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Unified Time Series Framework for Explainable Artificial

Intelligence

Autor: Hendrio L. S. Bragança

Orientador: DSc Eduardo Souto

Abstract

The increasing complexity of machine learning (ML) models has made their decision-

making processes difficult to interpret, posing a critical challenge in high-stakes domains

where trust and transparency are essential. Although Explainable Artificial Intelligence

(XAI) methods aim to address this issue, most existing techniques face limitations

when applied directly to time series data due to its sequential and contextual nature.

In this work, we present the Unified Time Series Framework for Explainable Artificial

Intelligence (UTS-XAI), which integrates a standard time series classification pipeline

with explainability capabilities and domain-specific evaluation tools. The framework is

compatible with multiple explainability methods, such as SHAP, LIME, and Saliency

Maps, and supports their systematic evaluation through adapted versions of widely

used XAI metrics (faithfulness, robustness, sensitivity, and stability) reinterpreted for

temporal data. These metrics are combined with time series–specific similarity and

distance measures such as MSE, MAE, and DTW to quantify explanation quality. We also

introduce Global Interpretable Clustering (GIC), a visualization technique designed to

assess the consistency of feature attributions across explainers and models. Experiments

conducted on three real-world cardiac arrhythmia datasets (MITBIH, SVDB, INCART),

using three ML architectures (XGBoost, DeepConvLSTM, and FCN), show that SHAP

provides more faithful and stable explanations, while LIME and Saliency Maps exhibit

greater sensitivity to noise and perturbations. These results highlight that accuracy alone



is not sufficient in time series modeling without robust interpretability. By embedding

explainability into the model development lifecycle, UTS-XAI sets a new standard for

interpretable and trustworthy AI in temporal data analysis.

Key-words: Explainable Artificial Intelligence (XAI), Time-Series data, Machine Learning.



Unified Time Series Framework for Explainable Artificial

Intelligence

Autor: Hendrio L. S. Bragança

Orientador: DSc Eduardo Souto

Resumo

A crescente complexidade dos modelos de aprendizado de máquina (ML) tornou seus

processos de tomada de decisão difíceis de interpretar, representando um desafio crítico

em domínios de alto risco onde confiança e transparência são essenciais. Embora os

métodos de Inteligência Artificial Explicável (XAI) visem abordar essa questão, a maio-

ria das técnicas existentes enfrenta limitações quando aplicadas diretamente a dados de

séries temporais devido à sua natureza sequencial e contextual. Neste trabalho, apresen-

tamos o framework UTS-XAI (Unified Time Series Framework for Explainable Artificial

Intelligence), que integra um pipeline padrão de classificação de séries temporais com

recursos de explicabilidade e ferramentas de avaliação específicas de domínio. O frame-

work é compatível com múltiplos métodos de explicabilidade, como SHAP, LIME e

Mapas de Saliência, e suporta sua avaliação sistemática por meio de versões adaptadas

de métricas de XAI amplamente utilizadas (fidelidade, robustez, sensibilidade e esta-

bilidade) reinterpretadas para dados temporais. Essas métricas são combinadas com

medidas de similaridade e distância específicas de séries temporais, como MSE, MAE

e DTW, para quantificar a qualidade da explicação. Também apresentamos o Global

Interpretable Clustering (GIC), uma técnica de visualização projetada para avaliar a

consistência das atribuições de características entre explicadores e modelos. Experi-

mentos conduzidos em três conjuntos de dados de arritmia cardíaca do mundo real



(MITBIH, SVDB, INCART), utilizando três arquiteturas de ML (XGBoost, DeepConvL-

STM e FCN), mostram que o SHAP fornece explicações mais fiéis e estáveis, enquanto

o LIME e os Mapas de Saliência exibem maior sensibilidade a ruídos e perturbações.

Esses resultados destacam que a precisão por si só não é suficiente na modelagem de

séries temporais sem uma interpretabilidade robusta. Ao incorporar a explicabilidade

ao ciclo de vida de desenvolvimento do modelo, o UTS-XAI estabelece um novo padrão

para IA interpretável e confiável na análise de dados temporais.

Keywords: Inteligência Artificial Explicável (XAI), Séries Temporais, Aprendizado de

Máquina.
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1

INTRODUCTION

Advances in Artificial Intelligence (AI) and Machine Learning (ML) have

driven the global adoption of these technologies due to their exceptional

performance in various domains. However, the increasing complexity and

nonlinear structure of cutting-edge models, such as deep neural networks, make it

difficult to understand how they arrive at their decisions (SOKOL; VOGT, 2024). These

so-called "black-box" models have generated uncertainty and skepticism, particularly in

domains where understanding the rationale behind predictions is critical (GUIDOTTI

et al., 2018; ADADI; BERRADA, 2020; RUDIN, 2019; PAWLICKA et al., 2023).

A central challenge lies in reconciling the remarkable accuracy of ML models

with the need for transparency and trust. When stakeholders cannot interpret ML model

results, implementing these systems in high-risk areas becomes problematic. In medical

applications, for instance, clinicians and patients alike must understand why a model

suggests a particular diagnosis or treatment to trust its recommendations fully. Without

such understanding, even the most accurate model may be deemed unsafe or unfit

for real-world decision-making (HOHMAN et al., 2018; RUDIN, 2019; LINARDATOS;

PAPASTEFANOPOULOS; KOTSIANTIS, 2021; ROJAT et al., 2021; CHEN et al., 2023;

CHADDAD et al., 2023).

Explainable Artificial Intelligence (XAI) has emerged as a promising field that

seeks to address these concerns by making complex ML models more interpretable and

understandable. XAI seeks to complement powerful ML architectures with mechanisms

that explain how and why models make their predictions, thus promoting trust, en-
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hancing system debugging, and guiding model refinement. The existent XAI methods

have already made significant progress, offering granular explanations for complex

models and allowing human users to identify errors, biases, and unexpected behaviors,

ultimately fostering greater acceptance of ML systems (LUNDBERG; LEE, 2017; RUDIN,

2019).

Despite these advances, current XAI methods often remain segregated from the

core ML development pipeline. Models are frequently trained first, and only afterward

are XAI methods applied as a separate, add-on step. This disjointed approach may limit

the potential benefits of XAI, as explanations are often produced post hoc and may not

be fully integrated into the model development, selection, and deployment lifecycle.

To realize the full promise of both accuracy and understandable, a unified framework

that seamlessly merges traditional ML pipelines with state-of-the-art XAI methods is

needed.

Early Explainable AI approaches have predominantly focused on image-based

tasks, employing visual explanation methods such as heatmaps or saliency maps over-

laid on images to highlight key regions influencing the model’s prediction (HOHMAN

et al., 2018; SCHLEGEL; KEIM, 2021). These intuitive strategies are effective in domains

where spatial correlations are easily visualized, helping bridge the gap between complex

model outputs and meaningful human understanding.

However, applying these approaches to different data types presents major chal-

lenges. Time-series data, for example, are fundamentally different from images since

they describe temporal sequences rather than visual features. Temporal correlations,

contextual patterns over time, and multisensor inputs complicate the generation of

clear, intuitive, and reliable explanations. Although techniques such as Local Inter-

pretable Model-Agnostic Explanations (LIME) (RIBEIRO; SINGH; GUESTRIN, 2016b)

and SHapley Additive exPlanations (SHAP) (LUNDBERG; LEE, 2017) have shown

promise as general-purpose XAI methods, their direct application to time series data is

not straightforward. Factors such as evolving dependencies, changing the importance

of features over time, and the difficulty of visually integrating attributions into line plots

demand novel explanation strategies and domain-specific adaptations (SCHLEGEL;
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KEIM, 2021; ROJAT et al., 2021).

Another significant challenge lies in evaluating the quality and reliability of

explanations for time series models (GUIDOTTI et al., 2018; SCHLEGEL et al., 2019;

SCHLEGEL et al., 2020; ROJAT et al., 2021; PAWLICKA et al., 2023; MIRZAEI et al., 2023;

SOKOL; VOGT, 2024; LONGO et al., 2024). Although there are a variety of qualitative

and quantitative metrics to assess the quality of explanations in image-based tasks,

these metrics were not designed with the complexities of time series data in mind.

Qualitative evaluations often rely on human judgment and comprehensibility

(RIBEIRO; SINGH; GUESTRIN, 2016b), but interpreting line plots with relevance scores

is inherently more abstract. Quantitative evaluations, including methods such as pixel

flipping (SAMEK; WIEGAND; MÜLLER, 2017), sanity checks (ADEBAYO et al., 2018),

or sensitivity analyses (REBUFFI et al., 2020), have largely been used for images. Their

assumptions and validation strategies do not always translate well to time series,

where temporal correlations, multi-sensor inputs, and evolving patterns challenge

conventional notions of critical features and local neighborhoods.

Consequently, new visualization strategies and standardized evaluation method-

ologies that account for temporal context and complexity are needed to improve XAI

for time-series data (ADEBAYO et al., 2018; REBUFFI et al., 2020; ROJAT et al., 2021).

This thesis aims to overcome these limitations by proposing the Unified Time

Series Framework for Explainable Artificial Intelligence (UTS-XAI) that integrates the

traditional time series classification pipeline with state-of-the-art XAI methodologies

and domain-specific evaluation metrics. By integrating explainability methods in the

modeling process, UTS-XAI aims to make interpretability a central design principle

rather than a post hoc addition. We also propose intuitive visualization tools for time-

series data so-caled Global Interpretable Clustering (GIC) that provides a structured

methodology for evaluating the consistency and reliability of explainability methods.

Finally, we design new XAI evaluation metrics that fit temporal patterns and systemati-

cally validate their effectiveness with real-world datasets.

To validate UTS-XAI, we conducted extensive experiments on three real-world

time-series datasets (MIT-BIH, SVDB, and INCART) for cardiac arrhythmia classifica-



Chapter 1. INTRODUCTION 31

tion, evaluating the framework across three machine learning architectures (XGBoost,

DeepConvLSTM, and Fully Convolutional Networks (FCN)) and three widely used XAI

techniques (SHAP, LIME, and Saliency Maps). Our results demonstrate that faithfulness

evaluations reveal that SHAP-based methods (e.g. Explainer) consistently produce the

most accurate feature attributions, while LIME and Saliency Maps often fail to capture

critical temporal dependencies. Robustness evaluations indicate that Saliency Maps are

highly sensitive to noise, often producing unstable attributions under perturbations,

whereas SHAP explanations remain more consistent. Sanity checks confirm that some

XAI techniques (e.g., LIME) struggle to differentiate between meaningful and random

feature attributions, raising concerns about their reliability. Localization metrics show

that XAI methods perform differently across models, with tree-based methods (XGBoost

+ SHAP) achieving better alignment with expert-defined relevant features, while deep

models require additional refinement to improve interpretability.

Our proposed Global Interpretable Clustering provides an effective qualitative

approach to understanding feature attribution stability, revealing that certain XAI

methods produce inconsistent explanations across different model architectures. We

notice an interesting trend related to thresholding: as we increase the importance filter,

features that are globally relevant but not locally prominent become more influential in

defining cluster structure. This is evident in the UMAP and PCA plots, where clusters

at higher thresholds appear more compact, showing that the thresholding operation

highlights globally consistent feature contributions, refining cluster definitions as the

threshold increases.

Despite achieving high classification accuracy for arrhythmia detection, our

findings highlight that accuracy alone is insufficient without rigorous evaluation of

model explanations. Through UTS-XAI, we demonstrate that structured explainability

evaluation not only enhances trust in AI-driven decisions, but also enables meaningful

model refinement by identifying weaknesses in interpretability.

We fundamentally rethink how explainability should be incorporated into time-

series classification. By moving beyond post hoc explanations and embedding XAI into

the model development pipeline, UTS-XAI establishes a new standard for interpretable,
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transparent, and trustworthy AI in sequential data analysis.

1.1 Research Objectives
This thesis aims to propose and evaluate an unified framework for time series classifica-

tion that integrates a traditional machine learning classification pipeline with a novel

domain-specific Explainable AI methodology, thereby enhancing the interpretability,

transparency, and trustworthiness of machine learning models in time-series applica-

tions. Overall, it aims to answer the following research question.

“How can we integrate advanced explainable artificial intelligence meth-

ods and improve explainability evaluation into time-series classification to

develop robust, trustworthy, and interpretable machine learning models

for real-world applications?”

To answer this central question, the thesis tackles the following challenges.

1. Propose a robust time series classification pipeline: design and implement time

series classification pipeline employing state-of-the-art ML models suited for

temporal data. This pipeline serves as the foundational component of the proposed

framework, providing a reliable approach to processing, training, and evaluating

models on diverse time series datasets.

2. Propose a time series explainable AI evaluation methodology: propose and

validate a novel methodology to quantitatively assess the interpretability of time

series models using XAI methods. This involves adapting and extending existing

XAI evaluation metrics, such as sanity checks, faithfulness, sensitivity, robust-

ness, stability, and localization, and coupling them with similarity measures such

as DTW, MSE, MAE, MAE, RMSE, Euclidean distance. The resulting methodol-

ogy will provide objective, standardized criteria for evaluating the quality and

reliability of explanations in time-series contexts.
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3. Integrate classification and explainability into a unified framework: synthesize

the time series classification pipeline with the newly developed XAI evaluation

methodology to form the Unified Time Series Framework for Explainable Artificial

Intelligence (UTS-XAI). This integrated solution aims to achieve both high model

accuracy and meaningful interpretability, providing a framework for building,

explaining, and validating time series models in real-world applications.

4. Propose the Global Interpretable Clustering: by proposing a new enhanced

visualization method to visualize and compare different XAI methods in the time

series domain, we apply dimensionality reduction techniques (e.g., PCA, t-SNE,

UMAP) to the generated explanations and group similar interpretability patterns

together, enabling exploration, understanding, and assessing the quality of model

explanations at scale.

1.2 Contributions
This thesis makes three key contributions toward advancing Explainable Artificial

Intelligence in the context of time-series data:

1. The Unified Time Series Framework for Explainable Artificial Intelligence (UTS-

XAI): we introduce a unified framework that incorporates explainability into

the core phases of the time series classification modeling process. In doing so, it

provides a structured environment where the production of explanations and the

verification of their quality are natural, integral steps in model development.

2. A Novel Methodology for Quantitative Assessment of XAI Methods in the Time

Series Domain: addressing the scarcity of standardized evaluation metrics suitable

for time-series data, we develop a novel quantitative evaluation methodology.

Identifying AI metrics, such as sanity, faithfulness, sensitivity, robustness, stability,

and localization, to the temporal domain, and integrating various measures of

similarity that are appropriate for time series data (e.g., Dynamic Time Warping

(DTW), Mean Squared Error (MSE), Mean Absolute Error (MAE), Root Mean
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Squared Error (RMSE), euclidean distance (ED), and cosine similarity (CS)). By

establishing criteria that account for temporal dependencies and evolving fea-

ture importance, our methodology enables rigorous, reproducible assessments

of how faithfully explainable AI methods capture model reasoning in time series

applications.

3. We propose Global Interpretable Clustering (GIC), a qualitative clustering method-

ology to visualize and interpret the feature importance maps generated by explain-

able AI methods. Using dimensionality reduction techniques such as Principal

Component Analysis (PCA), t-distributed Stochastic Neighbor Embedding (t-SNE)

and Uniform Manifold Approximation and Projection (UMAP), our approach

highlights latent structures and similarities in explanation patterns, providing intu-

itive visual summaries. The clustering may help to compare different explainable

AI methods.

1.2.1 The Unified Time Series Framework for Explainable Artifi-

cial Intelligence (UTS-XAI)

While traditional ML pipelines focus on model training and performance evaluation,

our UTS-XAI framework integrates explainability at traditional classification pipeline

enabling that the interpretability of model predictions is both meaningful and quantifi-

able.

Figure 1.1 outlines the core components of UTS-XAI. Similarly to a conven-

tional classification pipeline, time series data are sourced, pre-processed, and split into

training and testing subsets (e.g., using cross-validation). The model is trained on the

resulting training segments and subsequently applied to the test segments, generating

predictions that are evaluated using standard classification metrics (e.g., accuracy).

However, the UTS-XAI methodology extends this conventional workflow by incorpo-

rating XAI-driven evaluation criteria and visualization tools to assess and enhance the

interpretability of the resulting predictions.

Once the ML model provides predictions, an XAI method (e.g., SHAP) is em-



Chapter 1. INTRODUCTION 35

UTS-XAI
Classification Pipeline

Processing 
/Segmentation

Data Model Creation Evaluation

• Accuracy
• Precision
• Recall
• F-Score

Validation 
Methodology

Dataset

Training data

Test data

Explainable Artificial Intelligence Pipeline

Explainable AI Reasoning Explainable AI Evaluation
ModelData

Explainer B

XAI Method

Explainer A

XAI Metrics

• Sanity
• Faithfulness
• Sensitivity
• Robustness
• Stability
• Localization

Visualization 
Tools

• Feature Scores
• Heatmaps
• Force Plots
• Clustering
• BoxPlots

Metrics

• MSE
• MAE
• RSME
• Euclidean
• Cosine
• DTW

Figure 1.1 – The Unified Time Series Framework for Explainable Artificial Intelligence
(UTS-XAI) integrates a traditional time series classification pipeline with
an advanced explainability pipeline.

ployed to derive interpretable explanations on a per-sample basis. These explanations

are typically expressed as feature importance maps (scores), indicating which segments

of the time series most influenced the model’s decision. Beyond this, our approach

augments the explanation process by applying domain-specific XAI metrics, such as

sanity, faithfulness, sensitivity, robustness, stability, and localization, and time series

similarity measures (e.g., MSE, MAE, RMSE, Euclidean distance, and cosine similarity)

to objectively quantify the quality of explanations. The final stage involves presenting

the interpretability results through user-friendly visualizations that are meaningful in a

time-series context.

By integrating interpretability into the entire classification pipeline, the UTS-

XAI addresses a fundamental need: the ability to rigorously and objectively evaluate

explanation methods for time series data. Now, explanation methods are not only

visually appealing but also robust, reliable, and mathematically sound, thereby reducing

the reliance on purely qualitative assessments and better supporting critical decision-

making scenarios where incorrect attributions can have significant consequences.
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1.2.2 A Novel Methodology for Quantitative Assessment of XAI

Methods in the Time Series Domain

We propose a novel Explainable AI methodology for evaluating interpretable XAI

methods specifically for the time series domain. As can be seen in Figure 3.3, we use

more appropriate distance metrics for the time series that allow us to evaluate and

compare each XAI evaluation method.

Explainable Artificial Intelligence Pipeline

Explainable AI Reasoning Explainable AI Evaluation
ModelData

Explainer B

XAI  Method

Explainer A

XAI Metrics

• Sanity
• Faithfulness
• Sensitivity
• Robustness
• Stability
• Localization

Visualization 
Tools

• Feature Scores
• Heatmaps
• Force Plots
• Clustering
• BoxPlots

Metrics

• MSE
• MAE
• RSME
• Euclidean
• Cosine
• DTW

Figure 1.2 – The novel Explainable AI methodology for evaluating interpretable XAI
methods specifically for the time series domain, integrating model explana-
tions, quantitative metrics, and intuitive visualizations.

The proposed XAI methodology begins with a trained time-series classification

model and its associated data. Next, an XAI technique, such as SHAP or LIME, is

applied to derive local and global explanations, translating complex model decisions

into interpretable outputs. To rigorously assess the quality of these explanations, we

employ XAI specific metrics such as faithfulness, sensitivity, and robustness, each

providing a different perspective of how well the explanations align with the model’s

underlying logic. In parallel, we incorporate existing visualization techniques suitable

for time-series data.

1.2.3 Global Interpretable Clustering

We introduce a novel methodology, Global Interpretable Clustering, that provides a

qualitative assessment of explainable AI methods by grouping and visualizing patterns

of feature importance, as illustrated in Figure 1.3. By applying dimensionality reduction

techniques (e.g. PCA, t-SNE, and UMAP) to feature importance maps generated by ex-
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plainable AI methods, thisw methodology visually conveys the consistency, coherence,

and divergence of their interpretations.

Global Interpretable Clustering
ModelData

Explainer B

Explainer

Explainer A

ClusteringExplanations

Figure 1.3 – Our proposed Global Interpretable Clustering methodology can reveals
patterns of feature importance across different explainable AI methods,
enabling a qualitative comparison of their consistency and ability to capture
meaningful relationships within the data.

This clustering-based method represents a key contribution to the field of XAI.

Unlike traditional quantitative metrics, which often focus on a single aspect of inter-

pretability, GIC provides a more holistic, human-centric perspective. By examining how

feature importance patterns cluster and overlap, we can readily discern which XAI

techniques produce stable, trustworthy explanations and which may struggle to capture

critical relationships in the data.

To our knowledge, this form of qualitative evaluation has not previously been

explored. As a result, it offers a novel lens through better understanding, comparison,

and refinement of explainability methods, ultimately enhancing the reliability and

practical utility of AI-driven decision support.

1.3 Publications Arising from this Work
This section overviews the journal and conference publications that form this thesis,

outlining the distribution of work among the authors and their respective contributions.

1. Bragança, H., Colonna, J. G., Oliveira, H. A., & Souto, E. (2022). How Validation

Methodology Influences Human Activity Recognition Mobile Systems. Sensors,

22(6), 2360.



Chapter 1. INTRODUCTION 38

2. Bragança, H., & Souto, E. (2025). Unified Time Series Framework for Explainable

Artificial Intelligence (2025). (In Production).

3. Bragança, H., & Souto, E. (2025). Explainability for Time Series Data (2025). (In

Production).

1.4 Other Publications
Additionally, I contributed to the following publications. These publications are not

directly linked to this thesis but were developed in our research group (Emerging

Technologies and Systems Security).

1. Bragança H., Rocha, V., Souto, E., Feitosa E., Kreutz D. Explaining the Effectiveness

of Machine Learning in Malware Detection: Insights from Explainable AI. In:

Simpósio Brasileiro de Segurança da Informação E De Sistemas Computacionais

(SBSEG), 2023.

2. Bragança, H., Rocha, V., Barcellos, L., Souto, E., Feitosa E., Kreutz D. Capturing

Android Malware with MH-100K: A Novel and Multidimensional Dataset. In:

Simpósio Brasileiro de Segurança da Informação E De Sistemas Computacionais

(SBSEG), 2023.

3. Rocha, V. Assolin J., Braganca H., Kreutz D., Feitosa E. AMGenerator e AMEx-

plorer: Geração de Metadados e Construção de Datasets Android. In: Simpósio

Brasileiro de Segurança da Informação E De Sistemas Computacionais (SBSEG),

2023.

4. Andrade, C., Bragança, H., Feitosa, E., & Souto, E. (2023). Android malware

detection with MH-100K: An innovative dataset for advanced research. Data in

Brief, (Under Review).

5. Bragança, H., Rocha, V., Barcellos, L., Souto, E., Kreutz, D., & Feitosa, E. (2023).

Android malware detection with MH-100K: An innovative dataset for advanced

research. Data in Brief, 109750.



Chapter 1. INTRODUCTION 39

6. Nellessen, P., Bragança, H., E., & Souto, E. (2023). Leveraging Knowledge Distil-

lation for Efficient Human Activity Recognition on Wearable Devices. Pervasive

and Mobile Computing. (Under Review).

7. Andrade, C., Bragança, H., Fernandes, H., Feitosa, E., & Souto, E. (2022). Continu-

ous Authentication using Operational System Performance Counters. Computers

& Security. (Under Review).

8. Paz, I.; Bragança, H.; Souto, E. Autenticação Contínua Usando Sensores Inerciais

dos Smartphones e Aprendizagem Profunda. In: Simpósio Brasileiro de Segurança

da Informação E De Sistemas Computacionais (SBSEG), 2022, Santa Maria. Porto

Alegre: Sociedade Brasileira de Computação, 2022. p. 209-222.

9. Lima, W. S., Bragança, H. L., & Souto, E. J. (2021). NOHAR-NOvelty discrete

data stream for Human Activity Recognition based on smartphones with inertial

sensors. Expert Systems with Applications, 166, 114093.

10. Bragança, H., Colonna, J. G., Lima, W. S., & Souto, E. (2020). A smartphone

lightweight method for human activity recognition based on information theory.

Sensors, 20(7), 1856.

1.5 Document Structure
The remainder of this thesis is organized into the following chapters:

• Chapter 2 — This chapter introduces essential concepts and theoretical foun-

dations underlying time-series classification and explainable AI. It reviews the

standard pipelines for time series classification, covering data pre-processing, fea-

ture engineering, and model training, and present the traditional XAI workflow,

emphasizing the techniques most relevant to machine learning interpretability.

The chapter also highlights the current limitations and challenges in applying XAI

to time series data and concludes by identifying research opportunities that moti-

vate the methodologies proposed in this work. This chapter also provides a review
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of the literature related to Explainable AI methods applied in the context of time

series data. It categorizes existing XAI techniques, focusing on their application to

time-series tasks and discussing their strengths, limitations, and relevance to the

problem at hand.

• Chapter 3 — This chapter presents our proposal - The Unified Time Series Frame-

work for Explainable Artificial Intelligence (UTS-XAI). It explains the conceptual

framework developed to integrate traditional time series classification tasks with

explainable AI methods. The chapter details the design and rationale behind the

framework, the XAI evaluation techniques incorporated, and how they interact

with the time series classification process.

• Chapter 4 — This chapter starts with the Experimental Protocol (Section 4.1 which

outlines the experimental setup used to test the proposed framework. We explain

how results will be conducted by presenting the evaluation scenarios, grouped

in three parts: Generating classification models, evaluation the GIC method and

and Explainable AI method evaluation. Further, it presents details of the datasets,

the performance metrics adopted to assess model performance, and the XAI-

specific metrics employed to measure interpretability quality. Finally, we present

the UTS-XAI evaluation results for each evaluation scenario (Section 4.2).

• Chapter 5 — The conclusion presented in this chapter highlights the primary

contributions of this thesis and offers a perspective on prospective research pos-

sibilities. It examines how the proposed methodologies address the research

question, enhance the state-of-the-art, and delineate the principal conclusions. It

also examines the wider implications of the work, along with existing limitations

and prospective research opportunities.
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2

EXPLAINABLE ARTIFICIAL

INTELLIGENCE FOR TIME SERIES

DATA

This chapter provides a foundation for understanding the proposed framework by

explaining the essential concepts and methods that guide our research. We begin by

describing the standard machine learning pipeline for time series classification, focusing

on its key components and constraints. Following that, we look at recent developments

in Explainable AI pipelines, stressing their importance in enriching and improving

the classification process by offering transparency and interpretability. Finally, we

investigate previous studies in the field, examining their contributions and limits,

before concluding with a discussion to contextualize our framework within the existing

research community.

2.1 It is All About Time
Think about how important it is to closely watch the heart rate of a patient using electro-

cardiogram signals. Each heartbeat is recorded in real time, resulting in a time series in

which doctors detect irregularities and diagnose conditions quickly (e.g., arrhythmia).

Time-series data are essential for several scientific and practical applications, allowing

researchers to analyze events over time and derive important conclusions.
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To find patterns in time-series data, existing machine learning algorithms can

learn from data without predefined assumptions about how that data is generated or

structured (SARKER, 2021). Categorizing time-dependent data using patterns found

within the series is an important part of machine learning’s time-series classification

process. In machine learning, time-series classification involves assigning labels to time-

dependent data based on patterns within the series (FAWAZ et al., 2019). These models

must account for the inherent temporal dependencies in which observations at one

point in time are influenced by past events.

Healthcare, banking, and industrial monitoring are just a few areas that might

benefit from the prediction capabilities made possible by time-series ML models. In the

next section, we will introduce the methodology used to find patterns and classify time

series.

2.2 The Time Series Classification Pipeline
Time series classification (TSC), as illustrated in Figure 2.1, is a systematic approach to

labeling ordered data by capturing patterns and temporal dependencies. Each obser-

vation in a time series is chronologically ordered, necessitating methods that consider

both point-wise information and the relationships among data across time. TSC has

been used in healthcare, finance, and security, where large volumes of temporal data

must be analyzed to allow decisions grounded in quantifiable evidence.

Developing TSC models commonly involves several steps (SHOAIB et al., 2015;

LIMA et al., 2018; WANG et al., 2019; DEHGHANI; GLATARD; SHIHAB, 2019; BRA-

GANçA et al., 2020; DANG et al., 2020; FERRARI et al., 2021). First, data acquisition and

preprocessing address issues such as noise, missing values, and outliers through proce-

dures such as interpolation, filtering, or normalization. Second, feature engineering can

focus on extracting domain-specific characteristics (for instance, statistical measures or

spectral features), although deep learning methods often learn representations directly

from raw time series. Third, model selection and training might involve a range of

algorithms, including distance-based methods (for example, Dynamic Time Warping),
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Figure 2.1 – The common methodology used in the time series classification task: data
source (acquisition), validation methodology, segmentation, feature extrac-
tion, model creation, classification and evaluation.

traditional machine learning approaches (e.g. random forests), or deep architectures

(e.g. convolutional or recurrent networks). The choice of model depends on dataset size,

computational constraints, and domain knowledge. The subsequent sections discuss

each stage of this pipeline, focusing on methodological considerations and common

challenges.

2.2.1 Data Acquisition

The data acquisition phase is responsible for collecting data from a source to capture

temporal phenomena. A time series is formally defined as a sequence of values ordered

in time, often originating from sensors or observations in diverse application domains.

The unified notation for time series, adapted from works such as (SCHÄFER, 2016;

BAGNALL et al., 2017; RUIZ et al., 2021), describes a multivariate time series as X =

[X1, ..., XH ], where H is the number of input channels, X i = (xi
1, ..., x

i
N) ∈ RT is an

ordered set of real values, and N denotes the number of time steps. For H = 1, the series

is considered univariate; otherwise, it is multivariate. Time series data inherently involve

complex temporal dependencies, where individual time points are interdependent,

linked through their progression over time.

The type of data collected is determined by the intended application and domain.

Choosing appropriate sensors is guided by the nature of the phenomena under study
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and the types of information necessary for analysis (SHOAIB et al., 2015; BRAGANçA

et al., 2020; WANG et al., 2019). A frequent example involves gyroscopes and accelerom-

eters in Human Activity Recognition (HAR) systems (BRAGANçA et al., 2020), where

they capture movements such as vibrations, oscillations, rotations, or angular changes.

Smartphones and wearables equipped with these sensors generate large volumes of

time series data related to user behavior and interactions with the environment.

In other contexts, healthcare and environmental monitoring rely extensively on

time series for continuous measurement. Electrocardiogram (ECG) sensors, for instance,

record the electrical activity of the heart, providing streams of data that may reveal

cardiac anomalies, such as arrhythmias.

Following data acquisition, the collected measurements often remain in a raw

state. Although these raw time series can be rich in information, they typically require

preprocessing to address issues related to noise, missing values, or data quality. The

completeness and reliability of the acquired data have a direct impact on subsequent

tasks such as feature extraction and model training, making a systematic acquisition

strategy an important foundation for any time series classification pipeline.

2.2.2 Splitting the Validation Data

Choosing a validation approach is an important component in machine learning model

development, especially for models intended to generalize to new data. Before pre-

processing or segmenting raw time series, it is conventional to define a validation

procedure that reduces biases and avoids data leakage. A validation phase provides

performance estimates aligned with the model’s generalization capabilities rather than

the memorization of training patterns. Models without an appropriate validation strat-

egy may overfit, causing performance metrics that do not hold when applied to other

data (BRAGANÇA et al., 2022). In addition, validation protocols address data leakage,

a situation in which test set information unwittingly contaminates the training process

and leads to inflated performance measures.

Several methodologies exist for splitting a dataset, including the holdout method,
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k-fold cross-validation, and leave-one-subject-out (LOSO) cross-validation. The holdout

method divides the dataset into training and test subsets, yielding a single estimate of

performance. This approach is computationally efficient but can produce a pessimistic

assessment because the model is trained on fewer samples; moreover, estimates may

depend strongly on how the data are split (ARLOT; CELISSE et al., 2010; KOHAVI et al.,

1995; GHOLAMIANGONABADI; KISELOV; GROLINGER, 2020). By contrast, k-fold

cross-validation systematically partitions the dataset into k folds of approximately equal

size. Each fold serves once as the test set, while the remaining k − 1 folds act as the

training set. This procedure, although more computationally expensive, often yields

more reliable estimates of model performance (ARLOT; CELISSE et al., 2010; DUDA;

HART; STORK, 2000; WONG, 2015).

In settings with multiple subjects, leave-one-subject-out (LOSO) cross-validation

trains on data from all but one subject and tests on the held-out subject (GHOLAMIANG-

ONABADI; KISELOV; GROLINGER, 2020). This approach is used to assess whether a

model can handle variability introduced by new, previously unseen individuals. How-

ever, LOSO may generate higher variance in performance estimates when the number

of subjects is small (KOHAVI et al., 1995; WONG, 2015). The selection of a validation

method typically depends on dataset size, computational constraints, and the context

in which the model is applied.

2.2.3 Preprocessing

Pre-processing is a preparatory phase in time-series data analysis that addresses quality-

related issues to facilitate reliable model training. Time-series datasets frequently con-

tain noise, missing values, anomalies, and inconsistent sampling rates, all of which

can influence the performance of machine learning models. Through filtering and for-

matting, pre-processing refines the raw data, which can contribute to enhanced model

interpretability and more stable predictions.

Noise is a common concern in time-series data. Sensor faults, environmental

disruptions, and network interruptions are typical sources of high-frequency fluctua-
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tions that may obscure underlying signals. Filtering methods, such as low-pass filters,

reduce these short-term variations while preserving slower trends. Moving average

filters, which smooth data over a specified time window, help highlight periodic or

cyclical patterns that might otherwise be concealed.

Normalization is another principal step, especially in settings that combine

data from multiple sensors or measurement devices. Variations in scales and units can

lead to inconsistent feature representations and hinder model performance. Z-score

normalization, one widely used method, subtracts the mean and divides by the standard

deviation of each feature, thus centering and scaling the data. This transformation

aligns all variables more closely and aids in constructing models that weigh features

comparably.

Inconsistent sampling intervals also affect time series analyses. Sensors may oper-

ate at different frequencies or experience intermittent recording, resulting in misaligned

time steps. Resampling techniques, including interpolation or downsampling, convert

the data to a uniform sampling rate, allowing comparisons or joint analyses among

multiple time series. Maintaining a consistent time axis can improve downstream tasks

and simplify the modeling pipeline.

Pre-processing thus tackles noise, scale discrepancies, and sampling irregular-

ities that can undermine classification or regression models. Data that undergo these

transformations frequently exhibit lower variance due to external factors and provide

a clearer representation of the phenomena under investigation. After completing pre-

processing, the segmentation phase typically follows. This subsequent step partitions

continuous time series into discrete segments that represent distinct events or patterns

of interest, as discussed in the next section.

2.2.4 Segmentation

Segmentation divides continuous time series data into smaller intervals, facilitating

the examination of local behaviors and simplifying subsequent analysis. The division

of a continuous signal into segments can be achieved through various techniques,
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depending on the characteristics of the data and the objectives of the study. Common

segmentation methods include fixed-size segmentation, sliding-window segmentation,

event-based segmentation, and adaptive segmentation.

Fixed-size segmentation partitions the time series into segments of equal du-

ration. This straightforward approach is often applied when the phenomena under

investigation occur at regular intervals, such as daily, weekly, or seasonal cycles. Al-

though computationally efficient, fixed-size segmentation may not adequately capture

events or changes that occur at irregular intervals.

Sliding-window segmentation employs a fixed-length window that moves along

the time series, often with a predetermined amount of overlap between successive

windows. Overlapping windows can provide a more continuous representation of

the temporal dynamics and may capture transient phenomena that non-overlapping

segments could miss. This technique is commonly applied in fields such as human

activity recognition, where the boundaries of the activities are not clearly defined.

Event-based segmentation, also known as change-point detection, partitions

the time series based on detected shifts in its statistical properties. In this method,

various techniques—such as statistical tests, Bayesian methods, or machine learning

approaches—are used to identify points in time where the characteristics of the data (e.g.,

mean, variance, or autocorrelation) change abruptly. Algorithms including cumulative

sum, hidden Markov models, and kernel-based methods are among the approaches

employed.

Adaptive segmentation methods modify the segment length according to the

local characteristics of the time series. By employing multi-resolution analysis or dy-

namic windowing, these methods adjust the segmentation criteria to reflect variations

in the complexity or volatility of the data. Adaptive approaches are applied in domains

such as biomedical signal processing, where the duration of relevant events can vary

over time.

The selection of a segmentation method depends on the specific application, the

nature of the data, and computational considerations. Each approach offers distinct ad-

vantages and may be more appropriate for certain types of temporal patterns or events.
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Segmentation produces a structured representation of the time series that facilitates

subsequent processing steps, such as feature extraction and model development. In

the following section, the feature extraction process is discussed, which transforms

segmented data into suitable representations for machine learning.

2.2.5 Feature Extraction Process

Feature extraction is a fundamental phase in the development of machine learning

models for time-series data. In this phase, raw signals are transformed into a compact

representation by selecting or constructing features that capture the underlying temporal

patterns and relationships. This transformation facilitates the subsequent modeling task

by reducing data dimensionality and computational overhead while retaining essential

information.

Two principal approaches to feature extraction have been developed: hand-

crafted feature extraction and automatic feature extraction using deep learning models,

such as Convolutional Neural Networks (CNN).

Hand-crafted feature extraction involves the manual design of features based on

expert knowledge of the application domain (SHOAIB et al., 2015; SHOAIB et al., 2014;

LI et al., 2018; ANGUITA et al., 2013; LIMA et al., 2018; BRAGANçA et al., 2020). In time

series analysis, commonly used hand-crafted features include statistical metrics (e.g.,

mean, variance, skewness), frequency components derived from Fourier or wavelet

transforms, and autocorrelation measures. For example, in electrocardiogram (ECG)

signal analysis, features such as heart rate, QRS duration, and amplitude characteris-

tics are used to characterize cardiac function. Hand-crafted features may be grouped

into several domains. Time-domain features, computed directly from the data, are

computationally efficient and straightforward to interpret. Frequency-domain features,

obtained through methods such as Fourier or wavelet analysis, help capture periodici-

ties and oscillatory behavior. Symbolic-domain features convert continuous time series

data into sequences of discrete symbols, thereby compressing the data and facilitating

pattern recognition (LIMA et al., 2018; BRAGANçA et al., 2020). While hand-crafted
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features benefit from transparency and low computational cost, their design can be

labor-intensive and may miss subtle or complex data structures that are not immediately

evident to experts.

Automatic feature extraction is performed by deep learning architectures, no-

tably CNNs, which learn hierarchical representations directly from raw time series data

(NWEKE et al., 2018). Through the application of convolutional filters, these networks

capture low-level patterns in the early layers and progressively build more abstract

representations in deeper layers. In effect, CNNs combine the processes of feature

extraction and classification, which may allow for the modeling of intricate, nonlin-

ear relationships within the data. Despite their potential, automatic feature extraction

techniques generally require larger datasets and greater computational resources. More-

over, the abstract nature of the features generated by deep models can complicate the

interpretation of model decisions in settings where transparency is desired.

Both hand-crafted and automatic feature extraction methods offer distinct ad-

vantages and limitations. Hand-crafted features provide a clear and computationally

efficient representation, but depend on domain expertise and may overlook nuanced

patterns. In contrast, automatic feature extraction via deep learning can capture com-

plex relationships without explicit feature design, albeit at the cost of increased data

and computational demands, as well as reduced interpretability. The choice between

these approaches depends on the specific requirements of the application, the available

resources, and the desired balance between model performance and transparency.

2.2.6 Classification

Classification is a supervised learning task that maps input data to predefined cate-

gorical labels. In this context, the objective is to assign a discrete label (e.g., "spam"

versus "not spam") based on patterns derived from previously labeled data (dataset).

The process begins with a labeled dataset and involves training a model to recognize

relationships between the input features and their corresponding categories, so that the

model can generalize its predictions to new, unseen inputs.
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The classification process typically follows several stages. Initially, the data

undergoes preliminary operations such as splitting into training and test subsets, pre-

processing, segmentation, and feature extraction. Following these steps, a classification

algorithm is chosen according to the nature of the data and the specific requirements

of the task. Common algorithms include decision trees, support vector machines, and

various forms of deep neural networks. After training, the model is evaluated using

standard metrics such as accuracy, precision, recall, and F1-score, which provide quanti-

tative measures of its performance.

Traditional classification methods are designed for static data in which the

features are independent and unordered. In contrast, time series classification addresses

sequential data where temporal order and dependency are significant. For example,

time series classification may be applied to distinguish between normal and abnormal

electrocardiogram signals or to identify human activities based on motion sensor data.

The sequential structure of time series data requires specialized preprocessing, feature

extraction, and model architectures, such as recurrent neural networks (RNNs) or

convolutional neural networks (CNNs), that can accommodate temporal dependencies.

Time series classification tasks typically commence with a labeled dataset. For-

mally, the time series classification defines a mapping X → y that minimizes error in

a dataset D = {(X1, y1), ..., (XN , yN)}, where N is the number of data samples, X ∈ D

is a time series, yi ∈ RC denotes the one-hot vector of a class label to which the input

belongs, and C is the number of classes (BAGNALL et al., 2017; FAWAZ et al., 2019;

RUIZ et al., 2021). In time series segmentation, we search X → Y that maps an input

sample to a dense classification Y = [y1, ..., yN ] ∈ RC×N , i.e., a class label is predicted for

each time step.

In the training phase, the ML model learns a mapping from the extracted features

to the target labels. Conventional machine learning approaches rely on hand-crafted

features derived from domain knowledge, such as statistical measures, frequency com-

ponents, or other descriptive attributes—to represent the data. These features are then

used with classifiers such as logistic regression, decision trees, or support vector ma-

chines. Alternatively, deep learning models, such as CNNs and RNNs, perform auto-
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matic feature extraction directly from raw time series data. The training of deep models

involves propagating input through multiple layers of nonlinear transformations and

updating model parameters using optimization algorithms (e.g., stochastic gradient

descent or Adam) based on a loss function such as categorical cross-entropy.

In the classification phase, the trained model is applied to a new, unlabeled

time series Xu. The model processes Xu to generate a feature representation and subse-

quently assigns a predicted label yu This assignment can be performed using one of two

approaches:

• Similarity measures: the feature representation of Xu is compared with those of

the training examples using metrics such as cosine similarity, and the label of the

most similar time series is assigned.

• Direct prediction: the model outputs a probability distribution over the classes,

and the label corresponding to the highest probability is selected.

The evaluation of the model is carried out on a separate test set, using metrics

such as accuracy, precision, recall, and F1 score. In binary classification tasks, the area

under the ROC curve (AUC-ROC) may also be employed. In cases of class imbalance,

techniques such as resampling or class weighting are applied during training to adjust

for unequal representation of the classes.

Overall, the classification process, especially when applied to time series data,

comprises a sequence of methodical steps, from data preparation and feature extraction

to model training and evaluation, that collectively aim to produce models capable of

robust generalization to new observations. The next section will introduce the most

common evaluation metrics used to estimate a classifier’s future performance.

2.2.7 Evaluation Metrics for Classification

The performance of a classification model is typically measured using a range of quan-

titative metrics that reflect its predictive accuracy and error characteristics (ARLOT;

CELISSE et al., 2010; WONG, 2015). Commonly used metrics include accuracy, recall
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(sensitivity), specificity, precision, and the F1-score (BULLING; BLANKE; SCHIELE,

2014; LIMA et al., 2019).

Accuracy is defined as the proportion of correct predictions among the total num-

ber of predictions. In datasets with balanced classes, accuracy provides a direct measure

of performance. However, in situations characterized by class imbalance—where one

class predominates—a model that exclusively predicts the majority class may yield a

high accuracy rate while inadequately identifying instances from minority classes. In

these instances, precision and recall offer a more nuanced evaluation. Precision quan-

tifies the ratio of true positive predictions to all positive predictions, and is pertinent

in applications where the cost of false positives is high. Recall, in contrast, measures

the ratio of true positive predictions to all actual positive cases, which is important

when failing to detect a positive instance has substantial consequences. The F1-score,

computed as the harmonic mean of precision and recall, provides a single metric that

balances these two aspects.

Table 4.4 summarizes these evaluation metrics, presenting their respective equa-

tions and brief descriptions to serve as a reference for their computation and interpreta-

tion.

Table 2.1 – Summarization of accuracy, recall, precision and F-measure. TP means true
positives, TN true negatives, FP false positives and FN means false nega-
tives.

Metric Equation Description

Accuracy TP+TN
TP+TN+FP+FN

Accuracy is the ratio of correct
predictions divided by the total
predictions.

Precision TP
TP+FP

Precision is the ratio of true pos-
itives and total positives pre-
dicted.

Recall TP
TP+FN

Recall is the ratio of true pos-
itives to all the positives in
ground truth.

F Measure 2× Precision×Recall
Precision+Recall

The F-measure is the harmonic
mean of precision and recall.

The evaluation phase concludes the traditional classification pipeline, but addi-

tional considerations often follow, especially in high-stakes domains such as healthcare,
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finance, or legal systems. In these cases, the interpretability and transparency of the

model become significant. While simpler models, such as decision trees and logistic

regression, offer a direct representation of decision rules, more complex models often

operate as opaque systems.

The subsequent sections examine recent developments aimed at enhancing

model transparency and reliability, thereby complementing the evaluation of predictive

performance with assessments of model comprehensibility.

2.2.8 Explainable Algorithms for Interpretable and Transparent

Systems

In many applications, the decision-making process of a machine learning model must

be transparent, interpretable, and justifiable. Explainable machine learning methods

provide mechanisms for users to understand and assess model predictions. This re-

quirement is prominent in domains such as healthcare, finance, and legal systems, where

opaque decisions can lead to ethical, social, or operational complications (LINARDATOS;

PAPASTEFANOPOULOS; KOTSIANTIS, 2021).

The need for explainability originates in the early stages of model development.

Decisions made during data collection, preprocessing, and feature engineering reflect

the expertise and perspectives of system designers (e.g., machine learning engineers,

data scientists). Such decisions may introduce biases or overlook variations in user

contexts (VEALE; BINNS, 2017; BRAGANÇA et al., 2022). Explainability frameworks

allow for the examination of these factors by identifying sensitive attributes or decision

rules and by elucidating the contribution of specific features to classification outcomes.

Addressing these aspects is relevant not only from an ethical standpoint but also to

maintain user trust, as perceived inaccuracies or biases may diminish confidence in the

system (YIN; VAUGHAN; WALLACH, 2019; TOREINI et al., 2020; ALIKHADEMI et

al., 2021).

Traditional machine learning models, more specifically complex architectures,

such as deep neural networks, are often opaque and operate as "black boxes" that pro-
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duce predictions without accompanying explanations. This lack of transparency poses

challenges in regulatory contexts, such as compliance with the "right to explanation"

under the General Data Protection Regulation (GDPR) and limits the effectiveness of

user-centered, iterative development processes.

Explainable Artificial Intelligence (XAI) addresses these challenges by develop-

ing methods and tools that make machine learning models more interpretable and open

to examination. Although XAI techniques are increasingly adopted, they are frequently

applied as standalone components within conventional machine learning pipelines,

resulting in workflows that are not fully integrated.

Incorporating XAI methods into traditional classification frameworks responds

to the need to strike a balance between technical performance and social responsibility.

By embedding XAI throughout the model development lifecycle, machine learning

systems can be adapted to meet both regulatory and ethical requirements, thus improv-

ing overall trust and reducing barriers to adoption. Thus, a dedicated XAI pipeline

represents an advance toward more interpretable, transparent, and accessible artificial

intelligence systems.

2.3 The Explainable Artificial Intelligence
Explainable Artificial Intelligence is a specialized field of artificial intelligence dedicated

to elucidating the inner workings of machine learning models, particularly those often

referred to as "black boxes." As AI systems become increasingly complex and pervasive,

their lack of transparency poses significant challenges, especially in high-stakes domains

such as healthcare.

Two related yet distinct concepts in XAI are interpretability and explainability

(DOSHI-VELEZ; KIM, 2017; LIPTON, 2018; GUIDOTTI et al., 2018; LINARDATOS;

PAPASTEFANOPOULOS; KOTSIANTIS, 2021). In this context, interpretability refers

to the extent to which a human can discern the factors that influence a model’s output.

This notion is concerned with the observable relationships between inputs and outputs,

thereby facilitating an understanding of the cause-and-effect dynamics that underlie
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the model’s predictions. In contrast, explainability addresses the degree to which the

internal logic and structure of a model are accessible for analysis. It involves provid-

ing detailed accounts of the computational processes and representations that drive

decision-making. A model is often described as a black box if its internal operations

are either undisclosed or too complex to be readily comprehended (GUIDOTTI et al.,

2018); in such cases, measures of interpretability and explainability serve as proxies for

understanding its behavior.

XAI methods aim to furnish representations of model behavior that are compre-

hensible to non-expert stakeholders, thereby supporting validation, error analysis, and

compliance with regulatory standards. These methods are commonly divided into two

categories based on when and how interpretability is achieved:

• Intrinsic Explainability: This approach is applicable to models that are inherently

interpretable by design, such as linear regression, decision trees, or rule-based

systems. The architecture of these models facilitates a direct mapping between

inputs and outputs that can be readily examined.

• Post-Hoc Explainability: In this case, interpretability is attained after the model

has been trained. External techniques are applied to provide explanations of the

model’s behavior, which is particularly useful for complex models (e.g., deep

neural networks) that are not interpretable by design.

Furthermore, XAI methods are often characterized by the scope of the explana-

tion they provide (SHEU; PARDESHI, 2022; ROJAT et al., 2021; THEISSLER et al., 2022;

DAS; RAD, 2020; CHADDAD et al., 2023):

• Global Explanations: these methods attempt to describe the overall decision-

making process of a model across an entire dataset. Global explanations offer

a broad perspective on the model’s operational logic, although obtaining such

comprehensive interpretations is challenging for highly complex models.

• Local Explanations: these techniques focus on explaining individual predictions

by isolating the factors that contribute to a specific output. Local explanations are
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particularly useful for case-by-case analysis and for providing instance-specific

justifications.

• Model-Specific Methods: these techniques are tailored to particular model archi-

tectures and exploit specific properties of the model to generate explanations.

• Model-Agnostic Methods: these approaches are applicable to any model regardless

of its internal structure, enabling a uniform explanation framework across different

model types.

2.4 The Traditional Explainable AI Pipeline
The increasing adoption of AI models for time series classification underscores the need

for transparency and interpretability. In applications with significant consequences,

understanding the basis for model predictions is essential. Figure 2.2 presents the Ex-

plainable AI Reasoning Pipeline for time series classification tasks. This framework pro-

vides systematic methods for analyzing, interpreting, and visualizing model decisions,

thereby bridging the gap between complex AI systems and human understanding.

Explainable AI Reasoning
ModelData

Explainer B

XAI Method

Explainer A

Visualization 
Tools

• Feature Scores
• Heatmaps
• Force Plots
• Clustering
• BoxPlots

Figure 2.2 – The Explainable AI Reasoning Pipeline for time series classification tasks,
consisting of three core phases—Data, Model, and XAI Method, followed
by visualization tools for interpretability.

The Explainable AI Reasoning Pipeline comprises four core phases:

• Data phase: this phase addresses the raw input data, typically represented as

time series signals (e.g., waveforms). It involves capturing time-dependent fea-

tures from one or multiple sources or channels, followed by preprocessing and

transformation techniques designed to prepare the data for subsequent modeling.
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• Model phase: preprocessed time series data are fed into the AI model during

this phase. Models often utilize deep learning architectures such as convolutional

neural networks or recurrent neural networks to extract temporal features, identify

patterns, and perform classification tasks based on the input sequences.

• XAI methods phase: once the model generates predictions, post-hoc explainability

techniques are applied to interpret the outcomes. Denoted here as Explainer A

and Explainer B, these methods analyze the model’s internal mechanisms and

highlight specific features or time segments that have a significant influence on

the predictions.

• Visualization tools phase: To effectively communicate the explanations, various

visualization techniques are employed, including:

– Feature Scores: graphical representations that indicate the importance of spe-

cific time features or intervals.

– Heatmaps: visual depictions of regions within the time series that contribute

substantially to the model’s decisions.

– Force Plots: illustrations that convey the impact of individual features on the

model’s predictions.

– Clustering: grouping of similar patterns to facilitate interpretability.

– Boxplots: Statistical summaries that detail the distribution of feature contribu-

tions.

2.4.1 Explainable AI Reasoning

The Explainable AI Reasoning component focuses on generating interpretations for the

predictions made by machine learning models. The pipeline begins with the prepro-

cessing of raw data, which involves cleaning, normalization, and feature engineering

to prepare the input for the model. In time series classification, this step often includes

segmenting data into meaningful windows, handling missing values, and applying
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transformations such as Fourier or wavelet decompositions to highlight relevant tempo-

ral patterns. Once preprocessed, the data is fed into the model phase, where machine

learning or deep learning architectures are employed. These models may be designed

to capture temporal dependencies, extract complex features, and perform robust time

series classification.

Once the predictive model is trained and validated, Explainable AI (XAI) meth-

ods are applied to interpret its outcomes. The model processes the input data and

generates predictions. The goal of the Explainable AI Reasoning stage is to provide

information into how the model reaches its predictions by employing various explain-

ability techniques.

Two of the most prominent and widely adopted XAI methods are LIME (RIBEIRO;

SINGH; GUESTRIN, 2016b) and SHAP (LUNDBERG; LEE, 2017), widely used to un-

derstand the rationale behind classifier predictions, which address different aspects

of explainability. (UDDIN; SOYLU, 2021; BETTINI; CIVITARESE; FIORI, 2021; DAS et

al., 2021; ROY et al., 2021; BRAGANÇA et al., 2022). These methods help uncover the

underlying mechanisms behind the model’s predictions, identifying which features,

time intervals, or patterns are most influential.

Local Interpretable Model-Agnostic Explanations (LIME) (RIBEIRO; SINGH;

GUESTRIN, 2016b) provides local interpretability by creating simpler surrogate models

(e.g., linear models or decision trees) around the specific instance being explained. These

surrogate models approximate the behavior of the original model near a particular

data point, offering information into why the model made a specific prediction for that

instance.

SHapley Additive exPlanations (SHAP) (LUNDBERG; LEE, 2017) provides both

global and local explanations by calculating Shapley values based on cooperative game

theory. Each feature is assigned a numerical score representing its contribution to the

final prediction, offering consistent and fair attributions, making SHAP a widely used

tool for understanding feature importance across the entire dataset.

In the context of time series classification, SHAP helps to identify the most critical

time windows or segments that influence the model’s prediction; quantify the impact
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of each input feature or time point on the overall decision, aiding domain experts in

validating the model’s behavior; and Enable comparisons across different time series

instances to understand common or unique patterns influencing outcomes.

In addition to SHAP and LIME, attention mechanisms and saliency maps provide

further interpretability classification tasks such as attention mechanisms and Saliency

Maps. Attention mechanisms is commonly used in transformer-based architectures, at-

tention weights provide an intuitive explanation of which time steps are most important

during the model’s decision-making process. Saliency maps highlight the most influ-

ential time steps by computing gradients with respect to the input features, revealing

which parts of the time series had the greatest impact on the predictions.

2.4.2 Visualization Tools for Explainable AI methods

To enhance the interpretability of XAI explanations, the workflow integrates visualiza-

tion tools that present the outputs of explainability methods in intuitive formats:

Heatmaps are widely used to visualize the importance of time steps or inter-

vals. They represent the contributions of input features across time in a color-coded

format, enabling practitioners to identify which temporal regions most influenced the

model’s predictions. Heatmaps are particularly effective in highlighting patterns in

high-dimensional time series data.

Boxplots provide a statistical summary of data, showcasing the distribution,

variability, and outliers within the importance scores. This method is useful for com-

paring how the influence of specific features or time windows varies across multiple

predictions, facilitating an understanding of model consistency.

Dimensionality reduction strategies such as PCA (Principal Component Anal-

ysis), t-SNE (t-Distributed Stochastic Neighbor Embedding), and UMAP (Uniform

Manifold Approximation and Projection) are employed to reduce the dimensionality of

time series data and visualize relationships between instances. PCA projects the data

into lower-dimensional linear spaces, while t-SNE and UMAP are non-linear techniques

that preserve local and global structures, respectively. In addition, clustering methods
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are used to group similar time series patterns together, making it possible to identify

common trends, outliers, or anomalies in the data. This clustering is beneficial for

exploring how the model behaves across different types of time series patterns.

Combining these methods allows domain specialists to acquire granular and

global insights about model behavior. Heatmaps and boxplots make temporal analysis

easier, while clustering approaches highlight overall structures and correlations in the

data. Together, these visualizations improve the interpretability of XAI approaches,

making them critical for verifying, debugging, and deploying time series classification

models in real-world settings.

2.5 Related Works
Although significant progress has been made in the evaluation of explanation methods,

much of the existing research has predominantly focused on the image domain. Efforts

to adapt and extend these evaluation frameworks to time series data are still emerging.

Studies such as SCHLEGEL et al. (2019), LOEFFLER et al. (2022), SERRAMAZZA et

al. (2023), BAER et al. (2025), and KNOF; BOERGER; TCHOLTCHEV (2024) represent

promising advances that address challenges specific to temporal data. Nonetheless,

significant gaps remain in the systematic adoption of comprehensive evaluation frame-

works that incorporate appropriate metrics tailored for the unique complexities of time

series Explainable Artificial Intelligence (XAI).

An overview of these studies, including the authors, explanation techniques,

evaluation metrics, datasets, models, and similarity measures, is summarized in Table

2.2. State-of-the-art research in XAI evaluation, despite its groundbreaking nature,

exhibits several limitations that our proposed UTS-XAI Framework seeks to overcome.

Current evaluation approaches often rely on a narrow set of metrics that may

not capture the full scope of interpretability or are not adequately adapted for time

series data. For instance, CEREKCI et al. quantitatively evaluates saliency methods for

mammogram analysis using primarily the Pointing Game Score, providing a valuable

but limited perspective. Similarly, ADEBAYO et al. and YEH et al. propose sanity
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Table 2.2 – Summarization of related works, which present the authors, the XAI methods
used in each study, the appropriate metrics for evaluating XAI, the datasets
and models, and finally the similarity metrics.

Author XAI Methods XAI Metrics Datasets Models Similarity Metrics

LOEFFLER et al. (2022)

GradCam
Guided GradCam
Gradient
Guided Backprop.
SmoothGrads
LRP
Kernel-SHAP
LIME
Int. Gradients
Random Baseline

Sanity
Faithfulness
Sensitivity
Robustness
Stability
Localization

GunPointAgeSpan
FordA
FordB
MelbournePedestrian
NATOPS
ElectricDevices

U-Time
bi-LSTM
FCN
TCN

SSIM
DTW

ADEBAYO et al. (2018)

Gradient
Gradient-SG
Gradient-Input
GradCAM
Guided BackProp
Guided GradCAM
Integrated Gradients
Integrated Gradients-SG

Sanity
ImageNet
Fashion MNIST
MNIST

Inception v3
CNN
MLP

Spearman rank corr. (abs/no-abs)
SSIM
Pearson corr.
HOGs corr.

YEH et al. (2019)

Smooth-Grad
Integrated Gradients
Guided Back-Propagation
KernelSHAP

Fidelity
Sensitivity

MNIST
Cifar-10
ImageNet

Linear SVM
Neural Network
Random Forest
Logistic Regression
CNN
ResNet

L2 norm

MELIS; JAAKKOLA (2018)

Saliency
Occlusion
LRP
Kernel-SHAP
LIME
Int. Gradients
Random Baseline

Robustness

UCI datasets (Glass, Wine, Ionosphere, Leukemia)
COMPAS
MNIST
ImageNet

Linear SVM
Neural Network
Random Forest
Logistic Regression
CNN
ResNet

Euclidean norm (L2)

SCHLEGEL et al. (2019)

Saliency
LRP
DeepLift
LIME
SHAP

Perturbation Analysis
Sequence Evaluation

FordA
FordB
ElectricDevices
MelbournePedestrian
ChlorineConcentration
Earthquakes
NonInvasiveFetalECGThorax1
NonInvasiveFetalECGThorax2
Strawberry
MIT-BIH Arrhythmia

CNN
RNN
ResNet-based (Paper Models)

Mean

CEREKCI et al. (2024)
Grad-CAM
Grad-CAM++
Eigen-CAM

Pointing Game Score Mammogram Dataset ResNet50 N/A

PAWLICKI et al. (2024)

Anchors
LIME
SHAP
Integrated Gradients

Faithfulness
Robustness
Localization
Complexity
Randomization
Axiomatic

CIC IoT 2023
CSE-CIC-IDS2018

Neural Network (PyTorch)
Random ForestClassifier
CartModel
Sequential (TensorFlow)

Pearson Correlation Coefficient
Spearman’s Rank Correlation Coefficient

HEDSTRÖM et al. (2023)

Saliency
Integrated Gradients
SmoothGrad
Guided Backpropagation
GradCAM
Guided-GradCAM
LRP
LIME
Kernel SHAP

Faithfulness
Robustness
Localization
Complexity
Randomization
Axiomatic

ImageNet
GunPoint
AgeSpan,
FordA,
FordB,
ElectricDevices,
Melbourne
Pedestrian,
NATOPS)

U-Time
bi-LSTM
Fully Convolutional Network (FCN)
Temporal Convolutional Network (TCN)

SSIM
Cosine Similarity
Dynamic Time Warping (DTW)

SCHLEGEL; KEIM (2023)

Saliency
Integrated Gradients
DeepLift
Occlusion
GradientShap
DeepLift Shap
KernelShap

Perturbation Analysis
Skewness of Attributions
Class Distributions
Number of Perturbed Values Needed

UCR benchmark datasets (FordA, FordB, ElectricDevices) CNN Euclidean Distance
Cosine Distance

SOKOL; VOGT (2024)

LIME
LIMEtree
Counterfactuals
Post-hoc methods
Ante-hoc methods
Attribution-based methods

Fidelity, Accuracy
Consistency, Comprehensibility
Correctness, Completeness
Continuity, Contrastivity
Covariate Complexity, Compactness
Compositionality, Confidence
Context, Coherence
Controllability, Informativeness
Acceptability, Usability
Task Performance, Trust
Correctability

N/A (conceptual paper) N/A (conceptual paper) N/A

SERRAMAZZA et al. (2023)

SHAP
dCAM
Ridge Classifier
Random

Precision
Recall
F1-score
PR-AUC
ROC-AUC
Explanation Power

Synthetic (Pseudo Periodic, Gaussian, Auto Regressive)
Real-world (Counter Movement Jump, Military Press)

ROCKET
dResNet
Ridge Classifier

N/A (Min-Max Normalization used)

BAER et al. (2025)
Gradients (GR)
Integrated Gradients (IG)
Feature Occlusion (FO)

Degradation Score (DS)
Normalized AUC-PR (AUC-PR’)

Synthetic Time Series (
Level shifts,
Gaussian pulses,
Sine waves,
Local trends,
Amplitude contrast,
Length contrast
)

ResNet
InceptionTime Spearman Correlation

DEMBINSKY et al. (2025)

Feature Attributions (FAs)
Concept Explanations (CEs)
Example Explanations (ExEs)
White-Box Surrogates (WBSs)
Natural Language Explanations (NLEs)

Parsimony
Plausibility
Coverage
Fidelity
Continuity
Consistency
Efficiency

N/A (conceptual paper) N/A (conceptual paper) N/A

KNOF; BOERGER; TCHOLTCHEV (2024) LRP
SHAP

Truthfulness Analysis (Accuracy Drop)
Stability Analysis (Frobenius-Norm)
Consistency Analysis (Top-k Agreement)

PTB-XL Benchmarking Dataset (ECG) CNN Frobenius-Norm

Our Work (UTS-XAI)

LIME TabularExplainer
SHAP Explainer
SHAP TreeExplainer
Gradient

Sanity
Faithfulness
Sensitivity
Robustness
Stability
Localization

MIT-BIH Arrhythmia
MIT-BIH Supraventricular
INCART 12-lead

DeepConvLSTM
FCN
XGBoost

MSE
MAE
RMSE
Variance
SSIM
DTW
Euclidean
Cosine
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checks and measures of (in)fidelity and sensitivity, but their experimental focus is

largely on image-centric datasets, limiting direct applicability to time series. MELIS;

JAAKKOLA introduces metrics to quantify the robustness of explanations based on

Lipschitz estimates, demonstrating instability in current methods, particularly for non-

temporal data.

Emerging efforts in time series XAI evaluation, such as SCHLEGEL et al. and LO-

EFFLER et al., begin to incorporate temporal dimensions. SCHLEGEL et al. introduces

new perturbation-based verification techniques for time series explanations, primarily

measuring accuracy drop. LOEFFLER et al. proposes a framework of six orthogonal

metrics (sanity, faithfulness, sensitivity, robustness, stability, and a novel localization

metric) specifically for visual interpretations on time series, using metrics like SSIM

and DTW to capture time-series specific qualities. However, these studies, while foun-

dational, do not always provide a unified and adaptable pipeline for comprehensive

evaluation across diverse models and explainers. SERRAMAZZA et al. evaluates SHAP

and dCAM for Multivariate Time Series Classification (MTSC), revealing that simple

adaptations of SHAP can outperform bespoke MTSC methods and highlighting the

inadequacy of some synthetic datasets. KNOF; BOERGER; TCHOLTCHEV proposes

a framework for MTSC with truthfulness, stability, and consistency analyses, demon-

strating trade-offs between XAI quality criteria for ECG data. BAER et al. investigates

class-dependent evaluation effects in time series attribution, finding contradictions

between perturbation-based and ground truth metrics.

Furthermore, while comprehensive overviews such as PAWLICKI et al. and

HEDSTRÖM et al. (Quantus) catalog numerous XAI metrics, and conceptual frame-

works from SOKOL; VOGT and DEMBINSKY et al. provide structured approaches,

they often do not delve into the specific adaptations and empirical validations required

for robust evaluation within the time series domain.

Our UTS-XAI Framework addresses these limitations by extending standard XAI

evaluation metrics (faithfulness, robustness, sensitivity, stability, localization, sanity)

to the temporal domain, and combining them with time series–specific similarity and

distance measures (e.g. MSE, DTW). Metrics such as DTW are advantageous for time
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series data, as they effectively capture sequence alignment, a fundamental aspect of

temporal dependency analysis, as highlighted by LOEFFLER et al. and SCHLEGEL;

KEIM. This multidimensional assessment provides a detailed and robust evaluation of

interpretability techniques in temporal contexts. Our evaluations span diverse model

architectures representing both deep learning methods and traditional boosting ap-

proaches. This provides comprehensive coverage across algorithmic paradigms and

demonstrates the adaptability of our framework to a wide range of applications and

architectures.

Current approaches often rely on image-centric datasets (e.g., ImageNet, Fashion

MNIST, MNIST, CIFAR-10) or generic UCI datasets, which limits the applicability of

their findings to the complex structure of real-world time series data. Some studies,

such as SCHLEGEL et al. and LOEFFLER et al., utilize UCR time series datasets, and

SERRAMAZZA et al. and BAER et al. use synthetic time series, the latter also notes

the limitations of such synthetic benchmarks for time series analysis. Our work distin-

guishes itself by employing real-world medical datasets directly relevant to healthcare

applications and underscore the practical significance of our contributions.

Our framework not only highlights the importance of XAI in healthcare but

also offers a blueprint for advancing explainability in other domains with temporal

data, paving the way for future research and practical applications. Our framework

stands out from existing works because of its integrated approach, which covers a broad

range of methods, metrics, models, and datasets. We address the limitations of current

methodologies and adapt our approach to the unique challenges of time series data.
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3

UTS-XAI — UNIFIED TIME SERIES

FRAMEWORK FOR EXPLAINABLE

ARTIFICIAL INTELLIGENCE

In this thesis, we propose the Unified Time Series Framework for Explainable Artificial

Intelligence (UTS-XAI), designed to enhance the evaluation and interpretability of time

series classification models that enable the user to (1) build, train and evaluate machine

learning models for time series domain, (2) understand the reasons behind model

decisions using different explainable IA method, and (3) evaluate explanations using

metrics specifics to explainable AI domain.

While the classification components largely follow conventional practices (BRA-

GANÇA et al., 2022), the novelty lies in embedding explainability directly into the

modeling cycle. UTS-XAI employs XAI techniques (e.g., SHAP or LIME) to interpret

model decisions and integrates a dedicated evaluation layer that goes beyond conven-

tional metrics such as accuracy and recall. This approach aims to meet the growing

demand for transparency and trust in time series applications.

3.1 UTS-XAI Overview
The proposed UTS-XAI framework integrates a traditional time series classification

pipeline with an advanced explainability layer, as illustrated in Figure 3.1. The classifi-
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UTS-XAI
Classification Pipeline

Processing 
/Segmentation

Data Model Creation Evaluation

• Accuracy
• Precision
• Recall
• F-Score

Validation 
Methodology

Dataset

Training data

Test data

Explainable Artificial Intelligence Pipeline

Explainable AI Reasoning Explainable AI Evaluation
ModelData

Explainer B

XAI Method

Explainer A

XAI Metrics

• Sanity
• Faithfulness
• Sensitivity
• Robustness
• Stability
• Localization

Visualization 
Tools

• Feature Scores
• Heatmaps
• Force Plots
• Clustering
• BoxPlots

Metrics

• MSE
• MAE
• RSME
• Euclidean
• Cosine
• DTW

Figure 3.1 – Unified Time Series Framework for Explainable Artificial Intelligence (UTS-
XAI). The UTS-XAI framework integrates a traditional time series classifica-
tion pipeline with an recent and advanced explainability pipeline. UTS-XAI
aims to enhance model interpretability and reliability in time series classifi-
cation.

cation pipeline encompasses standard steps such as data acquisition, preprocessing and

segmentation, model creation, validation methodology, and performance evaluation.

The explainability pipeline is composed of reasoning modules based on state-of-the-art

XAI methods, assessed by adapted evaluation metrics such as faithfulness and robustness,

and supported by visualization tools including heatmaps, boxplots, and our proposed

Global Interpretable Clustering (GIC).

3.2 The Classification Pipeline for Time Series Data
Figure 3.2 illustrates the UTS-XAI classification pipeline. The initial steps of this pipeline

were first introduced in (BRAGANÇA et al., 2022). The classification pipeline begins

with a data source, followed by a validation methodology to split the dataset into

training and test sets. The segmentation stage processes time series data to enhance

pattern recognition. During model creation, machine learning models are trained on

the segmented data. Finally, the evaluation stage evaluates the performance of the
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models using metrics such as accuracy, precision, recall, and F1-score. The details of this

pipeline are discussed in Chapter 2.

Classification Pipeline
Processing

/Segmentation
Data

Model Creation
/ Classification

Evaluation

• Accuracy
• Precision
• Recall
• F-Score

Validation 
Methodology

Dataset

Training data

Test data

Figure 3.2 – Overview of UTS-XAI classification pipeline.

In machine learning-based systems, achieving high classification accuracy is

important, but it is not sufficient on its own. Integrating an explainable AI pipeline after

the classification process is no longer optional, it is a necessity to provide transparency

and trust into model predictions. In the next section, we discuss the primary motivations

for integrating an Explainable AI pipeline into the classification workflow.

3.3 The Explainable AI Pipeline
Modern machine learning models, particularly deep learning, are frequently regarded

as "black boxes" because of their complex architectures. Although these models may

yield remarkable results, their weakness in interpretability may limit user trust and

acceptance. An XAI pipeline mitigates this issue by explaining the reasoning behind a

model’s decision, emphasizing the important input features that influenced the result.

At the core of our framework is an XAI pipeline. The pipeline employs an

explainable IA reasoning module, which interact with the machine learning models to

generate explanations via feature importance maps. The explanations lead to a better

understanding of the model, which in turn enables the diagnosis of model flaws and

suggest potential refinement strategies.

Figure 3.3 illustrates the UTS-XAI Explainable AI pipeline. This pipeline is built

upon the same dataset and trained model used in the classification process. The XAI

pipeline focuses on generating explanations for model predictions, assessing their
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quality, and presenting interpretable results to users. In the UTS-XAI framework, the

pipeline is divided into two components: Explainable AI Reasoning and Explainable AI

Evaluation.

Explainable Artificial Intelligence Pipeline

Explainable AI Reasoning Explainable AI Evaluation
ModelData

Explainer B

XAI  Method

Explainer A

XAI Metrics

• Sanity
• Faithfulness
• Sensitivity
• Robustness
• Stability
• Localization

Visualization 
Tools

• Feature Scores
• Heatmaps
• Force Plots
• Clustering
• BoxPlots

Metrics

• MSE
• MAE
• RSME
• Euclidean
• Cosine
• DTW

Figure 3.3 – Overview of our novel XAI evaluation methodology for time series classifi-
cation.

The Explainable AI Reasoning component focuses on generating explanations

for model predictions. This involves applying XAI methods, such as SHAP and LIME,

directly to trained models to uncover their decision-making processes. These methods

identify the time series segments most influential in determining the model’s output,

offering both global and local interpretability. By revealing which features or data

segments are most important to predictions, explainable AI reasoning bridges the gap

between complex machine learning models and human comprehension.

The Explainable AI Evaluation component introduces a formal mechanism to

assess the quality of the generated explanations. It employs qualitative and quantitative

metrics, such as faithfulness, robustness, sensitivity, and localization, to provide accurate

explanations and reflect the underlying model behavior.

Unlike traditional approaches that are based only on visual inspections, this step

uses rigorous criteria to evaluate the reliability and consistency of the explanations.

Additional performance metrics, including Mean Absolute Error (MAE), Root Mean

Squared Error (RMSE), Euclidean Distance, and Dynamic Time Warping (DTW), are

incorporated to align interpretability with model performance. In the next section, we

will present in more detail the XAI pipeline proposed in this research.
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3.4 Explainable AI Reasoning
The Explainable AI Reasoning component is dedicated to understanding how machine

learning models make decisions. Explainable AI methods are at the center of this

component as they improve model interpretability, assist in debugging by identifying

areas where the model may be misdirected, and reveal important features for specific

predictions. Feature importance maps visualizations act as a bridge, reducing the gap

between complex machine learning processes and human understanding.

The Figure 3.4 illustrates the workflow of our XAI evaluation pipeline for time

series classification. It begins with the raw time-series data retrieved from a database,

which is then segmented and fed into a trained model (e.g., neural network or XGBoost).

The model outputs a class probability vector, such as [0.9, 0.1], indicating its prediction.

A XAI explainer, represented here by SHAP, is then applied to compute importance

scores for each time step. These scores are visually overlaid as a heatmap on the original

signal, with darker hues highlighting intervals deemed more relevant to the model’s

decision. Finally, this importance map is quantitatively evaluated using several metrics

(see Section 4.2.3). We illustrate a real-world application of our pipeline in Figure 3.5.

Figure 3.5(a) overlays the feature-importance heatmap on the ECG waveform used

for arrhythmia detection, where darker shaded regions highlight intervals deemed

highly influential by the XAI method. Figure 3.5(b) displays the corresponding impor-

tance scores as a standalone time series, making it easier to track temporal attribution

dynamics across the heart cycle.

The feature importance values can be derived through various explainable AI

techniques, each offering distinct perspectives on how input features influence model

predictions. In our framework, we employ three XAI methods that employ a different

underlying mechanism and may produce different results, as shown in Figure 3.6.

We present more details about saliency maps, Local Interpretable Model-Agnostic

Explanations (LIME) and SHapley Additive exPlanations (SHAP) in the following

sections.
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SHAP

[0.9, 0.1]

CLASS A

Figure 3.4 – XAI workflow: the time-series data is fed into a trained model. A XAI
explainer is then applied to compute importance scores for each time step.
These scores are visually overlaid as a heatmap on the original signal, with
darker hues highlighting intervals deemed more relevant to the model’s
decision.
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(a) Overlay of the feature-importance heatmap
on the ECG signal.
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Figure 3.5 – (a) ECG signal (blue curve) with an overlaid feature-importance heatmap
(red shades), indicating saliency levels at each time step. (b) Time series
plot of importance scores derived from the XAI explainer for the same ECG
segment, allowing precise inspection of attribution fluctuations.

3.4.1 Saliency Maps

Saliency methods are a popular class of methods designed to visualize and interpret the

internal workings of convolutional neural networks, including the generation of saliency

maps (SIMONYAN; VEDALDI; ZISSERMAN, 2013). It has been widely adopted and

extended, and variations of saliency maps have become a standard interpretability tool

in numerous domains beyond image data, including time series and natural language

processing. The saliency maps algorithm’s core lies in the calculation of gradients.

These gradients, which relate to the loss in relation to the input tensor, reveal how

modifications to each input value could impact the loss. This is an important observation

for determining the input regions that are of utmost importance for model decision-

making process.
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(a) Local Interpretable Model-Agnostic Explanations (LIME)

(b) SHapley Additive exPlanations (SHAP)

(c) Saliency Map

Figure 3.6 – Comparison of XAI methods LIME, SHAP, and Saliency for the same in-
stance and model.

The Algorithm 3.1 is specifically designed for generating saliency maps. The cen-

tral component of this process is the GradientTape mechanism (TensorFlow framework),

which precisely logs operations to enable automatic differentiation. Observing input, the

algorithm prepares to compute gradients with respect to the input of the model. When

the input tensor is given to the model, a prediction is generated in inference mode. This

means that layers such as dropout or batch normalization are implemented consistently

during model evaluation rather than training. After making a prediction, the algorithm

calculates the loss by comparing the actual labels with the model’s predictions using

categorical cross-entropy.

Algorithm 3.1 Saliency Map basic algorithm

1: procedure GENERATESALIENCYMAP(model, input, true_label)
2: Initialize GradientTape as tape
3: tape.watch(input_tensor)
4: prediction← model(input, training = False)
5: loss← categorical_crossentropy(true_label, prediction)
6: gradients← tape.gradient(loss, input)
7: saliency_map← reduce_max(abs(gradients))
8: return saliency_map
9: end procedure

When creating the saliency map, the algorithm goes beyond and calculates the
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absolute values of these gradients. This guarantees that both positive and negative

influences are taken into account equally. The map is enhanced by isolating the highest

gradient value across the channels for each input value.

3.4.2 Local Interpretable Model-agnostic Explanations (LIME)

The Local Interpretable Model-Agnostic Explanations (LIME) (RIBEIRO; SINGH;

GUESTRIN, 2016a) is a Explainabe AI technique designed to interpret complex models

by explaining predictions for individual instances. It achieves this by approximating

the behavior of a model locally around a specific data point using a simpler surrogate

model.

The Algorithm 3.2 presents a procedure for generating explanations using LIME

algorithm. The approach consists of two primary functions: one to create a LIME

explainer and another to generate feature importance for a given instance.

Algorithm 3.2 LIME Explanation for Time Series Data

1: procedure LIME_EXPLANATION(data, model, input_data)
2: explainer ← GETLIMEEXPLAINER(data)
3: feature_importance ← GETLIMEFEATUREIMPORTANCE(explainer, model, in-

put_data)
4: return explainer, feature_importance
5: end procedure
6: procedure GETLIMEEXPLAINER(data)
7: explainer ← LimeTabularExplainer(training_data)
8: return explainer
9: end procedure

10: procedure GETLIMEFEATUREIMPORTANCE(explainer, model, input_data)
11: feature_importance← explainer.explain_instance(

input_data, model, num_features)
12: return feature_importance
13: end procedure

The first function, GetLimeExplainer, initializes a LIME Tabular Explainer. Dur-

ing initialization, the system generates feature names for each time step, capturing the

sequential nature of time series data. The second function, GetLimeFeatureImportance,

acts as a bridge between the theoretical model predictions and practical explanations.

The LIME explainer generates explanations for predictions made on a given time series
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input. This process involves performing a analysis in which the explainer utilizes a

surrogate model specific to the local area to estimate the behavior of the complex under-

lying model near the input instance. The outcome is a set of feature importances that

highlight points that exerted the most significant influence on the model’s prediction.

3.4.3 SHapley Additive exPlanations

The Algorithm 3.3 shows a systematic approach for utilizing SHAP (SHapley Additive

exPlanations) (LUNDBERG; LEE, 2017) to interpret the predictions generated by a

machine learning model. The essence of this algorithm lies in its two main components:

the creation of a SHAP explainer and the computation of SHAP values to explain the

feature importances.

Algorithm 3.3 SHAP Explainer

1: procedure SHAP_EXPLANATION(model, data, input_data)
2: explainer ← GETSHAPEXPLAINER(model, data)
3: shap_values← GETFEATUREIMPORTANCE(explainer, input_data)
4: return explainer, shap_values
5: end procedure
6: procedure GETSHAPEXPLAINER(model, data)
7: explainer ← shap.Explainer(model, shap.sample(data, 100))
8: return explainer
9: end procedure

10: procedure GETFEATUREIMPORTANCE(explainer, input_data)
11: shap_values← explainer.shap_values(input_data)
12: return shap_values
13: end procedure

The process of Algorithm 3.3 begins with the GetShapExplainer function, which

aims to create a SHAP explainer object tailored to the specific model and dataset being

analyzed. This is achieved by utilizing the Explainer class from the SHAP library. The

explainer requires two inputs: the model’s prediction function and a subset of the

input data obtained through sampling. The sampling process, indicated by the code

shap.sample(data, 100), selects a representative subset of the entire dataset to facilitate

the computation of SHAP values. Due to the significant computational complexity

associated with calculating accurate SHAP values for the entire dataset, this step is



Chapter 3. UTS-XAI — Unified Time Series Framework for Explainable Artificial Intelligence 73

extremely important.

After initializing the SHAP explainer, the GetFeatureImportance function com-

putes the SHAP values for a particular input instance. These values quantify the in-

fluence that each feature in the input data has on the model’s prediction, providing a

evaluation of the significance of each feature. The calculation of SHAP values is not

merely an estimation based on statistics or heuristics, but rather relies on the rigorous

principle of Shapley values in cooperative game theory.

3.4.4 Feature Importance Normalization

Normalization is another important step applied to any XAI method to standardize

the importance values across different explanations. It allows results from various

models or methods to be comparable by rescaling the importance scores to a consistent

range (e.g., ranging from 0 to 1). This process eliminates differences in scale that could

otherwise affect the interpretability and analysis of the results.

The Algorithm 3.4 illustrates its application specifically for saliency maps. It

begins by identifying the minimum and maximum values within the importance map,

denoted as min_val and max_val, respectively. These values represent the lowest and

highest intensities present in the importance map. The normalization process then

adjusts each value in the importance map by subtracting the minimum value and

dividing by the range, which is the difference between the maximum and minimum

values.

Algorithm 3.4 Feature Importance Normalization

1: procedure NORMSALIENCYMAP(importance_map)
2: min_val← np.min(importance_map)
3: max_val← np.max(importance_map)
4: normalized_map← importance_map−min_val

max_val−min_val
5: return normalized_map
6: end procedure

This operation effectively rescales the entire importance map so that the smallest

value becomes 0 and the largest value becomes 1, with all other values proportionally

adjusted within this range.
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3.5 Explainable AI Evaluation
The Explainable AI Evaluation component is a fundamental extension of the Explainable

AI Reasoning pipeline, designed to quantitatively assess the effectiveness and reliability

of XAI methods. Its primary objective is to validate whether the explanations provided

by XAI techniques accurately reflect the model’s decision-making process, remain stable

under varying conditions.

A key motivation for this evaluation process is the growing need for reliable

interpretability in high-stakes AI applications, such as medical diagnostics, financial

forecasting, and industrial monitoring, where incorrect or misleading explanations can

have severe consequences. Without proper evaluation, XAI methods may produce seem-

ingly valid explanations that fail under scrutiny, leading to potential misinterpretations

and reduced trust in AI systems.

The Explainable AI Evaluation component is structured into two key categories

of metrics, each serving a distinct role in assessing model explainability:

1. Explainable AI-specific metrics: these metrics are specifically designed to assess the

quality and effectiveness of XAI-generated explanations. They evaluate whether

the explanations.

• Provide meaningful feature attributions that differ from random noise (Sanity

Checks).

• Faithfully reflect the model’s internal reasoning (Faithfulness).

• Remain stable and consistent across similar inputs (Stability).

• React appropriately to changes in class distributions (Sensitivity).

• Are resistant to adversarial perturbations or noisy inputs (Robustness).

• Aligning importance maps with relevant regions (Localization).

2. General metrics for explanation comparison: in addition to XAI-specific metrics,

the evaluation framework incorporates standard quantitative metrics to compare

model predictions and feature importance maps. We present a short detail as

follows.
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• Classification metrics (Accuracy, Precision, Recall, F1-Score, AUC-ROC): used

to verify whether explanations align with the model’s predictive perfor-

mance.

• Similarity metrics (Cosine Similarity, Structural Similarity Index (SSIM)):

measure how similar the feature importance maps are across different XAI

methods or input perturbations.

• Distance metrics (Mean Squared Error (MSE), Mean Absolute Error (MAE),

Root Mean Squared Error (RMSE), Euclidean Distance, Dynamic Time Warp-

ing (DTW)): quantify differences between explanations by measuring the

distance between feature importance scores, ensuring that perturbation-based

evaluations produce meaningful deviations in model predictions.

We present in Table 3.1 an overview of several evaluation metrics used to mea-

sure similarity and distance across importance maps, that are particularly relevant

for time-series data analysis. It includes traditional error metrics such as MSE, MAE,

and RMSE, each accompanied by their mathematical formulas. For these error metrics,

higher values indicate greater prediction errors and, consequently, poorer model perfor-

mance, while lower values suggest that the model’s predictions are closer to the actual

values, reflecting higher accuracy.

Table 3.1 – Summary of similarity and distance metrics used to compare importance
maps.

Metric Formula High Values Indicate Low Values Indicate

MSE 1
n

∑n
i=1(yi − ŷi)

2 Large errors in predictions, low accuracy. Better model performance,
small prediction errors.

MAE 1
n

∑n
i=1 |yi − ŷi|

Poor model performance
with large deviations.

Accurate predictions,
minimal deviation from actual values.

RMSE
√

1
n

∑n
i=1(yi − ŷi)2 Higher overall prediction errors. Better predictions,

smaller errors.

Euclidean
Distance

√∑n
i=1(xi − yi)2 Dissimilarity between two data points. High similarity or

closeness between data points.

Cosine
Similarity

A⃗·B⃗
||A⃗||×||B⃗||

High similarity (closer to 1). Low similarity
(closer to 0 or -1).

DTW
(Dynamic Time Warping) min

π∈Π

√ ∑
(i,j)∈π

(xi − yj)2
Greater dissimilarity between
time series sequences.

Higher similarity in shape and
timing between sequences.

In addition, Table 3.1 presents similarity measures such as Euclidean distance

and cosine similarity. The Euclidean distance quantifies the direct dissimilarity between
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two data points, with lower values indicating a closer resemblance, whereas cosine

similarity assesses the angular similarity between vectors, where values closer to one

denote high similarity. Furthermore, the table includes Dynamic Time Warping (DTW),

a metric specifically designed for time series data. DTW is useful for aligning sequences

that may vary in time or speed; here, higher DTW values indicate greater dissimilarity

between sequences, while lower values suggest that the sequences are well aligned and

similar in shape and timing. These metrics can be used to assess different aspects of

the explanations. For example, error-based metrics can be used to measure the overall

deviation between importance maps produced by different methods or under varying

conditions.

3.5.1 Explainable AI-Specific Metrics for Interpretability

In this section, we present the metrics used by the UTS-XAI framework to evaluate the

results of the interpretation methods. The evaluation metrics in XAI, such as sanity, faith-

fulness, sensitivity, robustness, stability, and localization, help bridge the gap between

the opaque decision-making processes of complex models and human interpretability.

The combination of these metrics improves transparency, aids in debugging and refining

models, and ultimately contributes to the ethical deployment of AI systems in critical

applications. In the following sections, we explore each metric in detail.

3.5.1.1 Sanity

When interpreting ML models, it is essential to verify that the generated explanations

(e.g., feature importance maps) truly depend on the parameters learned from the model

and are not simply products of the model’s architecture or other artifacts. To this end,

we improve and incorporate the sanity metric in our framework based on random

labeling to confirm whether an explanation accurately reflects the internal reasoning of

the model and are not mere artifacts of the model architecture. Specifically, we train two

versions of the same model architecture: one on the correctly labeled dataset and another
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on a dataset in which the labels have been randomly shuffled. If the explanation method

genuinely relies on the learned data-label relationships, the resulting importance maps

should differ substantially between these two models.

As shown in Figure 3.7, the sanity workflow begins by (1) training a model on

a data set that retains its original correctly assigned labels. Once this model is fully

trained, an explanation method is applied to the test set, often in the form of importance

maps, and is applied to the test set, generating a baseline reference for comparison.

The original training labels are then randomly shuffled (2), and an identical model

architecture is retrained on this permuted dataset. Since the shuffled labels bear no

meaningful relationship to the underlying features, this second model should not learn

any substantive patterns. The same explanation technique is then applied to this new

model, resulting in an additional set of saliency maps or feature-importance measures.

Sanity

Calculate
Similarity

Dataset Explanations

Dataset with
Random Labels

ExplanationsModel

Model

MSE

MAE

RMSE

COSINE

EUCLIDEAN 
DISTANCE

Visualization

1

2

3 4

Figure 3.7 – Overview of the sanity metric workflow. A model is first trained on the
correctly labeled dataset and used to generate a baseline saliency (or feature-
importance) map. Next, the same model architecture is retrained on a
randomly labeled dataset, and a second saliency map is produced. Finally,
the two saliency maps are compared using similarity or distance metrics
to determine whether the explanation method is genuinely sensitive to
learned model parameters.

The final step involves a (3) quantitative comparison of the two sets of explana-

tions using similarity or distance metrics and visualizing using a suitable tool (4). If

the explanation method truly captures how the model learned parameters relate to the

features, the importance maps for the correctly labeled model and the randomly labeled

model should diverge. Conversely, if the explanations remain similar, it implies that
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the method may be insensitive to the actual parameters learned by the model, failing

the’sanity’ criterion.

The data randomization test is the cornerstone of the sanity metric. Assesses the

dependency of importance maps on the relationship between the data and labels by

comparing saliency maps generated from a) a model trained with the original, correctly

labeled dataset; b) a model trained with a dataset where the labels have been randomly

permuted. A reliable saliency map method should produce markedly different maps for

the two scenarios. If the maps remain similar despite randomization, this indicates that

the explanation method is insensitive to the learned model parameters, undermining

its utility for tasks such as debugging and interpretation.

3.5.1.2 Faithfulness

The faithfulness metric is used to evaluates whether the features identified as ’highly

important’ truly drive the predictions of the model. In other words, if an explanation

highlights certain features, modifying or removing them should cause the model output

to shift in a predictable way. Conversely, altering features marked as irrelevant should

minimally affect the final prediction. By quantifying how the model responds when im-

portant features are ablated, we can assess whether the explanation genuinely captures

the underlying mechanisms that drive the model’s decisions.

We present one way to assess the faithfulness, as shown in Figure 3.8, which

compares the original model predictions with those obtained under highly important

feature perturbations.

First, baseline predictions are obtained by running the trained model on the un-

changed dataset, and the corresponding explanations are generated (e.g., SHAP). These

explanations serve as a starting reference point for evaluating whether the identified

’important’ features truly influence the model’s output. Next, we test the faithfulness by

systematically ablate important features in the input data and then evaluate the effect on

the model predictions. Feature ablation zeros out or removes only the features identified

as most important. If ablating these supposedly key features triggers a substantial drop
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Figure 3.8 – Faithfulness evaluation workflow. Baseline explanations and predictions
are first generated for the unaltered input data. Feature ablation in high
influential features are then applied to create modified inputs, which the
model processes to yield updated predictions. Finally, classification, simi-
larity and distance metrics can be used to compare the altered outputs to
the original baseline, revealing whether the explanation accurately reflects
the model’s true decision-making process.

in the model performance or leads to significant prediction changes, it supports the

conclusion that the explanation has successfully captured the features that truly drive

the model’s decisions.

Once the perturbed inputs (high-influence features) are prepared, they are fed

through the same trained model to produce new predictions. These altered predictions

are then compared against the original baseline using a variety of similarity or distance

metrics. Classification metrics (e.g. accuracy and recall) quantify changes in predictions,

similarity metrics (e.g. MSE, MAE, RMSE) help quantify changes in the magnitude of

predictions, whereas metrics such as cosine similarity or euclidean distance capture

how the direction or spatial relationship of the output vector is altered.

Large deviations in predictions under ablation of high-importance features

would indicate that the explanation correctly identified critical components of the input,

i.e. removing them has a strong impact. Conversely, smaller or negligible changes

when perturbing supposedly unimportant features would reinforce the reliability of the

explanation. Repeating this procedure with different perturbation intensities can further

demonstrate the robustness of the model, revealing whether it remains consistent or

breaks down under certain conditions.
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The faithfulness metric is of great value when assessing the interpretability of

machine learning models. A model that consistently demonstrates minimal variation in

predictions despite substantial alterations to important input features may be regarded

as less interpretable, as it implies that the model’s predictions are not strongly linked to

the features identified as significant. However, a model that is greatly affected by these

changes can be seen as more understandable, as it suggests a more distinct connection

between the identified features and the model’s predictions.

3.5.1.3 Sensitivity

We also include the sensitivity metric in our UTS-XAI framework because it provides

a unique perspective on model interpretability by assessing how a model adjusts in

response to variations between classes and individual samples. A model needs to

identify relevant features for each of the classes to make a correct prediction. Essentially,

a sensitive model not only distinguishes between different classes but also can tailors

its explanations at a per-sample level, capturing the subtle distinctions that give each

input its unique characteristics.

We present the sensitivity workflow in Figure 3.9. The class-level sensitivity

workflow begins with a trained model and a dataset subdivided by class labels. For

each class, feature-importance maps are produced, which capture how the model ’sees’

and weighs the relevant features of the input samples. These maps are then aggregated

on a per-class basis, providing a view of how the model attends to features for that

specific class. Next, a variance is calculated for the importance maps within each class.

These variances can be aggregated (e.g., via averaging) across all classes to yield an

overall sensitivity score.

A higher variance means that the model’s explanations diverge more when

class labels change, implying that the model adapts its focus and highlights different

important features for different classes. Consequently, class-level sensitivity offers a

straightforward yet powerful means of determining whether a model truly distinguishes

among various classes, rather than applying a uniform explanatory pattern across
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Figure 3.9 – A step-by-step representation of the sensitivity workflow. Importance maps
are generated for each class, grouped accordingly, and their variance is
computed to determine how the model’s focus shifts in response to different
class labels. A larger variance indicates that the model is more sensitive to
the distinctive features associated with each class.

different segments of the dataset.

3.5.1.4 Robustness

The robustness metric evaluates the reliability of interpretability methods against ad-

versarial perturbations. This approach focuses on understanding how small deliberate

changes in input data impact the generated explanations. A robust interpretability

method will produce consistent importance maps even when the input is slightly

modified, indicating that the model’s explanation is not easily disrupted.

The Figure 3.10 illustrates a step-by-step process for assessing the robustness of

model explanations when inputs are perturbed. First, the original dataset is fed into a

trained model, which outputs both predictions and corresponding explanation maps

(highlighted bars or regions that indicate feature importance). Next, a perturbed version

of the dataset is created by adding targeted noise or masking, this represents the adver-

sarial component designed to minimally alter the input while potentially misleading

the model. The same model is then applied to the perturbed inputs, producing a new

set of explanations. Finally, the original and perturbed explanations are compared using

various metrics, such as MSE, MAE, RMSE, cosine similarity, or Euclidean distance, to

quantify how similar or different they are. By visualizing these metrics and any changes

in the explanation maps we can measure whether minor input changes can substantially

alter the explanations.
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Figure 3.10 – Illustration of a robustness evaluation. The top row shows the baseline pro-
cess: data fed into a trained model to generate explanations (highlighted
regions). In the bottom row, adversarial or noise-based perturbations are
applied to the data before generating new explanations. The two sets of
explanations are then compared using similarity or distance metrics (MSE,
MAE, RMSE, cosine, etc.) and visualized to assess how stable (i.e., robust)
the explanations remain under perturbation.

3.5.1.5 Stability

Stability refers to the consistency of importance maps in assigning similar relevance

scores to analogous features across different instances of the same class. This prop-

erty ensures that the interpretability method remains dependable, offering consistent

explanations regardless of variations in models or repeated computations.

The stability metric workflow, shown in Figure 3.11, starts by preparing a dataset

and selecting multiple model architectures (e.g. neural networks), to cover a wide range

of learning approaches. Each architecture is trained multiple times, often using different

hyperparameter settings or random seeds, resulting in multiple runs Once training is

complete, an XAI method (e.g., SHAP) is applied to a consistent subset of test samples,

producing saliency or feature importance maps for every model run. These maps are

then compared pairwise using similarity or distance metrics. The goal is to measure

how consistently the explanations align across different instances of training or model

configurations.

Finally, these pairwise comparisons are aggregated into a single stability metric

that captures the degree of variation in the explanations over runs. If explanations
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remain largely similar, reflected by small distances or high similarity scores, a high

stability rating is assigned, indicating that the interpretability method provides stable

results. If, however, explanations differ substantially among models with minor training

variations, one concludes that the method (or the underlying model) may be less reliable

for interpretability purposes.
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Figure 3.11 – Overview of the Stability Workflow. Multiple machine learning models
(or different runs of the same model architecture) are trained with varying
seeds, hyperparameters, or data splits. For each model instance, impor-
tance maps are generated, and distance or similarity metrics are computed
among these maps to yield an overall stability score. A higher stability
score suggests more consistent and reliable explanations.

3.5.1.6 Localization

Localization evaluates whether model explanations, typically feature-importance maps,

accurately highlight the segments of input data most relevant to the task. In the context

of time-series tasks, this means that the importance maps should accurately highlight

features within or near the relevant segments of the time-series data. By directly compar-

ing the model’s saliency maps to expert-annotated regions, the localization metric sheds

light on possible shortcomings. For example, if a model frequently flags irrelevant input

segments, it may rely on spurious correlations instead of meaningful patterns. Likewise,

a model that highlights accurate time periods in a scattered or unstable manner raises

concerns about reliability.

The temporal location of class-specific features that are highly relevant in a time
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series should naturally be located within or near its designated segment, which is a

temporal subsequence, as shown in Figure 3.12. The relevant segments are often defined

by domain-specific knowledge, represent the portions of the input most relevant to the

task.
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Time Series Index
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2.5
True Labels: ['N' 'V' 'V' 'N'] - Relevant Segments: [(34, 64), (64, 118)]

Input Series Relevant Segments Significant Saliency

Figure 3.12 – Localization of importance maps align with relevant segments.

We present our localization workflow in Figure 3.13. Domain experts first anno-

tate the data, often time series samples, with specific intervals where relevant features

are known to reside. In our context, arrhythmia and normal heartbeats. These serve

as ground-truth references for later comparisons. Once the model is trained on this

annotated dataset, feature importance maps are produced for each test instance. By

applying a threshold to binarize these maps, one can easily compare the ’highlighted’

regions to the annotated intervals, thus measuring the correctness of the saliency over-

lap. The second measure, temporal coherence, captures whether these highlighted time

steps form continuous, sensible sequences rather than scattered points. Combining

the segment analysis score and the temporal coherence score into a single localization

metric provides a holistic sense of how effectively the interpretability method pinpoints

pertinent features in the data. Higher scores signal explanations that align both cor-

rectly with relevant segments and maintain consistency in contiguous time spans, two

hallmarks of effective localization.

3.6 Tools for Explainable AI Visualization
Explainable AI tools offer a variety of visualization techniques to make the decision-

making process of machine learning models more transparent. These tools allow us

to interpret model predictions by highlighting feature importance, analyzing data

distributions, and identifying patterns in decision logic. In this work, we use most
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Figure 3.13 – Overview of the Localization Metric Workflow. The process begins with
domain experts annotating the relevant segments within the input data. A
trained model then generates importance maps for each input instance,
which are compared against these known segments.
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Figure 3.14 – Visualization tools

• Heatmaps are one of the most popular tools for visualizing feature importance,

particularly in image-based tabular data and time series data. In the context of

XAI, heatmaps overlay a color gradient on the input data to highlight the regions

or features most influential in the model’s prediction. For instance, in image

classification tasks, heatmaps can pinpoint areas of the image that contribute

significantly to the predicted label. In time series data, heatmaps can illustrate

the relative importance of features across multiple data points. The intuitive color

gradients make heatmaps particularly useful for identifying areas of focus in

complex models.

• Cluster visualizations are used to group similar data points based on their feature

values or model outputs, often using techniques like t-SNE (t-Distributed Stochas-

tic Neighbor Embedding) or UMAP (Uniform Manifold Approximation and Pro-

jection). In XAI, clusters help to identify patterns in data or explain model behavior

by grouping samples with similar predictions or feature contributions. For exam-
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ple, a clustering analysis may reveal that a model treats certain groups of samples

similarly, shedding light on potential biases or decision patterns. Visualizing these

clusters can help to understand the model performance on subpopulations or

identifying outliers.

• Boxplots are statistical charts that summarize the distribution of a feature’s impact

across a dataset. In XAI, boxplots are used to compare the distribution of feature

importance maps for different features. They provide a quick way to visualize the

median, quartiles, and outliers of feature contributions, allowing practitioners to

understand the variability and central tendency of feature impacts. For example,

a narrow boxplot with minimal outliers suggests that a feature has a consistent

influence across the dataset, while a wide boxplot with many outliers indicates

variability in its impact.

• Barplots are simple yet effective tools for comparing the relative importance

of features. In XAI, barplots are often used to display the average of feature

importance maps for a set of features, ranked in descending order. Each bar’s

length corresponds to the average magnitude of the feature’s contribution to the

predictions. Barplots are particularly useful for providing a global view of feature

importance, helping users quickly identify the most influential features across the

entire dataset.

3.6.1 Global Interpretable Clustering

In this thesis, we introduce Global Interpretable Clustering (GIC), a new qualitative ap-

proach to evaluate the consistency and reliability of explainability methods (e.g. SHAP,

LIME) when applied to machine learning models, particularly in the context of time

series classification.

As shown in Figure 3.15, the GIC method begins by computing feature-importance

maps for each instance in the dataset using one or more explainability methods. Be-

cause these importance maps can be high-dimensional, GIC then applies dimensionality

reduction algorithms such as Principal Component Analysis (PCA), t-distributed Stochastic
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Neighbor Embedding (t-SNE), or Uniform Manifold Approximation and Projection (UMAP).

This transformation preserves the relative relationships between instances while sim-

plifying visual analysis and subsequent clustering. An example of GIC visualization is

shown in Figure 3.16.

Global Interpretable Clustering
ModelData

Explainer B

Explainer

Explainer A

Clustering

Figure 3.15 – Feature importance values generated by different explainers (e.g., SHAP,
LIME) are clustered using dimensionality reduction techniques such as
PCA, t-SNE, and UMAP. The resulting clusters shown consistency and
coherence across different explainers, revealing patterns in how each
method captures significant relationships within the data.

UMAP TSNE PCA 

Labels

abnormal

normal

Figure 3.16 – Global Interpretable Clustering method using diferent clustering stratagies
such as UMAP, TSNE and PCA.

Algorithm 3.5 outlines the GIC workflow. systematically integrates feature im-

portance computation, dimensionality reduction and visualization, providing a way

to assess how well each explainer captures the underlying decision-making process of

the model. By comparing the clusters formed by different reduction techniques (PCA,

t-SNE, UMAP) and explainers, one can gauge the consistency of the explanations and

identify patterns indicating where certain explainers may excel or underperform.
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Algorithm 3.5 Global Interpretable Clustering algorithm

Require: Model M , Data D, Explainability Method E
Ensure: Clusters of feature importance for comparison

1: Step 1: Compute Feature Importance
2: for each instance di ∈ D do
3: Apply E to M and di
4: Compute feature importance FIi ∈ Rk

5: end for
6: Step 2: Collect Feature Importance Scores
7: Create feature importance matrix F ∈ Rm×k, where m is the number of data in-

stances, and k is the number of features.
8: Step 3: Dimensionality Reduction
9: Apply PCA, t-SNE, or UMAP to reduce the dimensionality of F

10: Let Freduced ∈ Rm×d represent the reduced feature importance matrix (d is the re-
duced dimension)

11: Step 4: Clustering
12: Apply clustering algorithm (e.g., K-means) on Freduced

13: Let C = {C1, C2, . . . , Cp} be the resulting clusters
14: Step 5: Visualization and Analysis
15: Visualize clusters using scatter plots for each reduction technique
16: Analyze the consistency of feature importance patterns across clusters

Algorithm 3.5 begins by computing feature importance maps for each instance

in the dataset using an explainability methods. For each data instance, explainers like

SHAP or LIME are applied to the trained model, producing a feature importance map

that highlights which elements of the input data most influence the model’s prediction.

This step results in a collection of feature importance maps for each instance.

Given the high-dimensional nature of the feature importance data, the next step

involves applying dimensionality reduction techniques such as Principal Component

Analysis (PCA), t-distributed Stochastic Neighbor Embedding (t-SNE), and Uniform

Manifold Approximation and Projection (UMAP). These techniques are used to reduce

the feature importance matrix into a lower-dimensional space, enabling easier analysis

while preserving the relationships between instances. The output of this step is a

reduced feature importance matrix, where each row corresponds to an instance, but

with fewer dimensions, making it more suitable for clustering and visualization.

In the clustering step, a clustering algorithm (e.g., K-means) can be applied to

the reduced feature importance matrix to group instances into clusters based on the

similarity of their feature importance patterns. Each cluster represents a set of instances
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for which the explainability methods yield similar importance values, thus highlighting

areas where explainers align or diverge in their interpretations. This clustering step

enables the qualitative assessment of how consistent the explainers are in identifying

the key features across multiple instances.

Once clustering is completed, the next step involves visualization and analysis

of the results. The clusters are visualized using scatter plots corresponding to each di-

mensionality reduction technique (PCA, t-SNE, UMAP), allowing comparisons between

the clusters. These visualizations allows to compare the consistency and stability of

the explanations generated by different methods. We can analyze the groupings to see

whether the same patterns are captured across different explainers, or whether certain

explainers tend to deviate from others in how they assign feature importance.

This type of qualitative assessment of XAI methods has not been thoroughly

explored in prior research. By clustering and visualizing feature importance maps, this

thesis provides a new dimension to XAI evaluation, offering a tool for community

to better understand how different interpretable methods compare in capturing the

significant features of the data. Moreover, it enables the detection of patterns in how

feature importance varies across methods, instances, and models, thus advancing the

field’s understanding of the behavior of interpretable AI techniques.

3.7 Discussion and Advantages of a UTS-XAI
Adopting multiple interpretability metrics in a time-series context—namely, sanity,

sensitivity, robustness, faithfulness, stability, and localization—offers a well-rounded

picture of how effectively and reliably a model’s explanations capture its decision-

making process. Each metric targets a distinct aspect of explanation quality, and when

considered together, they highlight different strengths and vulnerabilities in the model’s

explanatory outputs.

From the outset, faithfulness confirms whether explanations truly mirror the

model’s internal logic. If the model claims certain features are critical, altering those

features should significantly impact its predictions. Meanwhile, sanity assures us that
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the explanations do indeed depend on the model’s learned parameters: if randomizing

the labels barely changes the saliency maps, it suggests the explanation method may

not be reflecting anything substantial about the learned weights. The sensitivity metric

then delves into whether the explanation adapts granularly both to different classes and

to individual samples, exposing the model’s capacity to capture fine-grained patterns

rather than offering a generic explanation for all inputs.

Alongside sensitivity, robustness evaluates how much the explanation shifts

when small, often adversarial perturbations are introduced into the input. A robust

explanation should remain stable for minor variations that do not meaningfully affect

the model’s overall reasoning. At the training or configuration level, stability checks if

explanations hold steady across different runs—varying random seeds, initializations,

or hyperparameters. This prevents over-reliance on a single training artifact and under-

scores whether the explanation is rooted in the data rather than in happenstance training

conditions. Finally, localization verifies if the explanation pinpoints the correct temporal

(or spatial) segments known to be important, ensuring that highlighted intervals align

with domain-specific knowledge or labeled segments.

By synthesizing these six metrics into a unified framework, practitioners can

diagnose an interpretability method’s adequacy from multiple vantage points. For

example, a model might score high on faithfulness yet exhibit low robustness, meaning

it genuinely captures relevant features but is highly susceptible to small input tweaks.

Conversely, a stable model with strong localization might fail the sanity check if its expla-

nations hardly change even when the labels are randomized. Using all metrics in tandem

illuminates such discrepancies, allowing data scientists to pinpoint shortcomings and

refine both the model and the interpretability technique. In turn, stakeholders—be they

clinicians, financial analysts, or industrial engineers—gain increased confidence that

the time-series explanations are not only faithful and robust but also stable, sensitive,

and properly localized where it matters most.
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4

EXPERIMENTS AND RESULTS

In this chapter, we introduce the experimental protocol and present the results obtained

from applying our Unified Time-Series Explainable Artificial Intelligence (UTS-XAI)

framework. We begin with experimental protocol by describing the selected datasets,

outlining the preprocessing steps, and detailing the model training configurations,

thereby providing a robust, reproducible evaluation process. Next, we introduce a com-

prehensive set of evaluation scenarios, each specifically designed to examine different

aspects of the UTS-XAI framework, ranging from predictive accuracy to interpretability

robustness. Subsequently, we discuss the experimental results and provide an analysis

of UTS-XAI’s strengths and limitations. By comparing the framework’s performance

across varied scenarios and highlighting the interplay between classification accuracy

and interpretability, we present the benefits of integrating explainability into time-series

classification tasks.

4.1 Experimental Protocol
The experimental protocol presented in this thesis is designed to systematically evaluate

both the classification performance of multiple models and the quality of their gener-

ated explanations. As illustrated in Figure 4.1, we begin by describing the evaluation

scenarios used to rigorously test our framework: 1) train and test well-calibrated classi-

fication models used as a solid foundation for 2) subsequent Explainable AI evaluation.

We also evaluate our 3) proposed GIC, used to discover feature importance patterns
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produced by different XAI techniques, and observe how consistently these methods cap-

ture meaningful relationships. In the remainder of this section, we provide an overview

of the PhysioNet-based arrhythmia datasets, discussing their composition, class distri-

bution, and preprocessing steps, such as filtering, segmentation, and normalization. We

then explain the validation procedures, including how the data was split into training,

validation, and test sets. Following this, we outline the evaluation metrics and justify

their relevance to the arrhythmia detection task. We also describe baseline classification

models, detailing their architectures, hyperparameters, and training configurations.

Finally, we introduce the Explainable AI configurations employed to interpret model

predictions. We run our experiment using in a hardware with Processador AMD Ryzen

7 5800X, RTX 3090 24GB GDDR6X, 64 GB RAM DDR4 3200mhz„ SSD 512GB M.2 Nvme.

4.1.1 Evaluation Scenarios

The following evaluation scenarios are considered in our experiment, as we present in

Figure 4.1:

Global Interpretable 
Clustering Analyses

Evaluation Scenarios
Generating 

Classification Models XAI Evaluation Metrics

LocalizationStability

Robustness

Class 2

Class 1

SensitivitySanity

Faithfulness

Figure 4.1 – Evaluation Scenarios

1. Generating Classification Models: in this phase, our goal is not to develop state-of-

the-art models but rather to obtain well-calibrated models that are not biased by
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train and test data. By using different datasets, we ensure that the models general-

ize appropriately and serve as a foundation for evaluating Explainable AI (XAI)

methods. Specifically, we unified the MIT-BIH and SVDB datasets for training and

used the INCART dataset exclusively for testing. The classification performance

was assessed using three models: XGBoost, FCN, and DeepConvLSTM. These

models are subsequently analyzed using XAI methods to obtain explainability

results and assess the quality of feature attributions.

2. Global Interpretable Clustering Analysis: in this phase, we analyze feature impor-

tance patterns obtained from the XGBoost, FCN, and DeepConvLSTM models

using three XAI methods: SHAP, LIME, and Saliency Maps. We apply dimen-

sionality reduction techniques, namely PCA, t-SNE, and UMAP, to visualize

and interpret the feature importance representations. The proposed Global In-

terpretable Clustering approach allows us to identify consistent patterns across

different XAI methods, facilitating a qualitative comparison of their ability to cap-

ture meaningful relationships in the data. This enables us to assess the alignment

of explanations with model behavior and determine the robustness of feature

attributions.

3. Explainable AI Evaluation: the models considered for XAI evaluation metrics

include DeepConvLSTM, FCN, and XGBoost, while the XAI methods used are

SHAP Explainer (EX), LIME Tabular Explainer (LTE), Saliency Map (SM), and

SHAP Tree Explainer (TEX). The performance of these methods is assessed using

multiple metrics: Mean Squared Error (MSE), Mean Absolute Error (MAE), Root

Mean Squared Error (RMSE), Cosine Similarity, Euclidean Distance, and Structural

Similarity Index (SSIM).

• Sanity: evaluates whether the importance maps focus is significantly influ-

enced by the model learned parameters. By randomizing labels and training a

model, one expects the importance maps to become less meaningful, demon-

strating that the saliency map indeed depends on the learned parameters

rather than being a generic or arbitrary visualization.
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• Faithful: evaluates how well the importance maps correlates with the model’s

output changes in response to input perturbations. A faithful importance map

would highlight parts of the input that, when altered, significantly affect the

prediction. This is usually tested by perturbing parts of the input sequence

and observing the impact on the output, expecting that areas marked as

highly salient should cause greater changes in the output.

• Sensitivity: checks if the importance map can distinguish between different

samples, especially focusing on the predicted class. A sensitive importance

map would generate different patterns for inputs belonging to different

classes or even for different instances within the same class, reflecting the

model’s sensitivity to the unique aspects of each input.

• Robustness: check consistency under small changes to the input data. Minor

modifications to the input should not drastically change the importance map,

indicating that the importance map is focusing on genuinely relevant features

rather than noise or irrelevant variations.

• Stability: evaluate the ability to consistently identify similar features or pat-

terns as important for similar or identical classes across different samples.

This means that for inputs classified into the same category, the importance

maps should highlight similar features as being important.

• Localization: evaluates if an importance map is localized around the time

segments most relevant to the prediction. This ensures the interpretability of

the model’s focus and decisions, particularly in temporal contexts where the

timing of events can be crucial.

4.1.2 Datasets Description

The datasets used in this study come from the PhysioNet collection, which provides a

variety of electrocardiogram recordings, including data from the MIT-BIH Arrhythmia

Database (PHYSIONET, 2005), MIT-BIH Supraventricular Arrhythmia Database (PHY-

SIONET, 1999), and the St. Petersburg INCART Arrhythmia Database (PHYSIONET,
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2008). Each dataset contains detailed annotations for different types of heartbeat, classi-

fied according to the clinical diagnosis of arrhythmias.

Table 4.1 lists the symbols used to represent various types of heartbeats in the

PhysioNet arrhythmia dataset. Each symbol corresponds to a specific heartbeat type,

including normal beats, ectopic beats (such as atrial and ventricular premature beats),

and other specialized beats such as paced beats or escape beats. Symbols for events

such as the start and end of ventricular flutter-fibrillation are also included. Figure 4.2

shown examples of ECG heartbeats from PhysioNet arrhythmia dataset.

Figure 4.2 – ECG heartbeats samples from PhysioNet arrhythmia dataset.

Table 4.1 – Symbol Definitions for ECG Beat Types.

Symbol Description

N Normal beat
. Normal beat
L Left bundle branch block beat
R Right bundle branch block beat
A Atrial premature beat
a Aberrated atrial premature beat
J Nodal (junctional) premature beat
S Supraventricular premature beat
V Premature ventricular contraction
F Fusion of ventricular and normal beat
[ Start of ventricular flutter-fibrillation
! Ventricular flutter wave
] End of ventricular flutter-fibrillation
e Atrial escape beat
j Nodal (junctional) escape beat
E Ventricular escape beat
/ Paced beat
f Fusion of paced and normal beat
x Non-conducted P-wave (blocked APB)
Q Unclassifiable beat

Table 4.2 categorizes ECG beat symbols into five classes according to the AAMI

standard: normal (N), ventricular (V), supraventricular (S), fusion (F), and unknown
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(Q). Although the standard defines a fusion (F) class to capture beats that exhibit

characteristics of both normal and ventricular patterns, the F and Q classes are not

sufficiently represented in our dataset. Consequently, to ensure a robust and balanced

analysis, we opted to exclude these underrepresented classes.

Table 4.2 – Beat Classifications accordind to AAMI standard: normal (N), ventricular
(V), supraventricular (S), fusion of normal and ventricular (F) and unknown
beats (Q).

Class Symbols Description

N N, ., L, R, e, j Non-ectopic beats
S A, a, J, S, x SVEB (Supraventricular ectopic beat)
V V, E, ! VEB (Ventricular ectopic beat)
F F Fusion beat
Q P, /, f, u, Q Unknown beat

For the purpose of our binary classification task, we combined the ventricular (V)

and supraventricular (S) to create a Arrhythmia class (Abnormal) and a normal (N) class,

which constitute the most representative categories in the data set. This binary grouping

allows us to focus on the discrimination between normal and abnormal rhythms while

avoiding potential biases introduced by classes with very few instances.

4.1.2.1 MIT-BIH Arrhythmia Database

The MIT-BIH Arrhythmia Database (MIT-BIH) contains 48 half-hour samples of two-

channel ambulatory ECG recordings acquired from the BIH Arrhythmia Laboratory’s

47 patients investigated between 1975 and 1979. Twenty-three recordings were chosen

at random from a set of 4000 24-hour ambulatory ECG recordings collected at Boston’s

Beth Israel Hospital from a mixed population of inpatients (about 60%) and outpatients

(about 40%); the remaining 25 recordings were chosen from the same set to include less

common but clinically significant arrhythmias that would not be well-represented in

a small random sample. The recordings were digitalized over a 10 mV range at 360

samples per second, each channel. Each record was separately annotated by two or

more cardiologists; differences were settled to produce the computer-readable reference

annotations for each beat, which are supplied with the database and total over 110,000
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annotations.

4.1.2.2 MIT-BIH Supraventricular Arrhythmia Database

The MIT-BIH Supraventricular Arrhythmia Database (SVDB) supplements the MIT-

BIH Arrhythmia Database by providing examples of less common supraventricular

arrhythmias. It includes 78 half-hour ECG recordings, with annotations for various

types of supraventricular arrhythmic events.

4.1.2.3 St Petersburg INCART Arrhythmia Database

The St Petersburg INCART Arrhythmia Database (INCART) contains 75 annotated

recordings culled from 32 Holter recordings. Each recording lasts 30 minutes and

contains 12 standard leads sampled at 257 Hz with gains ranging from 250 to 1100

analog-to-digital converter units per millivolt. Gains are specified in each record’s.hea

file. There are over 175,000 beat annotations in total in the reference annotation files.

The original records were obtained from patients undergoing coronary artery disease

testing (17 men and 15 women, ages 18 to 80; mean age: 58). None of the patients

had pacemakers, and the majority of them had ventricular ectopic beats. Subjects with

ECGs consistent with ischemia, coronary artery disease, conduction abnormalities, and

arrhythmias were prioritized for inclusion in the database.

4.1.2.4 Dataset Summarization

Table 4.3 outlines the three PhysioNet-based ECG arrhythmia databases used in this

study. It includes the MIT-BIH Arrhythmia Database (MIT-BIH), the MIT-BIH Supraven-

tricular Arrhythmia Database (SVDB), and the St. Petersburg INCART Arrhythmia

Database (INCART). These datasets vary in signal frequency, lead configurations, and

the number of subjects.

The MIT-BIH and SVDB databases are merged to form a binary classification
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dataset (normal vs. abnormal), used exclusively for training and validation. In contrast,

the INCART database, which includes entirely different subjects, is reserved for testing,

thus minimizing overfitting and mitigating potential biases in model evaluation. The

Table 4.3 shown the key characteristics of the datasets used in this study.

Table 4.3 – Summary of the ECG arrhythmia datasets and their class distributions. The
combined MIT-BIH and SVDB datasets form a binary classification set (nor-
mal vs. abnormal) used for training and validation, while the INCART
dataset (composed of different subjects) is used solely for testing.

Database Freq. (Hz) Signals N. Subj. Set Binary Dist. Multi-Class Dist.
MIT-BIH
Arrhythmia Database 128 (360) MLII (MLII, V5) 45 -

MIT-BIH Supraventricular
Arrhythmia Database 128 ECG1 (ECG1, ECG2) 78 -

Combined (MIT-BIH + SVDB) 128 MLII + ECG1 123 Train Normal: 206.992
Abnormal: 65.265

Normal: 206.992
Ventricular: 34.797
Supraventricular: 30.468

St Petersburg INCART
Arrhythmia Database 128 (257) Lead II (12 leads) 75 Test Normal: 124.742

Abnormal: 50.365

Normal: 124.742
Ventricular: 45.925
Supraventricular: 4.440

Combining the MIT-BIH and SVDB databases for model training, and subse-

quently validating on the INCART Database broadens the diversity of the training

data, covering a extensive range of arrhythmia patterns and ECG morphologies. By

exposing the model to different patient populations and a variety of arrhythmic events,

this approach enhances the model’s robustness and ability to generalize beyond a single

dataset. Furthermore, merging multiple sources of data helps mitigate biases that may

arise from using a single source. In addiction, by validating on the INCART dataset an

entirely separate and potentially more varied data source, the resulting performance

metrics more accurately reflect the model’s practical clinical utility. This independent

validation step supports the claim that the model can maintain reliable accuracy when

faced with real-world variations in patient demographics, recording conditions, and

device specifications. Ultimately, this multi-dataset training and external validation

strategy increases the credibility of the model and strengthens its reliability.

4.1.2.5 Dataset Processing

Given the heterogeneity of the datasets differences in signal frequencies, lead configura-

tions, and subject characteristics, there important step to standardize and preprocess
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the data to create a unified dataset. We aim to maintain consistency and compatibility

for downstream analysis, model training and validation. We present the steps taken

by Algorithm 4.1 to align sampling frequencies, normalize signal characteristics, and

harmonize labels across datasets, addressing challenges posed by their diverse formats

while preserving the integrity of the original data.

The build_classification function is designed to process and classify electrocar-

diogram (ECG) signals. It takes as input the raw ECG signal (p_signal), annotation

indices (ann_idx), annotation symbols (ann_sym), sampling frequency (fs), a time win-

dow in seconds (num_sec), a classification dictionary (physionet_dict), and several

optional parameters for filtering, normalization, resampling, and logging. The function

starts by initializing matrices for storing processed signals and their labels, as well as a

dataframe for easy querying of annotations.

During the processing phase, if enabled, the ECG signal is filtered to remove

noise. The function then iterates over each annotation. For each annotation, it pro-

cesses a segment of the ECG signal determined by the given time window around

the annotation index. The classification of each segment is done using the label_choice

function, which determines the appropriate label based on the annotation symbols and

the physionet_dict dictionary.

The function also handles various conditions like ignoring specified classes and

checks if the processed signal segments meet the expected size. If normalization or

resampling is required, these operations are performed on the processed signal data.

Finally, the function returns the processed signal data (X), the corresponding

labels (Y), and additional arrays containing symbols, indices, label lists, positions of

indices, and true labels for each processed annotation. Auxiliary functions like inter-

section, label_choice, and process_label support the main functionality by performing

tasks such as finding the intersection of lists and determining classification labels for

given sets of annotation symbols. This function is a complex tool likely used in medical

or research settings for analyzing heart rhythm data from ECG recordings.
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Algorithm 4.1 Build Physionet Dataset for Classification

Require: p_signal, ann_idx, ann_sym, fs, num_sec, physionet_dict, ignore_classes,
filtering, norm, resample, outliers, log

1: num_cols← 2× num_sec× fs
2: num_rows← length(ann_idx)
3: X ← zero matrix of size num_rows× num_cols
4: Y ← zero matrix of size num_rows× 1
5: Initialize sym, index, labels, index_pos, true_labels as empty lists
6: row_← 0
7: df_← DataFrame with columns ’idx’ and ’symbols’ from ann_idx and ann_sym
8: for (idx_, sym_, pos_) in zip(ann_idx, ann_sym, range(len(ann_idx))) do
9: left← max(0, idx_− num_sec× fs)

10: right← min(len(p_signal), idx_ + num_sec× fs)
11: idx_range← range(left, right)
12: query_← rows in df_ where ’idx’ is in idx_range
13: label_list← values of ’symbols’ in query_
14: index_list← indices in idx_range where ’idx’ is in query_
15: ammi_label, true_label← label_choice(label_list, physionet_dict, log = False)
16: if not ammi_label or not true_label then
17: continue
18: end if
19: if ignore_classes and ammi_label in ignore_classes then
20: continue
21: end if
22: x← segment of p_signal from left to right
23: if len(x) = num_cols then
24: X[row_, :]← x
25: Y [row_, :]← class mapping of ammi_label in physionet_dict
26: Append ammi_label to sym
27: Append other details to respective lists
28: row_← row_ + 1
29: else
30: end if
31: end for
32: X ← X[: row_, :]
33: if norm then
34: X ← NormalizeData(X)
35: end if
36: if resample then
37: X ← resample X with resample parameters
38: end if
39: Y ← Y [: row_] return X , Y , and other collected arrays

4.1.3 Evaluation Procedures

In supervised machine learning, evaluating a model’s performance typically involves

splitting the dataset into training and test sets. This can be done using methods such as
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hold-out, k-fold cross-validation (k-CV), leave-one-out cross-validation (LOOCV), or

leave-one-subject-out cross-validation (LOSO). The classifier is trained on the training

set and tested on the unseen test set to gauge its accuracy. The following sections outline

these evaluation methods.

In this work, we adopted a hybrid approach tailored to our ECG datasets. The

MIT-BIH and SVDB databases were merged and split into a training and validation

set (using a hold-out method) to develop and fine-tune the classification model. This

step leverages a broad range of arrhythmia samples while ensuring that the model

parameters are properly calibrated. Subsequently, the INCART database, containing

entirely different subjects, is set aside as the exclusive test set. This design choice

provides a robust assessment of generalization performance by evaluating the model on

genuinely novel subjects. Using an entirely separate database for testing, we minimize

overfitting risks and mitigate potential biases that could arise from reusing subjects or

signals in both training and testing phases.

4.1.4 Metrics for Evaluating Classification Models

In the context of binary arrhythmia classification, the model’s performance can be ex-

amined through a confusion matrix that tracks how often the model correctly identifies

arrhythmic (positive) and normal (negative) cases. Specifically, normal events are con-

sidered the “positive” class, while arrhythmic events are treated as the “negative” class.

Consequently, a true positive (TP) corresponds to correctly identifying a normal event

as normal, whereas a false positive (FP) arises when an arrhythmic event is mistakenly

labeled as normal. Likewise, a true negative (TN) means that a correct classification of an

arrhythmic event as arrhythmic, and a false negative (FN) indicates that a normal event

has been incorrectly classified as arrhythmic. From these four quantities, we derive

common metrics: accuracy, precision, recall, and F-measure to gain a comprehensive

view of the effectiveness of a model. Table 4.4 summarizes the definitions of these

metrics, illustrating how each offers unique perspectives into model performance for

the binary task of distinguishing arrhythmic signals from normal signals.
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Table 4.4 – Summarization of accuracy, recall, precision and F-measure. TP means true
positives, TN true negatives, FP false positives and FN means false nega-
tives.

Metric Equation Description

Accuracy TP+TN
TP+TN+FP+FN

Accuracy is the ratio of correct
predictions divided by the total
predictions.

Precision TP
TP+FP

Precision is the ratio of true pos-
itives and total positives pre-
dicted.

Recall TP
TP+FN

Recall is the ratio of true pos-
itives to all the positives in
ground truth.

F Measure 2× Precision×Recall
Precision+Recall

The F-measure is the harmonic
mean of precision and recall.

4.1.5 Machine Learning models used as Baselines

To evaluate the effectiveness of our approach, we use three baseline models: DeepCon-

vLSTM, Fully Convolutional Networks (FCN), and XGBoost. While DeepConvLSTM

excels at capturing both spatial (via convolutional layers) and temporal (via LSTM

layers) relationships, FCN provides a simpler alternative with reduced training times

by leveraging only convolutional layers. XGBoost, on the other hand, offers a strong

baseline with minimal feature engineering but cannot natively model temporal or spa-

tial correlations without additional preprocessing. By comparing these three models,

we can evaluate the strengths and weaknesses of different approaches to time series

classification in the context of system performance data.

4.1.5.1 DeepConvLSTM

Manual feature extraction from high-dimensional ECG time-series data is often labo-

rious and requires substantial domain expertise to identify relevant morphological

and temporal characteristics. To address these challenges in arrhythmia classification,

we adopt the DeepConvLSTM architecture introduced by Ordóñez and Roggen (OR-

DÓÑEZ; ROGGEN, 2016). This model leverages convolutional neural networks (CNNs)
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for automated feature extraction and Long Short-Term Memory (LSTM) layers for

capturing sequential dependencies in the cardiac signal.

In this setup, convolutional layers learn to detect important ECG patterns—such

as QRS complexes, P waves, and T waves—by scanning local regions of the input

signal. These extracted features are then passed to LSTM layers, which model longer-

term temporal dependencies crucial for identifying subtle arrhythmic patterns that span

multiple beats or time intervals. This design is effective when minute variations in signal

morphology and timing can significantly impact classification decisions—precisely the

case for arrhythmia detection.

The DeepConvLSTM model comprises three convolutional layers followed by

two recurrent LSTM layers. Its output layer is a dense neuron with a sigmoid activation

function, which estimates the probability that a given ECG segment is normal (positive

class) versus arrhythmic (negative class). Figure 4.3 provides a conceptual view of

this architecture, while Table 4.5 details the layer configurations and parameters. This

end-to-end structure alleviates the need for manual feature engineering and offers a

robust framework for learning both local (via CNNs) and temporal (via LSTMs) patterns

in ECG signals, making it well suited for the binary classification of arrhythmias.
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Figure 4.3 – Architecture for continuous authentication based on DeepConvLSTM neu-
ral network. Three convolutional layers process the operational system
performance counter data. Two recurrent layers produce the classification
result with an output layer. A dense layer of 1 unit with the sigmoidal
activation function contains the probability that the sample belongs to the
genuine user or imposter.
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Layer (type) Output Shape Param #

input_1 (InputLayer) (None, 128, 1) 0
conv_1 (Conv1D) (None, 128, 64) 256
batch_normalization (BatchNormalization) (None, 128, 64) 256
activation (Activation) (None, 128, 64) 0
conv_2 (Conv1D) (None, 128, 64) 12,352
batch_normalization_1 (BatchNormalization) (None, 128, 64) 256
activation_1 (Activation) (None, 128, 64) 0
conv_3 (Conv1D) (None, 128, 64) 12,352
batch_normalization_2 (BatchNormalization) (None, 128, 64) 256
activation_2 (Activation) (None, 128, 64) 0
conv_4 (Conv1D) (None, 128, 64) 12,352
batch_normalization_3 (BatchNormalization) (None, 128, 64) 256
activation_3 (Activation) (None, 128, 64) 0
lstm (LSTM) (None, 128, 64) 33,024
dropout (Dropout) (None, 128, 64) 0
lstm_1 (LSTM) (None, 128, 64) 33,024
dropout_1 (Dropout) (None, 128, 64) 0
time_distributed (TimeDistributed) (None, 128, 3) 195
activation_4 (Activation) (None, 128, 3) 0
lambda (Lambda) (None, 3) 0

Table 4.5 – Deep Model Summary: A detailed breakdown of the model’s architecture,
including each layer’s type, output shape, and parameter count.

4.1.5.2 Fully Convolutional Network (FCN)

In addition to our DeepConvLSTM approach, we also employ a Fully Convolutional

Network (FCN), which offers a purely convolutional architecture for binary arrhythmia

classification. Unlike recurrent-based models, FCNs rely solely on convolutional layers

to learn features, eliminating the overhead of processing sequential data step by step.

This architecture was used in various studies that involved time series data (FAWAZ et

al., 2018; FAWAZ et al., 2019).

This design makes FCNs more computationally efficient during both training

and inference. Multiple stacked convolutional layers detect morphological patterns

associated with normal and arrhythmic beats at different scales, while global average

pooling aggregates these learned features into a low-dimensional representation. This

final representation is then passed to a dense output layer (e.g., with sigmoid activa-

tion) to classify the signal as normal (positive) or arrhythmic (negative). Because FCNs

process the entire input in parallel rather than unrolling it over time steps, they are par-
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ticularly advantageous when local morphological cues are more critical than capturing

long-range temporal dependencies. Consequently, FCNs can excel in scenarios where

rapid detection of ECG anomalies is essential, and the cost of maintaining recurrent

layers may outweigh the benefits of modeling longer temporal contexts.

Layer (type) Output Shape Param #

input_layer_1 (InputLayer) (None, 128) 0
reshape_1 (Reshape) (None, 128, 1) 0
conv_1 (Conv1D) (None, 128, 128) 1,152
batch_normalization_4 (BatchNormalization) (None, 128, 128) 512
activation_5 (Activation) (None, 128, 128) 0
conv_2 (Conv1D) (None, 128, 256) 164,096
batch_normalization_5 (BatchNormalization) (None, 128, 256) 1,024
activation_6 (Activation) (None, 128, 256) 0
conv_3 (Conv1D) (None, 128, 128) 98,432
batch_normalization_6 (BatchNormalization) (None, 128, 128) 512
activation_7 (Activation) (None, 128, 128) 0
GAP (GlobalAveragePooling1D) (None, 128) 0
predictions (Dense) (None, 2) 258

Table 4.6 – Summary of the model architecture, including each layer’s type, output
shape, and the number of parameters. The table also lists the total, trainable,
and non-trainable parameter counts for the entire model.

4.1.5.3 XGBoost

As a non-neural alternative, we include XGBoost, a powerful tree-based ensemble

learning technique known for its accuracy and efficiency in various classification tasks.

XGBoost does not automatically capture temporal dependencies or spatial correlations

as neural networks do. But, XGBoost can be advantageous for a variety of reasons: it is

typically faster to train on tabular data, easier to interpret at a feature level, and less

sensitive to hyperparameter tuning than many deep learning approaches. Although

XGBoost does not inherently capture temporal dependencies or spatial correlations as

neural networks do, it compensates by effectively combining multiple weak learners

(decision trees). Each new tree iteratively refines the predictions of the previous trees,

leading to a powerful, gradient-boosted ensemble.

In this way, it can still be applied effectively to raw ECG segments by treating
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each segment as a feature vector. Arrhythmia signals likely contain distinct, discrimina-

tive patterns, such as specific waveform shapes or abrupt changes, that decision trees

can readily identify and separate, even without extensive feature engineering. Addition-

ally, the relatively low dimensionality (n=128) of the data means that the model does

not suffer from the curse of dimensionality as much as it might with higher-dimensional

raw data, allowing it to perform well without needing hierarchical feature extraction

typically associated with deep learning models.

In practice, this often involves flattening each ECG segment into a one-dimensional

array so that it can be fed into the tree-based model. Each entry in the vector corre-

sponds to the amplitude of a particular time step in the raw ECG signal. We present the

parameters used for XGBoost classifier in Table 4.7

Parameter Default Value

max_depth 3
learning_rate 0.1
n_estimators 100
objective binary:logistic
booster gbtree
tree_method auto
n_jobs 1
gamma 0
min_child_weight 1
subsample 1
colsample_bytree 1
reg_alpha 0
reg_lambda 1
random_state 0

Table 4.7 – Parameters used for XGBoost classifier.

4.1.6 Explainable AI Parameters

In the proposed experimental protocol, three explainable AI techniques —SHAP (SHap-

ley Additive exPlanations), LIME (Local Interpretable Model-agnostic Explanations),

and Saliency Maps—are employed alongside standard performance metrics.

We adjust the class distributions in the background data used to generate expla-

nations with an equal distribution of classes as sugested by (LIU et al., 2022), which



Chapter 4. Experiments and Results 107

demonstrates that this strategy mitigates the negative effects of data imbalance. Addi-

tionally, with the balancing strategy, the top-ranked variables from the corresponding

importance ranking demonstrated improved discrimination power. In this way, a bal-

anced dataset of 30,000 normal heartbeats and 30,000 arrhythmic heartbeats is used to

mitigate potential bias arising from class imbalance. The LIME parameter numsamples

is set to 2,000, which balances computational overhead with the level of detail provided

in local explanations.

SHAP quantifies overall feature contributions to the classifier’s predictions,

thereby offering a global perspective on which aspects of the heartbeat signals are

most relevant. LIME targets individual predictions by constructing local surrogate

models, enabling an examination of the factors that drive specific classification outcomes.

Saliency Maps highlight the segments of the raw time series that most strongly influence

the model’s output, which can be compared against known clinical patterns. Taken

together, these methods facilitate our evaluation of both global and local properties

of the model, thereby clarifying how it discriminates between normal and arrhythmic

heartbeats.

4.2 Results
In this section, we present the results of our study, organized according to three main

stages of the experimental pipeline. First, we describe the process of generating classifi-

cation models in which the MIT-BIH and SVDB databases are merged to form a training

set, while the INCART dataset is reserved for testing. By doing this, our models re-

main well-calibrated and minimize overfitting and bias. We evaluated the classification

performance on three architectures, XGBoost, FCN, and DeepConvLSTM, laying the

foundation for further interpretability analysis.

Next, in the global interpretable clustering analysis results, we investigate the fea-

ture importance patterns produced by the three models using a range of XAI techniques:

the SHAP Explainer (EX), the LIME Tabular Explainer (LTE), Saliency Maps (SM), and

the SHAP Tree Explainer (TEX). By applying dimensionality reduction methods such as
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PCA, t-SNE, and UMAP, we visualize these importance representations and identify

commonalities and differences across XAI approaches.

Finally, we present results for an explainable AI evaluation associated with each

model–explanation pairing. These metrics include DTW, MSE, MAE, RMSE, cosine sim-

ilarity, Euclidean distance, and the SSIM. In addition to these quantitative measures, we

consider six metrics: Sanity, Faithful, Sensitivity, Robustness, Stability, and Localization,

designed to probe the deeper characteristics and reliability of feature importance maps.

4.2.1 Generating Models for Arrhythmia Classification

The confusion matrices in Figure 4.4 present the performance of XGBoost model for

the classification of heartbeats as normal or abnormal (arrhythmia) using two different

datasets: MITBIH + SVDB and INCART. For the MITBIH+SVDB dataset, the model

demonstrates a high accuracy in identifying normal heartbeats, with a true positive

rate (TP) of 98.08% and a false negative rate (FN) of 14.81%. In the INCART dataset, the

model’s performance slightly decreases, achieving a TP of 93.53%. Nevertheless, the

model generates 8,075 false positives, indicating a higher rate of misclassification for

normal heartbeats as abnormal compared to the MITBIH+SVDB dataset.
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Figure 4.4 – XGBoost model results on MITBIH+SVDB (training) and INCART (test)
datasets for anomaly heartbeats classification.

The comparative analysis of the two datasets reveals that the XGBoost model



Chapter 4. Experiments and Results 109

exhibits higher accuracy in identifying normal heartbeats in both datasets, despite a

decrease in TP. Also, the model’s performance in identifying abnormal heartbeats is

reasonably high in both datasets but shows a slight decline in the INCART dataset.

Considering that training was performed on the MITBIH+SVDB dataset and tested on

INCART, this result proved to be adequate, whose model can consistently learn the

features of heartbeats anomalies and classify them correctly in a new data set.

In the next results, presented in Figure 4.5, the confusion matrices illustrate the

performance of a DEEPCONVLSTM model. For the MITBIH+SVDB dataset, the model

demonstrates high accuracy in identifying normal heartbeats, achieving a TP of 98.69%,

resulting in a FP of only 1.31%. For abnormal heartbeats, the model achieves a TN of

93.14%. The FN is relatively low at 6.86%, with 899 abnormal heartbeats misclassified as

normal. In the INCART dataset, the DEEPCONVLSTM model maintains high accuracy

but shows a slight decrease compared to the MITBIH+SVDB dataset. For abnormal

heartbeats, the model achieves a TN of 95.88%, and the FN is 4.12%, with only 2,076

abnormal heartbeats misclassified as normal.
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Figure 4.5 – DEEPCONVLSTM model results for training in MITBIH+SVDB dataset
and test on INCART dataset.

This result presented in Figure 4.5 shows that the DeepConvLSTM model perfor-

mance in identifying abnormal heartbeats is better in the INCART dataset, with a higher

TN and lower FN compared to the MIT-BIH SVDB dataset. DeepConvLSTM model

performs exceptionally well across both datasets, but its performance is influenced by
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the features of the data.

Finally, the confusion matrices in Figure 4.6 show the performance of an FCN

model. The FCN model shows high accuracy in identifying normal heartbeats in MIT-

BIH+SVDB dataset, achieving a TP of 97.40%. For abnormal heartbeats, the model

achieves a TN of 89.95%, and FN is 10.05%. For INCART dataset, the performance of the

FCN model declines, particularly in identifying normal heartbeats if we compare with

XGBoost and DeepConvLSTM models. For abnormal heartbeats, the model achieves

a TN of 87.35%, and FN is 12.65%. The substantial decline in performance for normal

heartbeat classification in the INCART dataset highlights the need for further refinement

of this baseline model.

The higher number of false positives and false negatives in the INCART dataset

indicates greater challenges in accurately classifying heartbeats in this dataset.
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Figure 4.6 – FCN results on MITBIH+SVDB (training) and INCART datasets.

4.2.2 Global Interpretable Clustering Analysis

In this section, we present the results of our Global Interpretable Clustering approach

using three-dimensionality reduction techniques: UMAP, t-SNE, and PCA applied to

the outputs of XGBoost, DeepConvLSTM and FCN models for classifying heartbeats

as "normal" or "abnormal." The visualizations are evaluated on varying thresholds (0.5
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to 0.9). The threshold filters importance maps, ranging from 0 to 1, to maintain only

important features above the defined threshold.

Starting with XGBoost, Figure 4.7 shows that at lower thresholds, UMAP shows

distinct clustering, with a stronger separation between normal and abnormal. t-SNE

results show more evenly distributed data points compared to UMAP. t-SNE may

struggle to retain global structure while emphasizing local neighbor relationships at

higher thresholds. The PCA visualizations show smooth, continuous distributions with

some visible class separation. The reliance of PCA on linear transformations probably

contributes to less effective separability for nonlinear relationships in the data.

Figure 4.8 shows that at lower thresholds (e.g., 0.5 and 0.6), UMAP exhibits

distinct clusters, but with some fragmentation between normal and abnormal samples. t-

SNE and PCA present highly diffuse clusters across thresholds, with significant overlaps,

struggling with global separability, making them less suitable for interpretability in this

case.

XGBoost - TreeExplainer (TEX)
UMAP (threshold=0.5) UMAP (threshold=0.6) UMAP (threshold=0.7) UMAP (threshold=0.8) UMAP (threshold=0.9)

TSNE (threshold=0.5) TSNE (threshold=0.6) TSNE (threshold=0.7) TSNE (threshold=0.8) TSNE (threshold=0.9)

PCA (threshold=0.5) PCA (threshold=0.6) PCA (threshold=0.7) PCA (threshold=0.8) PCA (threshold=0.9)

Labels
abnormal
normal

Figure 4.7 – Global Interpretable Clustering method results for XGBoost classifier using
TreeExplainer for generate importance maps. We show the comparison of
clustering techniques (UMAP, t-SNE, and PCA) across thresholds (0.5–0.9).

The contrasting results observed between the TEX and LTE visualizations stem

from fundamental differences in how these techniques calculate and represent feature

importance. TEX, which is based on SHAP values, computes feature attributions globally

considering all possible combinations of features, providing a consistent and holistic
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XGBoost - LimeTabularExplainer (LTE)
UMAP (threshold=0.5) UMAP (threshold=0.6) UMAP (threshold=0.7) UMAP (threshold=0.8) UMAP (threshold=0.9)

TSNE (threshold=0.5) TSNE (threshold=0.6) TSNE (threshold=0.7) TSNE (threshold=0.8) TSNE (threshold=0.9)

PCA (threshold=0.5) PCA (threshold=0.6) PCA (threshold=0.7) PCA (threshold=0.8) PCA (threshold=0.9)

Labels
abnormal
normal

Figure 4.8 – Global Interpretable Clustering method results for XGBoost classifier using
LimeTabularExplainer for generate importance maps. We show the compar-
ison of clustering techniques (UMAP, t-SNE, and PCA) across thresholds
(0.5–0.9).

explanation of the model’s behavior. This global perspective allows TEX to generate

feature importance maps that effectively highlight both local and global relationships in

the data. In contrast, LTE generates local explanations by approximating the model with

a simpler surrogate, such as a linear model, for specific instances. This inherently local

focus can result in noisier feature importance maps, which do not capture the broader

patterns in the dataset as effectively as SHAP.

These methodological differences have a direct impact on the clustering results.

TEX clustering exhibits stronger class separation, particularly when using UMAP and

PCA. This is because SHAP provides globally consistent importance values that align

well with dimensionality reduction techniques, enabling clearer clustering and better-

defined decision boundaries.

In contrast, the LTE shows weaker class separation and increased overlap be-

tween clusters. The localized nature of LIME explanations introduces variability and

noise in feature importance maps, which impacts the clustering performance of tech-

niques such as t-SNE, UMAP, and PCA. Although higher thresholds improve separation

to some extent, the lack of global consistency in LTE feature importance maps limits its

effectiveness for global interpretability. Even with UMAP, which performs relatively
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well compared to other methods, the clustering remains less distinct than in the TEX

results.

The sensitivity of dimensionality reduction techniques further amplifies these

differences. UMAP and PCA, which are designed to capture both local and global

structures, benefit from SHAP consistent global patterns. Conversely, LIME locally

focused importance maps make it harder for these methods to establish clear separations.

t-SNE, which emphasizes local neighbor relationships, struggles with both TEX and

LTE, but the differences are more pronounced with LIME.

We find similar results for the DeepConvLSTM model, as shown in Figure 4.9

for EX, Figure 4.10 for LTE and Figure 4.11 for SM. The similarity between the results of

SM and LTE is derived from their shared focus on localized feature importance. Both

methods prioritize explanations based on specific instances rather than providing a

globally consistent view of feature relevance across the entire dataset, which inherently

limits their ability to capture broader patterns.

DeepConvLSTM - Explainer (EX)
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PCA (threshold=0.5) PCA (threshold=0.6) PCA (threshold=0.7) PCA (threshold=0.8) PCA (threshold=0.9)
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Figure 4.9 – Global Interpretable Clustering method results for DeepConvLSTM classi-
fier using Explainer for generate importance maps. We show the compari-
son of clustering techniques (UMAP, t-SNE, and PCA) across thresholds
(0.5–0.9).

SM, being gradient-based, derives feature importance by analyzing how small

changes in input features affect the model’s output. This method identifies the features

that are most influential for individual predictions, but it does not account for interac-
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DeepConvLSTM - LimeTabularExplainer (LTE)
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Figure 4.10 – Global Interpretable Clustering method results for DeepConvLSTM classi-
fier using LimeTabularExplainer for generate importance maps. We show
the comparison of clustering techniques (UMAP, t-SNE, and PCA) across
thresholds (0.5–0.9).

DeepConvLSTM - SaliencyMap (SM)
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Figure 4.11 – Global Interpretable Clustering method results for DeepConvLSTM clas-
sifier using SaliencyMap for generate importance maps. We show the
comparison of clustering techniques (UMAP, t-SNE, and PCA) across
thresholds (0.5–0.9).



Chapter 4. Experiments and Results 115

tions between features or the broader global decision structure of the model. Similarly,

LTE approximates the model locally by constructing surrogate linear models around

specific instances. These surrogate models capture the local decision boundaries but fail

to reflect the global relationships in the dataset.

We also notice an interesting trend related to thresholding: as we increase the

importance filter, features that are globally relevant but not locally prominent become

more influential in defining cluster structure. This is evident in the UMAP and PCA

plots, where clusters at higher thresholds appear more compact, showing that the

thresholding operation highlights globally consistent feature contributions, refining

cluster definitions as the threshold increases.

4.2.3 Explainable AI Evaluation

In this section, we present six important metrics to evaluate XAI methods: sanity,

faithfulness, sensitivity, robustness, stability, and localization. We measure how similar

or different importance maps are using metrics such as MSE, MAE, RMSE, cosine

similarity, Euclidean distance, SSIM and DTW. We use boxplots and confusion matrices

to support our analysis.

4.2.3.1 Sanity Evaluation

In this study, sanity metric is used to evaluate the reliability of XAI methods by com-

paring their importance maps against random importance maps. These random maps

are generated using models trained on the same dataset, but with randomized labels to

break any meaningful relationships between features and target variables. If an XAI

method is truly explaining model behavior, its importance maps should significantly

differ from those generated by a model with random labels. Otherwise, the method is

likely to capture spurious correlations rather than meaningful explanations.

The models considered for this evaluation include DeepConvLSTM, FCN, and

XGBoost, while the XAI methods used are EX, LTE, SM, and TEX. The performance
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of these methods is assessed using MSE, MAE, RMSE, Cosine Similarity, Euclidean

Distance, and SSIM. Table 4.8 shows the interpretation of the high value and the low

value interpretation for each metric. Higher values of MSE, MAE, RMSE, and Euclidean

distance indicate that the importance maps generated by the XAI method are signifi-

cantly different from those of a randomly trained model, suggesting meaningful and

reliable explanations. Conversely, higher values of Cosine Similarity and SSIM imply

that the explanations closely resemble those of a model trained on randomized labels,

indicating unreliable or spurious feature attributions.

Table 4.8 – Interpretation of high and low values for XAI sanity metric.

Sanity Metric High Value Meaning Low Value Meaning

MSE Explanation differs significantly from random model (good) Explanation is similar to random model (bad)

MAE Feature importance maps are distinguishable (good) Feature attributions are close to random (bad)

RMSE XAI method produces reliable, distinct explanations (good) Explanations resemble random attributions (bad)

Cosine Similarity Explanation aligns with random model (bad) Explanation differs from random model (good)

Euclidean Distance Importance maps from real and random models are very different (good) XAI method produces explanations close to random (bad)

SSIM Explanation structure is similar to random model (bad) Explanation structure is different from random model (good)

Boxplots visualization are employed to visualize the distribution and variability

of the sanity metric across different setups. We chose boxplot because it provides an

overview of the data distribution, central tendency, and variability, making it easier to

assess the stability and reliability of experiments.

The results presented in Figure 4.12 show that SM tends to exhibit higher vari-

ability for neural models, potentially reflecting the increased complexity of capturing

time-dependent or convolutional representations in electrocardiogram signals. On the

other hand, TEX shows comparatively robust numerical attributions for XGBoost, indi-

cating a strong match between tree-based decision processes and SHAP’s underlying

additive feature attribution framework, yet similarity measures (e.g., cosine similarity,

SSIM) can fluctuate more, showing that while attributions may be stable in magnitude,

their spatial or directional alignment is not always consistent.

LTE shows moderate performance in both neural and tree-based models, but

its variance often increases with complexity, consistent with LIME’s reliance on local

approximation neighborhoods that can become sensitive to small changes in model

or data. Meanwhile, the EX displays a stable error profile for neural models showing

that it can capture overarching feature importance even as it occasionally struggles to
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Figure 4.12 – Boxplots of the six similarity metrics —MSE, MAE, RMSE, Cosine Similar-
ity, Euclidean Distance, and SSIM — across DeepConvLSTM, FCN, and
XGBoost model architectures and four XAI methods (SHAP Explainer,
LIME Tabular Explainer, Saliency Map, SHAP Tree Explainer) on the MIT-
BIH Arrhythmia dataset.

preserve fine-grained structural consistency.

Our sanity results confirms that SHAP-based methods (EX, TEX) provide the

most robust and reliable explanations, as they consistently differentiate between real

and randomized importance maps across all six metrics. LIME (LTE) shows moderate

reliability, but its local perturbation-based approach introduces variability, making it

less consistent. Saliency Maps (SM) perform the worst, as their feature attributions

resemble those from a randomly trained model, indicating that they fail to provide

meaningful explanations in this context.

While XAI methods (e.g. SHAP) are popular explanation methods, their output
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alone does not inherently evaluate the quality of the explanations. XAI methods produce

importance maps but do not quantify how meaningful these scores are compared to

random maps. The sanity evaluation allows us to objectively measure whether the

importance maps generated are meaningful or just noise. Sanity can expose cases where

explanation techniques fail to generate robust feature importance maps. For instance, a

high similarity to random maps (low MSE or low Euclidean Distance) indicates that

the explanation may lack meaningful information. For deep models , sanity metrics

can demonstrate that traditional techniques such as Lime or Saliency Maps often fail to

generate reliable explanations due to the models’ complexity.

These metrics collectively reveal a consistent pattern: explanation techniques

for simpler, structured models such as XGBoost (e.g., TreeExplainer) are robust, while

deep models require more sophisticated approaches to generate meaningful feature

importance maps. However, no single approach emerges as the universal best performer

across every model architecture and every metric.

4.2.3.2 Faithfulness Evaluation

Figure 4.13 shows the faithfulness evaluation for XGBoost which highlights a sharp

decline in arrhythmia detection as ablation intensity increases (TEX). The original

performance shows high classification accuracy, correctly distinguishing normal and

abnormal classes. However, for the TEX method at ablation intensity = 0.1 we observe

a significant reduction in the number of correctly classified abnormal cases, indicating

that key decision-splitting features are being removed. As the intensity of the ablation

increases, the rate of misclassification increases, with abnormal rhythms increasingly

predicted as normal, demonstrating that the features identified by SHAP methods are

critical for model decision making. In contrast, LTE shows a more gradual decline,

indicating that their selected features may not fully capture the most discriminative

ECG patterns for the detection of arrhythmias. This raises concerns that LIME might

be missing key features necessary for reliable classification. The results confirm that

SHAP explanations provide a more faithful representation of feature importance, as
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their removal leads to severe classification errors.
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Figure 4.13 – Faithfulness evaluation for the XGBoost model on the MIT-BIH arrhyth-
mia dataset, showing the impact of feature ablation at intensities of 0.1, 0.3,
and 0.5. The explainability methods used include SHAP Tree Explainer
(TEX), LimeTabularExplainer (LTE), SHAP Explainer (EX), and Saliency
Map (SM). As ablation intensity increases, the model’s performance de-
teriorates, with a sharp decline in correctly classified abnormal cases,
indicating reliance on the most important features identified by the XAI
methods.

Following the next result, Figure 4.14 show that FCN model suffers a greater

performance deterioration when high-importance features are removed using (EX). This

reinforces the fact that SHAP identifies highly relevant ECG segments. Interestingly,

SM ablation shows less performance loss, implying that saliency maps may distribute

importance across broader regions rather than pinpointing precise diagnostic features.

These results show that while FCN may generalize better than XGBoost at lower abla-

tion intensities, it still critically depends on SHAP-identified features for arrhythmia

detection. The fact that LTE and SM ablation cause milder degradation demonstrates

that these methods might not fully capture the most essential discriminative features.

Lastly, Figure 4.15 shows that at the original performance levels, DeepConvL-

STM achieves high accuracy in detecting arrhythmias, supported by sequential feature

learning from the LSTM layers. However, at ablationintensity = 0.1, EX begins to

show classification errors, with an increasing number of arrhythmias being misclas-

sified as normal. By ablation intensity = 0.3, the misclassification rate of abnormal
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Figure 4.14 – Faithfulness evaluation for the FCN (Fully Convolutional Network) model
on the MIT-BIH arrhythmia dataset, demonstrating performance degrada-
tion at ablation intensities of 0.1, 0.3, and 0.5. The explainability methods
used are SHAP Explainer (EX), LimeTabularExplainer (LTE), and Saliency
Map (SM). The performance decline, especially for abnormal rhythm
classification, validates the critical role of features highlighted by the ex-
plainability techniques.

ECGs increases significantly, particularly for EX, confirming that SHAP-based methods

effectively identify highly discriminative features.

4.2.3.3 Robustness Evaluation

The results presented in Figure 4.16 show that XGBoost is the most sensitive to noise,

with higher values of MSE, RMSE, and Euclidean distance, demonstrating that its

feature attributions are significantly altered when input noise is introduced. The wider

spread in cosine similarity provides evidence of inconsistent preservation of feature

importance, meaning that in some instances, XGBoost retains its focus on important
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Figure 4.15 – Faithfulness evaluation for the DeepConvLSTM model on the MIT-BIH
arrhythmia dataset, highlighting the effect of feature ablation at intensities
of 0.1, 0.3, and 0.5. The XAI methods used include SHAP Explainer (EX),
LimeTabularExplainer (LTE), and Saliency Map (SM). The model exhibits
initial robustness at low intensity but suffers significant performance
loss, particularly in abnormal rhythm detection, as more key features are
ablated, confirming the importance of the identified features.

features, while in others, noise shifts the importance landscape. Additionally, lower

SSIM values in LTE and SM imply that the overall structure of feature importance maps

changes substantially, highlighting the model’s reliance on discrete feature splits that

make it vulnerable to minor input variations.

The FCN model exhibits lower MSE and RMSE values, implying that its feature

importance maps remain more stable under noise. The Euclidean distance distribution

is more compact, indicating that its attributions do not shift dramatically and that the

model distributes feature importance across multiple regions rather than relying on

a few key features. Higher Cosine Similarity scores confirm that the model preserves
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Figure 4.16 – Robustness evaluation of XGBoost, FCN, and DeepConvLSTM models.
Noise was applied to the input, and differences in feature importance
maps were measured using multiple similarity and distance metrics, in-
cluding MSE, Euclidean Distance, Cosine Similarity, MAE, RMSE, and
SSIM. Higher stability in these metrics indicates that a model’s explana-
tions remain consistent despite noise. Results show that DeepConvLSTM
is the most robust, maintaining similar feature attributions, while XGBoost
is highly sensitive to perturbations, with significant shifts in feature im-
portance.

the relative ranking of important features despite noise, while moderate SSIM values

indicate that while the structure of importance maps is retained to some extent, localized

shifts still occur.

Lastly, DeepConvLSTM demonstrates the highest robustness to noise, as evi-

denced by lower MSE, RMSE, and Euclidean distance values. This result shows that

noise does not significantly alter its feature attributions. The cosine similarity values

remain close to 1, confirming that the importance ranking of features is highly preserved,

confirming that DeepConvLSTM learns stable sequential patterns that are less affected

by local perturbations. Additionally, higher SSIM values indicate that the structural

alignment of feature importance maps remains largely unchanged, and the model

captures more distributed and resilient features across time-series sequences.
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4.2.3.4 Sensitivity Evaluation

The results presented in Figure 4.17 illustrate the variance in feature importance maps

separately for normal (a) and abnormal (b) ECGs, measured across different XAI meth-

ods and models.

For normal class (Figure 4.17(a)), we observe low variance across all models and

explainability methods, indicating that feature importance maps remain fairly stable

when identifying normal rhythms. DeepConvLSTM (SM) and (EX) exhibit the lowest

variance, indicating that deep learning models assign similar importance to features

when analyzing normal heart rhythms. XGBoost (TEX) and FCN (EX) show slightly

higher variance, but the overall range remains small, showing that all models have

a consistent understanding of normal heartbeats, relying on a relatively fixed set of

features for classification.
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Figure 4.17 – Class-sensitivity analysis of XGBoost, FCN, and DeepConvLSTM mod-
els using different XAI methods. Variance in feature importance maps
is measured separately for normal (a) and abnormal (b) classes. Lower
variance in the normal class indicates stable feature attributions, while
higher variance in the abnormal class suggests increased model adaptation
to diverse arrhythmic patterns. SHAP-based explanations (EX, TEX) show
more stable class sensitivity, whereas LIME (LTE) and Saliency Maps (SM)
introduce greater variability, reflecting more localized feature importance
shifts.

For the abnormal class, there is an increase in variance for DeepConvLSTM

(SM), XGBoost (LTE), and FCN (LTE). This indicates that feature importance maps for

arrhythmia detection are less stable, likely because abnormal heart rhythms exhibit more

diverse and complex patterns, which requires the model to adapt its explanations based

on the specific ECG characteristics. The higher variance is a sigh that different segments
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of the ECG become important depending on the type of arrhythmia, reinforcing the

need for models to exhibit class sensitivity.

Interestingly, DeepConvLSTM (EX) and XGBoost (TEX) maintain lower variance

compared to other methods, implying that these explainability methods generate more

consistent attribute of importance of features for the classification of arrhythmias,

potentially capturing robust patterns across different abnormal cases. However, FCN

and DeepConvLSTM with Saliency Maps (SM) show the highest variance, which may

indicate that these methods dynamically adapt their explanations based on the specific

arrhythmia subtype, rather than relying on a fixed set of discriminative features.

4.2.3.5 Stability Evaluation

The results presented in Figure 4.18 show pairwise comparisons of feature maps ob-

tained by XAI methods with different setups. DeepConvLSTM model demonstrates

the highest stability, particularly in comparisons between DeepConvLSTM (SM) and

DeepConvLSTM (EX), which exhibit lower DTW values. This indicates that feature

importance maps remain relatively stable within the same model in different explain-

ability methods. However, compared to XGBoost and FCN, the DTW distances increase,

reflecting differences in how deep learning models distribute feature attributions across

sequential representations. In contrast, XGBoost shows the highest variability in feature

importance attributions, particularly in comparisons such as XGBoost (TEX) vs. XG-

Boost (LTE) and XGBoost (TEX) vs. DeepConvLSTM (TEX), where higher DTW values

indicate that the model’s reliance on certain features is highly dependent on the chosen

XAI method. This shows that XGBoost’s feature attributions are less stable, making its

interpretability more sensitive to the choice of the explainability technique.

FCN exhibits moderate stability with relatively consistent importance across

different XAI methods, particularly in comparisons of FCN (EX), FCN (SM), and FCN

(LTE). However, FCN vs. XGBoost comparisons reveal greater DTW distances, rein-

forcing the idea that tree-based models and convolutional architectures derive feature

importance differently. Furthermore, pairwise comparisons of XAI methods highlight
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Figure 4.18 – Pairwise comparison of feature importance maps across XGBoost, FCN,
and DeepConvLSTM models using different XAI methods (SHAP Tree
Explainer (TEX), SHAP Explainer (EX), LimeTabularExplainer (LTE), and
Saliency Map (SM)). Dynamic Time Warping (DTW) is used to measure
the distance between feature maps, with lower values indicating greater
stability. DeepConvLSTM exhibits the highest stability across different
XAI methods, whereas XGBoost shows the highest variability, suggesting
that explainability results are model-dependent.

that SHAP-based methods (TEX and EX) generate more consistent feature maps across

models, whereas LIME (LTE) introduces greater variability, suggesting that LIME’s local

approximations may be less stable in cross-model comparisons.

4.2.3.6 Localization Evaluation

We use Localization to evaluate whether feature importance maps correctly align with

the temporal segments of the input that are most relevant to the predicted classes.

This alignment is particularly important in time series data, where domain-specific
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knowledge often defines key temporal segments that carry class-specific information.

The analysis evaluates the alignment of feature importance maps at two thresholds

(t = 0 and t = 0.5) to assess how well each method captures temporal relevance.

Table 4.9 – Localization results for various models and explanation techniques at two
thresholds (t = 0 and t = 0.5). Higher localization scores indicate better
alignment of feature importance maps with the relevant temporal segments
of the input.

Experiment (%) t = 0 (%) t = 0.5

DeepConvLSTM (SM) 70.02 71.54
DeepConvLSTM (EX) 69.81 77.06
XGBoost (TEX) 69.64 83.05
FCN (EX) 69.69 81.23
XGBoost (LTE) 69.67 70.96
DeepConvLSTM (LTE) 69.64 69.73
FCN (LTE) 69.74 70.44
FCN (SM) 69.93 61.62

The localization results presented in Table 4.9 show that between the evaluated

models and the explanation techniques, significant differences were observed. XGBoost

(TEX) achieved a significant improvement in localization scores when the threshold

was raised from (t = 0 to t = 0.5), with scores increasing from 69.64 to 83.05. This

demonstrates the ability of the method to adapt to the thresholding mechanism and

accurately highlight critical temporal features. By focusing on high-importance features,

TEX effectively captures relevant data regions, making it a reliable explanation technique

for interpretable models. On the other hand, XGBoost (LTE) showed only a modest

improvement in scores, from 69.67 at t = 0 to 70.96 at t = 0.5.

DeepConvLSTM (EX) exhibited strong localization performance. This result

suggests that the Explainer method is effective in identifying the most important features

within the temporal segments as the threshold increases, making it well-suited for deep

learning architectures. In contrast, the SM for DeepConvLSTM showed only a slight

improvement in scores reflecting its moderate ability to align with threshold-based

localization criteria. DeepConvLSTM (LTE) exhibited minimal differences in scores

between. This consistency highlights its difficulty in adapting to thresholding and

prioritizing high-impact features.

For FCN (EX), there is a substantial improvement, with scores rising from 69.69
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at t = 0 to 81.23 at t = 0.5. This indicates its strong alignment with the threshold-based

localization mechanism, allowing it to focus on the most critical features effectively.

However, the SM for FCN performed poorly, with localization scores deteriorating from

69.93 at t = 0 to 61.62 at t = 0.5. This significant drop highlights the limitations of SM

in handling thresholding, as their explanations become less aligned with meaningful

temporal features when noise is removed. FCN (LTE) showed minimal improvements.

4.2.4 Final Remarks

Training Appropriated Classification Models: The performance of three different

models, XGBoost, DeepConvLSTM, and FCN, for arrhythmia classification reveals

some differences and trends. The results reveal several important aspects of model

selection, dataset variability, and the potential for clinical application in the arrhythmia

classification. The DeepConvLSTM model demonstrated robustness in comparison

with XGBoost and FCN models. Its ability to maintain high performance on both the

MITBIH+SVDB and INCART datasets shows that the model’s architecture and learning

mechanisms may be better suited to capture the complex temporal dependencies and

nuanced signal patterns inherent in ECG data. DeepConvLSTM low false negative rates

indicate that it is less likely to miss truly abnormal heartbeats, an attribute that is critical

in clinical practice where missed diagnoses can have severe patient consequences. In

contrast, the XGBoost model, while showing strong performance on the MITBIH+SVDB

dataset, experiences a measurable performance dip when confronted with the more

heterogeneous and possibly more challenging INCART dataset. This discrepancy is

expected since tree-based approaches, although powerful and interpretable, may be

sensitive to shifts in data distributions or subtle differences in patient populations,

signal acquisition methods, or arrhythmia morphologies.

Visualizing Feature Importance Maps with GIC: Our proposed GIC method

offers a novel approach for visualizing and analyzing the feature importance maps

generated by different XAI methods in time-series classification. By using UMAP, t-SNE,

and PCA, GIC facilitates the exploration of how different XAI methods encode and
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differentiate feature importance patterns across model architectures. As a visualization

tool, we can analyze the stability, coherence, and interpretability of feature importance

maps. An analysis of dimensionality reduction techniques shows significant differences

in how these methods handle feature importance visualizations. UMAP consistently

outperformed PCA and t-SNE, particularly in preserving class separability at higher

thresholds. t-SNE, while effective at capturing local relationships, often struggled to

retain global structure, leading to less meaningful visual separations. PCA, relying on

linear transformations, provided smoother transitions between clusters but exhibited

limitations in handling non-linear feature distributions, making it less suitable for

complex deep learning models. These results emphasize the importance of selecting

appropriate dimensionality reduction techniques based on the properties of the XAI

method and the model architecture being analyzed.

A deeper comparison of SHAP, LIME, and Saliency Maps further underscores

the advantages of globally consistent feature attribution methods. SHAP-based methods

consistently produced the most reliable and well-structured feature importance maps,

resulting in clear class separability across all clustering techniques. In contrast, LIME

and Saliency Maps demonstrated significant variability, particularly at lower thresh-

olds, suggesting that localized explanations are less stable and less reliable for global

interpretability. The ability of SHAP to provide consistent attributions across multiple

instances allows for clearer and more interpretable clustering outcomes, whereas LIME

and Saliency Maps, by focusing on localized feature importance, introduce noise that

impacts the clustering performance of dimensionality reduction techniques. The results

confirm that GIC serves as an effective tool for evaluating and comparing XAI methods

in time series classification. By integrating GIC into the broader XAI evaluation frame-

work, we gain a deeper understanding of how different explainability methods behave

across models, allowing for more informed selection and refinement of interpretability

techniques.

Integrating Sanity, Faithfulness, Robustness, Stability, Sensitivity and Local-

ization in XAI Evaluation: we demonstrated how different explainability methods

(SHAP, LIME, and Saliency Maps) interact with machine learning models (XGBoost,
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FCN, and DeepConvLSTM) applied to our use case dataset of ECG data. Although each

metric captures a different aspect of explainability, their combined results highlight key

trends in the reliability and interpretability of feature importance attributions.

• The sanity evaluation further reinforced the strength of SHAP-based methods,

confirming that EX and TEX consistently differentiated real feature importance

from randomized maps. LTE showed moderate reliability, but its perturbation-

based approach introduced variability, reducing its consistency. SM performed the

worst, producing explanations that resembled those of randomly trained models,

indicating that they fail to provide meaningful explanations in high-complexity

models such as DeepConvLSTM.

• The faithfulness evaluation has shown how strongly the removal of high-importance

features affected model predictions. The results confirmed that SHAP-based meth-

ods (EX, TEX) consistently produced the most faithful explanations, as removing

these features led to significant performance degradation, indicating that they

truly influenced the model’s decision-making process. LTE and SM exhibited

lower sensitivity to feature removal, demonstrating that their identified features

may be less representative of the model’s actual decision process.

• For robustness evaluation, the introduction of noise in the input data revealed

clear differences in the stability of feature importance maps. DeepConvLSTM

exhibited the highest robustness, with minimal changes in feature attributions

across explainability methods, suggesting that sequential models learn more

resilient patterns. XGBoost showed the greatest sensitivity to noise, particularly

under SHAP-based methods (TEX, EX), reflecting its reliance on a small subset

of highly important features. LIME and Saliency Maps produced more variable

feature attributions, indicating lower robustness to minor input perturbations.

These results shows that SHAP is faithful in identifying critical features and this

implies in a more sensitivity to perturbations, whereas LIME and SM produce

more stable but potentially less informative explanations.
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• Class-sensitivity analysis shows that feature importance maps differed signifi-

cantly between normal and abnormal ECG classifications, particularly in deep

models. The results showed that SHAP-based methods exhibited lower variance

in feature importance across classes, implying that they provided more consistent

and generalized explanations. LTE and SM, however, displayed greater variability,

particularly in the abnormal ECG class, suggesting that their explanations are

more context-dependent. This highlights an important consideration: while some

explainability methods remain consistent across all predictions, others dynami-

cally adapt to the complexity of the data, which can be advantageous for detecting

irregular patterns such as arrhythmias.

• The stability metric examined how well different models and XAI methods pro-

duced similar importance maps when trained on the same dataset. DeepConvL-

STM demonstrated the highest stability, particularly across SHAP-based methods

(EX, TEX), with consistently aligned feature importance maps. XGBoost, however,

exhibited high variance, which means that tree-based models depend heavily on

the choice of explainability technique. LIME (LTE) showed the greatest inconsis-

tency, implying that its explanations are more dependent on local perturbations

rather than globally consistent feature importance.

• The localization results demonstrated that because anomaly windows are broad,

even modest or noisy feature importance maps are likely to overlap substan-

tially—yielding moderate localization scores ( 70%) by default.

While SHAP-based techniques emerge as the most reliable across structured and

deep models, their robustness must be considered in noisy environments. LIME offers

flexibility but suffers from instability, whereas Saliency Maps are largely ineffective in

generating meaningful explanations.
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5

CONCLUSIONS AND FUTURE WORKS

This chapter concludes the thesis by reviewing the work that has been presented,

summarizing its primary contributions, and proposing future research directions. The

chapter concludes by exploring the broader implications of this work and suggesting

future research directions to address these limitations.

5.1 Summary and Contributions
This thesis has contributed to the advancement of the field of explainable artificial

intelligence in the time series domain by proposing the Unified Time Series Framework

for Explainable Artificial Intelligence (UTS-XAI). The central research question that

this thesis addressed was how to improve effective explainability evaluation through

the use of domain-specific XAI metrics. Through extensive evaluations, conceptual

frameworks, and implementations, this has been addressed and answered.

The primary research question that motivated this thesis was

“How can we integrate advanced explainable artificial intelligence methods and

improve explainability evaluation into time-series classification to develop robust,

trustworthy, and interpretable machine learning models for real-world applica-

tions?”

The responses to this thesis’s central question are multifaceted. First, we propose

and evaluate the UTS-XAI framework, grounded in extensive literature on both explain-
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able machine learning and time series classification analysis. The framework provides a

structured approach to integrating explainability and evaluation directly into the time

series classification pipeline, rather than treating these components as afterthoughts.

This principled structure, developed and refined through state-of-the-art research of-

fers a solid theoretical foundation for building future ML systems that demand high

predictive accuracy and reliable interpretability.

Second, the thesis introduced and validated a series of specialized tools and

methods that manifest the UTS-XAI framework in practice. These include a time series

quantitative evaluation methodology for XAI methods, designed to capture the temporal

nature of data, and the Global Interpretable Clustering (GIC) visualization tool, which

allows us to qualitatively compare different explainability approaches.

The results presented in this thesis confirm that integrating advanced explain-

ability methods and rigorous explainability evaluation metrics significantly improves

the interpretability and reliability of time series classification models. Through the

UTS-XAI framework, we demonstrated that different XAI methods behave differently

depending on the model architecture and interpretability criteria, emphasizing the im-

portance of choosing the right explainability approach based on the application domain.

We also established that explainability evaluation must go beyond generating feature

importance maps: it requires quantitative assessment using faithfulness, robustness,

stability, sensitivity, localization, and sanity metrics.

Taken together, the UTS-XAI framework and its associated methods not only

serve for the time series classification tasks presented in this thesis but also offer a

generalizable foundation for future research.

5.2 Achieved Research Objectives
We present the achieved objectives of this thesis as follows.

• Proposing a Robust Time-Series Classification Pipeline: we successfully imple-

mented and tested XGBoost, FCN, and DeepConvLSTM, covering a diverse range

of model architectures suitable for time-series classification. The models were eval-
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uated using three real-world datasets from Physionet repository (MIT-BIH, SVDB

and INCART), demonstrating their effectiveness in handling medical time-series

data. We also validate this pipeline in (BRAGANÇA et al., 2022)

• Developing a Time-Series Explainability Evaluation Methodology: we introduce a

domain-specific XAI evaluation framework that quantifies explainability perfor-

mance using metrics such as faithfulness, sensitivity, robustness, stability, localiza-

tion, and sanity. We demonstrated that SHAP-based methods provide the most

faithful and meaningful explanations, while LIME and Saliency Maps showed

limitations in various interpretability criteria. We integrate time-series similarity

and distance measures (e.g. MSE, RMSE, Euclidean distance, DTW, and cosine

similarity) to assess explanation consistency, further strengthening the evaluation

framework.

• Integrating Classification and Explainability into a Unified Framework (UTS-XAI):

We successfully combine the classification pipeline with advanced explainability

methodology in such a way that model explanations are not only generated,

but also systematically validated. Our experiments demonstrated that SHAP-

based methods were the most faithful (accurately identifying influential features)

but also more sensitive to noise, meaning that their feature importance changed

significantly under perturbations. LIME and Saliency Maps were less sensitive to

noise but also less faithful, meaning that their explanations remained stable but

potentially less meaningful. This trade-off highlights that no single explainability

method is universally superior across all criteria.

• Introducing the Global Interpretable Clustering (GIC) Methodology: we devel-

oped GIC, which uses dimensionality reduction techniques (PCA, t-SNE, UMAP)

to visualize feature importance maps and compare different XAI methods. This

methodology allowed us to group explanation patterns and identify similarities

and inconsistencies in explainability techniques, providing an intuitive way to

assess interpretability at scale.
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5.3 Broader Impact and Future Research Perspectives
Although this thesis has made significant progress in integrating explainability into

time series classification through the UTS-XAI, several challenges remain open. These

challenges highlight opportunities for further refinement, expansion, and real-world

applicability of explainable AI techniques for time-series data.

5.3.1 Extending UTS-XAI to Multiclass Time-Series Classification

UTS-XAI framework has been successfully validated in a binary time series classifi-

cation setting but real-world applications often involve multiclass classification tasks,

where models must distinguish between multiple categories rather than just two. Ex-

amples include multi-condition medical diagnosis, human activity recognition, fault

detection in industrial systems, and financial trend classification, all of which require

models to identify and explain differences between three or more possible outcomes.

The transition from binary to multiclass classification introduces several challenges,

including increased complexity in feature importance attributions, scalability issues

in explainability evaluations, and ambiguity in localization metrics, all of which re-

quire further research. Future research should focus on extending UTS-XAI to explicitly

support multiclass classification by integrating four elements as follows.

• Class-specific faithfulness, sensitivity, and stability evaluations – developing met-

rics that assess feature importance separately for each class transition rather than

averaging across all predictions.

• Multiclass-aware feature attribution and robustness testing – introducing tech-

niques that account for shared and distinct feature importance across multiple

categories.

• Improved visualization and interpretability – developing interactive explainability

tools that allow users to explore and compare feature attributions across multiple

class labels in an intuitive way.
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5.3.2 Standardizing Explainability Benchmarks and Community

Adoption

Despite growing interest in XAI for time series models, there are no widely accepted

benchmark datasets, evaluation metrics, or standard protocols to assess the explainabil-

ity in temporal applications. This study introduces a novel evaluation methodology, but

future research should focus on establishing standardized benchmarks to facilitate fair

comparisons between different explainability methods. Developing publicly available

time-series explainability datasets and creating community-driven challenges to evalu-

ate XAI metrics would significantly accelerate the adoption of explainable AI in both

research and industry.

5.3.3 Adapting UTS-XAI to Other Use Cases and Domains

Although the UTS-XAI framework is demonstrated in the classification of arrhythmias

from ECG signals, it is designed to generalize to a wide range of time-series applications.

Future work should explore its applicability to sensor-based predictive maintenance,

climate modeling, human activity recognition, and fraud detection. Furthermore, inte-

grating new explainability that better suits for its domain should be explored.

5.4 Final Thoughts on Future Directions
The results of this thesis lay the foundation for a more rigorous and structured approach

to explainability in time series classification. However, achieving truly trustworthy

and universally interpretable AI systems requires continued advancements in adaptive

explainability techniques, real-time evaluation, ethical considerations, and human-

centered visualization approaches. By addressing these challenges, future research

can bridge the gap between theoretical explainability metrics and real-world decision-

making that allows time series models to be not only accurate but also interpretable,

reliable, and fair for practical deployment.
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