=7013y0000026fABAAY&nc=7013y00000
26fi3AAA&utm_content=7013y0000026fA
BAAY&utm_source=google&utm_mediu
m=paid_search&utm_campaign=212509
58287&utm_adgroup=161422060683&ut
m_term=microservices%20architecture
%20pattern&utm_matchtype=p&gad_so
urce=1&gclid=CjwKCAiAxqC6BhBcEiwAl
Xp454sleZjPIPcuJmP6_QAji9GvXGL64J4
PHzZwdVrQ2l4EhVrPGv3fFRoCA5kQAvD

_BwE&gclsrc=aw.ds
https://www.linkedin.com/posts/lucame
zzalira_micro-frontends-anti-patterns-
by-luca-mezzalira-activity-72650220273

07094018-1zvt/

https://microfrontend.dev/

https://www.wearedevelopers.com/en/vi
deos/420/micro-frontends-anti-pattern

s-739926065
https://www.threads.net/

https://www.amazon.com/Building-Micr
o-Frontends-React-microfrontend-ebo

ok/dp/B0BQC16W6B

https://www.angulararchitects.io/blog/
multi-framework-and-version-micro-fro
ntends-with-module-federation-your-4-

steps-guide/
https://lucamezzalira.com/category/mi

cro-frontends/

P19 28/11/2024 07:05:00 Micro Frontends Conference

P20 28/11/2024 07:05:00 Microfrontends Anti-Patterns:
Seven Years in the Trenches

P21 28/11/2024 07:06:00 The Strengths and Benefits of
Micro Frontends

P22 28/11/2024 07:06:00 Micro-frontends anti-patterns by
Luca Mezzalira (#GSAS24)

P23 28/11/2024 07:07:00 Top 10 Microservice Anti-Patterns

P24 28/11/2024 07:07:00 Everything You Need to Know
About Micro Frontends

P25 28/11/2024 07:08:00 Microfrontends - Decoupling
Frontends

P26
28/11/2024 07:08

Luca Mezzalira
(@amazonwebservices) -

"Micro-frontends anti-patterns" at
the Code Europe 2023

P27 28/11/2024 07:09 Luca Mezzalira - Micro-frontends
anti-patterns |redev 2022

P28 28/11/2024 07:09 Micro-Frontend

P29 28/11/2024 07:10 Micro-Frontend Mindmaps

P30 28/11/2024 07:10 Chapter 4. Discovering
Micro-Frontend Architectures

P31 28/11/2024 07:11 Micro Frontends

P32 28/11/2024 07:11 Micro-Frontends anti-patterns

P33 28/11/2024 07:12
Motivations, Benefits, and Issues

for Adopting
Micro-Frontends: A Multivocal

Literature Review

P34 28/11/2024 07:12 Micro-frontends - reversing the
anti-pattern!

P35 28/11/2024 07:12 The Micro-Frontends future

P36 28/11/2024 07:13
Assessing the feasibility of Micro
frontend architecture in native

mobile app development

P37 28/11/2024 07:13 Micro-Frontend - What & Why?

P38 28/11/2024 07:13:00 Rules of Micro-Frontends

P39 28/11/2024 07:13
Micro-Frontends anti-patterns -

Luca Mezzalira, AWS | Craft
Conference 2022

P40 28/11/2024 07:14:00 Micro frontends numa aplicação
de précontabilidade

P41 28/11/2024 07:15:00
Understanding and implementing

microfrontends on AWS
AWS Prescriptive Guidance

P42 28/11/2024 07:15
Micro-frontends: anti-patterns |
Luca Mezzalira | EnterpriseNG

2021

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

https://hasgeek.com/jsfoo/microfronte
nds-conf/sub/micro-frontends-anti-pat

terns-Y7WWDT2M1zAbz9DFb79TxX
https://www.youtube.com/watch?v=n1XS

eiLhBtE&ab_channel=InfoQ
https://www.toptal.com/front-end/micr

o-frontends-strengths-benefits
https://www.wearedevelopers.com/en/vi
deos/299/micro-frontends-anti-pattern

s
https://blog.bitsrc.io/10-microservice-a

nti-patterns-278bcb7f385d
https://newsletter.systemdesign.one/p/

micro-frontends
https://aymanace2049.hashnode.dev/m
icrofrontends-decoupling-frontends

https://www.youtube.com/watch?v=R2Y
dq5E_8ts&ab_channel=CodeEurope

https://www.linkedin.com/posts/lucame
zzalira_luca-mezzalira-micro-frontends
-anti-patterns-activity-700654126135240

2944-Z4xk/
https://awesome-architecture.com/mic

ro-frontend/
https://github.com/santoshshinde2012/

micro-frontends-mindmaps
https://www.oreilly.com/library/view/bui
lding-micro-frontends/9781492082989/c

h04.html
https://www.infoq.com/micro-frontends

/
https://hasgeek.com/jsfoo/microfronte
nds-conf/schedule/micro-frontends-an
ti-patterns-CzzTos6obdNKvoZGwtY3Vo

https://arxiv.org/pdf/2007.00293

https://2019.nidevconf.com/sessions/ch
riskitson/

https://lucamezzalira.com/2022/03/01/t
he-micro-frontends-future/

https://dl.acm.org/doi/10.1145/3691620.3
695313

https://dev.to/dwarvesf/micro-frontend
-what-why-ike

https://www.infoxicator.com/rules-of-mi
cro-frontends

https://www.youtube.com/watch?v=EvD-
gFX6kN0&ab_channel=CraftHubEvents

https://recipp.ipp.pt/bitstream/10400.22
/24267/1/Tese_5137_v2.pdf

https://docs.aws.amazon.com/pdfs/pre
scriptive-guidance/latest/micro-fronte

nds-aws/micro-frontends-aws.pdf

https://www.youtube.com/watch?v=gfKT
FqjsT1M&ab_channel=ng-conf

P43 28/11/2024 07:16 Top 10 Microservices Anti-Patterns

P44 28/11/2024 07:16 Luca Mezzalira – Micro frontends
anti patterns | Øredev 2022

P45 28/11/2024 07:17:00 Post

P46 28/11/2024 07:17 Microfrontend Deep Dive

P47 28/11/2024 07:17:00 Post

P48 28/11/2024 07:19:00 Micro Frontends: the Evolution of
Frontend Architecture

P49 28/11/2024 07:19:00 Blog

P50 28/11/2024 07:20:00
Motivations, Benefits, and Issues
for Adopting Micro-Frontends: A

Multivocal Literature Review

Motivations, Benefits, and Issues for
Adopting Micro-Frontends: A
Multivocal Literature Review

P51 28/11/2024 07:20:00 Palestrante e/ou Coordenador
Aquele que faz história no TDC

P52 28/11/2024 07:21:00

MICRO FRONTENDS: A NEW
PARADIGM FOR SCALABLE
ANGULAR APPLICATIONS

Authors

P53 28/11/2024 07:21:00

Micro Frontend-Based
Development: Concepts,

Motivations,
Implementation Principles, and an

Experience Report

P54 28/11/2024 07:21:00 Micro Frontend

P55 28/11/2024 07:22:00 TechLead Journal

P56 28/11/2024 07:22:00 Luca Mezzalira: Micro-frontends
Anti-patterns

P57 28/11/2024 07:22:00 Post

P58 28/11/2024 07:23:00
Compositional Qualities of
Microfrontends: The LdoD

Archive

P59 28/11/2024 07:24:00
Micro-Frontends Pattern:
Revolutionizing Frontend

Development

P60 28/11/2024 07:25:00 Architecture: Micro frontends https://andrepolischuk.com/architectu
re-micro-frontends/

P61 28/11/2024 07:26:00
Motivations, benefits, and issues
for adopting Micro-Frontends: A

Multivocal Literature Review

P62 28/11/2024 07:26:00 Micro Frontend Architecture

P63 28/11/2024 07:26:00
Motivations, benefits, and issues
for adopting Micro-Frontends: : A

Multivocal Literature Review

P64 28/11/2024 07:27:00 Vinta Software

P65 28/11/2024 07:28:00 Anais do Simpósio Brasileiro de
Engenharia de Software (SBES)

P66 28/11/2024 07:28:00
MICRO FRONTENDS: A NEW
PARADIGM FOR SCALABLE
ANGULAR APPLICATIONS

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

https://app.daily.dev/posts/top-10-micr
oservices-anti-patterns-lqjo4scgy

https://www.youtube.com/watch?v=Dax
JuB8AYqM&ab_channel=%C3%98redev

Conference
https://x.com/lucamezzalira/status/185

9256584427225365
https://openmfe.org/development/micr

ofrontend-deepdive/
https://x.com/lucamezzalira/status/184

6075769140785268
https://www.youtube.com/watch?v=W4b

iNjfmvvI&ab_channel=InfoQ
https://smapiot.com/blog/

https://thedevconf.com/palestrante/pe
dro-henrique-oliveira

https://iaeme-library.com/index.php/IJ
CET/article/view/IJCET_15_05_041

https://www.scitepress.org/Papers/2024
/126273/126273.pdf

https://fizalihsan.github.io/technology/
microfrontend.html

https://techleadjournal.dev/page/16/
https://www.oreilly.com/library/view/sof
tware-architecture-superstream/063692

0689546/video338478.html
https://x.com/lucamezzalira/status/184

5413811659932005
https://fenix.tecnico.ulisboa.pt/downlo
adFile/281870113706102/49372-joao-raim

undo.pdf

https://softwarepatternslexicon.com/p
atterns-js/5/6/1/

https://www.sciencedirect.com/science/
article/pii/S0950584921000549

https://www.reddit.com/r/reactjs/comm
ents/1gwdxua/micro_frontend_architec

ture/?rdt=64908

https://dl.acm.org/doi/10.1016/j.infsof.20
21.106571

https://www.instagram.com/vintasoftwa
re/p/CF0EYzyH3bW/

https://sol.sbc.org.br/index.php/sbes/i
ssue/view/1362

https://www.researchgate.net/publicati
on/384940204_MICRO_FRONTENDS_A_
NEW_PARADIGM_FOR_SCALABLE_ANGU

LAR_APPLICATIONS

P67 28/11/2024 07:28:00 Frontend Insights

P68 28/11/2024 07:28:00 Micro-Frontends

P69 28/11/2024 07:30:00 Stackademic

P70 28/11/2024 07:30:00
Microfrontend, patterns e

antipatterns con Luca Mezzalira
(AWS)

P71 28/11/2024 07:31:00 What are Performance
Anti-Patterns in System Design

P72 28/11/2024 07:32:00
Cloud Design Patterns: Building
Reliable & Scalable Applications

P73 28/11/2024 07:32:00 Envisioning the future with Micro
frontends web development

P74 28/11/2024 07:32:00 Post

P75 28/11/2024 07:33:00
MICRO FRONTENDS: A NEW

PARADIGM FOR
SCALABLE ANGULAR

APPLICATIONS

P76 28/11/2024 07:33:00 Micro-frontends anti-patterns

P77 28/11/2024 07:34:00 Microfrontends should be your
last resort

P78 28/11/2024 07:34:00
Micro Frontends: Architecting

Front-End Applications as
Independent Microservices

P79 28/11/2024 07:35:00
A model-driven approach for

continuous performance
engineering in microservice-based

systems

P80 28/11/2024 07:35:00 Current Trends in Frontends

P81 28/11/2024 07:36:00 And “Back to Stage” it was!

P82 28/11/2024 07:36 Microfrontends should be your
last resort

P83 28/11/2024 07:37:00 QCon London 2022 - Current
Trends in Frontends

P84 28/11/2024 07:38:00
#47 - Micro-Frontends and the
Socio-Technical Aspect - Luca

Mezzalira

P85 28/11/2024 07:38:00 4 Micro-Frontend Anti-Patterns

P86 28/11/2024 07:40:00 Micro-frontends anti-patterns

P87 28/11/2024 07:40:00 Chris Kitson: Micro-frontends -
reversing the anti-pattern!

P88 28/11/2024 07:41:00 Best Practices Microservices

P89 28/11/2024 07:41:00 React the Wrong Way: 4
Anti-Patterns to Avoid

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

https://www.thoughtworks.com/insights
/topic/frontend

https://conf.researchr.org/details/ecsa-
2022/ecsa-2022-workshops-tutorials/2/

Micro-Frontends
https://blog.stackademic.com/tagged/

microservice-architecture
https://www.gitbar.it/episodes/ep131-mi
crofrontend-patterns-e-antipatterns-c

on-luca-mezzalira-aws
https://www.geeksforgeeks.org/what-ar
e-performance-anti-patterns-in-system

-design/

https://anarsolutions.com/category/te
chnology/design-patterns/

https://www.technoidentity.com/insight
s/envisioning-the-future-with-micro-fro

ntends-web-development/
https://www.threads.net/?error=invalid_

post

https://iaeme.com/MasterAdmin/Journ
al_uploads/IJCET/VOLUME_15_ISSUE_5

/IJCET_15_05_041.pdf

https://www.ugidotnet.org/e/sessione/2
890/Micro-frontends-anti-patterns

https://www.reddit.com/r/programming
/comments/1fvwie3/microfrontends_sh

ould_be_your_last_resort/

https://softwarepatternslexicon.com/p
atterns-ts/7/8/

https://ouci.dntb.gov.ua/en/works/4N2
W0o24/

https://archive.qconlondon.com/londo
nmar/track/current-trends-frontends
https://globaldigitalfactory.allianz.com
/blog/and--back-to-stage--it-was-.html
https://www.breck-mckye.com/blog/202
3/05/Microfrontends-should-be-your-la

st-resort/
https://www.facebook.com/QCon/video
s/qcon-london-2022-current-trends-in-f

rontends/1160012331485798/
https://pt.everand.com/podcast/59226
8089/47-Micro-Frontends-and-the-Soci
o-Technical-Aspect-Luca-Mezzalira

https://devpress.csdn.net/cloudnative/
62fb6fb0c677032930800063.html

https://www.infoq.cn/video/5PdMk6Gpi
C0X5Sg8wgkU

https://www.youtube.com/watch?v=fSn-
kTYyIqw&ab_channel=NIDevConf

https://systemsarchitect.io/docs/requir
ements/systems/services/apis/best-pr

actices-microservices
https://blog.bitsrc.io/react-the-wrong-w
ay-4-anti-patterns-to-avoid-2d68a28aa

c00

P90 28/11/2024 07:41:00 Slicing your application into micro
frontends

P91 28/11/2024 07:42:00 Micro-frontend

P92 28/11/2024 07:43:00
Enterprise Angular: Micro

Frontends and Moduliths with
Angular

P93 28/11/2024 07:43:00
Migration Process from Monolithic

to Micro
Frontend Architecture in Mobile

Applications

P94 28/11/2024 07:44:00 4 Lessons Learned from Building
Microfrontends

P95 28/11/2024 07:44:00 Anti Patterns

P96 28/11/2024 07:45:00 React context between
microfrontends

P97 28/11/2024 07:47:00 Dividing frontend from backend is
an antipattern

P98 28/11/2024 07:47:00
Is Returning Composables from
Composables an Anti-Pattern in

Vue Applications?

P99 28/11/2024 07:48:00 Micro frontends numa aplicação
de pré-contabilidade

P10
0 28/11/2024 07:48:00 Using Bahmni Forms in OpenMRS

Microfrontends

P101 28/11/2024 07:49:00 5 Things to Read This Week - 25th
Jun 2019

P10
2 28/11/2024 07:50:00 Micro Frontend

P10
3 28/11/2024 07:51:00 Micro-Frontends anti-patterns

P10
4 28/11/2024 07:52:00 What are Micro-Frontends?

Really…

P10
5 28/11/2024 07:53:00 Monorepos in JavaScript,

Anti-Pattern

P10
6 28/11/2024 08:09:00

Microfrontends — when they
aren’t the answer (React, Angular,

Vue etc)

P10
7 28/11/2024 08:10:00

Motivations, benefits, and issues
for adopting Micro-Frontends: A

Multivocal Literature Review

P10
8 28/11/2024 08:10 Micro-frontend “Blackbox Pattern”

P10
9 28/11/2024 08:10:00

Shift Remote FRONTEND: Micro
Frontend Architecture: A Look Into

the Future - Ante Tomic (Infobip)

P110 28/11/2024 08:11:00
MICRO-FRONTEND

ARCHITECTURE WITH REACT: A
COMPREHENSIVE GUIDE

P111 28/11/2024 08:11:00
Break up your monolith: give

teams the freedom to scale with
micro frontends

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

https://subscription.packtpub.com/bo
ok/programming/9781837631971/14/ch14
lvl1sec86/slicing-your-application-into-

micro-frontends
https://pt.slideshare.net/slideshow/mic

ro-frontend/181808173

https://leanpub.com/enterprise-angula
r

https://ceur-ws.org/Vol-3627/paper05.p
df

https://thenewstack.io/4-lessons-learn
ed-from-building-microfrontends/

https://awesome-architecture.com/anti
-patterns/anti-patterns/

https://stackoverflow.com/questions/71
532470/react-context-between-microfro

ntends
https://www.thoughtworks.com/en-br/i
nsights/blog/dividing-frontend-backen

d-antipattern
https://markus.oberlehner.net/blog/is-r
eturning-composables-from-composa
bles-an-anti-pattern-in-vue-applicatio

ns/
https://recipp.ipp.pt/handle/10400.22/2

4267
https://talk.openmrs.org/t/using-bahm
ni-forms-in-openmrs-microfrontends/2

8548
https://thatsabug.com/blog/2019-06-25

/5_things/
https://switch-case.io/post/micro-front

end/
https://www.fevr.it/eventi/2021/12/micro-

frontends-anti-patterns/
https://www.infoxicator.com/what-are-m

icro-frontends-really
https://scribe.rip/@PepsRyuu/monorep
os-in-javascript-anti-pattern-917603da5

9c8
https://javascript.plainenglish.io/microf
rontends-when-they-arent-the-answer-
react-angular-vue-etc-45dcf266f6f9

https://www.researchgate.net/publicati
on/350347666_Motivations_benefits_an
d_issues_for_adopting_Micro-Frontend

s_A_Multivocal_Literature_Review
https://medium.com/@ngkamperlo/mi
cro-frontend-blackbox-pattern-295c40

b681e4
https://pt.slideshare.net/slideshow/shif
t-remote-frontend-micro-frontend-arch
itecture-a-look-into-the-future-ante-to

mic-infobip/236680973

https://iaeme.com/Home/article_id/IJC
ET_15_06_012

https://forto.com/en/blog/tech-blog-mi
cro-frontends/

P112 28/11/2024 08:11:00
#47 - Micro-Frontends and the
Socio-Technical Aspect - Luca

Mezzalira

P113 28/11/2024 08:13:00 Micro-Frontends Weekly - Issue
#12

P114 28/11/2024 08:13:00 What are Micro-Frontends and
How to Use Them

P115 28/11/2024 08:13:00 Micro Frontend Architecture -
Luca Mezzalira, DAZN

P116 28/11/2024 08:15:00
Luca Mezzalira

(@amazonwebservices) -
"Micro-frontends anti-patterns" at

the Code Europe 2023

P117 28/11/2024 08:15:00 How Micro-frontend frameworks
are replacing legacy monoliths

P118 28/11/2024 08:16:00 Monorepo and Micro-Frontends
with Jonathan Creamer

P119 28/11/2024 08:16:00 Design Systems for Micro
Frontends

P12
0 28/11/2024 08:17:00 O que é Code Smell?

P121 28/11/2024 08:17:00 Micro Frontends

P12
2 28/11/2024 08:18:00 Angular v18 is now available!

P12
3 28/11/2024 08:18:00

What Are Micro-Frontends & How
to Use Them • Luca Mezzalira &

Lucas Dohmen • GOTO 2022

P12
4 28/11/2024 08:18:00 Luca Mezzalira - Micro Frontends

With Module Federation

P12
5 28/11/2024 08:19:00 How Micro-frontend frameworks

are replacing legacy monoliths

P12
6 28/11/2024 08:19:00 Event listener performance

antipatterns

P12
7 28/11/2024 08:20:00 Monorepo and Micro-Frontends

with Jonathan Creamer
P12
8 28/11/2024 08:20:00 Micro Frontend Architecture -

Luca Mezzalira, DAZN
P12
9 28/11/2024 08:21:00 Angular v18 is now available!

P13
0 28/11/2024 08:21:00 Micro Frontends

P131 28/11/2024 08:22:00
What Are Micro-Frontends & How
to Use Them • Luca Mezzalira &

Lucas Dohmen • GOTO 2022

P13
2 28/11/2024 08:23:00 Luca Mezzalira - Micro Frontends

With Module Federation

P13
3 28/11/2024 08:24:00

Serverless-Side Rendering
Micro-Frontends by Luca

Mezzalira | SLA Conference

P13
4 28/11/2024 08:24:00

Micro Frontends Conference 2023
- Luca Mezzalira: Micro Frontends

Discovery

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

https://techleadjournal.dev/episodes/4
7/

https://mfe-weekly.beehiiv.com/p/micro
frontends-weekly-issue-12

https://gotopia.tech/articles/161/what-
are-microfrontends-and-how-to-use-th

em
https://www.youtube.com/watch?v=BuR

B3djraeM&ab_channel=UXDX
https://partner.biz.ua/ytbe/R2Ydq5E_8t
s/luca-mezzalira-@amazonwebservice
s-micro-frontends-anti-patterns-at-the

-code-europe-2023
https://servian.dev/how-micro-fronten
d-frameworks-are-replacing-legacy-mo

noliths-f66f34d06a2
https://semaphoreci.com/blog/monore
po-micro-frontends-jonathan-creamer
https://epb.bibl.th-koeln.de/frontdoor/
deliver/index/docId/1666/file/SCIBachel
or_Design_Systems_and_Micro_Fronten

ds.pdf
https://pt.stackoverflow.com/questions
/100016/o-que-%C3%A9-code-smell

https://dr-martin-kramer.com/micro-fr
ontends/

https://blog.angular.dev/angular-v18-is
-now-available-e79d5ac0affe

https://www.youtube.com/watch?v=-thW
gobMW_I&ab_channel=GOTOConferenc

es
https://www.youtube.com/watch?v=tTwo
SWJObZs&ab_channel=CITYJSCONFER

ENCE
https://servian.dev/how-micro-fronten
d-frameworks-are-replacing-legacy-mo

noliths-f66f34d06a2
https://subscription.packtpub.com/bo
ok/programming/9781804612279/11/ch11l
vl1sec59/event-listener-performance-a

ntipatterns
https://semaphoreci.com/blog/monore
po-micro-frontends-jonathan-creamer
https://www.youtube.com/watch?v=BuR

B3djraeM&ab_channel=UXDX
https://blog.angular.dev/angular-v18-is

-now-available-e79d5ac0affe
https://dr-martin-kramer.com/micro-fr

ontends/
https://www.youtube.com/watch?v=-thW
gobMW_I&ab_channel=GOTOConferenc

es
https://www.youtube.com/watch?v=tTwo
SWJObZs&ab_channel=CITYJSCONFER

ENCE
https://www.youtube.com/watch?v=QD2
BvPfNc6c&ab_channel=ServerlessArchit

ectureConference

https://www.youtube.com/watch?v=U3K
JiC9c_7I&ab_channel=smapiot

P13
5 28/11/2024 08:25:00 [EN] Interview: Micro Frontends

P13
6 28/11/2024 08:26:00

Monolith to Micro-Frontends
using Webpack Module

Federation // Ori Adijes, Architect
at Windward

P13
7 28/11/2024 08:26:00

Building Micro-Frontends • Luca
Mezzalira & Lucas Dohmen •

GOTO 2022

P13
8 28/11/2024 08:27:00

Micro Frontends with Web
Component: Part 1 – Introduction

to Micro Frontends

P13
9 28/11/2024 08:27:00 Lightning Talk #2: Micro-frontend

“Blackbox Pattern”

P14
0 28/11/2024 08:27:00 Building micro frontends with

Single-Spa – Kamil Dzieniszewski

P141 28/11/2024 08:29:00
Beyond the basics of Module
Federation micro frontends –

Manfred Steyer

P14
2 28/11/2024 08:29:00

Micro Frontends - foundations |
Tomasz Krajewski | Conf42

JavaScript 2021

P14
3 28/11/2024 08:29:00 Micro-Frontend

P14
4 28/11/2024 08:30:00 Online: Demystifying

Micro-Frontends

P14
5 28/11/2024 08:31:00 Micro-Frontends Decisions

Framework with Luca Mezzalira

P14
6 28/11/2024 08:31:00

Keynote Session: I don't
understand micro-frontends |

Luca Mezzalira

P14
7 28/11/2024 08:32:00 Micro-frontends Anti-Patterns

P14
8 28/11/2024 08:33:00 Clean Architecture | Testes

Unitários no Frontend

P14
9 29/11/2024 07:46:00 UI microservices — reversing the

anti-pattern (micro frontends)

P15
0 29/11/2024 07:46:00 Top 10 Microservice Anti-Patterns

P151 29/11/2024 07:47:00 Micro-frontends Weekly —
18/11/2022

P15
2 29/11/2024 07:47:00 How Micro-frontend frameworks

are replacing legacy monoliths

P15
3 29/11/2024 07:47:00 Micro-frontend “Blackbox Pattern”

P15
4 29/11/2024 07:48:00 Problems with Micro-frontends

P15
5 29/11/2024 07:48:00

Micro Front-End Architecture at
Enterprise Scale (Updated July

2020)
P15
6 29/11/2024 07:49:00 React Anti Patterns

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

Google

https://www.youtube.com/watch?v=obw
WdgxQUxQ&ab_channel=ManfredSteye

r

https://www.youtube.com/watch?v=Q9g
DiA35LLo&ab_channel=IsraeliTechRada

r

https://www.youtube.com/watch?v=DG9
puFuUb7E&ab_channel=GOTOConfere

nces
https://www.youtube.com/watch?v=uJ_r
qmZaNDQ&ab_channel=FiveMinuteTec

h
https://www.youtube.com/watch?v=CZe
CgmoFEOw&ab_channel=AthensSDET

Meetup
https://www.youtube.com/watch?v=lQkR
-Vlnbgs&ab_channel=BECFinancialTec

hnologies
https://youtube.com/watch?v=Qcbmit5
TRB8&ab_channel=BECFinancialTechn

ologies

https://www.youtube.com/watch?v=ydG
6j83DTnU&ab_channel=Conf42

https://www.youtube.com/watch?v=tY9
MXocUoWM&ab_channel=TechTalksWit

hSantosh
https://www.youtube.com/watch?v=Hz_
XmnsJvFw&ab_channel=DataWorksMD
https://www.youtube.com/watch?v=1co8
055hi_I&ab_channel=JSWORLDConfere

nce

https://www.youtube.com/watch?v=Ubb
lS2Twh8A&ab_channel=JSPolandConf

https://cyberspaceandtime.com/MICR
OFRONTENDS-ANTIPATTERNS-SEVEN-
YEARS-IN-THE-TRENCHES-kQnX11tCXh

VS7Ze7li1LLFFh4LB9jt_gE.htm
https://www.youtube.com/watch?v=Xg3
8Hv6mLQU&ab_channel=JuniorMarqu

es
https://medium.com/@kitson.mac/ui-m
icroservices-reversing-the-anti-pattern

-375bc22287b0
https://blog.bitsrc.io/10-microservice-a

nti-patterns-278bcb7f385d
https://medium.com/@luisvieira_gmr/
micro-frontends-weekly-18-11-2022-39f11

d1fb4d1
https://servian.dev/how-micro-fronten
d-frameworks-are-replacing-legacy-mo

noliths-f66f34d06a2
https://medium.com/@ngkamperlo/mi
cro-frontend-blackbox-pattern-295c40

b681e4
https://medium.com/swlh/problems-wit

h-micro-frontends-8a8fc32a7d58
https://medium.com/swlh/micro-front-
end-architecture-at-enterprise-scale-u

pdated-july-2020-9159a4e0cc49
https://medium.com/@suraj.kc/react-a

nti-patterns-909ecf193701

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

P15
7 29/11/2024 07:49:00 Microfrontends — My talk from NI

Dev Conf 2019

P15
8 29/11/2024 07:50:00

Frontend Design Systems:
Monolith Vs Multirepo Vs

Monorepo

P15
9 29/11/2024 07:51:00 -

P16
0 29/11/2024 07:51:00 Backends for Frontends Pattern

(BFF)

P161 29/11/2024 07:52:00
Microfrontends — when they

aren’t the answer (React, Angular,
Vue etc)

P16
2 29/11/2024 07:52:00 Monorepos in JavaScript,

Anti-Pattern

P16
3 29/11/2024 07:52:00

Webpack module federation |
Think twice before sharing a

dependency

P16
4 29/11/2024 07:53:00 Implementing Multi-Framework in

Vanilla JS with Native Federation

P16
5 29/11/2024 07:53:00 A Better Frontend Component

Structure: Component Trees

P16
6 29/11/2024 07:54:00 -

P16
7 29/11/2024 07:54:00

A journey through frontend
Aspect-Oriented Programming —

Theory

P16
8 29/11/2024 07:54:00 Common React Anti-patterns you

should avoid

P16
9 29/11/2024 07:55:00

Creating Micro-frontends using
Web Components (with support for

Angular and React)

P17
0 29/11/2024 07:56:00 Yosua Halim

P171 29/11/2024 07:56:00 UX Fails: The “Junk Drawer”
Problem

P17
2 29/11/2024 07:57:00 redux-thunk is bad architecture

for organizations

P17
3 29/11/2024 07:57:00 Paul Sweeney

P17
4 29/11/2024 07:58:00 Chris Kitson

P17
5 29/11/2024 07:58:00 How to Choose Microservice’s

Boundaries?
P17
6 29/11/2024 07:58:00 How to: Communication protocols

P17
7 29/11/2024 07:59:00 Monorepo or Multirepo?

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

https://medium.com/@kitson.mac/micr
ofrontends-my-talk-from-ni-dev-conf-2

019-f648fe2cba32
https://medium.com/@rajasaikiranvem
ula/frontend-design-systems-monolith-
vs-multirepo-vs-monorepo-8395b4e477

3d
https://medium.com/@kitson.mac/you-
will-only-see-the-advantages-of-microfr

ontends-at-scale-d5cbaca374fa
https://medium.com/@salem.naser.elas
hry/backends-for-frontends-pattern-bf

f-da46bc22b9d0
https://javascript.plainenglish.io/microf
rontends-when-they-arent-the-answer-
react-angular-vue-etc-45dcf266f6f9

https://medium.com/@PepsRyuu/mono
repos-in-javascript-anti-pattern-917603

da59c8
https://medium.com/@marvusm.mmi/w
ebpack-module-federation-think-twice-
before-sharing-a-dependency-18b3b0e

352cb
https://singhdheerendra.medium.com/i
mplementing-multi-framework-in-vanill
a-js-with-native-federation-d7580f571a7

d
https://betterprogramming.pub/a-bett
er-frontend-component-structure-com

ponent-trees-5a99ed6d1ece
https://medium.com/@kitson.mac/hi-p
aige-thanks-for-reaching-out-with-a-gr

eat-question-982e45ef90b9
https://medium.com/@exfabrica/a-jou
rney-throuth-frontend-aspect-oriented

-programming-35f81d8eb1d0
https://medium.com/@paulohfev/com
mon-react-anti-patterns-you-should-av

oid-eb9b605fded1
https://javascript.plainenglish.io/create
-micro-frontends-using-web-componen
ts-with-support-for-angular-and-react-

2d6db18f557a

https://yosua-halim.medium.com/lists

https://medium.com/design-bootcamp
/ux-smack-down-the-junk-drawer-probl

em-a80b4e80a566
https://jongleberry.medium.com/redux-
thunk-is-bad-architecture-for-organiza

tions-8205a792e5fe
https://medium.com/@PepsRyuu/mono
repos-in-javascript-anti-pattern-917603

da59c8

https://medium.com/@kitson.mac

https://blog.bitsrc.io/how-to-choose-mi
croservices-boundaries-5c68b0b1af24
https://medium.com/xgeeks/how-to-co
mmunication-protocols-ab7037507345
https://blog.kloia.com/monorepo-or-m

ultirepo-ddcfe531b38b

P17
8 29/11/2024 07:59:00 Are TypeScript Barrel Files an

Anti-pattern?

P17
9 29/11/2024 08:00:00 Writing Comments Is Lazy Coding

P18
0 29/11/2024 08:00:00

The Challenges and Traps of
Architecting Sociotechnical

Systems

P181 29/11/2024 08:01:00 Don’t Build a Distributed
Monoliths

P18
2 29/11/2024 08:01:00 React Anti-Pattern: Overloaded

P18
3 29/11/2024 08:02:00 How to use GraphQL to build

Backend-For-Frontends (BFFs)

P18
4 29/11/2024 08:02:00 Why our team cancelled our move

to microservices

P18
5 29/11/2024 08:02:00 Apollo: Swiggy’s Code Analysis

Platform

P18
6 29/11/2024 08:03:00

Architecture Ownership Patterns
for Team Topologies. Part 2: Single

Team Patterns

P18
7 29/11/2024 08:03:00 A holistic strategy for the selection

of open-source packages

P18
8 29/11/2024 08:04:00 Architectural Patterns

P18
9 29/11/2024 08:05:00 Diving into the BFF Tool Pool

P19
0 29/11/2024 08:06:00 Microservices

P191 29/11/2024 08:06:00 Guide to Advanced React Hooks

P19
2 29/11/2024 08:07:00 Why you shouldn’t use access

tokens in your front-end any more

P19
3 29/11/2024 08:08:00 We’re Writing Too Many Tests

P19
4 29/11/2024 08:09:00 Frontend Weekly Digest (4–10 Feb

2019)

P19
5 29/11/2024 08:09:00 REST is easy with GraphQL as a

sidekick. Two are better than one.

P19
6 29/11/2024 08:09:00

Vue.js App Performance
Optimization: part 1 —

Introduction to performance
optimization and lazy loading.

P19
7 29/11/2024 08:10:00 Clever Code is Really Bad

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

https://steven-lemon182.medium.com/a
re-typescript-barrel-files-an-anti-patter

n-72a713004250
https://javascript.plainenglish.io/writin
g-comments-is-lazy-coding-0a0cbdc72

5ec
https://medium.com/nick-tune-tech-str
ategy-blog/the-challenges-and-traps-o
f-architecting-sociotechnical-systems-

94272a7c790f
https://medium.com/@osama94/dont-
build-a-distributed-monoliths-46daa8b

62390
https://codeburst.io/react-anti-pattern

-overloaded-8bfacab49421
https://blog.bitsrc.io/how-to-use-graph
ql-to-build-backend-for-frontends-bffs-

4b7e5a0105d0
https://steven-lemon182.medium.com/w
hy-our-team-cancelled-our-move-to-mi

croservices-8fd87898d952
https://bytes.swiggy.com/apollo-swiggy
s-code-analysis-platform-b80e8292f29
https://medium.com/nick-tune-tech-str
ategy-blog/architecture-ownership-pat
terns-for-team-topologies-part-2-single

-team-patterns-943d31854285
https://medium.com/syngenta-digitalbl
og/a-holistic-strategy-for-the-selection
-of-open-source-packages-dc814d14163

b
https://medium.com/architectural-patt

erns
https://blog.bitsrc.io/diving-into-the-bf

f-tool-pool-70169a91f2a9
https://medium.com/@jplopez42/list/5

63965581a71
https://medium.com/jahia-techblog/gu
ide-to-advanced-react-hooks-3402a1b3

97db
https://abstarreveld.medium.com/why-
you-shouldnt-use-access-tokens-in-yo
ur-front-end-any-more-490545665125
https://steven-lemon182.medium.com/w
ere-writing-too-many-tests-2155a681dbf

2

https://frontender-ua.medium.com/fro
ntend-weekly-digest-4-10-feb-2019-287b

475dc794
https://sureshkandula.medium.com/res
t-is-easy-with-graphql-as-a-sidekick-tw
o-are-better-than-one-54e8e1915cfe

https://itnext.io/vue-js-app-performan
ce-optimization-part-1-introduction-to-
performance-optimization-and-lazy-29

e4ff101019
https://medium.com/@codecraftspher
e/clever-code-is-really-bad-2400d51b3c

42

P19
8 29/11/2024 08:10:00

Mastering CI/CD: A
Comprehensive Guide to

Implementing the Testing Pyramid
in Your Pipeline Strategy

P19
9 29/11/2024 08:11:00

Storybook: A Must-Have Library
for Creating Application

Components

P20
0 29/11/2024 08:12:00 Serverless AWS CDK Pipeline Best

Practices & Patterns — Part 1

P20
1 29/11/2024 08:13:00 Implementing a timer using React

P20
2 29/11/2024 08:14:00

Recipes to write better Jest tests
with the React Testing Library (Part

1)

P20
3 29/11/2024 08:15:00 Dependency injection: setting up

InversifyJS IoC for Typescript Apps

P20
4 29/11/2024 08:16:00 What I was doing wrong — Spring

autowiring and feature flagging

P20
5 29/11/2024 08:16:00

React: Dynamically Rendering
Different Components without

Switch: the Capitalized Reference
Technique

P20
6 29/11/2024 08:17:00 React

P20
7 29/11/2024 08:17:00 How to deploy an Angular app to

Docker

P20
8 29/11/2024 08:18:00 The Singleton Pattern In

TypeScript
P20

9 29/11/2024 08:19:00 Get on the Event Bus: Vue.js

P21
0 29/11/2024 08:19:00 Friday Frontend: NodeConf

Colombia Edition

P211 29/11/2024 08:21:00
[Vue]- (Vue Props
and Emits-Is passing Vue props

functions anti-pattern?)

P21
2 29/11/2024 08:21:00

Understanding Search Algorithms
in Flutter: Data Structures and

Algorithms Explained

P21
3 29/11/2024 08:22:00 Considerations to Using Content

Delivery Network(CDN).

P21
4 29/11/2024 08:22:00 NodeJS — Investing into clean

architecture

P21
5 29/11/2024 08:22:00 In the beginning, was the monolith

(part 2) / database

P21
6 29/11/2024 08:23:00 Merge Branches Sooner with

Synchronous Code Review

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

https://blog.bitsrc.io/mastering-ci-cd-a
-comprehensive-guide-to-implementin
g-the-testing-pyramid-in-your-pipeline-

68ed248dcc08

https://javascript.plainenglish.io/how-s
torybook-improved-our-teams-workflo
ws-and-communication-2ee57fcb2a87
https://blog.serverlessadvocate.com/se
rverless-aws-cdk-pipeline-best-practice

s-patterns-part-1-ab80962f109d
https://medium.com/front-end-weekly/i
mplementing-a-timer-using-react-47f7

bcab19bc
https://builders.travelperk.com/recipes
-to-write-better-jest-tests-with-the-reac
t-testing-library-part-1-670aaf3451d1

https://medium.com/tkssharma/depen
dency-injection-setting-up-inversifyjs-i
oc-for-typescript-apps-da65edfb1ea8
https://medium.com/codex/what-i-was-
doing-wrong-spring-autowiring-and-fe

ature-flagging-12bb979a08f6
https://j5cookie.medium.com/react-dyn
amically-rendering-different-compone
nts-without-switch-the-capitalized-refe

rence-e668d89e460b
https://medium.com/@DotDev/list/rea

ct-f82304a94dd0
https://javascript.plainenglish.io/build-
angular-application-with-lint-unit-tests
-chrome-headless-and-release-to-ngin

x-inside-bdc84ea9e5ab
https://blog.bitsrc.io/the-singleton-patt

ern-in-typescript-b906303fda93
https://medium.com/@johnbaldwin/get
-on-the-event-bus-vue-js-abcf63d7342d
https://medium.com/friday-frontend/fr
iday-frontend-nodeconf-colombia-editi

on-c05752e4517f
https://medium.com/@yhosutun2491/v
ue-%E5%89%8D%E7%AB%AF%E6%96%B
0%E6%89%8B%E6%B7%B1%E5%85%A5%
E7%B3%BB%E5%88%97-vue-props-and-
emits-is-passing-vue-props-functions-

ani-pattern-6a3c9e90aab3
https://medium.com/@kasunpradeep.d
s/understanding-search-algorithms-in-
flutter-data-structures-and-algorithms

-explained-cab6f53b41d8
https://medium.com/@Ian_carson/con
siderations-to-using-content-delivery-n

etwork-cdn-5efbcda95c12
https://medium.com/@epavliy/nodejs-i
nvesting-into-clean-architecture-69ebd

3eb5e25
https://medium.com/codex/in-the-begi
nning-was-the-monolith-part-2-databa

se-ba4eed11fbbb
https://steven-lemon182.medium.com/
merge-branches-sooner-with-synchron

ous-code-review-78aa3cfb1df6

P21
7 29/11/2024 08:23:00 Is Your Agile Team Incremental, or

Iterative?

P21
8 29/11/2024 08:23:00 Managing Domain Events in a

Microservices Environment

P21
9 29/11/2024 08:25:00

How does APP_INITIALIZER work?
So what do you need to know

about dynamic configuration in
Angular?

P22
0 29/11/2024 08:25:00

()Vue.js App : part2 —
Lazy loading

(anti-pattern)

P22
1 29/11/2024 08:25:00 Docker and NPM— an

introduction for UI developers

P22
2 29/11/2024 08:26:00 Write Vue Like You Write React

P22
3 29/11/2024 08:27:00

Comparing React State
Management Libraries: Redux,

Zustand, Recoil, and MobX

P22
4 29/11/2024 08:28:00 A (V)ay to write understandable

software

P22
5 29/11/2024 08:28:00 How to Choose the Right

Branching Strategy

P22
6 29/11/2024 08:29:00 New Chaos Experiment Event

P22
7 29/11/2024 08:30:00 SonarQube and ReactJS

P22
8 29/11/2024 08:31:00 Branch-based WEB Acceptance

Test With GitLab Review App

P22
9 29/11/2024 08:32:00 Upgrading to Angular 17 with

Jorge Cano

P23
0 29/11/2024 08:32:00 How To Write Modern React App

Using gRPC And Envoy

P23
1 29/11/2024 08:32:00 State Management in React —

Overview

P23
2 29/11/2024 08:33:00

()Vue.js App : part2 —
Lazy loading

(anti-pattern)

P23
3 29/11/2024 08:33:00 Where Are You Putting Your

Interfaces?

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

https://steven-lemon182.medium.com/is
-your-agile-team-incremental-or-iterati

ve-33135a4c28b8
https://blog.bitsrc.io/managing-domai
n-events-in-a-microservices-environme

nt-33eda865b187
https://itnext.io/how-does-app-initializ
er-work-so-what-do-you-need-to-know-
about-dynamic-configuration-in-angul

ar-718e7c345971
https://medium.com/@upstairs0102/%E
8%AD%AF-vue-js-app%E6%95%88%E8%
83%BD%E5%84%AA%E5%8C%96-part2-l
azy-loading%E8%B7%AF%E7%94%B1%E
5%8F%8A%E7%AC%AC%E4%B8%89%E6
%96%B9%E5%BA%AB%E6%89%93%E5%
8C%85%E5%8F%8D%E5%90%91%E6%A8
%A1%E5%BC%8F-anti-pattern-32f09c0a

65c8
https://medium.com/@kitson.mac/doc
ker-and-npm-an-introduction-for-ui-de

velopers-22150cbfc5bb
https://betterprogramming.pub/write-v
ue-like-you-write-react-545eafb60e6a
https://javascript.plainenglish.io/comp
aring-react-state-management-librarie
s-redux-zustand-recoil-and-mobx-9454

02dc0cb
https://medium.com/hepsiburadatech/
a-way-to-write-understandable-softwar

e-b45c9ba4f228
https://steven-lemon182.medium.com/h
ow-to-choose-the-right-branching-stra

tegy-5ada39f49477
https://medium.com/weaveworks/chao
s-meets-gitops-stress-test-and-improve
-your-app-speed-using-chaosiq-with-w

eave-cloud-bfdf3b6f96c3
https://sylvainleroy.medium.com/sonar

qube-and-reactjs-631d5a65d2f9
https://medium.com/trendyol-tech/bra
nch-based-web-acceptance-test-with-g

itlab-review-app-29fa608ce1e7
https://medium.com/angularidades/up
grading-to-angular-17-with-jorge-cano-

0c2f11393760
https://medium.com/effective-develop
ment/how-to-write-modern-react-app-
using-grpc-and-envoy-a9d9a4f2785e
https://medium.com/valtech-ch/state-
management-in-react-overview-2647b0

6ec6ef
https://medium.com/@upstairs0102/%E
8%AD%AF-vue-js-app%E6%95%88%E8%
83%BD%E5%84%AA%E5%8C%96-part2-l
azy-loading%E8%B7%AF%E7%94%B1%E
5%8F%8A%E7%AC%AC%E4%B8%89%E6
%96%B9%E5%BA%AB%E6%89%93%E5%
8C%85%E5%8F%8D%E5%90%91%E6%A8
%A1%E5%BC%8F-anti-pattern-32f09c0a

65c8
https://medium.com/@matteopampan
a/where-are-you-putting-your-interfac

es-07cd5ae2bbd7

P23
4 29/11/2024 08:33:00 Hitchhiker’s guide to Web

Accessibility

P23
5 29/11/2024 08:34:00 I Hate JavaScript’s for loops. Let

Me Tell You Why.

P23
6 29/11/2024 08:34:00 Unidirectional Data Flow in Vue &

how it helped us?

P23
7 29/11/2024 08:34:00 What I have learned Architecting

Microservices

P23
8 29/11/2024 08:35:00 Don’t Leak Your (Database)

Internals

P23
9 29/11/2024 08:36:00 Code Smells in Application

Structure

P24
0 29/11/2024 08:36:00 Code Generation in React with RTK

Query

P24
1 29/11/2024 08:37:00 Standardizing RESTful APIs

P24
2 29/11/2024 08:37:00 Robot Software Architect — An

Introduction to AppMap

P24
3 30/11/2024 06:54:00 Vue vs React vs… Svelte?!

P24
4 30/11/2024 06:54:00 Architectural Patterns For IoT —

Why use Micro services ?

P24
5 30/11/2024 06:54:00

HOW FUNCTIONAL
PROGRAMMING CAN SOLVE YOUR
BIGGEST CODING NIGHTMARES —
UNLOCK THE POWER OF FP (PART

1 OF 4)
P24

6 30/11/2024 06:54:00 Evolving JavaScript Part 3

P24
7 30/11/2024 06:56:00 DevPoint Labs: One Year Later

P24
8 30/11/2024 06:56:00 Why Is My Jest Test Suite So Slow?

P24
9 30/11/2024 06:57:00

Next.js 13: What Do The New
Bleeding-Edge Features Actually

Do?

P25
0 30/11/2024 06:57:00

Оптимизация
производительности

приложения Vue.js: часть 2 —
Ленивая загрузка маршрутов и

анти-паттерны сторонних
бандлов.

P25
1 30/11/2024 06:57:00 Angular + ngrx : Gestion des

requêtes http avec ngrx/effects…

P25
2 30/11/2024 06:57:00 React Context: Sync vs Async

P25
3 30/11/2024 06:58:00 Life after Redux

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

https://blog.bitsrc.io/accessibility-for-a
stronauts-d9a8c729e6e6

https://blog.bitsrc.io/i-hate-javascripts-
for-loops-let-me-tell-you-why-c18bc651d

04a
https://medium.com/trendyol-tech/uni
directional-data-flow-in-vue-how-it-hel

ped-us-5c90efcce4fb
https://medium.com/hackernoon/what
-i-have-learned-architecting-microservi

ces-cbccc2182530
https://levelup.gitconnected.com/dont-
leak-your-database-internals-1a6870ae

a4e6
https://levelup.gitconnected.com/code
-smells-in-application-structure-4d3076

1bd055
https://steven-lemon182.medium.com/c
ode-generation-in-react-with-rtk-query

-e2410db6c868
https://blog.jaykmr.com/standardizing-

restful-apis-7f0b94d12d05
https://medium.com/sysco-labs/robot-
software-architect-appmap-5e682afd3f

1f
https://medium.com/@faulknerproject/
vue-vs-react-vs-svelte-5f93d70d2618

https://medium.com/@prashunjaveri/a
rchitectural-patterns-for-iot-why-use-m

icro-services-3154bfbafcce
https://medium.com/@wackyworld_jen
shenneberg/how-functional-programm
ing-can-solve-your-biggest-coding-nig
htmares-unlock-the-power-of-fp-part-e

d7013eed105
https://engineering.gusto.com/evolving

-javascript-be0338eb0d38
https://medium.com/@AndrewLocke/d
evpoint-labs-one-year-later-89a337676e

ae
https://blog.bitsrc.io/why-is-my-jest-sui

te-so-slow-2a4859bb9ac0
https://blog.bitsrc.io/next-js-13-what-do
-the-new-bleeding-edge-features-actua

lly-do-d3e5fd418563
https://medium.com/@denistolkachev/
%D0%BE%D0%BF%D1%82%D0%B8%D0%
BC%D0%B8%D0%B7%D0%B0%D1%86%D
0%B8%D1%8F-%D0%BF%D1%80%D0%BE
%D0%B8%D0%B7%D0%B2%D0%BE%D0
%B4%D0%B8%D1%82%D0%B5%D0%BB%
D1%8C%D0%BD%D0%BE%D1%81%D1%82
%D0%B8-%D0%BF%D1%80%D0%B8%D0
%BB%D0%BE%D0%B6%D0%B5%D0%BD
%D0%B8%D1%8F-vue-js-4a1fb16d6325

https://medium.com/@ylerjen/angular-
gestion-des-requ%C3%AAtes-http-avec

-ngrx-effects-1b51dc3890a4
https://levelup.gitconnected.com/react
-context-sync-vs-async-8d67562d4b4a
https://itnext.io/life-after-redux-21f33b7

f189e

P25
4 30/11/2024 06:59:00 Developing isomorphic

applications using webpack

P25
5 30/11/2024 07:09:00 Micro-Frontends: Principles,

Implementations, and Pitfalls

P25
6 30/11/2024 07:10:00

Motivations, benefits, and issues
for adopting Micro-Frontends: A

Multivocal Literature Review

P25
7 30/11/2024 07:12:00

Design patterns and anti-patterns
in microservices architecture : a

classification proposal and study
on open source projects

P25
8 30/11/2024 07:13:00 Suitability of Micro-Frontends for

an AI as a Service Platform

P25
9 30/11/2024 07:13:00

 Development of an angular
components library to be used in

micro-frontend architecture

P26
0 30/11/2024 07:14:00 Building Micro-Frontends • Luca

Mezzalira

https://books.google.com.br/books?hl=
pt-BR&lr=&id=NDpPEAAAQBAJ&oi=fnd&
pg=PR2&dq=(%E2%80%9Canti-pattern%
E2%80%9D+OR+%E2%80%9Canti-patter
ns%E2%80%9D+OR+%E2%80%9Cantipat
tern%E2%80%9D+OR+%E2%80%9Cantip
atterns%E2%80%9D+OR+%E2%80%9Can
ti+pattern%E2%80%9D+OR+%E2%80%9
Canti+patterns%E2%80%9D)+AND+(%E2
%80%9Cmicrofrontend%E2%80%9D+OR
+%E2%80%9Cmicrofrontends%E2%80%9
D+OR+%E2%80%9Cmicro+frontend%E2

%80%9D+OR+%E2%80%9Cmicro+fronten
ds%E2%80%9D+OR+%22micro-frontend
%22+OR+%22micro-frontends%22)&ots=
aLc4gESofZ&sig=JNntF15wVduJTMduS
anYuYvKjis&redir_esc=y#v=onepage&q=(
%E2%80%9Canti-pattern%E2%80%9D%2
0OR%20%E2%80%9Canti-patterns%E2%
80%9D%20OR%20%E2%80%9Cantipatte
rn%E2%80%9D%20OR%20%E2%80%9Ca
ntipatterns%E2%80%9D%20OR%20%E2
%80%9Canti%20pattern%E2%80%9D%2
0OR%20%E2%80%9Canti%20patterns%E
2%80%9D)%20AND%20(%E2%80%9Cmicr
ofrontend%E2%80%9D%20OR%20%E2%
80%9Cmicrofrontends%E2%80%9D%20
OR%20%E2%80%9Cmicro%20frontend%
E2%80%9D%20OR%20%E2%80%9Cmicro
%20frontends%E2%80%9D%20OR%20%2
2micro-frontend%22%20OR%20%22micr

o-frontends%22)&f=false

P26
1 30/11/2024 07:15:00

Micro Frontend-Based
Development: Concepts,

Motivations,
Implementation Principles, and an

Experience Report

Medium
https://medium.com/hackernoon/devel
oping-isomorphic-applications-using-

webpack-eca814a418ad
https://dl.acm.org/doi/abs/10.1145/3561

846.3561853

https://www.sciencedirect.com/science/
article/pii/S0950584921000549

https://www.politesi.polimi.it/handle/105
89/186745

https://reposit.haw-hamburg.de/handl
e/20.500.12738/14575

https://recipp.ipp.pt/handle/10400.22/2
6487

https://www.scitepress.org/Papers/2024
/126273/126273.pdf

Scholar

Scholar

Scholar

Scholar

Scholar

Scholar

Scholar

P26
2 30/11/2024 07:15:00 Embracing Microservices Design

https://books.google.com.br/books?hl=
pt-BR&lr=&id=0plEEAAAQBAJ&oi=fnd&p
g=PP1&dq=(%E2%80%9Canti-pattern%E2
%80%9D+OR+%E2%80%9Canti-patterns
%E2%80%9D+OR+%E2%80%9Cantipatte
rn%E2%80%9D+OR+%E2%80%9Cantipat
terns%E2%80%9D+OR+%E2%80%9Canti
+pattern%E2%80%9D+OR+%E2%80%9Ca
nti+patterns%E2%80%9D)+AND+(%E2%8
0%9Cmicrofrontend%E2%80%9D+OR+%
E2%80%9Cmicrofrontends%E2%80%9D+
OR+%E2%80%9Cmicro+frontend%E2%8
0%9D+OR+%E2%80%9Cmicro+frontends
%E2%80%9D+OR+%22micro-frontend%2
2+OR+%22micro-frontends%22)&ots=rB
P8EfTh3Y&sig=SWldVOsEPk3cT8ugmra
qwrjtkJs&redir_esc=y#v=onepage&q=(%
E2%80%9Canti-pattern%E2%80%9D%20
OR%20%E2%80%9Canti-patterns%E2%8
0%9D%20OR%20%E2%80%9Cantipatter
n%E2%80%9D%20OR%20%E2%80%9Can
tipatterns%E2%80%9D%20OR%20%E2%
80%9Canti%20pattern%E2%80%9D%20
OR%20%E2%80%9Canti%20patterns%E
2%80%9D)%20AND%20(%E2%80%9Cmicr
ofrontend%E2%80%9D%20OR%20%E2%
80%9Cmicrofrontends%E2%80%9D%20
OR%20%E2%80%9Cmicro%20frontend%
E2%80%9D%20OR%20%E2%80%9Cmicro
%20frontends%E2%80%9D%20OR%20%2
2micro-frontend%22%20OR%20%22micr

o-frontends%22)&f=false

P26
3 30/11/2024 07:16:00 Software Architecture Patterns for

Serverless Systems

https://books.google.com.br/books?hl=
pt-BR&lr=&id=gUs2EAAAQBAJ&oi=fnd&
pg=PP1&dq=(%E2%80%9Canti-pattern%
E2%80%9D+OR+%E2%80%9Canti-patter
ns%E2%80%9D+OR+%E2%80%9Cantipat
tern%E2%80%9D+OR+%E2%80%9Cantip
atterns%E2%80%9D+OR+%E2%80%9Can
ti+pattern%E2%80%9D+OR+%E2%80%9
Canti+patterns%E2%80%9D)+AND+(%E2
%80%9Cmicrofrontend%E2%80%9D+OR
+%E2%80%9Cmicrofrontends%E2%80%9
D+OR+%E2%80%9Cmicro+frontend%E2

%80%9D+OR+%E2%80%9Cmicro+fronten
ds%E2%80%9D+OR+%22micro-frontend
%22+OR+%22micro-frontends%22)&ots=
5mmd_zHTel&sig=krQMcjvjUBdiYxeE6m
Abxz7xHec&redir_esc=y#v=onepage&q=
(%E2%80%9Canti-pattern%E2%80%9D%
20OR%20%E2%80%9Canti-patterns%E2
%80%9D%20OR%20%E2%80%9Cantipatt
ern%E2%80%9D%20OR%20%E2%80%9C
antipatterns%E2%80%9D%20OR%20%E
2%80%9Canti%20pattern%E2%80%9D%
20OR%20%E2%80%9Canti%20patterns%
E2%80%9D)%20AND%20(%E2%80%9Cmic
rofrontend%E2%80%9D%20OR%20%E2
%80%9Cmicrofrontends%E2%80%9D%2
0OR%20%E2%80%9Cmicro%20frontend
%E2%80%9D%20OR%20%E2%80%9Cmic
ro%20frontends%E2%80%9D%20OR%20
%22micro-frontend%22%20OR%20%22m

icro-frontends%22)&f=false

Scholar

Scholar

P26
4 30/11/2024 07:17:00

MICRO-FRONTEND
ARCHITECTURE WITH REACT: A

COMPREHENSIVE GUIDE

P26
5 30/11/2024 07:18:00

Migration Process from Monolithic
to Micro

Frontend Architecture in Mobile
Applications

P26
6 30/11/2024 07:18:00

Design Systems for Micro
Frontends - An Investigation into

the Development of
Framework-Agnostic Design

Systems using Svelte and Tailwind
CSS

P26
7 30/11/2024 07:19:00 MDEPT: Microservices Design

Evaluator and Performance Tester

P26
8 30/11/2024 07:19:00

Microservice API Pattern Detection
: Using Business Processes and

Call Graphs

P26
9 30/11/2024 07:20:00

A Survey on Microservices
Architecture: Principles, Patterns

and Migration Challenges

P27
0 30/11/2024 07:21:00

Assessing the feasibility of Micro
frontend architecture in native

mobile app development

P27
1 30/11/2024 07:21:00

On Microservice Analysis and
Architecture Evolution: A

Systematic Mapping Study

P27
2 30/11/2024 07:21:00 Survey on Tools and Techniques

Detecting Microservice API
Patterns

P27
3 30/11/2024 07:22:00

Development of an e-portfolio
social network

using emerging web technologies

P27
4 30/11/2024 07:24:00

Design Systems for Micro
Frontends

An Investigation into the
Development of

Framework-Agnostic
Design Systems using Svelte and

Tailwind CSS
P27
5 30/11/2024 07:24:00 Modern Software Architecture

P27
6 30/11/2024 07:24:00 Modern Web Performance

Patterns

P27
7 30/11/2024 07:25:00

Introduction to the Special Issue
on: Grey Literature and Multivocal

Literature Reviews (MLRs) in
software engineering

P27
8 30/11/2024 07:25:00 Table of Contents

Scholar

Scholar

Scholar

Scholar

Scholar

Scholar

Scholar

Scholar

Scholar

Scholar

Scholar

Scholar

Scholar

Scholar

Scholar

https://www.researchgate.net/profile/Ve
eranjaneyulu-Veeri/publication/385698
951_MICRO-FRONTEND_ARCHITECTUR
E_WITH_REACT_A_COMPREHENSIVE_G
UIDE/links/673134a1ecbbde716b66256e/
MICRO-FRONTEND-ARCHITECTURE-WI
TH-REACT-A-COMPREHENSIVE-GUIDE.
pdf?__cf_chl_tk=7FobqrHRC3uVy7YgNN
rgtdT1dmnmXVHkI5YAGz6bXOo-1732965
391-1.0.1.1-i5dN7SmsXCaTndk.aRZW4sjXt

Tx7kgMfv95yB_wk4FQ

https://ceur-ws.org/Vol-3627/paper05.p
df

https://epb.bibl.th-koeln.de/frontdoor/i
ndex/index/docId/1666

https://link.springer.com/chapter/10.100
7/978-3-031-70797-1_9

https://trepo.tuni.fi/handle/10024/14356
8

https://ieeexplore.ieee.org/abstract/do
cument/10220070

https://dl.acm.org/doi/abs/10.1145/3691
620.3695313

https://www.mdpi.com/2076-3417/11/17/7
856

https://ieeexplore.ieee.org/abstract/do
cument/9860229

https://core.ac.uk/download/pdf/58886
5803.pdf

https://epb.bibl.th-koeln.de/frontdoor/
deliver/index/docId/1666/file/SCIBachel
or_Design_Systems_and_Micro_Fronten

ds.pdf

https://www.theseus.fi/handle/10024/49
7600

https://link.springer.com/chapter/10.100
7/978-1-4842-6528-4_10

https://www.sciencedirect.com/science/
article/abs/pii/S095058492100152X

https://www.computer.org/csdl/proceed
ings-article/icsa-c/2023/645900z005/1M

BDfiW0KI0

P27
9 30/11/2024 07:26:00 Cloud Native Development

Patterns and Best Practives

https://books.google.com.br/books?hl=
pt-BR&lr=&id=DJdMDwAAQBAJ&oi=fnd
&pg=PP1&dq=(%E2%80%9Canti-pattern
%E2%80%9D+OR+%E2%80%9Canti-patt
erns%E2%80%9D+OR+%E2%80%9Cantip
attern%E2%80%9D+OR+%E2%80%9Cant
ipatterns%E2%80%9D+OR+%E2%80%9C
anti+pattern%E2%80%9D+OR+%E2%80

%9Canti+patterns%E2%80%9D)+AND+(%
E2%80%9Cmicrofrontend%E2%80%9D+
OR+%E2%80%9Cmicrofrontends%E2%8
0%9D+OR+%E2%80%9Cmicro+frontend
%E2%80%9D+OR+%E2%80%9Cmicro+fro
ntends%E2%80%9D+OR+%22micro-fron
tend%22+OR+%22micro-frontends%22)&
ots=GD0CrphBZi&sig=9RXuSghZq_rTkh
u2gB_frJISAZA&redir_esc=y#v=onepage
&q=(%E2%80%9Canti-pattern%E2%80%9
D%20OR%20%E2%80%9Canti-patterns%
E2%80%9D%20OR%20%E2%80%9Cantip
attern%E2%80%9D%20OR%20%E2%80%
9Cantipatterns%E2%80%9D%20OR%20
%E2%80%9Canti%20pattern%E2%80%9
D%20OR%20%E2%80%9Canti%20patter
ns%E2%80%9D)%20AND%20(%E2%80%9
Cmicrofrontend%E2%80%9D%20OR%20
%E2%80%9Cmicrofrontends%E2%80%9
D%20OR%20%E2%80%9Cmicro%20front
end%E2%80%9D%20OR%20%E2%80%9C
micro%20frontends%E2%80%9D%20OR
%20%22micro-frontend%22%20OR%20%

22micro-frontends%22)&f=false

P28
0 30/11/2024 07:27:00

Restructuring an Enterprise
Monolith into a Microservices

Architecture

P28
1 30/11/2024 07:27:00

The Effects of Architectural Design
Decisions on Framework Adoption:

A Comparative Evaluation of
Meta-Frameworks in Modern Web

Development

P28
2 30/11/2024 07:27:00

MASTER THESIS
Term paper submitted in partial
fulfillment of the requirements

for the degree of Master of
Science in Engineering at the
University of Applied Sciences

Technikum Wien - Degree
Program Software Engineering

P28
3 30/11/2024 07:28:00

Applying Model-Driven
Engineering to Stimulate the

Adoption of DevOps Processes in
Small and Medium-Sized

Development Organizations

P28
4 30/11/2024 07:29:00

Comparison of Static Analysis
Architecture Recovery Tools for

Microservice Applications

P28
5 30/11/2024 07:30:00

The Effects of Architectural Design
Decisions on Framework Adoption:

A
Comparative Evaluation of

Meta-Frameworks in Modern Web
Development

Scholar

Scholar

Scholar

Scholar

Scholar

Scholar

Scholar

https://www.theseus.fi/handle/10024/85
3531

https://aaltodoc.aalto.fi/items/2305044
4-1912-48a9-a96a-95816cb3550c

https://epub.technikum-wien.at/obvftw
hsmmig/content/titleinfo/9746870/full.p

df

https://link.springer.com/article/10.1007/
s42979-021-00825-z

https://arxiv.org/abs/2403.06941

https://www.researchgate.net/profile/J
oel-Hassan-3/publication/380342898_T
he_Effects_of_Architectural_Design_Dec
isions_on_Framework_Adoption_A_Com
parative_Evaluation_of_Meta-Framewor
ks_in_Modern_Web_Development/links/
6636430c7091b94e93ef23d8/The-Effects
-of-Architectural-Design-Decisions-on-
Framework-Adoption-A-Comparative-E
valuation-of-Meta-Frameworks-in-Mod

ern-Web-Development.pdf

P28
6 30/11/2024 07:30:00

From monolithic systems to
Microservices: An assessment

framework

P28
7 30/11/2024 07:31:00 Software Architecture Patterns:

The Hard Parts

P28
8 30/11/2024 07:32:00 Cloud Native Microsservices

P28
9 30/11/2024 07:33:00

Causal inference of server- and
client-side code smells in web

apps evolution

P29
0 30/11/2024 07:34:00

A longitudinal exploratory study
on code smells in server side web

applications

P29
1 30/11/2024 07:34:00 Mastering Angular Components:

P29
2 30/11/2024 07:35:00 Design and Architecture

P29
3 30/11/2024 07:35:00 Collaborative geovisual analytics

Scholar

Scholar

Scholar

Scholar

Scholar

Scholar

Scholar

Scholar

https://www.sciencedirect.com/science/
article/pii/S0950584921000793

https://books.google.com.br/books?hl=
pt-BR&lr=&id=OX1EEAAAQBAJ&oi=fnd&
pg=PP1&dq=(%E2%80%9Canti-pattern%
E2%80%9D+OR+%E2%80%9Canti-patter
ns%E2%80%9D+OR+%E2%80%9Cantipat
tern%E2%80%9D+OR+%E2%80%9Cantip
atterns%E2%80%9D+OR+%E2%80%9Can
ti+pattern%E2%80%9D+OR+%E2%80%9
Canti+patterns%E2%80%9D)+AND+(%E2
%80%9Cmicrofrontend%E2%80%9D+OR
+%E2%80%9Cmicrofrontends%E2%80%9
D+OR+%E2%80%9Cmicro+frontend%E2
%80%9D+OR+%E2%80%9Cmicro+fronten
ds%E2%80%9D+OR+%22micro-frontend
%22+OR+%22micro-frontends%22)&ots=
eS6mTodiVQ&sig=a0eHTA2CIwTrjcByqhk
m354lgzo&redir_esc=y#v=onepage&q&f

=false
https://books.google.com.br/books?hl=
pt-BR&lr=&id=NbE2EAAAQBAJ&oi=fnd&
pg=PT26&dq=(%E2%80%9Canti-pattern
%E2%80%9D+OR+%E2%80%9Canti-patt
erns%E2%80%9D+OR+%E2%80%9Cantip
attern%E2%80%9D+OR+%E2%80%9Cant
ipatterns%E2%80%9D+OR+%E2%80%9C
anti+pattern%E2%80%9D+OR+%E2%80
%9Canti+patterns%E2%80%9D)+AND+(%
E2%80%9Cmicrofrontend%E2%80%9D+
OR+%E2%80%9Cmicrofrontends%E2%8
0%9D+OR+%E2%80%9Cmicro+frontend
%E2%80%9D+OR+%E2%80%9Cmicro+fro
ntends%E2%80%9D+OR+%22micro-fron
tend%22+OR+%22micro-frontends%22)&
ots=J1o3pIE4Ni&sig=Z7fDXCgAPtBlAgCf
MsalGaiCxvQ&redir_esc=y#v=onepage&

q&f=false

https://link.springer.com/article/10.1007/
s10664-024-10478-0

https://link.springer.com/article/10.1007/
s11219-021-09567-w

https://books.google.com.br/books?hl=
pt-BR&lr=&id=iJplDwAAQBAJ&oi=fnd&p
g=PP1&dq=(%E2%80%9Canti-pattern%E2
%80%9D+OR+%E2%80%9Canti-patterns
%E2%80%9D+OR+%E2%80%9Cantipatte
rn%E2%80%9D+OR+%E2%80%9Cantipat
terns%E2%80%9D+OR+%E2%80%9Canti
+pattern%E2%80%9D+OR+%E2%80%9Ca
nti+patterns%E2%80%9D)+AND+(%E2%8
0%9Cmicrofrontend%E2%80%9D+OR+%
E2%80%9Cmicrofrontends%E2%80%9D+
OR+%E2%80%9Cmicro+frontend%E2%8
0%9D+OR+%E2%80%9Cmicro+frontends
%E2%80%9D+OR+%22micro-frontend%2
2+OR+%22micro-frontends%22)&ots=kW
V-HbMFja&sig=u9ThX7puLI0bJb62AtDw
5jovI2A&redir_esc=y#v=onepage&q&f=fa

lse
https://link.springer.com/chapter/10.100

7/978-1-4842-9385-0_4
https://research.utwente.nl/en/publicat
ions/collaborative-geovisual-analytics

P29
4 30/11/2024 07:36:00 Web systems quality evolution: A

web smells approach

P29
5 30/11/2024 07:36:00

Developing Senior Skills: A
Diary-Based Exploration by a

Junior Software Engineer

P29
6 30/11/2024 07:37:00 Enabling Microservice Success

e

P29
7 30/11/2024 07:37:00

Maintain multiple
microservices without

compromising the
autonomy of Agile

teams

P29
8 30/11/2024 07:38:00 Building Evolutionary

Architectures

https://books.google.com.br/books?hl=
pt-BR&lr=&id=CGudEAAAQBAJ&oi=fnd&
pg=PT8&dq=(%E2%80%9Canti-pattern%
E2%80%9D+OR+%E2%80%9Canti-patter
ns%E2%80%9D+OR+%E2%80%9Cantipat
tern%E2%80%9D+OR+%E2%80%9Cantip
atterns%E2%80%9D+OR+%E2%80%9Can
ti+pattern%E2%80%9D+OR+%E2%80%9
Canti+patterns%E2%80%9D)+AND+(%E2
%80%9Cmicrofrontend%E2%80%9D+OR
+%E2%80%9Cmicrofrontends%E2%80%9
D+OR+%E2%80%9Cmicro+frontend%E2

%80%9D+OR+%E2%80%9Cmicro+fronten
ds%E2%80%9D+OR+%22micro-frontend
%22+OR+%22micro-frontends%22)&ots=I
JEiPS30Vb&sig=6HoWOah7kZad7y2ARa
QHbt_MgME&redir_esc=y#v=onepage&
q=(%E2%80%9Canti-pattern%E2%80%9D
%20OR%20%E2%80%9Canti-patterns%E
2%80%9D%20OR%20%E2%80%9Cantipat
tern%E2%80%9D%20OR%20%E2%80%9C
antipatterns%E2%80%9D%20OR%20%E
2%80%9Canti%20pattern%E2%80%9D%
20OR%20%E2%80%9Canti%20patterns%
E2%80%9D)%20AND%20(%E2%80%9Cmic
rofrontend%E2%80%9D%20OR%20%E2
%80%9Cmicrofrontends%E2%80%9D%2
0OR%20%E2%80%9Cmicro%20frontend
%E2%80%9D%20OR%20%E2%80%9Cmic
ro%20frontends%E2%80%9D%20OR%20
%22micro-frontend%22%20OR%20%22m

icro-frontends%22)&f=false
P29

9 30/11/2024 07:41:00 Devops for Growth

P30
0 30/11/2024 07:41:00 Interactive learning - A scalable

and adaptive learning approach
for large courses

P30
1 30/11/2024 07:42:00 Micro frontends numa

aplicação de pré-contabilidade

Scholar

Scholar

Scholar

Scholar

Scholar

Scholar

Scholar

Scholar

https://repositorio.iscte-iul.pt/handle/1
0071/29044

https://www.theseus.fi/handle/10024/85
8294

https://books.google.com.br/books?hl=
pt-BR&lr=&id=qkD9EAAAQBAJ&oi=fnd&
pg=PT21&dq=(%E2%80%9Canti-pattern
%E2%80%9D+OR+%E2%80%9Canti-patt
erns%E2%80%9D+OR+%E2%80%9Cantip
attern%E2%80%9D+OR+%E2%80%9Cant
ipatterns%E2%80%9D+OR+%E2%80%9C
anti+pattern%E2%80%9D+OR+%E2%80
%9Canti+patterns%E2%80%9D)+AND+(%
E2%80%9Cmicrofrontend%E2%80%9D+
OR+%E2%80%9Cmicrofrontends%E2%8
0%9D+OR+%E2%80%9Cmicro+frontend
%E2%80%9D+OR+%E2%80%9Cmicro+fro
ntends%E2%80%9D+OR+%22micro-fron
tend%22+OR+%22micro-frontends%22)&
ots=8ekjOAYBM3&sig=FT0EkOpl7vghPB
t-5o8oVS6XGzc&redir_esc=y#v=onepag

e&q&f=false

https://www.diva-portal.org/smash/get/
diva2:1681218/FULLTEXT01.pdf

https://www.scoop.it/topic/devox

https://mediatum.ub.tum.de/1621369

https://recipp.ipp.pt/handle/10400.22/2
4267

P30
2 30/11/2024 07:43:00 Mikroslužby pro získávání

zdravotnických dat

P30
3 30/11/2024 07:43:00

Primjena i implementacija
skalabilne mikroservisne

arhitekture pomoću programskog
okvira Spring Cloud

P30
4 30/11/2024 07:45:00

Problemas e dificuldades na
migração de

sistemas monolíticos para
microsserviços

P30
5 30/11/2024 07:46:00 Modellbasiertes Management von

Anwendungen

P30
6 30/11/2024 07:53:00

The first paper of Nabson Silva's
master's degree has been

accepted to
@ICSEconf

 2025!

P30
7 30/11/2024 07:54:00

Luca Mezzalira
@lucamezzalira

·
30 de out

🚨 SAVE THE DATE!

I’m super excited to share that I’ll
be hosting a 3-hour webinar on

micro-frontends on January 2nd!
🎉

P30
8 30/11/2024 07:55:00

Tomasz Ducin
@tomasz_ducin

·
26 de set

✍ Blogged: What is #Frontend
#Architecture?

Enjoy the read 😁

P30
9 30/11/2024 07:55:00

Post

Ver novos posts
Conversa

Nabson Silva
@nabsonp

The first paper of my master's,
titled "A Catalog of Micro

Frontends Anti-patterns", has
been accepted by the

@ICSEconf
 (Research Track) 2025 🎊

P31
0 30/11/2024 07:56:00

Ahead of the Micro Frontends
conference, curated by

@Areai51
, tell us: Why Micro Frontends?

P311 30/11/2024 07:56:00

We had an insightful interview with
@al94781

 about his experience at #GSAS24!
🎤 He shared valuable reflections
on the event and its impact on the
software architecture community.

Check it out!

Scholar

Scholar

Scholar

Scholar

https://dspace.jcu.cz/bitstream/handle
/20.500.14390/44804/bp_belimenko.pdf?

sequence=1

https://repozitorij.unizg.hr/islandora/o
bject/foi:7501

https://bccdev.ime.usp.br/tccs/2021/thi
agocf/monografia.pdf

https://elib.uni-stuttgart.de/handle/116
82/13927

https://x.com/adolfont/status/1853843
982368837853

https://x.com/lucamezzalira

https://x.com/tomasz_ducin

https://x.com/nabsonp/status/1853665
471008043251

https://x.com/jsfoo/status/14678590228
20753410

https://ow.ly/xvMc50U9OW2

https://x.com/gsas_io

Twitter

Twitter

Twitter

Twitter

Twitter

Twitter

P31
2 30/11/2024 07:57:00

Tayana Conte repostou
Nabson Silva
@nabsonp

·
5 de nov

The first paper of my master's,
titled "A Catalog of Micro

Frontends Anti-patterns", has
been accepted by the

@ICSEconf
 (Research Track) 2025 🎊

P31
3 30/11/2024 07:58:00

ReactFoo repostou
JSFoo
@jsfoo

·
26 de jan de 2022

This evening,
@rajasegar_c

 and
@upen_dev_singh

 will talk about tooling, processes,
and use cases of monorepos and
multi-repos for managing large

codebases. 9 pm. Details at
https://hasgeek.com/jsfoo/microfr
ontends-conf/updates/link-for-joi
ning-twitter-chat-on-managing-lar
ge-co-3BqfkNumn2EDYK7ceB8fyf

Thank you
@magicbell_io

 for sponsoring the session.

P31
4 30/11/2024 07:58:00

Soraya Santana de la Fe repostou
Global Software Architecture

Summit
@gsas_io

·
15 de out

🚀 We're kicking off day 2 of
#GSAS24 with an insightful talk by

@lucamezzalira
 on Micro-Frontends

Anti-Patterns!
#SoftwareArchitecture

P31
5 30/11/2024 07:59:00

Manfred Steyer
@ManfredSteyer
[Hot off the press]

Free eBook: Modern Angular, 2nd
extended version
⏬ Download now!

✓ Standalone ✓ Improved APIs ✓
Signals ✓ Control Flow ✓

Performance ✓ Automatic
Migration

Twitter

Twitter

Twitter

Twitter

https://x.com/TayanaConte

https://x.com/reactfoo?lang=bn

https://mobile.x.com/Sory_Santana

https://x.com/ManfredSteyer/status/17
80526114135236784

P31
6 30/11/2024 08:00:00

Akshay Agrawal
@akshaykagrawal

My co-founder
@themylesfiles

 and I have started Marimo Inc. to
keep building the

@marimo_io
 notebook and other Python data

tools.

We've raised a $5M seed round led
by

@antgoldbloom
 and

@shyammani_
 at

@aixventureshq
.

Excited for the journey ahead!

P31
7 30/11/2024 08:01:00

Fixado
ETHan

@gliechtenstein
·

19 de abr de 2018
No one's building a dedicated

native mobile app for their
@ethereum

 DApp. No one even talks about
this topic much at all. In this post,
I discuss the challenges, build one

myself, and propose a solution.
Love to hear feedback!

https://hackernoon.com/the-futur
e-of-native-mobile-apps-on-blockc
hain-what-they-should-look-like-a
nd-how-to-build-one-d25024db07d
5 #ethereum #dapp #blockchain

P31
8 30/11/2024 08:02:00

Lokalimde Çalışıyor ¯_(ツ)_/¯
@lokalimde

·
21 de jun

Yarın TR saatiyle 13:00’da
Recursivity ve sosyal + kognitif

boyutlarını, time-travel ve diğer
boyutlarını konuşuyoruz diye

düşündüm. Meraklısına, beklerim
🎉 Ek olarak Serverless

paradigmanın maliyetlerine
gireceğim; bu da ek olsun 😎

P31
9 01/12/2024 20:29:00 Micro-Frontends: Principles,

Implementations, and Pitfalls

P32
0 01/12/2024 20:30:00

FSE 2024: Companion Proceedings
of the 32nd ACM International

Conference on the Foundations of
Software Engineering

P32
1 01/12/2024 20:48

Software Architecture Patterns for
Serverless Systems: Architecting

for innovation with events,
autonomous services, and micro

frontends

Twitter

Twitter

Twitter

https://x.com/antgoldbloom

https://x.com/gliechtenstein

https://mobile.x.com/lokalimde

https://dl.acm.org/doi/10.1145/3561846.3
561853

https://dl.acm.org/doi/proceedings/10.1
145/3663529

https://ieeexplore.ieee.org/document/1
0162936/

ACM

ACM

IEEE

269

F

MLR DUPLICATE EXCLUSION

This Appendix presents the duplicate publications excluded during the selection process

of the MLR presented in Chapter 6.

ID Duplicated
P12
P14
P20
P22
P27
P50
P54
P61
P63
P66
P70
P75
P82
P91
P99
P103
P107
P116
P123
P125
P127
P128
P129
P130
P131
P132
P137
P153
P256
P259
P261
P274
P285
P301
P306
P312
P319

EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5
EC5

271

G

MLR FIRST FILTER

This Appendix presents the first filter results of the MLR presented in Chapter 6.

ID Title Abstract Occurrence Final Result
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P13
P15
P16
P17
P18
P19
P21
P23
P24
P25
P26
P28
P29
P30
P31
P32
P33
P34
P35
P36
P37
P38
P39
P40
P41
P42
P44
P43
P45
P46
P47
P48
P49
P51

IC1 IC1
IC1 IC1
IC1 IC1
IC1 IC1
IC1 IC1
IC1 IC1
IC1 IC1
IC1 IC1

IC1 IC1

IC1 IC1
IC1 IC1

IC1 IC1
IC1 IC1

IC1 IC1

IC1 IC1
IC1 IC1

IC1 IC1

IC1 IC1
IC1 IC1

IC1 IC1
IC1 IC1

IC1 IC1
IC1 IC1

IC1 IC1

-> ->

-> ->
-> ->
-> ->

->
-> ->
->
-> ->
-> ->
-> ->
-> ->

->
-> ->
-> ->
-> ->

-> ->
-> ->
-> ->
-> ->
-> ->
->

-> ->
-> ->

-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->

EC1 EC1

EC3 EC3
EC1 EC1
EC3 EC3

EC1 EC1
EC1 EC1

EC1 EC1
EC3 EC3

EC1 EC1

EC1 EC1

EC1 EC1
EC1 EC1
EC1 EC1
EC1 EC1
EC1 EC1

EC3 EC3
EC1 EC1

EC1 EC1
EC1 EC1
EC1 EC1
EC4 EC4

P52
P53
P55
P56
P57
P58
P68
P59
P60
P62
P64
P65
P67
P69
P71
P72
P73
P74
P76
P77
P78
P79
P80
P81
P83
P84
P85
P86
P87
P88
P89
P90
P92
P93
P94
P95
P96
P97
P98
P100
P102
P101
P104
P105
P106
P108

-> ->
->
->

-> ->
->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
->
-> ->

-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
->

-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->

EC1 EC1

EC1 EC1

EC1 EC1
EC1 EC1
EC1 EC1
EC1 EC1
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3

EC1 EC1

EC1 EC1
EC1 EC1
EC3 EC3
EC1 EC1

EC1 EC1

EC3 EC3
EC3 EC3
EC1 EC1
EC1 EC1
EC1 EC1
EC1 EC1
EC3 EC3
EC1 EC1
EC3 EC3
EC3 EC3

EC1 EC1
EC3 EC3
EC1 EC1
EC3 EC3
EC1 EC1

IC1 IC1
IC1 IC1

IC1 IC1

IC1 IC1

IC1 IC1

IC1 IC1

IC1 IC1

IC1 IC1
IC1 IC1
IC1 IC1
IC1 IC1

IC1 IC1

IC1 IC1

P109
P110
P111
P112
P121
P113
P114
P115
P117
P118
P119
P120
P122
P124
P126
P133
P134
P135
P136
P138
P139
P140
P141
P142
P143
P144
P145
P146
P147
P148
P149
P150
P151
P152
P154
P155
P156
P157
P158
P159
P160
P161
P162
P163
P164
P165

->
->
-> ->
->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
->
-> ->
-> ->
-> ->
-> ->
-> ->
->
->
-> ->
-> ->

-> ->
-> ->
-> ->
-> ->
->
->
-> ->
->
-> ->
-> ->
-> ->
->
-> ->
-> ->
-> ->
-> ->

IC1 IC1
IC1 IC1

IC1 IC1

IC1 IC1

IC1 IC1
IC1 IC1

IC1 IC1
IC1 IC1

IC1 IC1
IC1 IC1

IC1 IC1
IC1 IC1

IC1 IC1

IC1 IC1

IC1 IC1
IC1 IC1

EC1 EC1

EC1 EC1
EC1 EC1
EC1 EC1
EC1 EC1
EC1 EC1
EC1 EC1
EC1 EC1
EC3 EC3
EC3 EC3
EC1 EC1
EC1 EC1
EC1 EC1
EC1 EC1
EC1 EC1

EC1 EC1
EC1 EC1
EC1 EC1
EC1 EC1
EC1 EC1

EC1 EC1
EC1 EC1

EC3 EC3
EC3 EC3

EC3 EC3

EC3 EC3
EC1 EC1
EC3 EC3

EC3 EC3

EC3 EC3

P166
P167
P168
P169
P170
P171
P172
P173
P174
P175
P176
P177
P178
P179
P180
P181
P182
P183
P184
P185
P186
P187
P188
P189
P190
P191
P192
P193
P194
P195
P196
P197
P198
P199
P200
P201
P202
P203
P204
P205
P206
P207
P208
P209
P210
P211

-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->

EC1 EC1

EC3 EC3
EC1 EC1
EC1 EC1
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3

EC3 EC3
EC3 EC3
EC3 EC3

EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3

EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3

EC3 EC3
EC3 EC3
EC2 EC2

IC1 IC1

IC1 IC1

IC1 IC1

IC1 IC1

IC1 IC1

P212
P213
P214
P215
P216
P217
P218
P219
P220
P221
P222
P223
P224
P225
P226
P227
P228
P229
P230
P231
P232
P233
P234
P235
P236
P237
P238
P239
P240
P241
P242
P243
P244
P245
P246
P247
P248
P249
P250
P251
P252
P253
P254
P255
P257
P258

-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->

->
->

EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC2 EC2
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC2 EC2
EC2 EC2
EC3 EC3
EC3 EC3
EC3 EC3

EC3 EC3
EC2 EC2

IC1 IC1

P260
P262
P263
P264
P265
P266
P267
P268
P269
P270
P271
P272
P273
P275
P276
P277
P278
P279
P280
P281
P282
P283
P284
P286
P287
P288
P289
P290
P291
P292
P293
P294
P295
P296
P297
P298
P299
P300
P302
P303
P304
P305
P307
P308
P309
P310

->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
-> ->
-> ->

-> ->

EC1 EC1
EC3 EC3
EC3 EC3
EC1 EC1
EC1 EC1
EC1 EC1
EC3 EC3
EC3 EC3
EC3 EC3
EC1 EC1
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC3 EC3
EC2 EC2
EC3 EC3
EC3 EC3
EC3 EC3

EC1 EC1
EC3 EC3

EC1 EC1
IC1 IC1

P311
P313
P314
P315
P316
P317
P318
P320
P321

-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
-> ->
->
->

EC1 EC1
EC1 EC1
EC1 EC1
EC1 EC1
EC1 EC1
EC1 EC1
EC2 EC2

EC1 EC1
EC1 EC1

279

H

MLR QUALITY ASSESSMENT

This Appendix presents the quality assessment results of the MLR presented in Chap-

ter 6.

Date Authority of the producer Methodology Impact Position w.r.t.
related sources Outlet type

Does the post
have a clearly
stated date?

Has the author
published other

posts about
Micro Frontends?

Does the author have
experience in real-world

Micro Frontend
architectures?

Does the
anti-patterns have
a clearly A origin or

reference?

Does the post have
positive commnets,
likes or have more
than 3 backlinks?

Have key related
GL or formal

sources linked to
or discussed?

1st tier GL = 1
2nd tier GL = 0.5
3rd tier GL = 0

Score ResultID

P1 0,71 Accepted
P2 0,71 Accepted

0,29
0,14

P5 0,71 Accepted
0,29

P7 0,57 Accepted
P8 0,71 Accepted
P10 0,71 Accepted
P16 0,86 Accepted

0,29
P24 0,57 Accepted

0,29
P26 0,57 Accepted
P29 0,71 Accepted
P30 0,57 Accepted
P32 0,71 Accepted
P38 0,86 Accepted
P39 0,71 Accepted

0,43
P41 0,71 Accepted
P42 0,71 Accepted
P44 0,71 Accepted

0,14
P55 0,57 Accepted

0,43
P58 0,57 Accepted

0,14
0,43

P81 0,57 Accepted
0,43
0,00

P86 0,57 Accepted
P87 0,71 Accepted
P100 0,71 Accepted
P108 0,86 Accepted
P109 0,71 Accepted
P112 0,57 Accepted
P136 0,57 Accepted
P143 0,86 Accepted
P144 0,86 Accepted
P147 0,57 Accepted

0,29
0,29
0,43

P154 0,57 Accepted
P155 0,57 Accepted
P157 0,86 Accepted
P161 0,71 Accepted
P163 0,57 Accepted

0,29
0,29

P176 0,71 Accepted
0,29
0,29
0,29

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1

1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1

1 1 1 1

1 1 1 1
1 1 1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1 1 1
1 1 1 1 1
1 1 1 1

1 1 1 1 1

0 0
0

0

0 0
0 0

0
0

0 0

0 0
0

0 0 0
0

0
0

0 0
0
0

0 0 0

0 0 0

0 0

0 0
0
0 0

0
0
0 0
0 0

0 0

0 0 0
0 0 0

0
0 0

0 0 0

0 0

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5
0.5

0.5

0.5
0.5

0.5
0.5
0.5
0.5
0.5
0.5

P3 Rejected
P4 Rejected

P6 Rejected

P17 Rejected

P25 Rejected

P40 Rejected

P46 Rejected

P56 Rejected

P73 Rejected
P76 Rejected

P84 Rejected
P85 Rejected

P148 Rejected
P151 Rejected
P152 Rejected

P164 Rejected
P167 Rejected

P180 Rejected
P191 Rejected
P208 Rejected

0 0 0 0
0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0 0 0 0

0 0 0 0
0 0 0 0 0
0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1 1
1

1 1

1 1

1 1

1 1 1

1

1 1 1

1
1 1 1

1 1 1

1 1
1 1
1 1 1

1 1
1 1

1 1
1 1
1 1

0.5

0.5

0.5

281

I

MLR SECOND FILTER

This Appendix presents the second filter results of the MLR presented in Chapter 6.

ID Result
P1
P2
P5
P7
P8
P10
P16
P24
P26
P29
P30
P32
P38
P39
P41
P42
P44
P53
P55
P58
P81
P86
P87
P100
P108
P109
P110
P112
P136
P143
P144
P147
P154
P155
P157
P161
P163
P176
P255
P309

IC1
IC1

IC1
IC1

IC1

IC1

IC1

IC1
IC1

IC1

IC1

IC1

EC5

EC5
EC1
EC1
EC5
EC5

EC4

EC5

EC5
EC5
EC1

EC1
EC2
EC1
EC1

EC1
EC1
EC5
EC1
EC1
EC1
EC5
EC1

EC5
EC1
EC1
EC3
EC1

283

J

MLR DATA EXTRACTION

This Appendix provides the complete data extraction from the publications selected

after de selection process from the MLR presented in Chapter 6.

P1

Title Top 10 Micro Frontend Anti-Patterns

Source Google

Author Florian Rappl

Publication type Blog

Publication date 2024/03/20

Author’s profile Practitioner

Anti-patterns origin Professional experience.

Anti-patterns
categories

-

Proposed
Anti-patterns

Hidden Monolith
Problem Source:

● “[...] you cannot just publish or rollback a micro frontend you will most
likely have created a hidden monolith.”

Proposed Solution:
● “Use DDD to properly split your application and keep loose coupling to

avoid dependencies between the micro frontends”

Chatty Frontends
Problem Source:

● “[...] over-communication in form of emitting events for pretty much
every action results in an inefficient chatter between the different UI
fragments.”

Proposed Solution:
● “Only emit useful events, potentially introducing events only if there

are interested parties”

Framework Madness
Problem Source:

● “[...] one of the most used reasons for advocating or introducing micro
frontends historically has been the ability to render components from
multiple frameworks. While this feature is certainly "cool", it is not
exclusive to micro frontends nor is it a feature that should easily be
abused.”

Proposed Solution:
● “Try to settle on a single technology and only introduce support for

other frameworks - only to be introduced in justified cases.”

Micro Everything
Problem Source:

● “[...] open a new sub-domain with a new micro frontend when you
encounter a feature that does not easily fall into the existing
sub-domains. [...] it will easily lead to tons of really little micro
frontends being created.”

Proposed Solution:
● “Don't split up too early, start in the closest possible domain / micro

frontend and only extract once a clear sub-domain has emerged.”

Violating Single Responsibility
Problem Source:

● “[...] a single micro frontend takes on multiple responsibilities or
concerns that should ideally be separated.”

Proposed Solution:
● “[...] the term "micro" does not imply a certain lines of code limit or so,

but rather a focus on a single sub-domain of your application.“

Spaghetti Architecture
Problem Source:

● “[...] software architecture that lacks clear structure and organization,
resulting in a tangled mess of interconnected components and
modules.”

Proposed Solution:
● “Stay at loose coupling without relying on a web of calls to provide a

feature.”

Distributed Data Inconsistency
Problem Source:

● “If the original data changes further changes need to be propagated,
but this is not the only possible change. Another possibility is that the
micro frontend that got a replica of the data needs the changes. Is that
even allowed? Now the original and the duplicate will deviate again.”

Proposed Solution:
● “Keep data where it belongs; let others not access the data directly,

but only indirectly via attributes / props etc.”

Dismissing Human Factors
Problem Source:

● “[...] meeting technical objectives and deadlines is done without
considering the impact on the well-being, morale, and work-life
balance of the team members, [...] you should consider micro
frontends as a pattern to improve the team organization and structure
- not to make the team suffer.”

Proposed Solution:
● “Strengthen teams and avoid central management as much as

possible.”

Avoiding Observability
Problem Source:

● “[...] there is no observability implemented anywhere, e.g., if you don't
know what micro frontend is the originator of an error or if you cannot
debug the problematic part locally.”

Proposed Solution:
● “In case something bad happens you want to see some logs to have

at least kind of a trace where to start looking. [...] Using the right
metrics we can at least establish Sourcelines and go from there. [...]
Introduce central solutions to simplify logging, collecting traces, etc.”

Tight Coupling
Problem Source:

● “[...] tight coupling is usually the origin of many of the problems that
arise when scaling micro frontends.”

Proposed Solution:
● “Avoid direct references that require any technical knowledge (URLs,

module paths, internal names, ...) of other micro frontends.”

P2

Title Microfrontends Anti-Patterns: Seven Years in the Trenches

Source Google

Author Luca Mezzalira

Publication type Lecture

Publication date 2022/05/10-20

Author’s profile Practitioner

Anti-patterns origin Professional experience.

Anti-patterns
categories

-

Proposed
Anti-patterns

Yin and Yang (Micro-Frontends and Components)
Problem Source:

● “When you start to have implementation of micro-frontends that
contains a very granular approach where you have the header, the
footer, you have the image that are all micro-frontends, probably
they're not micro-frontends.”

Proposed Solution:
● “[...] using multiple UI frameworks in the same single page application

could cause more than one problem. That is also true with
micro-frontends,”

Hydra of Lerna - (Multi-Frameworks Approach)
Problem Source:

● .“[...] using multiple UI frameworks in the same single page application
could cause more than one problem. That is also true with
micro-frontends,”

Proposed Solution:
● “[...] there are certain situations where a multi-framework approach

makes sense. For instance, when you're dealing with legacy systems.
[...] Another solution is when we are migrating from a UI framework to
another one.”

The Swiss Army Knife - (Write Programs That Do One Thing and Do
it Well)
Problem Source:

● “[...] you have this legacy editor that is written with a different
technology and maybe has a different way to communicate with the
external world that doesn't fit inside your architecture.”

Proposed Solution:
● “You need to maybe create what is called an anticorruption layer

between your application, so your micro-frontends application and the
legacy editor.”

The Dependencies Hell - (Do you Really Need that External
Dependency?)
Problem Source:

● “We started to work with micro-frontends, and we see a lot of parts
that could be wrapped in what is called the core library. [...] The team
responsible for micro-frontend B are creating the core library
extended. That is basically taking some part of the core library,
rewriting others. Now we have a fork, or an extension of the core
library that is breaking some stuff. [...] What can you do with the core
library extended? You start to diverge. [...] in the long run, you will see
that the core library extended, suddenly, it's a different library. ”

Proposed Solution:
● “[...] understand if you really need these kinds of core libraries. [...]

Having a library that you share is great, but then try to work with
composition more than extension, and also try to keep very
separated certain libraries, and not do a library for everything.”

A Return Ticket, Please - (Unidirectional Data Flow at the Rescue)
Problem Source:

● “[...] where you have a bidirectional sharing or communication, it can
be complicated, especially because we are sharing across multiple
elements, and everyone can share everything to everyone. It is going
to be a nightmare.”

Proposed Solution:
● “What we have learned in the past 15 years in the frontend

communities [...] is the concept of unidirectional data flow [...] I know
exactly when I dispatch an action, update the store, and update the
view. [...] Same thing was introduced in the Model View Intent
architecture, or MVI, [...] where you have a user that is triggering an
action. Then we capture the action in the intent, we change the model
or we pass the information that is needed for changing. Then we load
the new state and the view is updating in the UI.”

Relax, It's Just Code - (Avoid Organizational Coupling)
Problem Source:

● “When someone is changing the global state [...] the structure, the
signature, whatever, it means that everyone has to be aware. You
need to coordinate across the teams. Basically, you're losing the
benefit of micro-frontends, so it is independence that you are looking
for.”

Proposed Solution:
● “A way to solve it is using instead events, or a publish and subscribe

pattern. [...] Everything that could work in a Pub/Sub pattern is
definitely your friend in this case.”

Let's Hammer the APIs - (Multiple MFEs Calling the Same Endpoint)
Problem Source:

● “There are situations where you have multiple micro-frontends calling
the same endpoints. [...] Now the authorization service has to scale for
twice the traffic because there are two calls every time. [...] If there are
huge numbers, it is there that there are some problems. [...] You need
to scale the entire flow.”

Proposed Solution:
● “Do you really need to have two micro-frontends, or you can have one

micro-frontend only that is assigned to one team and is handling one
request per time? [...] domain. Otherwise, probably you need to go
back to the whiteboard and review how your APIs are working.”

● “The other option is creating a container that is handling one request
and having two components instead of micro-frontends that are [...]
relying on the container that is handling the requests.”

P7

Title Micro-Frontends anti-patterns by Luca Mezzalira (#GSAS24)

Source Google

Author Luca Mezzalira

Publication type Vídeo

Publication date 2024/11/19

Author’s profile Practitioner

Anti-patterns origin Professional Experience

Anti-patterns
categories

-

Proposed
Anti-patterns

Bye Bye big-bang - Iterative Deployment
Problem Source:

● “[...] a portion of the UI and carve It Out, Create a micro frontend for
that and put inside the old system that usually slow down everything
because you don't have a real benefit of doing micro frontends [...]”

Proposed Solution:
● “[...] there is a better method so you can start to use migration

strategies by path [...] you start to build your different micro frontend
and migrate portions of the page slowly but steadily [...]”

P8

Title 4 Micro-Frontend Anti-Patterns

Source Google

Author Santosh Shinde

Publication type Blog

Publication date 2022/07/29

Author’s profile Practitioner

Anti-patterns origin Professional Experience

Anti-patterns
categories

-

Proposed
Anti-patterns

Micro-Frontend Vs Component
Problem Source:

● “Micro-frontends are the technical representation of a business
subdomain, [...] However, we frequently mix components and
micro-frontends because we are unsure of their differences, which will
be our first anti-pattern.”

Proposed Solution:
● “So set the boundaries of the micro-frontends based on the business

subdomains [...] and avoid using components as micro-frontends
because, by definition, micro-frontends represent business domains.”

Multi-Framework Approach
Problem Source:

● “As micro-frontend gives us the freedom to choose any framework for
development, we must first determine whether it is truly required.”

Proposed Solution:
● “[...] if you have the option to choose one framework for all the

micro-frontends, then the best option is to use a single framework.”

Dependency Hell
Problem Source:

● “The problem, however, is that a dependency also depends on
another dependency, and this causes us to have problems with
backward and forward compatibility.”

Proposed Solution:
● “[...] decouple your libraries from any feature extensions that they

support by using wrappers that do not conflict with the functionality of
the core libraries. Also, make sure that all micro-frontends are using
the same version of your libraries.”

Global State Communication
Problem Source:

● “[...] do not use the shared state because it would violate the concept
of segregation.”

Proposed Solution:
● “The common approach is for each “micro frontend” to have its own

store (i.e. Redux). To address this issue, you could use an event
emitter-based approach to communication.”

P30

Title Chapter 4. Discovering Micro-Frontend Architectures

Source Google

Author Luca Mezzalira

Publication type Book

Publication date 2021/11/28

Author’s profile Practitioner

Anti-patterns origin Professional Experience

Anti-patterns
categories

-

Proposed
Anti-patterns

Sharing state across MFEs
Problem Source:

● “[...] when you select a horizontal split, you have to avoid sharing any
state across micro-frontends; this approach is an antipattern. [...] Many
developers may be tempted to share states between micro-frontends,
but this results in a socio-technical antipattern.”

Proposed Solution:
● “[...] use the techniques mentioned in Chapter 3, such as an event

emitter, custom events, or reactive streams using an implementation
of the publish/subscribe (pub/sub) pattern for decoupling the
micro-frontends and maintaining their independent nature. [...] uses an
asynchronous communication, or event broker, to notify all the
consumers interested in a specific event. [...] Other possibilities are
implementing either an event emitter or a reactive stream [...]”

Several MFEs in the same view
Problem Source:

● “[...] there is a real risk of over-engineering the solution to have several
tiny micro-frontends living together in the same view, which creates an
antipattern.”

Proposed Solution:
● “[...] reduce the number of micro-frontends in the same view,

especially when multiple teams have to merge their work together.”

P38

Title Rules of Micro-Frontends

Source Google

Author Ruben Casas

Publication type Blog

Publication date 2020/12/29

Author’s profile Practitioner

Anti-patterns origin Professional Experience

Anti-patterns
categories

-

Proposed
Anti-patterns

The deployment queue of hell
Problem Source:

● “A common antipattern that should be avoided is ‘The deployment
queue of hell’ where different Micro-frontends are so tightly coupled
that they need to be deployed in a specific order to avoid breaking the
application.”

Proposed Solution:
● “Each Micro-Frontend should have it’s own CI / CD pipeline and be

able to deploy to production on demand without any dependencies on
other Micro-frontends.”

P41

Title Understanding and implementing microfrontends on AWS - AWS
Prescriptive Guidance

Source Google

Author Matteo Figus, Principal Solutions Architect, AWS; Alexander Guensche,
Senior Solutions Architect, AWS; Harun Hasdal, Senior Solutions
Architect, AWS; Luca Mezzalira, Principal Go to Market Specialist
Solutions Architect Serverless UK, AWS

Publication type Technical Document

Publication date 2024/06

Author’s profile Practitioner

Anti-patterns origin Professional Experience

Anti-patterns
categories

-

Proposed
Anti-patterns

Poor Dependency Management in Micro-Frontends
Problem Source:

● “Ideally, your organization needs to mandate how dependencies in a
distributed frontend architecture are maintained.”

Proposed Solution:
● “Three viable strategies for mandating dependency maintenance are

share nothing, using web standards such as import maps, and module
federation. Other approaches are anti-patterns because they violate
basic principles of distributed architectures.”

Dependent Deploy
Problem Source:

● “Consider the example of teams working on a micro-frontend feature
that will be launched on a specific date. The feature is ready, but it
needs to be released together with a change on another
micro-frontend that is independently released. Blocking the release of
both micro-frontends would be considered an anti-pattern and would
increase risk when deployed.”

Proposed Solution:
● “[...] the teams can create a Boolean feature flag in a database that

they both consume during render time (perhaps through an HTTP call
to a shared Feature Flags API).”

P55

Title TechLead Journal: #47 - Micro-Frontends and the Socio-Technical Aspect
- Luca Mezzalira

Source Google

Author Luca Mezzalira

Publication type Podcast

Publication date 2021/07/19

Author’s profile Practitioner

Anti-patterns origin Professional Experience

Anti-patterns
categories

-

Proposed
Anti-patterns

Global state
Problem Source:

● “Many developers when they have multiple micro-frontends in the
same view, and they need to communicate together, the first thing that
they think about is having a global state. And that is definitely an
anti-pattern.”

Proposed Solution:
● “Instead, if you keep the state inside the micro-frontend, and you

implement a Pub/Sub pattern where the communication is happening
through an event emitter, or a custom event or a signal library or
reactive stream.”

Multiple technologies in the same application
Problem Source:

● “[...] having multiple technologies in the same application.”
Proposed Solution:

● “My suggestion is to define what the boundaries are. So the team can
work with React 16, or React 17, React 18, Angular, whatever version.
It doesn't matter. But try to stick with the same theme. If there is a
situation where having for a certain period of time, multiple
frameworks can be helpful.”

P58

Title Compositional Qualities of Microfrontends: The LdoD Archive

Source Google

Author João Luís Pacheco Raimundo

Publication type Master Thesis

Publication date 2023/05

Author’s profile Researcher

Anti-patterns origin Professional Experience

Anti-patterns
categories

-

Proposed
Anti-patterns

MFEs versus Components
Problem Source:

● “At first glance, the concepts of Component and MFEs may seem
indistinguishable. However, while a component may be designed as
an independent MFEs or as a simple extensible component whose
behavior is highly affected by the environment, indicating that it is not
independent [...]”

Proposed Solution:
● “[...] an MFEs should always be a technical representation of a

sub-domain designed to be self-contained, allowing for independent
implementation with the same or different technology.”

Multi-frameworks approach
Problem Source:

● “Considered an anti-pattern by some, and an advantage by others, is
the approach of implementing MFEs with different web frameworks.”

Proposed Solution:
● “Nevertheless, this approach could be advantageous in specific

scenarios such as integrating legacy applications or applications
developed with different technologies, where iterative integration can
be done, allowing different technologies to coexist harmoniously.”

Integration Bottleneck Anti-Pattern
Problem Source:

● “To integrate a legacy or new application that uses different technology
and communication protocols, there may be a tendency to extend the
behavior of the main application integration layer to fit the new
requirement.”

Proposed Solution:
● “One effective solution is to extend the MSs pattern of the

Anti-corruption layer, which is a logical layer that translates between
two different DMs to prevent concepts from one model polluting
another [23]. This can be applied to MFEs to enable appropriate
translation between application interactions, ensuring no modifications
in the main application integration layer.”

Dependency Hell:
Problem Source:

● “Using shared libraries can be problematic due to versioning issues
that can introduce breaking changes. The problem becomes even
more significant when there is a tendency to extend shared packages
in order to achieve a more specific behavior for a particular MFE.”

Proposed Solution:
● “An effective solution is to work with smaller abstractions and prioritize

composition over extension.”

Shared Global State:
Problem Source:

● “Using shared global state for MFEs communication purposes can
lead to stronger coupling between MFEs.”

Proposed Solution:
● “[...] using a publish-subscribe pattern such as event listeners or event

emitters allows for greater independence of each MFE, enabling more
efficient development and maintenance of the system.”

P108

Title Micro-frontend “Blackbox Pattern”

Source Google

Author Naim Gkamperlo

Publication type Blog

Publication date 2020/05/04

Author’s profile Practitioner

Anti-patterns origin Professional Experience

Anti-patterns
categories

-

Proposed
Anti-patterns

<No Name>
Problem Source:

● “[...] there is usually a need to create a micro-frontend which can
utilised by all the other micro-frontends. However, this is considered
an anti-pattern [...]”

Proposed Solution:
● “[...] a blackbox (hence the name of the pattern) which has an input,

renders itself in the DOM and has its own workflow and produces an
output for every other micro-frontend to get its results.”

P155

Title Micro Front-End Architecture at Enterprise Scale (Updated July 2020)

Source Google

Author Bernd Wessels

Publication type Blog

Publication date 2020/10/07

Author’s profile Practitioner

Anti-patterns origin Professional Experience

Anti-patterns
categories

-

Proposed
Anti-patterns

<No Name>
Problem Source:

● “Sometimes it might be tempting to align APIs with individual business
solutions and micro front-ends. This is an anti-pattern [...] A naïve
approach would be to let micro front-ends directly access multiple
business domain APIs. This is an anti-pattern which eventually leads
into a huge mess of unmanageable dependencies, prevents
deprecation and causes massive over-fetching and cache
synchronization issues.”

Proposed Solution:
● “This is where the principle of API federation shines. The federated

API is a controlled way of providing information from several domain
APIs in a single strongly typed place. [...] The principles of being
business domain driven, service oriented and technology agnostic all
clearly point to GraphQL as being an actual standard on the web
platform specifically designed for domain driven environments. [...]
Micro front-ends can now query, mutate and subscribe the local state
in exactly the same way they do for the backend. Improving simplicity
and reducing cognitive load even further [...] With GraphQL we can
now combine all these domains into a single federated API that can be
consumed by all micro front-ends.”

P309

Title A Catalog of Micro Frontends Anti–patterns

Source Google

Author Nabson Silva, Eriky Rodrigues, Tayana Conte

Publication type Conference Paper

Publication date 2024/11/29

Author’s profile Practitioner

Anti-patterns origin Professional Experience

Anti-patterns
categories

Intra-frontend, Inter-frontend, Operations and Development

Proposed
Anti-patterns

Cyclic Dependency
Problem Source:

● “Two or more MFEs directly or indirectly depend on each other,
resulting in high coupling between screens and fragments,
compromising MFEs’ independence and modularity”

Proposed Solution:
● “High coupling between MFEs can be effectively mitigated through

event-based communication [...] On implementing the
Publish-Subscribe (Pub-Sub) pattern, an MFE can publish an event to
the browser, [...]”

Knot Micro Frontend
Problem Source:

● “A Knot is composed of three or more MFEs whose communication
with each other uses a context-specific interface.”

Proposed Solution:
● “[...] implement domain-driven communication interfaces that are both

generic and flexible. [...] specifying the essential fields required for
each MFE to function correctly and interact with others. [...] We
recommend including a generic field in the interface containing a list of
objects”

Hub-like Dependency
Problem Source:

● “A screen of an MFE integrates fragments from several other MFEs,
becoming a central point of interdependence.”

Proposed Solution:
● “[...] each fragment should implement robust error handling

mechanisms”

Nano Frontend
Problem Source:

● “The frontend decomposes into numerous small MFEs with few
screens or fragments”

Proposed Solution:
● “Adhering to Domain-driven Design [33] principles is necessary to

ensure an effective decomposition of MFEs.”

Mega Frontend
Problem Source:

● “Decomposing the architecture into a few MFEs encompassing
numerous screens and fragments manifests this anti-pattern.”

Proposed Solution:
● “[...] development team must work closely with the product team to

gain a deep understanding of the domains and reflect them accurately
in the architecture.”

Micro Frontend Greedy
Problem Source:

● “Whenever a need arises to develop a new set of screens or
fragments, a new MFE is instantiated.”

Proposed Solution:
● “[...] the domain of the new feature must first be defined. If it falls

within the domain of an existing MFE, it should be implemented there.
[...] a summary of all MFEs, their contexts, and domains can help
identify the best fit for the new feature. If it belongs to a brand new
domain, one or more MFEs should be defined based on the domain
definition.”

No CI/CD
Problem Source:

● “The company lacks an automated Continuous Integration (CI) and
Continuous Delivery (CD) pipeline [...]”

Proposed Solution:
● “Implement an automated and replicable CI/CD process that extends

for new MFEs [...]”

No Versioning
Problem Source:

● “The MFEs are not versioned.”
Proposed Solution:

● “Adopting a versioning approach like Semantic Versioning is essential
to ensure that changes do not impact functioning versions.”

Lack of Skeleton
Problem Source:

● “No skeleton or predefined boilerplate is available as a base for
creating new MFEs.”

Proposed Solution:
● “Whenever a new technology is used to implement an MFE, the

development team must create a repository containing the necessary
base code, known as a boilerplate.”

● “[...] the development team should create comprehensive
documentation detailing the entire process of creating a new MFE,
regardless of the technology.”

Common Ownership
Problem Source:

● “A single team is tasked with managing all MFEs [...]”
Proposed Solution:

● “[...] defining the boundaries of teams and MFEs is essential according
to Domain-driven Design […]”

● “Creating shared libraries can facilitate boundary definition and
promote greater team independence.”

Golden Hammer
Problem Source:

● “All MFEs utilize the same technology, even if it does not meet the
specific needs of each MFE.”

Proposed Solution:
● “To choose the most suitable technology that addresses the specific

challenges of each MFE [...] When uncertain about a particular
technology, conducting a proof-of-concept (POC) can validate its
suitability”

Micro Frontend as the Goal
Problem Source:

● “Adopting the MFE architecture in inappropriate contexts [...]”
Proposed Solution:

● “Considering the system’s complexity, the feasibility of maintaining
automated CI/CD pipelines and the team’s restructuring according to
different domains is necessary.”

