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Resumo

Este trabalho aborda o projeto e a avaliagao de uma estrutura integrada de Controle
Ativo Tolerante a Falhas (AFTC), que combina Controle Preditivo por Modelo (MPC)
e Estimativa de Horizonte M6vel (MHE) para acomodagao de falhas em tempo real em
sistemas multivaridveis com restricoes. A metodologia proposta é validada em um modelo
linearizado do sistema de trés tanques, tanto sob condi¢oes nominais quanto na presenca
de falhas nos atuadores e na planta.

A formulagao do MPC incorpora restrigoes poliédricas de estado e entrada, um con-
junto terminal elipsoidal e sua aproximacao poliédrica interna, garantindo a factibilidade
e a estabilidade recursivas. Um estimador de parametros baseado em MHE amplia o mo-
delo do sistema para, de forma simultanea e online, realizar a estimativa de estados e de
residuos de falhas, permitindo a reconfiguracao dinamica do sistema em malha fechada.

Para o cenério nominal (livre de falhas), os resultados das simulagdes demonstram que
a estrutura proposta alcanca um rastreamento preciso do ponto de ajuste, com erro des-
prezivel em regime permanente, respeitando todas as restrigcoes. Em situagoes de falhas
abruptas do atuador, o método restaura o desempenho préximo ao obtido com conheci-
mento perfeito das falhas, apresentando apenas pequena degradacao devido ao atraso na
estimativa. Ja em casos de falhas graves na planta, envolvendo nao linearidades signifi-
cativas, como bloqueios de tubulagoes e vazamentos em tanques, a abordagem proposta
proporciona apenas recuperacao parcial, com desempenho superior ao da configuragao
nominal, embora limitado pela capacidade de convergéncia do estimador.

O estudo conclui que a integragao de MPC e MHE em uma estrutura AFTC uni-
ficada aumenta a resiliéncia do sistema a falhas, mantendo a satisfagdo das restri¢oes.
A abordagem mostra-se particularmente adequada para aplicagoes lineares e estabelece
uma base para futuras extensoes, incluindo estimativas robustas e nao lineares, estratégias

avancgadas de controle preditivo e implementagao em hardware em tempo real.

Palavras-chave: Controle tolerante a falhas, Controle preditivo baseado em modelo,
Estimagao por horizonte movel, Compensacao de falhas, Controle com restrigoes, Sistema

de trés tanques.



Abstract

This work addresses the design and evaluation of an integrated Active Fault-Tolerant
Control (AFTC) framework that combines Model Predictive Control (MPC) and Mov-
ing Horizon Estimation (MHE) to achieve real-time fault accommodation in constrained
multivariable systems. The proposed methodology is validated on a linearized three-tank
system model, both under nominal conditions and in the presence of actuator and plant
faults.

The MPC formulation incorporates polyhedral state and input constraints, an ellip-
soidal terminal set, and its inner polyhedral approximation to ensure recursive feasibility
and stability. A parameter estimator based on MHE augments the system model to simul-
taneously estimate states and fault residuals online, enabling the dynamic reconfiguration
of the closed-loop system.

For the nominal (fault-free) scenario, the simulation results demonstrate that the pro-
posed AFTC framework achieves accurate setpoint tracking with negligible steady-state
error, while respecting all constraints. In situations of abrupt actuator fault, the method
restores performance close to that obtained with perfect fault knowledge, presenting only
minor degradation due to estimation delay. In cases of severe plant faults involving sig-
nificant nonlinearities, such as pipe blockages and tank leakages, the proposed approach
provides only partial recovery, with superior performance to the nominal-model configu-
ration, although limited by the convergence capacity of the estimator.

The study concludes that integrating MPC and MHE into a unified AFTC framework
enhances system resilience to faults while ensuring constraint satisfaction. The proposed
approach is particularly well-suited for linear applications and provides a foundation for
future extensions, including robust and nonlinear estimations, advanced predictive control

strategies, and real-time hardware implementation.

Keywords: Fault-tolerant control, Model predictive control, Moving horizon estima-

tion, Fault accommodation, Constrained control, Three-tank system.
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Chapter 1

Introduction

The complexity and cost of modern systems have steadily increased with technolog-
ical advancements. Simultaneously, the demand for safety, reliability, and efficiency has
become fundamental in the design and control of such systems. Due to the natural wear
of components, poor maintenance, misuse of the equipment, or malfunction of critical
components, such as sensors and actuators, the presence of faults is an inevitable reality.

In safety-critical sectors—such as aerospace, automotive, and healthcare—the occur-
rence of faults can pose significant risks and cause irreversible damage to the system
and, consequently, to the people involved. In this context, Fault-Tolerant Control (FTC)
emerges as a fundamental strategy for a reliable implementation of complex dynamic sys-
tems. In addition to its ability to detect, diagnose, and mitigate the adverse effects of
faults, F'TC plays a vital role in ensuring safe and efficient system operation, maintaining
operational integrity, and preserving closed-loop stability and desired performance within
acceptable limits.

FTC techniques are commonly categorized into two classes: passive and active. In
Passive Fault-Tolerant Control (PFTC), the controller is designed to be robust against
fault-induced variations in system parameters and can handle a limited set of faults with-
out modifying the control law. In contrast, Active Fault-Tolerant Control (AFTC) adapts
the control law dynamically in response to faults. Typically, an AFTC approach com-

prises two sequential steps: fault diagnosis, which detects the fault, isolates the faulty

components, and identifies a model of the faulty system; and control readjustment, which

determines a reconfigured controller to replace the nominal one [1].

The control readjustment step can be implemented in three distinct ways: through
fault accommodation [1|, when the sets of manipulated and measured signals remain
unchanged, and the adjustment is limited to the controller dynamics; through control
reconfiguration [2|, when changes are made to the controller dynamics, the closed-loop
structure, and the reference signal; or through fault hiding [3], where a reconfiguration
block is introduced into the control loop to mask the effects of sensor or actuator faults
from the nominal controller [4].

AFTC frameworks are designed to monitor and respond online to different kinds
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of faults that might occur in dynamic systems, aiming to preserve the system perfor-
mance—with minimal degradation—and closed-loop stability. The model that adequately
represents the faulty system is selected based on the outcome of the Fault Diagnosis (FD)
module. An alternative way to address FD is through Fault Estimation (FE) techniques.
If a fault signal is estimated—revealing its occurrence (detection)—for each possible fault
scenario—identifying its location (isolation)—and its magnitude reflects the fault severity
and dynamic behavior (identification), then a complete fault diagnosis is achieved. On
the other hand, if only a fault indicator is estimated, additional steps are required to
reconstruct the fault behavior and perform fault diagnosis [5]. Once reconstructed, the
estimated fault signals can be directly incorporated into the control law to mitigate their
effects on the system [6].

Several FE techniques have been proposed in the literature to improve the efficiency
and accuracy of fault detection and compensation. Unknown Input Observer (UIO) allows
fault estimation in the presence of unknown disturbances, isolating faults while minimiz-
ing the influence of external effects, making it robust against uncertainties |7, 8|. Sliding
Mode Observer (SMO) exhibits similar robustness by employing a discontinuous control
law to ensure fast and accurate fault detection [9, 10, 11]. For nonlinear systems, Ex-
tended State Observers (ESO) simultaneously estimates both system states and faults,
allowing real-time fault compensation [12, 13]. Kalman Filter (KF) techniques—such
as the extended and unscented KF-—provide optimal state and fault estimates based on
probabilistic models, updating the estimations at each sampling instant |14, 15]. Moving
Horizon Estimation (MHE) formulates an optimization problem over a sliding window to
estimate states and faults, making it particularly suitable for systems with constraints,
since these can be explicitly incorporated into the estimation problem as equality or in-
equality conditions [16, 17|. Each technique presents distinct advantages: UIO and SMO
excel in dealing with model uncertainties; MHE is effective in managing constraints and
nonlinearities; and KF-based methods offer broad applicability across diverse domains.
The selection of a suitable method depends on the system dynamics and fault charac-
teristics. In many cases, hybrid approaches can provide the most effective solution for
maintaining the system performance with minimal degradation.

In AFTC design, it is often assumed that the FD module provides ideal responses,
i.e., the correct fault signal is always available for consultation at any time, as consid-
ered in [18]. This assumption allows the designer to focus specifically on the control
readjustment problem. However, integrating F'D techniques with control readjustment
strategies in real-world applications presents several challenges. One such challenge is the
occurrence of false alarms, often caused by measurement noise or model uncertainties. To
address this, the authors in [19] proposed a learning-based switching function. Another
critical issue is missed detection, where low-magnitude faults go unnoticed, preventing the
activation of control readjustment and potentially leading to performance degradation or

even loss of stability. To mitigate this, the nominal controller should be robust to vari-
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ations introduced by such faults [20]. A further concern is the response time of the FD
module. If the fault information is not delivered promptly, the delay in control adaptation
can also lead to performance degradation or instability, as demonstrated in [21]. These
challenges are fundamentally tied to the reliability of the FD module, i.e., its ability to
deliver accurate and timely responses when a fault occurs, as discussed in [22].
Numerous methodologies for implementing FTC have been proposed in the litera-
ture |23, 4, 24|. Among these, approaches capable of handling constraints are particularly
attractive for practical applications, since real-world systems are inherently subject to
physical limitations in usage and capacity. In this context, and with the continuous
growth of computational power, Model Predictive Control (MPC) has attracted signifi-
cant attention over the past decades [25, 26, 27|. This is primarily attributed to its key
advantage: the ability to solve finite-horizon optimal control problems subject to strict
equality and inequality constraints on control inputs and system states at each sampling
instant [28]. A conceptually related method is MHE, whose integration with MPC has
also received increasing interest across diverse research domains [29, 30, 31], since both are
formulated as online optimization problems with explicit constraints [32]. Given its shared
optimization structure with MPC, MHE is often referred to as its dual problem [33].
This work proposes an active fault-tolerant control framework that combines MHE
and MPC for a Linear Time-Invariant (LTI) Multiple-Input Multiple-Output (MIMO)
system subject to state and input constraints. The core idea is to adapt the MHE op-
timization problem to simultaneously estimate the system states and the fault residual
signals, and then use this information—together with past control inputs—to estimate
the faulty system parameters required by the MPC to perform fault accommodation in
actuators and plant malfunctions, thereby mitigating their effects in closed-loop opera-
tion. This integrated strategy is designed to maintain closed-loop stability and ensure

setpoint tracking with minimal performance degradation, even in the presence of faults.

1.1 Research Objectives

1.1.1 General Objective

To develop and implement an active fault-tolerant control framework that integrates
moving horizon estimation and model predictive control with input and state constraints

to accommodate actuator faults and plant malfunctions in an LTT MIMO system.

1.1.2 Specific Objectives

1. To design and implement a model predictive control scheme for setpoint tracking.

2. To implement a moving horizon estimation approach for state estimation.
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3.

To integrate model predictive control and moving horizon estimation into a unified

framework.

. To formulate a fault residual estimator based on moving horizon estimation.
. To design an active fault-tolerant control strategy using model predictive control.

. To evaluate the proposed methodology through numerical simulations.

1.2 Thesis Outline

The remainder of this thesis is structured as follows:

Chapter 2 provides theoretical background on MPC and MHE;, including constraints,
stability guarantees, and duality. This chapter also presents relevant related works
that combine MPC and MHE to build an AFTC framework.

Chapter 3 describes the benchmark three-tank system and its mathematical models.
A default case study is defined, and a linear faulty model is obtained to describe its

behavior in the presence of faults in the actuator, plant, and sensors.

Chapter 4 presents the proposed methodology, including control and estimation

strategies, fault residual estimation, and model reconfiguration.
Chapter 5 shows the simulation results obtained under different fault scenarios.

Chapter 6 concludes the work and outlines possible future research directions.



Chapter 2
Background

This chapter presents the theoretical foundations and core concepts underlying the
control and estimation strategies employed in this work. Section 2.1 summarizes the key
elements of Model Predictive Control (MPC) over a finite horizon with state and input
constraints, while Section 2.2 outlines the formulation and implementation of Moving
Horizon Estimation (MHE). Finally, Section 2.3 reviews relevant studies that combine
MPC and MHE to implement Active Fault-Tolerant Control (AFTC) frameworks. These
works serve as a basis for the development of the methodology proposed in this study,
which takes advantage of the synergy between estimation and control to ensure system

performance and robustness in the presence of faults.

2.1 Model Predictive Control

Model Predictive Control (MPC) is a control strategy widely applied to multivariable
dynamic systems subject to operational constraints. It employs a dynamic model of the
system to predict its behavior over a prediction horizon of N steps from a given current
state. Based on these predictions, MPC computes the optimal control input that steers
the system states toward the desired targets while ensuring that the predictions closely
match the most likely actual states of the system.

Figure 2.1 illustrates the core concept of an MPC strategy. At the current time step k,
the reference trajectory, the measured or estimated state of the system, and the previous

control input are available. Based on this data, the system model generates a sequence of

k+N
i=k+

known as the prediction horizon. The corresponding sequence of control inputs {u;

state predictions {Z; , over the next N time steps. These predictions are within a set

ar
is within the control horizon, which corresponds to the maximum number of time steps
ahead that the controller can act effectively on the system. At each sampling instant, an
optimization problem is solved to compute the sequence of control inputs that minimizes
the deviation between the sequence of state predictions and the reference trajectory. This
process involves minimizing a cost function subject to constraints on both the state and

control input sequences.
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Figure 2.1: Prediction and control horizon scheme in MPC.
2.1.1 General Formulation
Let the system dynamics be described by the following discrete-time model:
Uy = g(on, up),

where z;7 € R™ is the successor state vector, determined by the current state z; € R™ and
control input u € R™; and y, € RP is the current output vector, which likewise depends
on x; and uy.

The MPC control law is computed at each sampling instant £ by solving the finite-
horizon optimal control problem (2.2), where ¢(Z;, u;) denotes the stage cost, F(Zxin)
represents the terminal cost, and N defines the prediction horizon length. Although
the problem includes equality constraints to initialize the predicted state trajectory at
the current system state and to enforce the system dynamics at each time step, it is

commonly referred to as an unconstrained optimal control problem. This terminology

reflects the fact that no explicit bounds or inequality constraints are imposed on the state
and control variables; that is, the entire spaces R™ and R are admissible for the state

and input sequences, respectively.

( k+N-1
min 0T, 1) + F(ZTpen)
{Z4,8:} i
Py (zx) :  subject to: (2.2)
T = Tk,
T, = f(z,w), i=k,....,k+N—1.
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In this formulation, the stage cost ¢(Z;, u;) penalizes deviations of the predicted states
and control inputs from the desired behavior at each step of the prediction horizon. In
contrast, the terminal cost F(Zy,n) penalizes the final predicted state at the end of
the prediction horizon to ensure desirable properties such as stability and convergence.
Together, these costs define the objective function minimized by the MPC, balancing
tracking performance, control effort, and closed-loop stability.

The solution of the optimization problem (2.2) yields an optimal sequence of feasible

k+N—1 k+N
itk im 1, from

a given initial state x;. However, to preserve prediction accuracy and continuously incor-

control inputs, {u; , along with the corresponding state trajectory, {z;}
porate new measurements, only the first element of the control horizon, uy, is applied to
the system as a control input. The remaining elements of this sequence are discarded, and
at the next sampling instant, new optimal sequences are computed based on the updated

state information.

2.1.2 Constraints

The model (2.1) describes a discrete-time system that may be subject to constraints
on both the state and control input sequences. In this context, these variables must
satisfy (2.3) and (2.4), where X C R™ is a convex, closed set representing admissible
states, and Y C R™ is a convex, compact set defining admissible control inputs [28|. Both
sets are assumed to contain the origin in their interior. The set X" typically encodes safe
operating conditions or regulatory requirements, whereas U/ reflects actuator limitations

or safety bounds on the control inputs.

r, € X (23)
up €U (24)

In addition, a terminal constraint set {2 C X is often introduced to ensure closed-loop
stability and recursive feasibility [34]. This set is also chosen to be convex and closed, and
it is required to contain the origin in its interior. The terminal set 2 defines a region of the
state space where a local stabilizing control law can be applied to ensure that the system
remains within X’ and satisfies the input constraints ¢ [28]. Typically, €2 is designed to be
positively invariant under the terminal control law, ensuring that the system trajectories
converge to the desired equilibrium point [35]. Accordingly, the terminal state prediction

is required to satisfy the terminal constraint specified in (2.5).
TpyN € Q (25)

To ensure that all previously defined state and control constraints are satisfied, the un-
constrained optimization problem in (2.2) is reformulated into the so-called finite-horizon

constrained optimal control problem in (2.6), in which explicit constraints are imposed
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on the state and input trajectories.

( k+N—-1
min 0Ty, 1) + F(ZTpen)
S —
subject to:
-i'k = Tk,
TS = f(z,u;), i=k,....,k+N—1,

ZEX, i=k+1,...,k+N
€U, i=Fk ... k+N—1,

Py (k) : (2.6)

Tr+N € Q.

2.1.3 Stability and Feasibility

To guarantee closed-loop asymptotic stability and recursive feasibility, it is essential
to impose appropriate assumptions on the components that define the constrained model
predictive control problem (2.6). These assumptions are well-established in the litera-

ture [28] and are stated below.
A1: There exists a terminal set 2 C X that is closed and satisfies 0 € ).
A2: There exists an admissible control law kq(xy) € U for all z € Q.

A3: The terminal set 2 is positively invariant under kq(xy); that is,

f(xg, ka(zr)) € Q, Vi € Q.

A4: The terminal cost F(zy) is a local Lyapunov function under kq(zy); that is,
F(f(zk, kalr))) — Far) < =z, ko(wr).

Assumption Al ensures that the terminal region is well-defined, satisfies the state
constraints, and contains the desired equilibrium point. If the equilibrium point is different
from the origin, this condition can still be satisfied by applying a suitable change of
coordinates. Assumption A2 guarantees that, within the terminal set €2, there always
exists a control input that satisfies the input constraints. Assumption A3 ensures that if
the system starts within 2 and is controlled by kq(zy), it will remain in €2 for all future
steps, guaranteeing that the terminal region is self-contained. Finally, Assumption A4
establishes that the terminal cost function F'(z)) must act as a local Lyapunov function
under the terminal control law kg (xy). This means that F'(xzy) is positive definite on {2 and
decreases along the closed-loop trajectories generated by rkq(xy). Formally, starting from

the definition of F(zy) as a candidate Lyapunov function, its change along the system
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trajectories is given by

AF(x) = F(f(xx, va(er)) = F(ak).

To guarantee stability, this difference must satisfy
AF (zy) < —l(xg, ka(xy)), Vg € Q,

where ((zy, ko(zx)) is the stage cost, which is positive definite on . This inequality
ensures that F'(xy) decreases along the system’s state trajectories, indicating convergence
toward an equilibrium point—typically the origin—while maintaining the state within the

admissible set.

2.1.4 Domain of Attraction

An important concept in the analysis and design of MPC is the domain of attraction,
which defines the set of initial states x; € X that can be steered into the terminal set ()
within NV steps or fewer, where N denotes the control horizon length [36]. Although the
true domain of attraction is difficult to characterize, it can be approximated and formally
defined as

Dn(Q) ={zp € X |Jje{0,1,...,N}:2py; € Q}.

This definition explicitly emphasizes that any initial state contained within the set Dy (£2)
can be driven to the terminal set ) after a finite number of iterations. A special case

arises for N = 0, where the domain of attraction is trivially the terminal set itself, i.e.,
Dy () = Q.

The region determined by the approximation of the domain of attraction can assume
any convex and closed shape contained within X C R"™. Figure 2.2 illustrates an ellipsoidal
domain of attraction, Dy(f2), in a two-dimensional state space. As depicted, this region
is typically a subset of the admissible state space X that contains the terminal set €2, i.e.,
Q C Dn(Q) € X. Under Assumptions A1-A4, the terminal set 2 is positively invariant
under the terminal control law ko (x) and serves as a local region of guaranteed stability,
ensuring that all trajectories initiated within {2 converge asymptotically to the desired
equilibrium point—or to the origin.

The size of Dy (€2) depends on both the size of the terminal set 2 and the length of the
control horizon N. Increasing either of these parameters generally enlarges the domain of
attraction. The most common approach is to extend the control horizon N (since Dy (§2) C
Dy(Q2) C -+ C Dn(R)), which, although effective, results in a larger number of decision
variables and consequently higher computational complexity. Alternatively, enlarging

the terminal set Q also expands the domain of attraction (since Q C Dy(2)) without
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X1

Figure 2.2: Ellipsoidal domain of attraction Dy (Q2) C X C R2.

increasing the computational burden, making it an attractive and practical strategy [37].

2.2 Moving Horizon Estimation

State estimation plays a crucial role in the control and monitoring of dynamic systems,
particularly when not all state variables are directly measurable. Among the advanced
techniques available for this purpose, Moving Horizon Estimation (MHE) stands out as an
optimization-based approach that handles constraints and estimates the system states by
solving an optimization problem over a receding horizon at each time step. MHE belongs
to the class of recursive estimation methods and is characterized by the use of a fixed-
length sliding window—referred to as the estimation horizon—over which a sequence of
past measurements is processed to infer the current state of the system.

Figure 2.3 illustrates the core concept of an MHE strategy. At each time step k,
the estimator uses the most recent M measurements to reconstruct the corresponding M
values of the state trajectory over a fixed-length moving horizon. Assuming the first mea-
surement is acquired at £ = 0, the estimation window becomes fully populated only after
k> M — 1. As time progresses, this window shifts forward, incorporating new measure-
ments and discarding the oldest ones. In this manner, the state trajectory is continuously

updated, ensuring that the current estimate reflects the most recent information available.



CHAPTER 2. BACKGROUND 11

—@— Measurements < >
—e— | Estimations Estimation Horizon

| | | | | | | | |

| | | | | | | | | >
k-M-2 k-M-1 kM k-M+1 k-2 k-1 k

Figure 2.3: Estimation horizon scheme in MHE.

2.2.1 General Formulation

Considering a system governed by the dynamic model in (2.1), the MHE estimate Zy,

is computed by solving the following constrained optimization problem

( k
min V(i‘k_M+1) + Z Ee(i‘iay’hui)
(&) i=k—M+1
subject to:
gM({yh UZ}) : At (27)

f = f(du), i=k—M+1,... k-1,
vi = g(Ziu), i=k—M+1,... kK,
GeX, i=k—M+1,.. k

where y; and u; correspond to the elements of the estimation horizon, while Z; denotes the
decision variables. The term V' (Z;_js11) penalizes deviations of the initial estimate at the

beginning of the horizon, whereas (. (&;, u;, y;) penalizes the output prediction error [34].

2.2.2 Cost Function and Constraints

The MHE problem formulated in (2.7) is defined by an objective function and a set of
constraints that reflect both the structure of the system and the available prior knowledge.

The cost function is composed of two main components:

e The arrival cost V(Zr_pr41), which penalizes deviations of the initial state at the
beginning of the estimation horizon from a prior estimate. This term encodes in-
formation from measurements obtained before the current horizon and helps ensure

temporal consistency between successive MHE solutions.
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e The stage cost £.(&;, u;,y;), which penalizes the discrepancy between the measured
outputs y; and the predicted outputs ¢g(z;, u;). This term may also include penalties
for deviations of the estimated states from nominal trajectories or bounds, depending

on the problem formulation.

Both cost components may incorporate weighting matrices that reflect the confidence
in model dynamics, sensor measurements, and prior estimates. In linear systems, these
terms are typically quadratic, resulting in a convex quadratic program [34].

The constraints in the MHE optimization problem reflect the physical and operational

limitations of the system and include:

e Dynamic constraints:

which ensures that the estimated state trajectory is consistent with the system

model and known inputs.

e Output consistency constraints:
vi = g(Zi,wi), i=k—M+1,... k,

which ensures that the predicted outputs match the measured outputs as closely as

possible under the model.

e State constraints:
neX, i=k—M+1,... Kk,

where X C R"™ defines the admissible set for the state variables, often based on

physical limitations (e.g., non-negativity, safety bounds, actuator limits).

Additional constraints can be incorporated into the MHE formulation in (2.7) depend-
ing on the specific requirements of the application and the chosen estimation strategy.

These constraints may include:

e Disturbance bounds: constraints on process disturbances or noise terms, typically
represented as bounded sets (e.g., polytopes or norm-balls), ensuring that uncer-

tainty remains within known limits.

e Soft constraints: relaxed constraints that allow limited violations, introduced via
slack variables and penalized in the cost function to preserve feasibility while avoid-

ing overly conservative behavior.

e Algebraic equality or inequality constraints: structural relationships among states,
inputs, or outputs that must be satisfied, such as conservation laws, actuator cou-

plings, or physical balance equations.
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e Estimation error constraints: restrictions on the allowable deviation between mea-
sured and predicted outputs, often used in robust estimation schemes to limit resid-

uals or enforce detectability margins.

The ability to explicitly encode these constraints is one of the key advantages of
MHE over classical estimation approaches such as the Kalman Filter, which are typically

unconstrained and assume Gaussian noise distributions.

2.2.3 Horizon Estimation and the MHE/MPC Duality

The estimation horizon length is a key factor in the performance of MHE. A longer
horizon can improve estimation accuracy and robustness, particularly in the presence
of model uncertainties or bounded disturbances, by providing more temporal context
for interpreting measurements. However, increasing the horizon length also raises the
computational burden, as the size of the optimization problem grows with each additional
time step. This trade-off between estimation performance and computational complexity
must be carefully balanced, especially in real-time applications.

MHE shares strong structural similarities with MPC. Both methods depend on an
accurate system model and involve solving a constrained optimization problem at each
time step over a finite horizon. In MPC, the objective is to compute a sequence of future
control inputs that optimally steer the system toward a desired reference while respecting
constraints. In contrast, MHE operates in the estimation domain, seeking to reconstruct
the most probable sequence of past states that best explains the observed outputs, given
the known inputs and system dynamics.

Despite this difference in purpose—control versus estimation—MHE and MPC are
conceptually complementary. Their integration in closed-loop systems enables the design
of advanced control architectures that can optimize performance while ensuring accurate,

constraint-aware state feedback in the presence of uncertainty.

2.3 Related Work

MPC is a powerful control strategy that computes an optimal sequence of control
inputs over a finite prediction horizon at each time step, enabling the system to track
desired trajectories while maintaining stability and performance. Its inherent ability to
handle constraints on inputs and states makes it particularly well-suited for developing
FTC schemes. When combined with its estimation counterpart (i.e., the MHE), the two
methods form the core of an AFTC framework that can be adapted to a wide range of
dynamic systems. As presented below, numerous studies have demonstrated the effective-
ness of this integration, showing that combining MPC and MHE enables the development
of robust AFTC architectures capable of handling nonlinear dynamics, constraints, and

faults in complex applications.
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In the domain of Unmanned Aerial Vehicles (UAVs), the authors in [38] proposed an
AFTC scheme for a quadrotor helicopter subject to actuator faults. The method com-
bines nonlinear MHE for simultaneous estimation of unmeasured states and multiplicative
actuator faults with constrained MPC to reconfigure the control law and compensate for
the fault effects in real time. A more recent approach for UAVs is presented in [39],
where a nonlinear AFTC framework is designed to tolerate up to four simultaneous ac-
tuator faults. The estimation layer employs a nonlinear MHE scheme, while the control
layer solves a constrained MPC problem to ensure trajectory tracking even under severe
actuator degradation.

In the context of autonomous ground vehicles, [40] introduced a Takagi-Sugeno (TS)
fuzzy modeling approach to design both the MPC and the MHE estimators. The TS-MPC
controls the vehicle’s position using a nonlinear kinematic model, while the TS-MHE
estimates unmeasured states and the friction force acting on the vehicle, thus reducing
control effort and improving robustness.

In [41], a compact optimization-based AFTC architecture is developed for industrial
microgrids composed of heterogeneous energy sources, each with its own constraints and
load demands. MHE is used for estimating both system states and incipient faults in
energy generation subsystems, while MPC performs optimal energy management under
operational constraints, ensuring reliability and performance even in faulty scenarios.

A different application is explored in [42]|, where a two-layer control architecture for
hydroelectricity generation in inland waterway management is proposed. The first layer
is a supervisory MPC controller that plans water level trajectories, and the second layer
employs a local MPC combined with MHE for real-time tracking and fault accommodation
using on/off pumps. MHE is crucial in this framework for estimating unmeasured states
and identifying actuator degradation, ensuring robust operation.

Finally, [43] presents an AFTC strategy for variable-speed wind turbines. The system
is modeled using a TS fuzzy structure to capture plant nonlinearities and constraints.
Fault estimation is performed using T'S-MHE, and the reconfigured control is implemented
through a TS-MPC scheme. Simulation results demonstrate that the strategy maintains
system performance and stability under actuator faults.

These works highlight the versatility and effectiveness of combining MPC and MHE in
the design of fault-tolerant strategies across diverse applications, including aerial vehicles,
autonomous ground platforms, smart grids, water management systems, and renewable
energy generation. The ability of these methods to handle constraints and nonlinear
dynamics while incorporating online fault estimation makes them especially attractive for
safety-critical and resource-constrained environments.

The main contribution of this work is centered on adapting the MHE optimization
problem to simultaneously estimate both the system states and the fault residuals, thereby
eliminating the need for separate estimation modules. Furthermore, by exploiting fault

residuals, the proposed method enables the online identification of faulty system parame-
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ters, which are then directly incorporated into the MPC module. This integration allows
the controller to compute optimal inputs for fault accommodation while explicitly en-
forcing state and input constraints, ensuring reliable closed-loop performance even under

fault conditions.



Chapter 3

The Three-Tank System

This chapter presents the three-tank system benchmark problem and derives a math-
ematical model to describe its behavior. This benchmark exhibits a hybrid and nonlinear
behavior and is subject to different kinds of perturbations, faults, and noises. It is suitable
for designing and evaluating fault detection and diagnosis algorithms and fault-tolerant
control techniques. This chapter is structured as follows: Section 3.1 provides a brief
overview of the three-tank system’s structure and operation. Section 3.2 presents a gen-
eral nonlinear state-space model of the plant. Finally, Section 3.3 defines a case study,

detailing the plant’s configuration and deriving a fault model specific to this scenario.

3.1 Plant Description

The plant consists of three cylindrical tanks interconnected by four pipes that enable
bidirectional fluid exchange between the lateral tanks (7} and 75) and the central tank
(T3), as illustrated in Figure 3.1. The dashed arrows indicate the reference direction of
each flow. The upper pipes and valves that connect the lateral tanks to the central tank
are positioned at the same height Ay and are called transmission pipes and valves. In
contrast, the lower pipes and valves are aligned with the base of the tanks and are called
connection pipes and valves. At the bottom of each tank are the output pipes and valves.

The tanks are identical and have the same radius and maximum height. Each tank
is equipped with a level sensor and is supplied by an independent liquid transfer pump.
Similarly, all pipes have the same radius and are fitted with a flow sensor and a control
valve to regulate the fluid exchange. In total, the system has thirteen sensors: three level
sensors (one per tank) and ten flow sensors (one per valve). Additionally, any valve can
be configured as an actuator. When a valve is enabled to be controlled, it becomes an
actuator, and an actuator fault (loss of effectiveness) is considered. Otherwise, a plant
fault is considered, which could manifest as clogging if the valve operation mode is defined
as Open, or leakage if its operation mode is set to Closed.

The volumetric flow rates provided by the independent pumps P;, P, and Pj (i.e.,
Qp,, Qp,, and Qp,) are finite and known inputs to the system. The flow rates through

16
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T T T3
K13 hz K23

Reservoir

Figure 3.1: The three-tank system. All tanks and pipes are identical; the pumps are
independent and can be directly controlled. All valves can operate as actuators, and all
levels and flows are measurable.

the transmission, connection, and output pipes are determined by equations (3.1)—(3.3),
respectively. In these expressions, K,, K;3, and K; € [0, 1] represent the states of the
corresponding flow control valves, and 8 = uS+/2g, where p is the flow correction factor,
S is the pipe cross-sectional area, and g is the gravitational acceleration constant. The
function sgn(-) indicates the flow direction in the pipes and is defined in (3.4). The level
difference Ah, in (3.1) is determined by the relative positions of the tank levels (hq, hs,
and h3) with respect to the transmission pipe height (hg). This relationship defines eight

possible scenarios for the transmission flow, as summarized in Table 3.1.

Qo = K,Bsgn (Ahy)\/|Ahy|, v=a,b. (3.1)

QiS = Kzgﬁ sgn (hz — hg)\/ |hZ — h3|, = ]_, 2. (32)
1, if x>0

_J L = 3.4

wo-{y iz &

The three-tank system is widely adopted in the fault-tolerant control literature as a
benchmark for testing estimation and reconfiguration strategies under actuator, plant,
and sensor faults. Its nonlinear dynamics, multiple inputs and outputs, and the intercon-
nection between tanks make it an ideal platform for evaluating model-based estimation
and control techniques. Numerous studies have used this system to validate approaches
such as model-based fault diagnosis, model predictive control, and integrated estimation-
control schemes [44, 45, 46].
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Table 3.1: Transmission flow scenarios for the three-tank system.

Scenarios Ah, Ahy,
hi <hg ha<hy hs<h 0 0
hy <hg ho<hy hs>hy|hy—hs hy—hs
hlfho h2>h0 hgéhg 0 hg—hg
hi <hy ho>hg hs>hg| ho—hs hs— hs
hi>hy hyo<hy h3<hgy| h —hg 0
hi>hy ho<hy hs3>hg| hi—hs hyg—hs
h1>h0 h2>h0 hgghg hl—ho hg—ho
h1>h0 h2>h0 h3>h0 hl—hg hg—hg

3.2 Nonlinear Model

The volume variation, V, inside a cylindrical tank of cross-sectional area S, can be
described by equation (3.5), where h is the level variation inside the tank, > Qi is the
sum over all input flows into the tank, and > Qoy is the sum over all output flows from
the tank.

V - Sch - Z Qin - Z Qout (35)

Using equation (3.5) to perform the mass balance in each tank of the system shown

in Figure 3.1, the following set of state equations can be obtained:

. 1 1

hy = _E(Qa + Q13 + Q1) + EKPIQPI

. 1 1

hy = _g(Qb + Q23 + Q2) + §KP2QP2 (3.6)
. 1 1
hs = ?(Qa + Qb+ Q13 + Qa3 — Q3) + §KP3QP3

The output vector consists of all system variables that can be measured via level and
flow sensors. In particular, for the system illustrated in Figure 3.1 the output vector has

the following form:

Y= [hh h27 h3a Qlina QZina QSina Qa7 Qba Ql?n Q23a Qla QQa QS]Ta (37)

where Qji, = Kp,Qp, for j =1, 2, 3.

The nonlinear model defined by equations (3.6)—(3.7) captures the essential dynamics
of the system and serves as the basis for the design of controllers, estimators, and simu-
lation studies. It describes the hydraulic interactions between the tanks, the influence of
valve positions on flow distribution, and the contribution of external inflows supplied by

the independent pumps.
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3.3 Case Study Definition

The three-tank system benchmark provides a versatile framework for defining case
studies under various configurations and interconnections between the tanks. These con-
figurations enable the exploration of different operating conditions, fault scenarios, and
control strategies. In this work, the case study focuses on a representative configuration
illustrated in Figure 3.2. This configuration allows the analysis of the core dynamics of
the system while simplifying the model to focus on key interactions relevant to control

and fault diagnosis.

Y
o
T T3
K13 hz K23
Y * /b 1
Qs ; ‘s
K3 i Q3
v

Figure 3.2: Configuration of the three-tank system used as the case study. The inlet flows
to the lateral tanks (7} and T5) are regulated by valves Kp, and Kp,. The valves K3,
K3, and K3 are assumed to be permanently open (i.e., K3 = Ko3 = K3 = 1), ensuring
fixed hydraulic connections between the tanks and the reservoir, and therefore do not
operate in flow regulation. All other valves and pipes not depicted are considered inactive
or neglected for the purposes of this study.

Based on the nonlinear state model (3.6) and assuming that the input and state vectors
are defined as u = [Kp,, Kp,]" and = = [hy, hy, hs]". Then, the state equations of the

scenario illustrated in Figure 3.2 can be expressed as:

jfl = —g sSgn (Il — 1’3) |$1 - .T3| + Qpl U1
iii'2 = —Sé sgn (1’2 — 1'3) ’.%2 — .1'3‘ + %P2 U2 (38)

Ty = Sﬁsgn (1 — x3)\/|T1 — 23| + Sﬁsgn (9 — x3)\/|T2 — 23| — Sﬁ\/x_g

C

The output vector includes measurable variables chosen to support both control and
fault diagnosis objectives and can be written in the form of y = [hy, ha, Q13, Q23, Q3] ",

where each element is shown in detail in (3.9). Although x3 is measurable, it is intention-
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ally omitted from the output vector to emphasize the role of the state estimator.

N =1
Y2 = X2
ys = Bsgn (z1 — x3)/|71 — 23] (3.9)
ys = Bsgn (v2 — x3)/|2 — 73]
Ys = 5\/35_3

This case study provides a meaningful context for testing control algorithms, estimator
designs, and fault detection techniques, as it captures the essential coupling between tanks

and the nonlinear flow dynamics characteristic of hydraulic systems.

3.3.1 Fault Model

Faults might occur in the three-tank system due to mechanical or electrical damage.
They generally appear due to the wear of essential devices for the system operation, e.g.,
valves, pumps, level and flow sensors. Additionally, faults might occur due to physical
damage in the system structure, which might cause leakage in tanks or clogging in pipes
of the system [47]. In this work, the faults affecting the configuration shown in Figure 3.2
are listed in Table 3.2. Each fault is represented by a normalized magnitude f, € [0, 1],
where 7 is the fault identifier, and f, denotes the fault magnitude. Therefore, f, = 1
indicates that the fault v occurs with maximum magnitude, and f, = 0 signifies that the

fault v does not occur in the system.

Table 3.2: List of faults for the default case study configuration.

Symbol Description Symbol Description
fi Loss of effectiveness in Kp, fi1 Scaling fault in level sensor hq
fa Loss of effectiveness in Kp, fi2 Scaling fault in level sensor hs
fs Blocking in flow Q13 f19 Scaling fault in flow sensor ()13
fo Leakage in tank 75 f20 Scaling fault in flow sensor (o3
J10 Blocking in outflow Q3 fa3 Scaling fault in flow sensor )3

The nonlinear state and output equations in (3.8) and (3.9) are reformulated to ex-
plicitly account for the effects of the faults listed in Table 3.2. Consequently, the state
and output equations can be expressed as the following fault-augmented model:

: s Q
i =—(1— f6)§ sgn (x; — x3)/|z1 — @3] + (1 — fl)Kpl%

by =~ s (02 — )/ Toa = ] — o3 + (1= o), 2

T3 = (1 - f6)5£ sgn (I1 - 563)\/ ’$1 - 963| + Sﬁsgn (xz - 963)\/ ’962 - l’3| - (1 - flo)gx/l’_?)

=
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y1=(1— fu)m
y2 = (1 = fiz)zo
ys = (1= fio)(1 — fo)Bsgn (x1 — w3)\/[21 — 3] (3.11)
ya = (1= fao)Bsgn (wy — w3)\/[s — x5
ys = (1 — fa3)(1 — f10)Bv/T3

3.3.2 Linear Fault Model

The nonlinear fault model given by (3.10) and (3.11) exhibits significant nonlinearities
due to the flow dynamics. To mitigate the nonlinearity and maintain the fault degrada-
tion characteristics, the model is linearized around a selected operating point (Zqp, Uop),
assuming that fault magnitudes remain constant over the linearization interval. As a

result, the following model is obtained:

0r = A(f)ox + B(f) du

(3.12)
5y = C(f) bz + D(f) bu,
where
0T = — Top,
0U = U — Ugp,
f= [fh T2, fos fos fr0. f11, fi2, fr9, f20, f23]T-
The Jacobian matrices that define the model dynamics are computed as follows:
dg(x, u) 9g(z, u)
A(f) = B(f)= ————=
(f) 0 |emray” (f) O ey
(3.13)
Oh(z,u) Oh(z,u)
= D f—
‘) Ox  |azzop’ ) Ou |a=zop

For a given operating point z,, = [z9, 23, 23]7 satisfying 29, 23 > 29, the correspond-
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ing system matrices are given by:

[ 1-Js 0 1-fs ]
Vx(l)_wg \/x(l)—xg
1 f 1
B 0 9
A =
(1) =35, e ME 2]~ f :
1— fs 1 _(1—f6+ 1 +1—f10>
|Vl — g Vay —af Vi —a§  a§-af  Va )]

- o
Bh=| o a-p%|
0 0
1—/n 0 0 1
0 1— fio 0
(1= f19)(1 = fo)B 0 (1= fi9)(X = f6)B
C(f) = 2 a:(l) - xg 2 x(l) - xg D(f) =0
0 (1 — fa0)B (1= fa0)B ’
2 xg - mg 2 xg - xg
0 0 (1 — fa3)(1 = f10)8
i 2 xg ]
(3.14)
Since tanks T1 and T2 are similar and supplied by identical pumps, it is reasonable

to assume Qp, = Qp, = Qp, 2¥ = 25 = 2°, and u} = uj. Furthermore, at the chosen

operating point of the linearized model, the system is at steady state (i.e., £ = 0). Under

these conditions, and using (3.8), the operating point corresponding to a given 2° is

)
([0 040 B \/Z\/Z
(o tio) = | %27, 5] ’@p[ CAE (3.15)

This linear approximation is particularly useful for real-time implementations where
computational efficiency is essential. The choice of operating point and the assumption of
constant fault magnitudes must, however, be carefully considered to ensure the validity

of the linear model within the expected range of system operation.

3.3.3 Discrete-Time Model

To enable the digital implementation of control, estimation, and fault diagnosis tech-
niques, a discrete-time model of the system is required. This discrete model is derived
by applying the Zero-Order Hold (ZOH) method to the linearized continuous-time fault
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model given by (3.12). Considering a sampling time Tj, the discrete-time representation

is expressed as:
(51’2— = Ad(fk) (5I‘k + Bd(fk) 5uk

oy = C(fr) dzy + D(fi) du,

where the discrete-time matrices A4(fx) and By(fx) are computed as

Ts
Adfi) = XD By(fy) = / ADT B(f) dr.
0

For practical implementation and to reduce computational burden, the matrix expo-
nential and integral are typically approximated. In this work, a truncated series expansion
is used to compute Ay(fr) and By(fr):

Adf) = T+ AG) T g AUPT? + G AGP T+

Balfi) = BU) T+ qrAUDBU) T + AU BUN T + ..

To simplify the formulation and enhance computational efficiency for real-time appli-
cations, A,(fx) is approximated by retaining only the first two terms of its expansion,

whereas By(fi) is limited to its first term. Higher-order terms are discarded.

Aa(fr) = T+ A(f) T,
Ba(fx) = B(f) T

This corresponds to Euler’s forward approximation of the continuous-time dynamics

+_
(e, @~ kaszk
to the system time constants.

), which is adequate when the sampling time 75 is sufficiently small relative

For notational simplicity, the delta symbol ¢ used to denote deviations will be omitted.
The variables xy, ug, and y; will represent the discrete-time (sampled) system states,
inputs, and outputs, respectively. The resulting discrete-time LTT model under fault

conditions can be expressed as:

zi = A(fe) T + B(fr) wr

(3.16)
Ye = C(fr) vr + D(fi) ug,

where A(fi) and B(f;) denote the matrices of the discrete-time faulty system, computed
as A(fx) =1+ A(f) T; and B(fx) = B(f) T, respectively, based on the continuous-time
matrices A(f) and B(f) presented in (3.14).

This discrete model forms the basis for digital simulation, for model-based controller
design, and for estimators. The choice of discretization method and sampling period 7§

must be made carefully to balance model accuracy and computational efficiency.
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Methodology

This chapter presents the methodology developed to implement the proposed AFTC
strategy based on the integration of MHE and MPC. The main objective is to enable
real-time fault detection and compensation through model adaptation, ensuring closed-
loop stability, constraint satisfaction, and reliable setpoint tracking even in the presence
of faults. Section 4.1 details the design and implementation of the MPC controller, in-
cluding the definition of cost functions, state and input constraints, and the derivation of
terminal ingredients to ensure stability and recursive feasibility. The computation of the
terminal set using LMIs, the approximation of the domain of attraction, and the formula-
tion of the tracking control strategy are also addressed. Section 4.2 introduces the MHE
formulation used for state estimation, emphasizing the minimization of prediction errors
over a receding horizon and the treatment of input and output constraints. Section 4.3
describes the fault residual estimation process. By augmenting the system model to in-
clude fault residuals as additional states, the MHE is adapted to estimate their values
online. Section 4.4 presents the control reconfiguration procedure, which uses the esti-
mated fault residuals to update the system matrices and modify the internal prediction
model of the MPC, forming a Fault-Tolerant MPC (FTMPC) capable of mitigating the
effects of faults. Finally, Section 4.5 outlines the simulation framework used to validate
the proposed strategy, including details on the simulation environment, system setup, and

MPC and MHE configuration parameters.

4.1 MPC Implementation

Consider the discrete-time LT state-space model defined in (4.1), with n states, m con-
trol inputs, and p outputs. In this formulation, the system assumes no direct feedthrough
term from input to output, i.e., D € RP*™ is zero. The matrices are defined as follows:
A € R™™ is the state matrix, B € R™ " is the input matrix, and C' € RP*" is the output

matrix.
xf = Axy, + Buy,

4.1
yp = Cay, (4.1)

24
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The objective is to compute a sequence of control inputs that optimally steers the
system states toward a desired target—typically the origin—while minimizing the devi-
ation between the predicted and actual state trajectories over a finite prediction horizon
of N time steps (see Figure 2.1). For the MPC to operate correctly, full knowledge
of the system states is initially required. Since not all states are directly measurable,
this requirement implies that the system must be fully observable, thereby ensuring that
the complete state vector can be reconstructed from the available output measurements.
Under these assumptions, the unconstrained MPC optimization problem (2.2) can be re-
formulated to establish the following relationship between the predicted state and control

input sequences:

( E+N-1
{gﬁ,n} (1z:lg + lal®) + (17xs 1)
R
Pn(xy) : { subject to: (4.2)
jk = Tk,
\ TS = Az, + Bu;, i=k,. .., k+N-—1,

where the notations |Z;|3, |t;|%, and |Z4n|3 represent the quadratic forms z] Qz;, u; Rii;,
and J_J;_Npi‘k_._]\[, respectively. The penalty matrices @) € R™*" R € R™™ and P € R™*"
are assumed to be real and symmetric, with ¢ > 0 and P = 0, and R > 0. These
conditions are sufficient to guarantee the convexity of the quadratic cost function and
ensure the existence and uniqueness of the optimal solution to the linear quadratic control
problem (4.2) [34].

Note that the objective function in (4.2) covers all elements of the prediction and

control horizons and is composed of two terms:

e Stage cost: penalizes deviations of the predicted states and control inputs at each

time step within the control horizon,
(7, 0;) = 7; Qs + 1, R, (4.3)
which ensures performance objectives, such as tracking and energy efficiency;

e Terminal cost: enforces convergence properties at the end of the prediction horizon,
F(zn) = Ty Py, (4.4)

which promotes asymptotic stability when combined with an appropriate terminal

set.
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4.1.1 Computation of the Terminal Set

The design of an appropriate terminal set {2 C R" is essential to ensure both closed-
loop asymptotic stability and recursive feasibility in MPC problems. As stated in Assump-
tions A1-A4, the terminal set defines a region in the state space where a local control law
can be applied to guarantee constraint satisfaction and convergence to the origin. In this
study, the terminal set €2 is obtained via Lyapunov-based analysis for discrete-time LTI
systems and formulated as a set of LMI constraints.

Let the system (4.1) be controlled by the following linear state-feedback control law:
rao(Tg) == up = Ky, (4.5)

where K € R™*" is a stabilizing gain matrix. The resulting closed-loop dynamics are:
z = (A+ BK)x, = Agxy. (4.6)

According to Assumption A4, the terminal cost function (4.4) serves as a local Lya-
punov function under the terminal control law (4.5). From this condition, the following

inequality must be satisfied:

= x;AI{PAK:Ek - lemk < — (:B;Q:Ek + :B,:KTRKQJ;.C)
=z, (AxPAx — P+ Q+ K'RK) x; <0,

where A denotes the closed-loop matrix (4.6).

Therefore, the terminal cost function (4.4) strictly decreases along closed-loop trajec-

tories, consistent with the stage cost function (4.3), under the control law (4.5), whenever
the following LMI holds:

ApPAr —P+Q+ K'RK <0,

for P >0, @ > 0, and R > 0. This condition is equivalently expressed as the following
LMI via the Schur complement:

p! Ax

= 0. 47
AL P-Q-K'RK (4.7)

By lifting inequality (4.7), applying the Schur complement to the block (2,2), and
performing an appropriate congruence transformation, a new equivalent LMI is obtained:

-
P 0O Pl Ap 0 P 0O P PAx 0

0 I 0 A, P-Q| KT 0 I 0/]>0 = |x P-Q K'| =0, (48)
0 0 I 0 K\R—loOI x % R
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where (x) denotes the symmetric terms implied by the LMI structure.
Substituting the closed-loop matrix Ax = A+BK into (4.8) and applying a congruence
transformation with diag(P~!, P71, I) yields:

P! AP '+ BKP! 0
« P l_plQp! PIKT| =0
* * R1

To address the nonlinearity in the block (2,2), the Schur complement is reapplied, result-
ing in another equivalent LMI:

P~1 AP'+BKP'| 0 0
* P! P 0
Qfl PflKT = 0.
* R™!

By introducing the change of variables Y = Q' ¢ R™" Z = R e R™™ W = P! ¢
R™ " and L = KP~! € R™", the following LMI problem is formulated:

W=WT" =0,
(W AW +BL 0 0]
LABY,Z): < | x |44 W 0 <0 (4.9)
* * y LT 7
[ L * * x 7]

where the variables of interest are recovered as P = W~! and K = LP.

Once a feasible solution {W, L} to (4.9) is obtained, the corresponding Lyapunov
matrix P = W~ not only characterizes the terminal cost function (4.4) but also defines
the ellipsoidal terminal set described by

Q= {zy eR" |z Pry < 1}, (4.10)

which guarantees asymptotic stability of the closed-loop system under the terminal control
law Kq(qy,) := LPzy. However, this ellipsoidal set is derived under the assumption of an
unconstrained system and may not lie entirely within the admissible region defined by the
state and input constraints. The next subsections introduce a refinement of the terminal
set construction by incorporating state and input constraints in the form of polytopes,

enabling the design of a constraint-admissible invariant terminal set.
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4.1.2 Definition of State and Input Constraints

The MPC formulation explicitly incorporates constraints on both the system states
and control inputs to ensure that the closed-loop system operates safely and within feasible

limits. These constraints are typically represented as box constraints:

_ / - _ -

o <2 < Ty = T € X = {:L‘k e R" T < Fub } , (411)
-1 — T
m [ 1 ] [ Uyb ]

up < U <Ugp = U €U =<u,€R 7 U < , (412)
- —Up

where x), and x,, define the lower and upper bounds on the state vector, and uy, and
Uy, define the admissible bounds for the control input vector. These constraints are
fundamental in practical control applications, as they ensure that the system operates
within predefined safety margins and that the computed control inputs remain consistent
with the physical and operational limitations, such as actuator saturation and safety-
critical thresholds.

To ensure consistency with these constraints, all predicted states and control inputs
over the horizons (see Figure 2.1) must also satisfy the corresponding bounds. Formally,
the state and input constraint sets (4.11) and (4.12) are extended to these elements and

compactly represented as linear inequalities in the following form:

_I_ _ ) -

xieX::{xieR” z; < b ,We{k+1,...,k+N}}, (4.13)
—1 —T1b

_ _ I S T

ueU ={u R ! u; < NViedk,...,k+N—-1} . (4.14)
- — U

Incorporating these constraints not only prevents the violation of operational bound-
aries but also contributes to the closed-loop stability and recursive feasibility of the pre-
dictive controller, particularly when complemented by an appropriately designed terminal

cost and a well-defined terminal set, as discussed in the next subsection.

4.1.3 Formulation of the Terminal Constraint

An H-polyhedron is defined as the intersection of a finite number of closed half-
spaces, each corresponding to a linear inequality. The state constraint set (4.11) can be

equivalently expressed as:

X={o, eR"|ajop <1, Vje{l,2, ..., 1}}, (4.15)
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where [ is the number of hyperplanes that define the polyhedral set X', and a;r € Rixn
represents the normal vector to the j-th hyperplane.
To ensure that the terminal set (4.10) is entirely contained within the admissible

set X C R", defined by (4.15), the following conditions must be simultaneously satisfied:

gj(xy) = aijk —-1<0, Vje{l,2,...,1},
g1 (z) = 2] Pry, — 1 <0.

The S-procedure can be employed to ensure that all constraints g;(x)) < 0 hold when-
ever gi+1(zx) < 0; that is, to satisfy g;(zx) < gir1(ze), Vj € {1, 2, ..., [}. Multiplying

the term g;(zx) by 2 to balance the cross-term leads to a sufficient condition that guar-

antees x;, € 0 C X C R". This condition can be compactly expressed as the following

inequality, as established in [48]:
ap Pryp—2a]zp+1>0, Vjie{l,2, ..., 1}
This inequality can be rewritten in its completed square form as:
(zk — P’laj)T P(zy,— P laj) +1— ajTP’laj >0, Vje{l,2,...,1}.
Since the first term is always non-negative (P > 0), this inequality holds if and only if:
l—a/Pla; >0, Vje{l,2 ... 1}
which is similar, via Schur complement, to the following set of LMIs:

P aj
T

a,

=0, Vje{l,2 ..., 1}

To express these LMIs in a form compatible with (4.9), using the variable substitutions
W = P! and L = KP™!, a congruence transformation with diag(P~!, I) is applied.

This yields the following equivalent formulation:

[W Wa;

=0, Vyjed{l, 2, ..., 1}
AW 1]_ S h

Minimizing the trace of P, whose eigenvalues are inversely proportional to the volume
of the ellipsoidal region, yields the largest admissible terminal set 2 C X C R". Using
the substitution W = P~!, the following equivalent convex optimization problem is for-

mulated to simultaneously enforce the Lyapunov stability condition and the satisfaction
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of all [ hyperplane constraints:

( min —trace(W)
(W, L)
subject to:
W=WwT"=0,
(W AW +BL 0 0]
L(A,B)Y, Z ay,...,q): * W W 0 <0 (4.16)
* * Yy LT ’
B * *x 7]
W Wa vie{l,2 ..., 1},
{ * 1

where Y = Q! and Z = R,
If the optimization problem (4.16) is feasible, it yields the matrices W € R™ ™ and
L € R™", Recovering the Lyapunov matrix P = W', the following terminal set can be
defined:
Q:={z, € X |z, Pz, <1}, (4.17)

which is positively invariant under the terminal control law
ra(xy) == LPx. (4.18)

It is important to observe that, in the definition of the terminal set (4.17), the system
states are restricted to the admissible set X C R", in contrast to the definition provided
in (4.10).

Internal Polyhedral Approximation of Ellipsoidal Sets

In the context of MPC and invariant set computations, it is often necessary to ap-
proximate nonlinear or curved sets—such as ellipsoids—by polytopes. This is particularly
useful when compatibility with linear inequality constraints or polyhedral operations (e.g.,
intersections, containment tests, and feasibility sets) is required [49]. An internal poly-
hedral approximation ensures that all points of the approximating set lie strictly within
the original ellipsoid, thus preserving feasibility and invariance properties essential for
constrained control design.

Given the ellipsoidal set defined in (4.17), the objective is to construct a convex poly-
hedron ,, C € such that it remains entirely contained within the ellipsoid. This guaran-
tees that every point in the approximated set satisfies the original ellipsoidal constraint,
allowing its safe integration into predictive control formulations.

The construction of this internal approximation is based on the geometric principle of
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inscribing a polyhedron within the ellipsoid. This is achieved by evaluating the ellipsoidal
boundary along a finite number of directions that are uniformly distributed over the unit
sphere S? C R?. The boundary points obtained from these directions are then used as the

vertices of the approximating polyhedron. The process involves the following key steps:

1. Uniform direction generation: Generate a set of V approximately equally spaced
unit vectors {d;}}_, C S?, representing directions in space. In this work, the Fi-
bonacci lattice method [50] is employed to efficiently and uniformly distribute these
points across the spherical surface, avoiding clustering effects and ensuring angular

homogeneity.

2. Boundary point computation: For each direction vector d;, compute a scaling

factor a; = such that the resulting point x; = «a;d; lies exactly on the

dr

ellipsoidal boundary, i.e., x] Pz; = 1.
3. Vertex set construction: Collect the set of boundary points {z;}/_; computed in

the previous step. These points, by construction, lie on the surface of the ellipsoid

and are thus eligible to serve as vertices of an inscribed polyhedron.

4. Convex polyhedron formation: Form the convex hull of the boundary point set

to obtain the internal polyhedral approximation:
Qap := convhull({z;}}_,), with Q,, C Q.

Because all vertices lie on the ellipsoid surface, and convexity is preserved under
the convex hull operation, the resulting polyhedron is fully contained within €2,

satisfying the required ellipsoidal constraint.

5. Conversion to H-representation: To enable compatibility with linear inequal-
ity formulations commonly used in MPC, the polyhedron 2, can be equivalently

represented in half-space (H-) representation as:
Qap = {CEk eXx ‘ PIQ T < bQ}, (419)

where H, € R"3, b, € R7, and n is the number of supporting hyperplanes of the
polyhedron.

Overall, this method provides a computationally efficient and geometrically reliable
way to construct a conservative inner approximation of a three-dimensional ellipsoidal
set. It is especially useful for applications in terminal set synthesis, feasibility analysis,
and the computation of control-invariant sets within the broader scope of constrained

predictive control.



CHAPTER 4. METHODOLOGY 32

MPC problem formulation

In summary, the proposed MPC design satisfies all conditions stated in Assumptions
A1-A4. As a result, the terminal cost function (4.4), the inner polyhedral approximation
of the terminal set (4.19), and the terminal control law (4.18) collectively guarantee
recursive feasibility and asymptotic stability of the closed-loop system while ensuring
compliance with all imposed state and input constraints, as defined by the polytopic sets
in (4.13) and (4.14).

Based on these guarantees, the constrained MPC optimization problem (2.6) for the

discrete-time LTI system (4.1) can be formally stated as follows:

( k+N—1
{gli!l} (lzalg) + il %) + (17ren?)
i
subject to:
T = Tk,
T, = Az;+ Bu;, i=k,....,k+N—1,
P () : A [ - 1 (4.20)
T < , i=k+1,...,k+ N,
—] —X1p
I Uub .
HZS s Z:k,...,k+N—17
-1 —Up
HQ jk—f—N S b97

where () > 0 and R > 0 are symmetric positive definite weighting matrices associated
with the state and control input, respectively, and P = W~! denotes the terminal penalty
matrix, obtained by solving the optimization problem (4.16). Assigning large values to @
relative to R prioritizes fast convergence of the system states to the origin, potentially at
the cost of aggressive control inputs. Conversely, increasing the weights in R relative to
(@ imposes a stronger penalty on control effort, resulting in smoother control inputs and

a slower rate of convergence to the desired equilibrium [34].

4.1.4 Approximation of the Domain of Attraction

A key concept in approximating the domain of attraction is the one-step set, which
comprises all states that can be driven into a given terminal set in a single step of control,
respecting all state and input constraints. For the system model defined in (4.1), the

one-step set associated with a terminal set €) is defined as:
Q) = {ay € X | Ju €U : zf € Q},

where X' and U denote the admissible sets of states and inputs, respectively.
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In this study, the domain of attraction is approximated by iteratively enlarging the
terminal set through a contractive sequence of one-step sets. This is achieved by replacing
the standard terminal constraint with a contractive terminal constraint, which is defined
by a sequence of sets computed offline. At each iteration, the set is expanded by including
the states that can be reached from the previous set in one step of control while satisfying
all constraints. This recursive expansion continues until convergence, yielding a larger
invariant set that enhances the feasibility region of the MPC [36].

However, computing one-step sets can be intractable for high-dimensional systems. To
address this, the one-step operator Q(-) can be replaced by a computationally tractable
inner approximation Q,,(-) C Q(-), as suggested in [36]. Based on this inner approx-
imation and the initial terminal set 2y = €2, an estimate of the domain of attraction,
Dy (), is constructed as the union of a contractive sequence of reachable sets defined by

the recursion:

Qi = Qap(Qi—l) N X, with QO = Q. (421)

This sequence of sets satisfies the nested inclusion property:
QcCcHCc---CcQCx, Vi

This procedure provides a scalable and systematic method for approximating the do-
main of attraction, enabling its integration into controller synthesis to enhance robustness
and feasibility margins.

The inner approximation Q,,(£2) is computed using the algorithm proposed in [51],
which iteratively refines a collection of state-input boxes. The algorithm starts with an
initial list L of boxes spanning the admissible regions X' x /. At each iteration, the box
with the largest diameter is selected and tested: if its image under the system dynamics lies
entirely within €, its state projection is added to the approximation; if it lies completely
outside, it is discarded. If the result is uncertain or the box exceeds a resolution threshold
g, it is bisected along its largest dimension, and the resulting sub-boxes are queued for
further evaluation. This process continues until all boxes are either included, discarded,
or refined below ¢, resulting in a union of boxes that forms an inner approximation of the

one-step set.

4.1.5 Setpoint Tracking Strategy

Setpoint tracking refers to the process of steering a system’s measurable outputs to-
ward a specific and constant reference value—often referred to as setpoint [34]. In the
model described in (4.1), the output vector y; contains all measurable signals from the
system. However, in many control applications, only a subset of these outputs is required
to track setpoints. To address this, a reduced output vector z; is defined by selecting the
relevant components of y,. As shown in (4.22), the matrix E extracts these components,

thereby defining the controlled variables z; that are regulated by the MPC to perform
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the setpoint tracking.

At steady state, it holds that z; = x; = x4 for some corresponding control action u.
Substituting these steady-state values into (4.1) and (4.22) yields the set of linear equa-

tions given in (4.23), where the controlled output z; is expected to match a given constant

_ [ 0 ] (4.23)
Zref

If a solution to (4.23) exists, the following deviation variables can be defined:

reference.
I—-—A —-B
EC 0

T

Us

Up = Up — Us, '

which satisfy the deviation dynamics:
I = Ay + Biy. (4.25)

The control objective then becomes finding a sequence of deviation inputs ; that
drives the deviation state Zj to the origin in (4.25), which corresponds to reaching the
desired steady-state point (s, us) in the original coordinate space. This steady-state pair
is obtained by solving the optimization problem defined in (4.26), where the tracking
weight matrices Qs and Ry are real, symmetric, and satisfy Qs = 0 and Rs > 0 [34].

.
min (uf, + 1O
subject to:
I—A —B| |z 0
EC 0 Ug Zref 7
R (2ref) - - - - (4.26)
I Lub
xS S bl
-1 —Ty,
I u
us < b
-1 — Uy
\ - - L .

Once the steady-state pair (zg,us) is obtained, a coordinate transformation is per-
formed according to (4.24). The resulting constrained optimization problem (4.20) is
then solved for P(Z), where all constraints are reformulated in the deviation coordi-
nates. From the optimal input sequence obtained, only the first control input, 1y, is

applied to the system. The actual control input is subsequently recovered by applying
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the inverse transformation:
wp = Uy + Us. (4.27)

4.2 MHE Implementation

The objective of an estimator is to reconstruct the true state of the system as accurately
as possible. This involves minimizing the mismatch between the system’s dynamic model
and the observed measurements. Figure 4.1 illustrates a structure in which the plant
represents the true plant dynamics, while the estimator replicates the plant’s behavior to

compute state estimates j, using the known inputs u; and outputs y.

_Uk a:;: = Axy, + Buy W Yk
yr = Cxy J

Plant model

Estimator model

( & = Ady + By | Tk
L U = CTy,

Figure 4.1: Representation of the MHE connection structure.

The cost function of the MHE problem is derived by analyzing the differences between
the plant and estimator equations. These differences define the prediction errors, which

are penalized in the optimization process. The state prediction error is obtained by the

difference between the state equations of the plant and the estimator, as follows:

+ _
x, = Az, + Buy " . .
ey 1= L, R = ey i=x) — Az = 3] — Ay
-2 = =A%, — Buy

Similarly, for the output prediction error:

yr = Cay, . .
€y = A . = ey = yp — Cap = g — Cay,.
—k = —C

As the control input u; and measurements y, are known, the predicted output is
typically set to match the measured value, i.e., 9, = yx. Note that u; does not influence
the estimation directly, since it is equally applied to both plant and estimator.

Based on these relationships, the MHE optimization problem (2.7) for the discrete-
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time LTI system (4.1) can be formally stated as follows:

( k-1 k
min Y |3 — A# Ze + Y |y~ Ciilg,
Sy i=k—M+1
subject to:
Ent ({wi,wi}) - 2 =A%, +Bu;, i=k—M-+1,.... k-1, (4.28)
v =Ct;, i=k—-M+1,...,k,
I R Tub .
z; < , 1=k—M+1,...,k,
-1 —X1p

\

where the arrival cost V(#x_p41) is assumed to be zero, thereby discarding all information
before the estimation horizon. Under this formulation, the MHE must be able to asymp-

totically reconstruct the system state using only the most recent M measurements [34].

4.3 Fault Residual Estimation

Let Ag and By denote the nominal (fault-free) system matrices of the model (3.16),
defined as Ay = A(fk)|fk=0 and By = B(fk)‘szo.
deviations in the system dynamics, which can be captured through a fault residual vector
& € R™) defined as:

The occurrence of faults induces

& = (A(fi) — Ao) i + (B(fx) — Bo)ux. (4.29)

Based on this definition, the fault-affected system can be rewritten in the following

equivalent form:

It is straightforward to verify that substituting (4.29) into (4.30) yields the original fault-
inclusive model (3.16).

Assuming that the fault residuals evolve slowly and can be approximated as constant
over short horizons (i.e., & = &), the model can be augmented by treating the fault

residuals as additional states, as shown below:
x Tp
& &k
Tk
Y = [C 0}
BT

The MHE optimization problem (4.28) can be adapted to estimate the system states

Ay T
0 I

By
0

+

U

(4.31)
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and fault residuals simultaneously:

( k—1 k
o o 2 o 2
min Z & — At; — Bu;|  + Z yi — C;
{Z:,&} i—h M1 Qe b M1 e
subject to:
yi=Ci;, i=k—-M+1,... k
I . Tub .
z; < , i=k—M+1,...k,
—1 —I1p

\

where (%) denotes variables and matrices associated with the augmented model (4.31), and
the input arguments {u;, y;} represent the sequences of control inputs and measurements
fromi=k— M+1 to k.

4.4 Control Reconfiguration

Once the estimates ék are obtained, they can be used to relate the actual system

matrices with the nominal model as:
A(fe)wr + B(fi)ur, = Aowy + Bou, + & (4.33)

Using the same moving horizon window as the MHE, the most recent M state and

control input samples are collected into the matrix

XT

Z = i

)

where X € RM™*" and U € RM*™, The fault residual estimates are represented by the
matrix 2 € R"™M_ Based on (4.33), the fault-affected system matrices are estimated as

follows:

A(f) B(fk)]:[AO By I] z Al

—
—

where ZT denotes the pseudo-inverse of Z.

The estimated matrices A(f,) and B(f;) capture the altered dynamics of the system
under faults and can be directly used to update the internal model of the MPC controller.
By incorporating these updated matrices into the prediction model, the controller adapts
its decisions to compensate for the fault, ensuring continued performance and constraint
satisfaction.

This procedure defines a Fault-Tolerant MPC (FTMPC) scheme, where the predictive

model is reconfigured online based on real-time estimates of system degradation. The
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MPC optimization problem is solved at each time step using the updated model, and the
control action is computed accordingly.

Figure 4.2 illustrates the overall proposed architecture in a closed-loop. The system
is subject to potential faults fj, which change its nominal behavior. The Fault Residual
Estimator (FRE) module processes the measured outputs and the previous control inputs
to estimate the fault residual signals &, from which the modified matrices A(f) and
B(fi) are obtained. These matrices are then used by the MPC module to compute the
optimal control input u; that compensates for the fault effects and maintains reference
tracking around the desired setpoint z.¢, ensuring stability and satisfaction of the state

and input constraints.

________________ , J Ic_i

Uk xyp = A(fi)xr + B(fr)uy Yk
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Figure 4.2: Proposed closed-loop architecture integrating the fault residual estimator and
the control readjustment model to perform fault accommodation.

4.5 Simulation Framework

This section details the simulation setup employed to assess the performance of the
proposed AFTC framework. It describes the modeling tools and computational environ-
ment, the system parameters and configuration, and the specific design settings adopted
for the MPC-based controller and the MHE-based estimator.

4.5.1 Simulation Environment

All simulations were carried out using MATLAB R2021b [52] on a desktop computer
equipped with an Intel Core i7 processor (2.90 GHz) and 16 GB of RAM. The fol-
lowing tools were employed to implement and test the proposed control and estimation

framework:

e Sim3Tanks: a benchmark simulator for the three-tank system, developed to emulate
hybrid and nonlinear dynamics under external disturbances and faults, including
actuator and sensor malfunctions, as well as plant-level anomalies such as clogging
and leakage [47].
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e YALMIP: a modeling toolbox for formulating optimization problems, used to define

the quadratic programming problems in MPC and MHE [53].

e SeDuMi: a solver for quadratic and semidefinite programming problems involved in

controller and observer design [54].

e MPT3: a toolbox for parametric optimization, computational geometry, and MPC
problems [55].

4.5.2 System Configuration and Physical Parameters

The simulated plant corresponds to the default case study illustrated in Figure 3.2,
in which the inlet flows to the tanks 77 and T5 are regulated through the control valves
Kp, and Kp,, respectively. The remaining valves (K3, Ka3, and K3) are considered to be
constantly open and are not subject to control actions. Table 4.1 summarizes the physical

and structural parameters of the three-tank system used throughout the simulations.

Table 4.1: Physical parameters of the three-tank system.

Parameter Value Unit Parameter Value Unit
Tank radius (R) 5 cm | Flow correction factor (u) 1 -
Tank height (hpax) 50 cm Gravity constant (g) 981  cm/s?
Pipe radius (r) 0.6 cm Min. pump flow (Qmin) 0 cm? /s
Trans. pipe height (ho) 30 cm Max. pump flow (Qmax) 120 cm?/s

All simulations are based on the discrete-time LTI faulty model defined in (3.16), with
a sampling time of Ty = 0.1 seconds. This model explicitly accounts for the faults listed
in Table 3.2, including actuator, sensor, and plant-level anomalies.

To ensure consistency with the equilibrium conditions presented in (3.15), the following

steady-state operating point was adopted:

10
0.5904
Tor = 1101 Hor = 1 sg04|
. .

This operating point represents a symmetric flow configuration where the lateral tanks
maintain equal fluid levels, and the central tank stabilizes at a lower height, ensuring

nonzero flow across all interconnecting pipes.

4.5.3 MPC and MHE Setup

The configuration parameters used in the implementation of the optimization problems

presented in (4.20), (4.26), and (4.32) are described below. These formulations correspond
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to the linear constrained MPC, the steady-state computation for setpoint tracking, and

the augmented MHE used for fault residual estimation, respectively.

MPC for State Regulation — Optimization Problem (4.20): the linear con-

strained MPC problem was configured with the following parameters:

The prediction horizon was defined as N = 5.

The weighting matrices () and R were initially selected to normalize the magnitudes
of the state and input controls. To promote smoother control actions, the values in
R were subsequently increased to impose a stronger penalty on control effort. As a

result, the final weighting matrices were defined as

Q = diag(107, 107, 107%),
R = diag(107, 1071).

The terminal cost matrix was obtained by solving the convex optimization problem
defined in (4.16), which resulted in the matrix

0.0100  0.0003  —0.0002
P={0.0003 0.0100 —0.0002] . (4.34)
—0.0002 —0.0002 0.0156

The state constraints were defined based on the deviation of the tank levels relative

to the operating point:

T T
Ty = [hmaxy hmax7 hmax] — X

ap, = 1[0, 0,07 — ..

.
or? (4.35)

Similarly, the input constraints were defined according to the capacity of the opening

of the valves: . . .
uy, = [1, 1] — Tops (4.36)

ul—lr:) = [O’ O]T - u(—)rp'

The terminal region 215 was computed by iteratively expanding the terminal set €2
over 10 steps using the procedure described in (4.21). As a result, the domain of
attraction was defined as D5(€19) := D15(2).

MPC for Setpoint Tracking — Optimization Problem (4.26): to compute the

steady-state reference pair (zg,us) associated with a given setpoint z.f, the following

parameters were used:
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e The output tracking penalty matrix was defined as
Qs = diag(1071,1071,1073,1073,107%),

assigning higher weights to critical outputs while allowing flexibility in less sensitive
variables.

e The input tracking penalty matrix was selected as
R, = diag(10, 10),

to discourage aggressive control actions and promote smoother steady-state inputs.

e The output selection matrix was defined as
E=lo 000 1],

which selects the outflow ()3 as the variable to be tracked by the controller.

e The state and input constraints follow the same bounds established for the MPC
regulation setup, as given in (4.35) and (4.36).

MHE for State and Fault Residual Estimation — Optimization Problem (4.32):
the augmented MHE problem used for estimating the state and fault residual vector &

was configured with the following parameters:

e The estimation horizon was set to M = 20, which provides sufficient memory depth

to reconstruct the system state trajectory and detect persistent fault signatures.

e The process noise weight matrix was defined as
Q. = diag(10, 10, 10, 10, 10, 10),

balancing sensitivity to deviations in the state and the evolution of fault residuals.

e The measurement noise weight matrix was selected as

R, = diag(10, 10, 10, 10, 10).

e The state constraints x;, and ., were inherited from the MPC formulation, as
defined in (4.35), ensuring consistency with the physical operating limits of the

system.

This formulation allows the real-time estimation of fault effects by augmenting the

system dynamics with a fault residual vector &,. The residual estimates are used in the
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online reconstruction of the faulty system matrices A( f) and B( f) to adapt the MPC

controller accordingly.



Chapter 5

Results

This chapter presents the simulation results obtained with the proposed fault-tolerant
control framework, which integrates Model Predictive Control (MPC) and Moving Hori-
zon Estimation (MHE). The aim is to assess the effectiveness of the integrated strategy
in accommodating faults and maintaining setpoint tracking in the presence of both actu-
ator and plant faults in the three-tank system. The results are organized into three main
categories: nominal operation, actuator fault accommodation, and plant fault accommo-

dation.

5.1 Admissible and Terminal Sets Visualization

Before evaluating the control performance under nominal and faulty conditions, this
section presents a geometric visualization of the sets that define the feasible operating
region of the closed-loop system. These include the admissible input and state constraints,
the computed terminal set, and the domain of attraction approximation. All sets are
constructed based on the parameter values described in Section 4.5.

Figure 5.1 illustrates the admissible region defined by box constraints on the state and
control input deviated from the selected operating point (xqp, top). The state constraints
are imposed on the tank levels and follow the bounds given in (4.35), whereas the control
constraints reflect the physical limits of the actuated valves, as shown in (4.36). These
constraints are encoded as H-polyhedra, in the form of (4.11)—(4.12), and are enforced at
each time step of the MPC prediction horizon to guarantee that all predicted trajectories
remain within the feasible and safe operating region around the equilibrium point. In
addition, Figure 5.1a depicts the ellipsoidal terminal set 2 defined by terminal penalty
matrix (4.34), which is fully contained within the admissible state set X

Figure 5.2a presents the inner polyhedral approximation of the terminal set, as defined
in (4.19). As illustrated, all states contained in this set respect the admissible constraints
and can be driven to the origin via a local linear state-feedback controller, thereby ensuring
recursive feasibility and closed-loop asymptotic stability. In turn, Figure 5.2b shows a

projection of the polyhedral approximation of the domain of attraction Ds(£219) := D15(2)

43
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Figure 5.1: Polyhedral sets of admissible state and input deviations relative to (zop, top)-

obtained by a recursive sequence of one-step admissible sets, as described in (4.21). The
inner polyhedron represents the terminal set 2,,, while the outer set corresponds to the

expanded region from which the terminal set is reachable under admissible inputs.
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Figure 5.2: Polyhedral representation of the terminal set and the domain of attraction.

These geometric constructs serve as the foundation for constraint enforcement and
feasibility guarantees in the MPC formulation. During operation, all predicted trajectories
are required to remain within the admissible set, and the final state must lie inside the
terminal set. In the presence of faults, the controller dynamically updates its internal
model and continues enforcing these constraints to maintain safe and stable operation.

The next sections evaluate the closed-loop behavior of the system under nominal and

faulty conditions, using the control architecture designed based on these constraint sets.
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5.2 Nominal Operation Scenario

In the first scenario, no faults are introduced in the system. The FTMPC is initialized
with the nominal model and receives state feedback from the FRE module, as illustrated
in Figure 4.2. The control objective is to regulate the outlet flow rate Q3 to a predefined
setpoint (J3..¢ while satisfying state and input constraints.

Figure 5.3 presents the closed-loop system response under these nominal operating
conditions, where (%) and (%) denote, respectively, the measured and estimated values of
the corresponding variable. This notation is used consistently throughout this chapter.
In Figure 5.3a, the output trajectory closely follows the reference signal with negligible
steady-state error, exhibiting the effectiveness of the control strategy. Figure 5.3b shows
the corresponding control inputs, while Figures 5.3¢ and 5.3d depict the state and the
fault residual estimations from the FRE module, respectively. Both the inputs and states
remain within their admissible bounds, exhibiting smooth transitions without signs of
saturation or instability. Overall, these results illustrate the nominal performance of the

proposed control framework before the occurrence of any fault.
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Figure 5.3: Setpoint tracking of the controlled variable Q3 (a), control inputs (b), system
states (c), and fault residual estimation (d) under nominal conditions.
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5.3 Comparative Evaluation Methodology for Fault Sce-

narios

To ensure a consistent and objective comparison across different fault scenarios, three

controller configurations are evaluated for each case:

1. Nominal Model (AO, BO): the FTMPC operates with the nominal, fault-free
model. No reconfiguration is applied after the fault occurs, leaving the model-plant

mismatch uncorrected.

2. Exact Fault Model (A(fy), B(fx)): the FTMPC is provided with the exact faulty
system model, as if the fault magnitude were perfectly known. This represents the

upper bound of achievable performance.

3. Estimated Fault Model (A(fk), B(fk)) — Proposed Approach: the FTMPC
is reconfigured online using the model estimated by the MHE-based Fault Residual
Estimator (FRE) module. This case reflects the actual performance of the proposed
AFTC framework.

Evaluation Metrics

For each scenario, the following quantitative metrics are computed to evaluate and

compare the closed-loop performance after the occurrence of a fault:

e Post-Fault Root Mean Square Error (RMSE,.s): the RMSE, s quantifies

the tracking performance after the occurrence of a fault and is defined as

Npost
1 pos

RMSEpost = N Z (yz - ri>27
post i=1

where y; is the controlled output, 7; is the reference signal, and N is the number of
samples within the fault duration. All variables in this expression refer exclusively to

the time interval between the fault initiation and its clearance within the simulation.

e Steady-State Error (SSE): the mean absolute tracking error, |y — ry|, is com-
puted over a fixed-length steady-state window of Ngsg = 200 samples preceding the
end of the simulation. SSE quantifies the long-term tracking accuracy once transient

effects have decayed, and is given by

Nlast

SSE = i — Til,
- >yl

1=1+Nlast —NssE

where Ny, is the index of the final simulation sample.
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e Estimation Delay: defined as the elapsed time from the fault occurrence tg, ¢ to
the first instant where the absolute estimation error |&, — &/ enters and remains
within a predefined tolerance band of £2% of max || for at least a dwell time of
3 seconds. This metric quantifies how quickly the FRE converges to a reliable fault

residual estimate.

e Recovery Time: defined as the elapsed time from tg,; to the first instant where
the absolute tracking error |y, — 7| enters and remains within a tolerance band of
+4% track for at least a settling dwell time of 8 seconds. This measures how quickly

the closed-loop system regains acceptable tracking performance after a fault.

Graphical Representation

For each fault type and controller configuration, the results are displayed in two aligned

panels:

e Left panel: controlled output trajectory along with the reference signal and con-
trol input trajectories. The fault period is highlighted with a transparent red back-

ground.
e Right panel: injected fault signal, corresponding fault residual estimation, and the
actual fault trajectory.
Tabular Comparison

For each fault type, a table summarizes the four performance metrics for the three

controller configurations.

5.4 Actuator Fault: Loss of Effectiveness in Kp,

Fault description: At around ¢ = 150 s, an abrupt loss of effectiveness of 80% (f; =

0.8) is introduced in the actuated valve Kp,.

Results: The results are presented in Figures 5.4-5.6, while the corresponding perfor-

mance metrics are summarized in Table 5.1.

e Nominal Model: unrecovered tracking (infinite recovery time), long fault estimation

time, and high tracking error values.

e Exact Fault Model: immediate recovery with negligible tracking error and no actu-

ator saturation.

e Estimated Model: slight performance degradation, characterized by a low RMSE

and a small offset error (~ 0.6 cm?/s), along with a short estimation delay (~ 1.4s).
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Figure 5.4: Closed-loop results using the nominal model (Ao, Bo) under an abrupt actu-
ator fault with a maximum magnitude of f; = 0.8.
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Figure 5.5: Closed-loop results using the exact model (A(fy), B(fx)) under an abrupt
actuator fault with a maximum magnitude of f; = 0.8.

Table 5.1: Closed-loop performance metrics under an abrupt actuator fault (loss of effec-
tiveness) initiated at around ¢ = 150 s with a maximum magnitude of f; = 0.8.

Estimation Recovery

Model RMSE,qs 3 SSE 3
oae post. (C"/5) (cm?/s) Delay (s) Time (s)

Nominal 2.7285 3.1154 44.1 00
Exact 0.0128 0.0061 0.4 0
Estimated 0.5761 0.6188 1.4 0

5.5 Plant Fault: Blocking in flow ()3

Fault description: At approximately ¢ = 85 s, an incipient blockage begins to develop

in flow )13, progressively increasing until it reaches a 90% blockage (fs = 0.9). In practical
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Figure 5.6: Closed-loop results using the estimated model (/l( fi), B( fi)) under an abrupt
actuator fault with a maximum magnitude of f; = 0.8.

terms, this means that valve K3 is gradually closed, allowing only 10% of its nominal

flow capacity to pass.

Results: The results are shown in Figures 5.7-5.9, and the corresponding performance

metrics are summarized in Table 5.2.

e Nominal Model: unrecovered tracking; the fault estimate does not converge, result-

ing in an infinite estimation time.

e Exact Fault Model: immediate recovery with low tracking error and no actuator

saturation.

e Estimated Model: significant performance degradation, characterized by high values
of RMSE and SSE (close to those obtained with the nominal model), and infinite

estimation time due to the lack of convergence in the fault estimate.

Table 5.2: Closed-loop performance metrics under an incipient plant fault (pipe blockage)
initiated at approximately ¢ = 85 s with a maximum magnitude of fs = 0.9.

Estimation Recovery
Delay (s) Time (s)
Nominal 1.6084 1.8448 00 o0

Exact 0.1105 0.0033 00 0

Estimated 1.3879 1.7287 00 00

Model RMSE,, (cm?®/s) SSE (cm?/s)
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Figure 5.7: Closed-loop results using the nominal model (AO, Bo) under an incipient plant
fault with a maximum magnitude of fg = 0.9.
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Figure 5.8: Closed-loop results using the exact model (A(fy), B(fx)) under an incipient
plant fault with a maximum magnitude of fg = 0.9.

5.6 Plant Fault: Leakage in Tank 7

Fault description: At approximately ¢ = 115 s, an incipient leakage begins to develop
in tank 7,. This fault is modeled by gradually opening valve K, until it is fully open,

corresponding to fg = 1.

Results: The results are shown in Figures 5.10-5.12, and the corresponding performance

metrics are summarized in Table 5.3.

e Nominal Model: unrecovered tracking (infinite recovery time), short fault estimation

time, and high tracking error values.

e Exact Fault Model: immediate recovery with negligible tracking error and no actu-

ator saturation.



CHAPTER 5. RESULTS 51

10 —O- 0 O0—6©-0-6 6020
05+
—*— fe
Sk . . )
50 100 150 200 250 300
0 50 100 150 200 250 300 0.02f 51 él
e — ——
0.06 +— Kp 0.02
| | | | | |
0.04F 0 50 100 150 200 250 300
0027 0.02f ——& &
o | | | | | | X! —————
0 50 100 150 200 250 300
-0.02f
| | | | | |
0 50 100 150 200 250 300
00 E—r
0.04f 0.02 ——& &
e
002y %
0.02
0% . ! . . . ) . . T
0 50 100 150 200 250 300 0 50 100 150 200 250 300
time (s) time (s)

(a) (b)

Figure 5.9: Closed-loop results using the estimated model (121( fi), B( /) under an incip-
ient plant fault with a maximum magnitude of fz = 0.9.

e Estimated Model: slight performance degradation, characterized by a low RMSE

and a small offset error (~ 0.75cm?/s), along with a short estimation delay (~ 6.4s).
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Figure 5.10: Closed-loop results using the nominal model (AO, BO) under an incipient
plant fault with a maximum magnitude of fq = 1.

Table 5.3: Closed-loop performance metrics under an incipient plant fault (tank leakage)
initiated at approximately ¢ = 115 s with a maximum magnitude of fy = 1.

Estimation Recovery
Delay (s) Time (s)
Nominal 3.1529 3.7551 4.6 00

Exact 0.0206 0.0102 6.3 0

Estimated 0.6288 0.7507 6.4 00

Model RMSE, . (cm?®/s) SSE (cm?/s)
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Figure 5.11: Closed-loop results using the exact model (A( fr), B( fk)) under an incipient
plant fault with a maximum magnitude of fq = 1.
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Figure 5.12: Closed-loop results using the estimated model (fl( fi), B( fr)) under an in-
cipient plant fault with a maximum magnitude of fo = 1.
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Discussion: Overall, the results demonstrate that the proposed AFTC framework can
effectively accommodate actuator and certain plant faults, restoring tracking performance
close to the ideal case when accurate fault estimates are available. For abrupt actuator
faults, the estimated-model configuration achieved recovery dynamics and steady-state
accuracy comparable to the exact-model scenario, with only a minor delay due to fault
estimation. In contrast, severe nonlinear plant faults, such as high-level blockages, posed

greater challenges, limiting estimation convergence and preventing full recovery.
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Conclusions

This work proposed and evaluated numerically an integrated Active Fault-Tolerant
Control (AFTC) framework that combines Model Predictive Control (MPC) with Mov-
ing Horizon Estimation (MHE) for real-time fault accommodation in constrained multi-
variable systems. The approach was validated using the three-tank benchmark system
under nominal conditions and in the presence of actuator and plant faults.

The proposed control architecture is composed of three main components:

e An MPC formulation with terminal set design and explicit handling of state and

input constraints to ensure recursive feasibility and asymptotic stability.

e An MHE-based estimator capable of reconstructing both system states and fault

residuals from recent input-output data over a sliding estimation horizon.

e A control reconfiguration scheme in which the internal prediction model of the MPC
is updated online using the estimated fault residuals, yielding a Fault-Tolerant MPC
(FTMPC) capable of compensating for altered system dynamics.

Simulation results demonstrated that, under nominal conditions, the proposed frame-
work achieved precise setpoint tracking with negligible steady-state error while satisfying
all operational constraints. In the case of abrupt actuator faults, the MPC-MHE integra-
tion provided fast and accurate fault estimation, enabling timely model reconfiguration
and recovery of performance close to that obtained with perfect fault knowledge. Only
a short transient degradation was observed due to estimation delay. For severe plant
faults involving significant nonlinear effects, such as high-degree pipe blockages and tank
leakages, the approach achieved partial recovery. In these scenarios, fault estimation
convergence was limited, constraining the benefits of reconfiguration; nevertheless, the
proposed method consistently outperformed the nominal-model configuration

In summary, the integration of real-time fault residual estimation and predictive con-
trol into a unified AFTC architecture has demonstrated effectiveness in enhancing re-

silience against faults in constrained multi-variable systems. The approach is particularly
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relevant for linear applications, where both performance preservation and constraint sat-

isfaction are essential under fault conditions.

6.1 Future Work

Several research directions can be pursued to improve and extend the proposed frame-

work:

e Sensor fault accommodation: extend the augmented estimator to include mea-

surement equations for detecting and compensating sensor faults.

e Robust and nonlinear estimation: explore robust or nonlinear MHE formu-
lations to improve estimation accuracy under disturbances and significant model

mismatches.

e Enhanced MPC robustness: incorporate robustness margins in terminal set and

cost design to maintain feasibility under late or imperfect fault estimation.

e Nonlinear MPC integration: replace the linear MPC with a nonlinear counter-

part to better capture plant nonlinearities and improve fault accommodation.

The combination of advanced estimation and predictive control techniques remains
a promising direction for developing fault-tolerant systems capable of maintaining high

performance and safety in uncertain and fault-prone environments.
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