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Nature isn’t classical, dammit, and if you want to make a simulation of nature, you'd
better make it quantum mechanical, and by golly it’s a wonderful problem, because it
doesn’t look so easy.

Richard Feynman
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Resumo

Nesta dissertacdo, é explorado o uso de fungdes de kernel quanticas em modelos
hibridos classico-quanticos voltados a detec¢do de falhas em turbinas edlicas.
Foram utilizados circuitos quanticos parametrizados para mapear dados em
espacos de Hilbert de alta dimensionalidade. As arquiteturas dos circuitos foram:
ZZFeatureMap, Real Amplitudes e EfficientSU2 com quatro estratégias de emara-
nhamento: Linear, Full, Circular e Shift-Circular-Alternate, comparando-se a quatro
kernels classicos: Linear, Polinomial, Radial Based Function e Sigmoid em um algo-
ritmo de Maquinas de vetores Suporte. O conjunto de dados, com 54 atributos
aquisionados por sensores, foi submetido a um algoritmo de Analise de compo-
nentes principais para reduzir sua dimensionalidade para 4, 8 e 16 componentes,
considerando a varidncia cumulativa dos dados. O modelo Real Amplitudes com
emaranhamento Full e 16 componentes superou o kernel Radial Based Function em
métricas padrdo de aprendizado de maquina. Andlises adicionais com curvas
ROC-AUC e matrizes de confusdo indicaram auséncia de overfitting, reforcando

o potencial dos kernels quanticos em aplicagdes industriais.

Palavras-chave: aprendizado de maquina, computagdo quantica, dataset desba-

lanceado, funcdo de kernel, manutencado preditiva, reducdo de dimensionalidade.
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Abstract

This master’s thesis investigates the use of quantum kernel functions in hybrid
classical-quantum models for fault detection in wind turbines. Parameterized
quantum circuits were used to map input data into high-dimensional Hilbert
spaces. The quantum circuit architectures analyzed include ZZFeatureMap, Re-
alAmplitudes, and EfficientSU2, each implemented with four entanglement
strategies: Linear, Full, Circular, and Shift-Circular-Alternate. These were com-
pared with classical kernels—Linear, Polynomial, Radial Basis Function, and
Sigmoid—within a Support Vector Machine framework. The dataset, comprising
54 features collected by turbine sensors, was reduced via Principal Component
Analysis to 4, 8, and 16 components based on cumulative variance. The Real Am-
plitudes circuit with Full entanglement and 16 components outperformed the
Radial Based Function kernel in standard machine learning metrics. ROC-AUC
curves and confusion matrices showed no overfitting, reinforcing the potential

of quantum kernels in industrial fault detection.

Keywords: machine learning, quantum computing, imbalanced dataset, kernel

methods, predictive maintenance, dimensionality reduction.
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1

INTRODUCAO

Computagdo Quantica (QC, do inglés Quantum Computing) constitui

um campo multidisciplinar que integra os fundamentos da meca-

nica quantica aos principios da ciéncia da computacdo. Essa drea
tem se destacado pelo potencial de resolver determinadas classes de problemas
com maior eficiéncia em comparac¢do aos métodos computacionais cléssicos,
destacando-se em tarefas que exigem representacdes mais adequadas, bem como
maior capacidade de armazenamento e processamento de informagdes (Niel-
sen et al., 2010). Esse ganho de eficiéncia esta relacionado aos computadores
quanticos utilizarem sistemas que obedecem as propriedades da mecanica quan-
tica como unidades de informacao, esses sistemas sdo conhecidos como QuBit
(do inglés, quantum bits). Portanto, tais sistemas conseguem assumir estados
de superposigdo e emaranhamento permitindo aproveitd-los para desenvolver
novas abordagens algoritmicas. Um exemplo notédvel é o algoritmo quantico
desenvolvido por Peter Shor (Shor, 1996) para fatoragdo de ntimeros inteiros e o
de Lov. Grover (Grover, 1996) para busca em listas ndo estruturadas, onde, teori-

camente, exemplificam redugdes significativas de complexidade computacional
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em relagdo as abordagens convencionais.

Apesar dessas vantagens teoricamente alcangadas, a implementagdo pra-
tica de algoritmos em hardwares quanticos reais ainda enfrenta diversas limita-
¢Oes, sobretudo devido ao fendmeno da decoeréncia quantica e ao acimulo de
erros durante a execugao. Isso ocorre porque os sistemas quanticos sdo extrema-
mente sensiveis as intera¢gdes com o ambiente ao qual estdo submetidos (Park et
al., 2024), exigindo, assim, c6digos corretores de erros mais robustos ou novas
arquiteturas de chips quanticos.

Nos dltimos anos, avangos na engenharia de hardware tém buscado mi-
tigar o acimulo de erros e decoeréncia quantica. Por exemplo, o chip Willow
(GoogleQ, 2024), desenvolvido pela Google, apresentou uma reducao exponen-
cial no aciimulo de erros a medida que o ntimero de qubits aumentava. Além
disso, a Microsoft (Microsoft, 2025) propds uma nova abordagem de imple-
mentagdo baseada em férmions de Majorana’, possibilitando a construgdo de
qubits mais confidveis e escaldveis. Esses avan¢os no hardware mencionados
anteriormente, tém sido impulsionados tanto pelo aprimoramento de cédigos de
correcdo de erros quanto por pesquisas voltadas ao desenvolvimento de novas
arquiteturas de hardware, com o objetivo de aumentar o tempo de coeréncia dos
qubits e, consequentemente, a viabilidade de sistemas quénticos em larga escala.

No entanto, os algoritmos desenvolvidos para computacdo quantica ainda
se concentram na utilizacdo de chips com ntimero reduzido de qubits e com
tolerdncia a ruidos limitada. Esses chips sdo conhecidos como dispositivos quan-

ticos ruidosos de escala intermedidria NISQ (do inglés, Noisy Intermediate-Scale

! Férmions de Majorana: Férmions neutros idénticos a sua antiparticula, propostos por Et-

tore Majorana. Embora nédo observados como particulas fundamentais, quasiparticulas com
propriedades de Majorana foram detectadas em sistemas de matéria condensada (e.g., super-
condutores topolégicos), sendo candidatas a qubits topolégicos em computagdo quantica
(Aguado; Kouwenhoven, 2020).
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Quantum) e, geralmente sdo aplicados em tarefas especificas com a finalidade
de encontrar alguma vantagem computacional (Preskill, 2018). Pesquisas de-
senvolvidas nos tltimos anos apresentaram resultados promissores ao executar
algoritmos quanticos em processadores NISQ por meio da implementacdo de
algoritmos baseados em técnicas como Simulated Annealing (Dwave, 2024) e
algoritmos estruturados na forma de Circuitos Quanticos Parametrizados (PQC,
do inglés Parameterized Quantum Circuits®) (Horvat et al., 2022), compostos por
um numero restrito de operag¢des e camadas (Horvat et al., 2022). Assim, hd um
esfor¢o continuo na proposicdo de novos algoritmos quanticos capazes de explo-
rar possiveis ganhos de desempenho em relagdo aos métodos classicos, muitos
dos quais sdo validados por meio de simuladores que simulam o comportamento
de dispositivos quanticos com tolerancia a ruidos (Biamonte et al., 2017).

Nesse contexto, varias aplica¢des sdo desenvolvidas na drea da computa-
¢do quantica. Dentre elas se destaca a Aprendizagem de Maquina Quéantica —
QML (do inglés, Quantum Machine Learning). Essa aplicagdo investiga a utilizagdo
de algoritmos quénticos para otimizar modelos classicos de aprendizado de mé-
quina. Diversos estudos, tanto tedricos quanto experimentais, tém demonstrado
o potencial da QML em diferentes setores da economia, indicando que o uso de
algoritmos quanticos em tarefas especificas pode melhorar significativamente
o desempenho de modelos classicos. Por exemplo, o trabalho pratico de Na-
guleswaran (Naguleswaran, 2024) investiga fun¢des de kernel calculadas por
algoritmos quanticos que podem ser empregados para potencializar algoritmos
como Mdquina de Vetores Suporte - SVM (do inglés, Support Vector Machine) e

redes neurais convolucionais CNN (do inglés, Convolutional Neural Networks),

2 Essa abordagem é conhecida como computagdo quantica universal. Ela é mais comum para

implementar algoritmos quanticos conforme discutido no Capfitulo 2.
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explorando condi¢des nas quais uma vantagem quantica é alcancada, especial-
mente por meio de kernels projetados de forma dependente dos dados. Outro
estudo que vale a pena ser ressaltado é o estudo teérico desenvolvido por Schuld
(Schuld, 2021) que apresenta uma formulagdo matematica que evidencia as van-
tagens do mapeamento de dados em espacos de alta dimensionalidade por meio
de algoritmos quénticos variacionais, o que favorece a construgdo de superficies
de generalizacdo e melhora o desempenho de algoritmos como as Maquinas
de Vetores de Suporte Quantico — QSVM (do inglés, Quantum Support Vector
Machine).

Algoritmos quénticos podem oferecer vantagens quando aplicados a pro-
blemas de aprendizado de maquina, especialmente em cendrios caracterizados
por conjuntos de dados com elevado grau de desbalanceamento e alta dimensio-
nalidade. Um exemplo tipico de aplicagdo com essas caracteristicas é a detecgdo
de falhas em sistemas e equipamentos industriais, conforme apontado nos es-
tudos de Abidi et al. (Abidi et al., 2022) e Zeguendry et al. (Zeguendry et al.,
2023). Essas pesquisas evidenciam que a implementacdo adequada de estratégias
de deteccdo de falhas, aliada a disponibilidade de recursos para a aquisicdo de
dados, contribui significativamente para a ado¢do de praticas de manutencdo
preditiva, reduzindo custos operacionais e evitando paradas inesperadas.

No setor aerondutico, por exemplo, a deteccdo de falhas é empregada
para o monitoramento continuo das condi¢des de componentes criticos das aero-
naves (Chowdhury et al., 2023). No setor de manufatura, essa técnica tem sido
utilizada para o acompanhamento de equipamentos como médquinas de Controle
Numérico por Computador e robds industriais, possibilitando intervencdes ante-

cipadas, conforme discutido por (Gupta et al., 2023), que destacam a integracdo
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com sistemas baseados em Internet das Coisas. Em usinas de geracdo de energia,
algoritmos de deteccdo de falhas vém sendo aplicados ao monitoramento de
turbinas, geradores e outros componentes essenciais, promovendo melhorias na

gestdo da manutengdo, como evidenciado por (Salehi, 2023).

1.1 Problematica e questao de pesquisa

O desenvolvimento de estratégias de deteccdo de falhas pode trazer diversas
vantagens para vdrios setores industrias. No entanto, ainda enfrentam alguns
desafios devido as limitacOes e a dificuldade de manipular conjunto de dados
com multiplas colunas ou variaveis, features, conforme também abordado nos
trabalhos de Abidi et al. (Abidi et al., 2022) e Zeguendry et al. (Zeguendry et
al., 2023). Além disso, ao trabalhar com conjunto de dados com alto grau de
desbalanceamento e dimensionalidade como é caracteristico dos problemas
de detecgdo de falhas, é necessdrio realizar um pré-processamento criterioso
dos dados para evitar que o modelo enfrente dificuldades para generalizar a
identificacdo de novas falhas ao utilizar os modelos convencionais de ML.

De acordo com Schuld (Schuld, 2021), algoritmos quanticos possuem a
caracteristica de atuar como func¢des de kernel capazes de mapear dados para
espagos vetoriais de alta dimensionalidade. Esse mapeamento possibilita a iden-
tificacdo de superficies de generalizagdo com menor custo computacional, su-
perando limitagdes observadas em kernels classicos. Nesse contexto, o uso de
algoritmos quanticos como fungdes de kernel em modelos de Maquinas de Ve-
tores de Suporte (SVM) representa uma alternativa promissora, ao incorporar
paradigmas de processamento baseados nos principios da mecanica quantica.
Essa abordagem pode ser particularmente vantajosa na detecgdo de falhas em

sistemas industriais compostos por multiplos componentes, onde a falha pode
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estar associada a alteragdes sutis em varidveis especificas. Diante disso, surge a

seguinte questdo de pesquisa:

e Como o desempenho de uma estratégia hibrida quantico-classica, com-
posto por um classificador baseado em Mdquinas de Vetores Suporte
com um kernel calculado por um circuito quintico parametrizado se
comporta para identificar e classificar falhas com base em um conjunto

de dados com alta dimensionalidade e desbalanceamento?

Diante do exposto, a investigacdo proposta busca explorar o potencial dos
kernels quanticos como alternativa para superar os desafios impostos por dados
complexos na detecc¢do de falhas. Para investigar essa abordagem, estabelecem-se

os seguintes objetivos:

1.2 Objetivos

O objetivo geral desta dissertacdo de mestrado consiste em propor uma estra-
tégia de deteccdao de falhas utilizando um algoritmo de mdquinas de vetores
suporte aprimorado por uma fungdo de kernel quantica. A partir disso, serdo ana-
lisados possiveis cendrios de sua utilizagdo, com intuito de discutir as vantagens
de detecgdo de falhas usando um modelo hibrido quantico-cldssico. Durante o
desenvolvimento desse estudo, emergirdo questdes criticas relacionadas a aplica-
bilidade e eficdcia dessas estratégias: Quais sdo os limites das abordagens atuais
de deteccdo de falhas? Como validar a eficacia dos modelos de classificacao
quantica propostos na detec¢do de falhas? Essas indagagdes levam a orientar a

formulagao dos objetivos especificos da pesquisa, que incluem:

1. Desenvolver modelos de Mdquinas de Vetores Suporte compostos por

funcdes de kernel quanticas e classicas;
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2. Desenvolver regressores para prever valores de cada feature em um de-
terminado lag de tempo e os modelos QSVM implementados classifica-

rem se ha falha ou nao;

3. Avaliar e comparar o desempenho dos modelos em relacao as métricas
obtidas apds a realizacdo dos testes, considerando tanto a precisao dos

resultados quanto a eficiéncia do processamento para cada abordagem;

4. Analisar as implicac¢des praticas e os possiveis cendrios de utilidade dos

modelos.

1.3 Organizacao da Dissertacao

A presente dissertacdo encontra-se dividida em 6 capitulos, listados a seguir:

e No Capitulo 1 sdo estabelecidos o contexto da pesquisa, a motivagdo do

estudo, a defini¢do do problema, os objetivos gerais e especificos.

e No Capitulo 2 sdo explorados os fundamentos teéricos que sustentam
a pesquisa. Aborda-se a computacdo quantica, incluindo seus principios
bésicos, modelos de computagdo e algoritmos relevantes. Em seguida,
discute-se a aprendizagem de maquina quantica, destacando como os
algoritmos quanticos podem ser aplicados a problemas de aprendizado
de mdquina, com énfase em classificadores quénticos e suas vantagens

potenciais sobre métodos classicos.

e No Capitulo 3 é apresentada uma revisdo abrangente da literatura rela-

cionada a manutencédo preditiva. Sdo discutidas as técnicas tradicionais
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utilizadas bem como os desafios enfrentados, como a complexidade dos sis-
temas e a necessidade de deteccdo precoce de falhas. Além disso, explora-se
como a computagdo quantica pode contribuir para superar essas limitacdes,

oferecendo novas abordagens para o diagnodstico e progndstico de falhas.

e No Capitulo 4 detalha-se a abordagem metodoldgica adotada na pesquisa.
Descreve-se o processo de coleta e pré-processamento dos dados operacio-
nais das turbinas edlicas, a selecdo das varidveis relevantes e a construgao
dos modelos de aprendizado de mdquina. Sdo apresentados tanto o modelo
classico quanto o modelo quantico, incluindo suas arquiteturas, algoritmos
utilizados e parametros de treinamento. Além disso, discute-se a estraté-
gias de validagdo e as métricas de desempenho empregadas para avaliar

os modelos.

e No Capitulo 5 sdo apresentados os resultados obtidos a partir da aplicacdo
dos modelos desenvolvidos. Compara-se o desempenho dos modelos clas-
sico e quantico em termos de acurdcia, precisdo, recall, F1-score. Analisa-se
a eficdcia de cada modelo na detecgdo de falhas em diferentes componentes
da turbina edlica, considerando cendrios com e sem redugao de dimensio-
nalidade. Os resultados sdo discutidos baseados nas hipéteses formuladas

e das contribuigdes potenciais para a drea de manutencdo preditiva.

e No Capitulo 6 serdo apresentadas as consideragdes finais dessa dissertacdo

e os trabalhos futuros.
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2

APRENDIZAGEM QUANTICA DE

MAQUINA

ste capitulo apresenta a fundamentagdo teérica necessaria para uma
compreensdo aprofundada do trabalho proposto: a Se¢do 2.1 explora

0s principais conceitos de computacdo quantica que sdo necessarios

para o entendimento dessa pesquisa, os tipos de arquiteturas de computagao
quantica e os desafios relacionados a sua aplicagdo no contexto deste estudo,
enfatizando algumas vantagens do uso de simuladores de sistemas quanticos
para executar algoritmos quanticos. Por tltimo, a Segdo 2.2 revisa os modelos
de aprendizagem de médquina, englobando abordagens cldssicas, quanticas e

hibridas.

2.1 Computacao quantica
Os Computadores quanticos utilizam gubits para processar informacdes. Ao
contrdrio dos computadores classicos, que seguem a fisica newtoniana, os qubits

podem assumir uma superposi¢do de estados e se emaranharem entre si, o



Capitulo 2. Aprendizagem quiantica de mdquina 20

que amplia a capacidade de processamento em busca de solugdes 6timas para
determinados problemas (Nielsen et al., 2010). No modelo de circuitos quanticos,
os qubits sdo inicializados no estado computacional |0), e uma sequéncia de
operacdes unitdrias, que sdo operagdes que preservam a métrica do espago
vetorial e portanto garantem que a mudanga no estado também seja um estado
quantico, faz o sistema evoluir para um estado final, permitindo a extra¢do da
solucdo do problema. As operagdes em qubits sdo implementadas no nivel de
hardware por pulsos de controle, como micro-ondas para qubits supercondutores
e pulsos de laser para ions aprisionados, sendo a precisdo desses pulsos essencial
para manipular os estados quanticos. Essas operagdes sdo representadas por
matrizes unitdrias U que atuam sobre o estado de um ou mais qubits, descrito
por um vetor de estado em um espago de Hilbert. Tais matrizes correspondem a
portas légicas quanticas e a composicdo sequencial dessas operagdes, dadas pelo
produto de matrizes Uy, ..., U;, define um circuito quantico.

Os detalhes matematicos dessa manipulagdo, que pode ser entendida
como mudangas no estado quantico que descreve o qubit através dessas ope-
ragdes unitdrias, serdo abordados na subsegdo 2.1.1, enquanto a subsegao 2.1.2
explorara os diferentes ambientes de programacado de hardwares reais de com-

putacdo quantica e simuladores quanticos .

2.1.1 Manipulacao de qubits

O formalismo matemaético para o processamento de informagado quéntica fundamenta-
se na representacdo de estados por vetores unitdrios e operagdes por transfor-
magdes unitarias em um espago de Hilbert complexo. Em outras palavras, o
processamento da informacdo quantica é formalmente descrito de acordo com

a algebra linear sobre espagos de Hilbert complexos. Um estado de um qubit é
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definido por um vetor unitario escrito numa determinada base vetorial, (|0))[1)),
onde suas amplitudes correspondem a ndmeros complexos. A soma do médulo
quadratico deve ser 1 (vetor normalizado), devido a natureza probabilistica da
mecanica quantico garantindo que o vetor esteja normalizado (Nielsen et al.,
2010).

A diferenca fundamental entre bits cldssicos e qubits reside em seus es-
pacos vetoriais: enquanto o primeiro opera em um espaco discreto binario 0,1,
tipicamente implementado por niveis de tensdo em circuitos digitais, o qubit,
como sistema quantico de dois niveis, habita um espago de Hilbert bidimensi-
onal complexo (Mermin, 2007). Essa natureza quantica permite a existéncia de
superposic¢des coerentes de estados, em que a diferenca de fase entre os estados

base permanece constante, conforme descrito pela nota¢do de Dirac na Equagao

2.1.
1 0
|) = a|0) 4+ 5]1) como |0) = ell) = = (2.1)
0 1
1 0 e}
0 1 3

A notagdo de Dirac (bra-ket) fornece uma representacdo abstrata e in-
dependente de base para estados quanticos, onde vetores de estado (kets, |-))
e seus duais (bras, (-|) permitem expressar operagdes e produtos internos de
forma concisa, sem necessidade de representacdo matricial explicita, embora
nas aplica¢des esta representacdo serd utilizada. A notagdo |-), chamada de ket,
representa vetores coluna, enquanto (-|, chamada de bra, representa vetores linha
que pertencem a espagos de Hilbert diferentes. O bra (| é obtido a partir do ket

|-} por transposig¢do conjugada, indicada por 1, ou seja, |-)T = (.
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Para estados quanticos normalizados, a relagdo |a|* + |3]? = 1 deve ser
satisfeita, com «, 8 € C, cujos médulos ao quadrado representam as amplitudes
de probabilidade (Griffiths et al., 2011). E importante destacar que, como « e
8 pertencem ao conjunto dos ntimeros complexos, o espago C? possui quatro
graus de liberdade — as partes real e imagindria de cada coeficiente.

Um exemplo de estado superposto assumido por um sistema quantico
é mostrado na Equagdo 2.2, onde o = 8 = \/% Nesse caso, a probabilidade de
o estado superposto colapsar para o estado |0) ou |1) apds uma medida é dada
pelo médulo quadratico dos coeficientes « e 3, isto é, |a|? = |3|* = 3.

0) +[1)

V) = VA (2.2)

Os estados quanticos pertencem ao espacgo vetorial de Hilbert, que pode
ser finito ou infinito-dimensional, dependendo do sistema (Griffiths et al., 2011).
Os qubits, por serem sistemas quanticos de dois niveis, pertencem a um espago
vetorial complexo de dimens&o finita C2. Seus estados puros podem ser represen-
tados geometricamente na esfera de Bloch por meio de um vetor |¢)) que aponta

para tal estado, como mostrado na Figura 1 (Mermin, 2007).
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Z=|1>

Figura 1 — Esfera de Bloch com um vetor |)) apontando para um estado de um
qubit.

Note que na Figura 1 o estado quéantico |¢) pode ser representado por
um vetor que aponta para um ponto na superficie da esfera. Portanto, uma
alternativa para representar um QuBit é por meio de uma parametrizacdo que
utiliza os angulos 0 (dngulo medido entre o eixo Z e o vetor, correspondente ao
eixo polar) e ¢ (dngulo medido no plano xy, correspondente ao eixo equatorial)

da esfera. Essa parametrizacdo é expressa pela equagdo 2.3.

1) = cos (g) 0) + e"sin (g) 1) (2.3)

Observe que se a fase ¢ for multiplos de 0, 27,...,2n7T paran € Z e
8 = /2, o estado |¢)) assumira a forma representada na equacgao 2.3. O angulo
6, correspondente ao eixo polar da esfera de Bloch, é medido entre o eixo Z e o
vetor de estado [¢). O angulo ¢, eixo equatorial da esfera de Bloch é medido no

plano xy. Estes dois parametros sao utilizados para descrever a posicdo de um
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estado quantico na Esfera de Bloch (Nielsen et al., 2010).

Dado um estado quéntico |¢/) de um QuBit e uma determinada operacao
neste estado, representada por O, afimar-se que quando um operador atuar em
|1) este estado sofrerd uma transformacao linear ou rotagao na esfera de Bloch.

Matematicamente, isto pode ser representado pela equacao 2.4.

Oly) = [’ (2.4)

Quando um sistema quantico é composto por n qubits, o estado total
do sistema pode ser representado por um produto tensorial na forma [¢)®".
Esse sistema pertence a um espaco vetorial de dimens&o 2", e a relacdo entre
os qubits é expressa por meio de produtos tensoriais. Assim, tem-se: [¢)®" =
(1) © oo @ [th1) ® [tho) = [thn-.c|th1) [1h0) (IBMQ, 2023).

Um operador é simplesmente uma matriz que ao ser aplicado ao vetor
de estado ||¢), faz com que a esfera de Bloch rotacione, fazendo-o apontar para

um outro estado quantico. A partir disto, suponha que se tenha um operador

a b
genérico O = , ao aplica-lo em |¢), resultard na Equagao 2.5.

c d

al _ (cva + Sb) 25)

c d g (ae + Bd)

*

Oly) =

Oé,
Fazendo (aa + fb) = o' e (ac + Bd) = [’ e definindo |¢)’ = se tem a
/B/
relagdo representada pela Equacdo 2.4.
Isto é necessdrio para entender como os algoritmos quanticos univer-

sais costumam funcionar. Estes sdo representados por circuitos, semelhante ao

mostrado na Figura 2.
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Figura 2 - Modelo de algoritmo quantico baseado em circuito légico.

Observe que o sistema quantico inicial deste circuito possui dois QuBits
(QuBit, e QuBit;) ambos inicializados no estado |0). A primeira parte do circuito
prepara o estado, a segunda parte processa o estado e a terceira mede o estado.
Os operadores ao serem aplicados no estado inicial fard com que este sofra
rotagdes na esfera de Bloch. A porta 16gica Hadamard - H é uma das principais
operagdes para se obter vantagem qudntica, pois ela faz com que o sistema inicial

entre em superposicdo. Inicialmente se tem a seguinte configuragao.

[¥) = 10) ®0) (2.6)

Ap6s isso aplica-se as portas Hadamards em cada QuBit, logo:

H|w) = H|0) ® H]0) 2.7)
A porta légica H é equivalente ao seguinte operador H = \/% .Ao
1 -1
aplicar essa matriz no estado |0) resultard em um estado superposto representado
pela equagdo 2.8:
0)+1
H|0) = M (2.8)

V2
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Portanto na primeira parte do circuito, obtem-se o estado representado

pela equagdo 2.9.

0 +11) 10 +]1)

V) = ®

RN 25
~100) +[01) 4 [10) + [11)
N 2

Observe que cada estado possui a probabilidade de |3|* para ser medido.

Ao aplicar a porta H cada QuBit foi rotacionado em 7 em torno do eixo Y. (IBMQ,
2023)

Em seguida, é aplicada uma porta de rotagdo parametrizada em torno
do eixo x da esfera e Bloch no qubit 0. Esta operagao rotaciona o estado do qubit
0 por um angulo definido, variando o estado conforme o parametro de rotagdo 6.
Por fim, é aplicada uma porta CNOT (do inglés: Controlled-NOT), com o qubit 0
funcionando como o qubit de controle e o qubit 1 como o qubit alvo. Isso significa
que, se o qubit de controle estiver no estado |1), a operacdo Not sera aplicada
no qubit 1, trocando seu estado de |0) para |1), ou vice-versa. Na equacdo 2.10
é mostrado os célculos da evolugdo dos qubits desde o estado de mais baixa

energia até o estado resultante’.

[¥) = 10)1 @ [0)o

W) = H|0), ® H|0), (’01+|1) (%)
e,

P A IO
ado que = e R, [=]=
1 V2 \1 1 2

e—im/4 eim/4
:|w>=%<|0>1+|1>1)® |0>;§ )

No apéndice 1 sdo mostradas as matrizes das portas e os efeitos delas nos estados dos qubits

1



Capitulo 2. Aprendizagem quiantica de mdquina 27

E importante sanar que embora todas as portas rotacione o QuBit na
esfera de Bloch, o nome das portas RX, RY e RZ também sdo chamadas de portas

de rotacdo. As portas que representam os operadores nos algoritmos quanticos

01 0 —
sdo derivadas das matrizes de Pauli que sdo o, = , Oy = e
10 v 0
L0 L
o, = e a matriz identidade I = . No caso das portas de Rotagdo
0 -1 01
a equagdo 2.11 indica o efeito de tais portas.
R, = e~12% tal quei =1x,y,% (2.11)

Por isso que, a partir desta relacdo, a matriz Rz, por exemplo, pode ser de-
finida como Rz = e'2°%. Esta relacdo pode ser calculada utilizando a identidade

denotada pela equacdo 2.12.

6
R.(0) =cos=1I — isz’n§Z
T (2.12)
0 e

A 1ultima etapa do circuito é a medicao do estado. Por exemplo, ao medir
1024 vezes o circuito representado na Figura 2, todos os estados armazenados
no sistema [¢) tém uma probabilidade aproximadamente igual de P(|00)) =

P(|01)) = P(]10)) = P(|11)) =

1—§
2V2

2
de colapsar para um desses estados apés a

medigao.
O histograma representado na Figura 3 mostra a distribui¢do de probabi-

lidade obtida para 1024 medidas.
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Figura 3 — Estatistica dos estados colapsados ap6s 1024 medidas realizadas no
circuito quantico da Figura 2. Cada estado com aproximadamente o
mesmo nimero de ocorréncias.

Count

2.1.2 Computadores quanticos reais e simulados

Em 1982, Richard Feynman (Feynman, 1982) introduziu a ideia de utilizar siste-
mas quanticos como unidades de informagéao, estabelecendo as bases tedricas
para a computagdo quantica. Desde entdo, avangos significativos tém sido alcan-
¢ados na construcdo de dispositivos quanticos reais, com qubits implementados
em diversos chips fisicos com diferentes arquiteturas. A Tabela 1 mostra os
principais tipos de qubits utilizados em computadores quanticos baseados em

diferentes abordagens fisicas.

Empresa Tipo de qubit Descri¢ao
IBM, IQM e Google | qubits Supercondutores Utiliza circuitos supercondutores e operam em tempe-
raturas criogénicas para reduzir ruidos e decoeréncia.

Xanadu? qubits Fotonicos Utilizam fétons como qubits, manipulados por circui-
tos dpticos.

IonQ® e Quanti- | qubits Iénicos Utiliza fons aprisionados, confinados por meio de

nuum campos eletromagnéticos.

QuERA* e Pasqal qubits de Atomos Neutros | Utiliza &tomos neutros controlados por lasers e arma-

dilhas 6pticas, permitindo alta escalabilidade e preci-
séo.

Tabela 1 — Arquiteturas reais de Computacdo Quantica.
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A diversidade de abordagens fisicas para implementagdo de qubits reflete
o cardter exploratério atual da computagdo quéntica. Os qubits supercondutores,
adotados por lideres como IBM (IBMQ, 2023) e Google (Google Quantum, 2023),
destacam-se pela integracdo com tecnologias de fabricacdo de semicondutores
convencionais, porém exigem infraestrutura criogénica complexa abaixo de
15 mK para manter a coeréncia quantica e o estado de supercondugdo. Ja os
qubits fotonicos da Xanadu (Xanadu, 2023) operam em temperatura ambiente e
permitem interconexdes via fibra 6ptica, porém enfrentam desafios na detecgao
eficiente de fétons individuais.

Na categoria de ions aprisionados, solu¢des como as da IonQ (IonQ, 2025)
alcancam tempos de coeréncia excepcionais (tempo durante o qual as caracte-
risticas quanticas do sistema se mant e portas légicas com alta fidelidade com
um valor maior que 99.9%, embora necessitem de sistemas de vacuo ultra-alto e
controle de lasers de precisdo. Por fim, os 4tomos neutros adotados pelas empre-
sas QUERA(QuERA, 2024) e Pasqal (Pasqgal, 2025) emergem como plataforma
promissora para escalabilidade tridimensional, onde arranjos 6pticos permitem
reconfiguracdo dindmica de qubits durante a computagdo.

Esta fragmentagdo tecnolédgica evidencia a auséncia de um hardware
quantico dominante, direcionando investimentos para aplica¢des especificas:
supercondutores para integragdo em data centers, fétons para redes quanticas, e
atomos neutros para simulacdo de materiais.

Utilizar hardwares quanticos atualmente é acessivel via nuvem (Amazon
Braket, 2023; IBMQ, 2023), todavia a mitiga¢do do ruido intrinseco permanece
um desafio critico, comprometendo a precisdo dos resultados. O ruido intrin-

seco decorre da sensibilidade dos qubits a fatores externos, como temperatura e
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vibragdes, além de intera¢des indesejadas que aumentam com a escalabilidade
do sistema. Para viabilizar aplica¢Ges préticas, é essencial o aprimoramento de
c6digos corretores de erros quanticos. Avangos recentes incluem o chip Willow
da Google (GoogleQ, 2024), que demonstra maior resisténcia a ruidos por meio
de técnicas aprimoradas de corre¢do de erros (PAN et al., 2023). Além disso, essa
empresa tem apresentado avangos significativos no desenvolvimento de cédigos
corretores de erros, conforme indicado em (IQM, 2024), e projeta alcancar a era
da fault tolerance nos préximos cinco anos.

Circuitos quanticos podem ser implementados em diversos frameworks
que permitem sua execugdo em dispositivos quanticos reais (Amazon Braket,
2023). Cada operagdo sobre qubits é realizada por pulsos eletromagnéticos, ca-
racterizados por frequéncia e amplitude, que induzem a evolugdo do estado
quantico. A execugdo em hardware real exige a transpilacdo (Nielsen et al., 2010),
processo que adapta o circuito a arquitetura do dispositivo. Esse processo en-
volve o mapeamento de qubits 16gicos para qubits fisicos, a traducdo de portas
quanticas de alto nivel para operagdes nativas do dispositivo real e a otimizagdo
do circuito para minimizar ruidos e erros.

Geralmente a ligacdo entre os qubits no dispositivo quantico real é repre-
sentada através de um tipo de Grafo chamado Chimera Graph. A Figura 4, mostra

a ligacdo entre os 127 qubits de um dispositivo quantico (IBMQ, 2023).
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Figura 4 — Esquema de conexdo entre os 127 qubits de um dispositivo quantico
supercondutor.

O processo de execugdo de um circuito quantico em um dispositivo
quantico real, passard pelas etapas descritas acima. Por exemplo, o circuito
representado na Figura 2 ao ser executado nesse dispositivo passara pela etapa
de mapeamento dos qubits de acordo com o grafo da Figura 4. Ap6s isso, as
portas serdo traduzidas para as portas nativas desse dispositivo que, nesse caso,
sdo: ECR, Identidade, Rotagdo em torno do eixo Z, SX e X. Por ltimo, a etapa de
otimizac¢do que cuidard do ntimero de operagdes do circuito ao gerar o circuito
da Figura 4. Portanto, o circuito da Figura 2 vai ser transpilado para um circuito

equivalente representado na Figura 5 (IBMQ, 2023).

Figura 5 — Algoritmo quéntico adaptado para as portas nativas do dispositivo
quantico.
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Embora a execugdo de algoritmos quanticos em hardware real seja crucial
para investigar o comportamento dos circuitos sob ruido e avaliar seu desem-
penho, os dispositivos atuais ainda ndo contam com c6digos de correcdao de
erros plenamente desenvolvidos (Park et al., 2024). Essa limitacdo compromete a
consisténcia dos resultados e eleva significativamente os custos computacionais.
Enquanto a implementagdo de mecanismos mais eficazes de correcdo de erros
permanece um desafio prético, simuladores quéanticos que utilizam GPUGPUs
(do inglés, Graphical Processing Unit) e TPUTPUs (do inglés, Tensor Processing
Unit) continuam sendo alternativas vidveis para benchmarking e otimizac¢do de

algoritmos, permitindo sua execugdo em cendrios com ou sem ruido.

2.2 Aprendizagem de maquina

Aprendizagem de Maquina - ML (Machine Learning) é definida como um
campo de estudo que capacita sistemas a adquirirem conhecimento empfirico
por si proprios, ao extrair padrdes de dados brutos (Goodfellow et al., 2016).
Existem duas categorias principais de aprendizagem: (i) Aprendizagem Super-
visionada que ocorre quando um modelo aprende a relagdo entre uma varidvel
Y e uma instancia X e (ii) Nio Supervisionada que ocorre quando o modelo
"aprende"um determinado tipo de padrao entre as varidveis contidas em uma
base de dados X (Petruccione et al., 2018).

Nesta pesquisa, foram utilizados dois algoritmos de aprendizagem super-
visionada que compdem a estratégia de deteccao de falhas. Portanto as subsecdes
seguintes fardo uma revisao dos fundamentos teéricos dos modelos de Regres-
sdo e modelos quénticos de maquinas de vetores suporte - QSVC (do ingleés,
Quantum Support Vector Classification. O algoritmo QSVC serd discutido na tltima

subsecdo por se tratar de um algoritmo hibrido composto por um algoritmo
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classico de otimizagdo e um algoritmo quantico que desempenharé o papel de

funcdo de kernel.

2.2.1 Modelos de aprendizagem de maquina convencional
Os modelos de aprendizagem de maquina utilizados no desenvolvimento dessa

dissertagdo sdo: regressores e os modelos de SVM.
1. Regressores

Em ML, a Regressdo é um tipo de algoritmo de aprendizado supervisio-
nado que calcula a relacdo entre os tipos de varidveis através de um ajuste dos
parametros de uma equacgdo de acordo com os dados observados. Quando ha
apenas uma caracteristica (do inglés, feature) independente, a regressao é sim-
ples, e quando hd mais de uma feature, é conhecida como regressdo multipla. Da
mesma forma, quando héd apenas uma varidvel dependente, é considerada regres-
sdo univariada, quando se tem mais de uma varidvel dependente, é considerada
regressdo multivariada (Goodfellow et al., 2016).

Seja a seguinte regressdo representada pela equagdo y = X que possui
um vetor X de dimensio m x n e um vetor de pesos ajustaveis @ de dimensio
n x 1, onde n é a quantidade de caracteristicas independentes e m é a quantidade
de instancias do conjunto de dados. Ao calcular os valores estimados y para
todas as m instancias utilizando os pesos w, é necessério avaliar o quanto o
estimador estd errando. Essa avaliagdo é feita por meio de uma fungado de perda,
que pode ser representada pelo erro médio quadratico (MSE, do inglés mean

squared error), conforme mostrado na Equacéo 2.13 (Goodfellow et al., 2016).

€= — Z(ﬁz(w) - yi)2 (2.13)
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O objetivo da regressdo é minimizar o erro e utilizando um algoritmo
de otimizagdo. Isso significa que, a0 minimizar o erro médio, sera estimado o
vetor de coeficientes w, que, ao ser multiplicado pelos valores das variaveis
independentes X, fornecerd a estimativa do valor da varidvel dependente. Em
geral, esse processo de ajuste de pesos é chamado de treinamento do modelo de

aprendizagem de médquina.
2. Mdéquinas de vetores suporte

SVM é uma técnica robusta que pode ser aplicada em problemas de
classificacdo que tem como base encontrar um hiperplano que separe todas as
caracteristicas pertencentes ao banco de dados da melhor forma num espago n-
dimensional (Santos et al., 2002). A Figura 6 mostra a abordagem que o algoritmo
SVM utiliza para um banco de dados com duas dimensdes, onde x; e x sdo duas

features de uma base de dados genérica (Chollet, 2021).

Wiy

,

4

Figura 6 — Fronteira de decisdo resultante do treinamento do classificador SVM,
evidenciando os vetores de suporte que definem a margem maxima
entre as classes representadas pelas cores azul e verde.
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Em um problema de classificagdo em duas dimensdes, com dois grupos
(verde e azul), o objetivo é encontrar uma reta que maximize a distancia entre
esses grupos. O vetor W é perpendicular a essa reta e possui uma norma ||wl|.
Para maximizar a separagdo entre os grupos, é equivalente a maximizar ||w||
ou, de forma equivalente, minimizar a distancia entre os dois hiperplanos de

margens, dada por %, sujeito a restri¢do 2.14.

(wl xx;, +0)>1.Y0<i<n. 2.14
yi( i +b0)>1,V0<i< (2.14)

Onde y; € a classe que a instancia x; pertence, w é o vetor normal a reta, e
b é o viés.

Uma das principais vantagens desse método é que seu processo de trei-
namento nao se baseia no método do gradiente descendente®. Por isso, ele ndo
corre o risco de ficar preso a minimos locais, o que é um problema comum em
métodos ndo convexos . O problema que o SVM busca resolver é um problema
de otimizagdo convexa, o que garante que a solug¢do encontrada serd globalmente
6tima. O SVM depende da distribui¢do dos dados para encontrar uma reta ou
hiperplano 6timo que separe as classes de um conjunto de dados de forma ade-
quada (Chollet, 2021). A Figura 7 ilustra a distribui¢do de um conjunto de dados
de dificil separabilidade, encontrar uma superficie que separe tais classes de
forma eficiente é um problema complexo, portanto o SVM utiliza um recurso

adicional chamado fungéo de kernel.

> Meétodo de otimizagao utilizado para encontrar um minimo local de uma funcéo.
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Posigdo X

Figura 7 — Conjunto de dados artificialmente construido com classes de dificil
separacdo linear.

As fungdes de Kernel, por sua vez, permitem ao SVM lidar com problemas
ndo lineares, mapeando os dados de entrada para um espaco de caracteristicas de
maior dimensionalidade, (do inglés, feature map), onde é mais provavel encontrar
um hiperplano de separacao. Diversos tipos de fun¢des de kernel sdo utilizados
no SVM para realizar tal mapeamento, como as fun¢des de kernel polinomiais, as
fung¢des de kernel de base radial e as func¢des de kernel sigmoides, permitindo que
o SVM encontre hiperplanos de separacdo quando os dados nao sio linearmente
separaveis no espago original (Chollet, 2021). Assim, a fun¢do de kernel é um
recurso essencial do SVM para lidar com problemas de classificagdo ndo lineares,
permitindo que o algoritmo encontre uma superficie de generalizagdo 6tima em

um espago de caracteristicas de maior dimensionalidade.

2.2.2 Modelos de aprendizagem quantica de maquina
Os principios fundamentais da QC tém o potencial de aprimorar o desempenho

dos modelos de ML em vérios casos, uma vez que dados podem ser preparados e
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processados de forma muito mais eficiente do que nos algoritmos convencionais.
Existem quatro formas distintas de combinar técnicas de QC e ML, que se
distinguem pelo tipo de dado do problema e o tipo de hardware empregado
para processar o algoritmo sendo ou quantico ou clédssico (Dunjko; TAYLOR;

BRIEGEL, 2016). Essas abordagens e suas descri¢des estdo ilustradas na Tabela 2.

Tipo de Modelo
C Q

Processamento de Dados Cléssicos

Processamento de Dados Cléssicos

Tipo de Dado

C utilizando modelos de ML
inspirados em quantica

utilizando modelos de QML

Processamento de dados Quéanticos
utilizando algoritmos de ML

Q

Processamento de Dados Quanticos
utilizando modelos de QML

Tabela 2 — Abordagens em QML para Processamento de Dados Classicos e Quan-
ticos.

Vale ressaltar que a estratégia de deteccdo de falhas desenvolvida nesta
pesquisa enquadra-se na categoria de processamento de dados classicos utili-
zando algoritmos de QML conforme mostrado na Tabela 2. Esses algoritmos sdo
construidos com base em circuitos quanticos parametrizados - PQC. A seguir,

serdo discutidos os fundamentos essenciais desses algoritmos.

2.2.3 Circuitos quanticos variacionais

Os Circuitos Quanticos Variacionais também conhecidos como Circuitos Quan-
ticos Parametrizados, sdo compostos por uma sequéncia de portas quanticas
unitdrias, algumas das quais dependem de parametros continuos que podem ser
ajustados durante o processo de treinamento de um modelo de ML. Esses tipos

de circuitos sdo fundamentais para o trabalho com QML. Dentre as propriedades
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fundamentais para circuitos quanticos variacionais, Sim et al. [2019] propuse-
ram duas métricas importantes para avaliacdo: expressabilidade, que mede a
capacidade do circuito de explorar o espaco de estados quanticos, e capacidade
de emaranhamento, que avalia o grau de correlagdo quéntica entre os qubits
no circuito. O circuito mostrado na Figura 8 é um exemplo de um circuito que

possui expressibilidade e capacidade de emaranhamento.

% lo) -JH——
a1 (0) IR Rz
92 10) J——%
9 o) J——1
g« [0) ——i—e

Figura 8 — Circuito com Expressibilidade e Capacidade de Emaranhamento.

TTTT

O circuito descrito possui uma camada com portas Hadamard (H), rotagao
em Z (R.), porta CNOT (C,) e rotacdo em Y (R,). As portas Hadamard aplicam
superposicdo aos qubits, rotacionando suas esferas de Bloch em torno do eixo X
por 7. As portas 2., parametrizadas por um vetor de angulos 6, giram o estado
dos qubits em torno do eixo Z. A configuracdo circular de portas CNOT entre
os qubits [qu, qol, [0, 1], [q1, @2], [92. a5], [g3, 1] emaranha os estados dos qubits.
Finalmente, as portas R, aplicam rota¢des ao redor do eixo Y, gerando mais
estados emaranhados e preenchendo a esfera de Bloch.

De acordo com Hubregtsen et al.[2020], os PQCs, utilizados como modelos
para classificacdo em tarefas de ML, apresentam uma forte correlagdo entre sua
capacidade de generalizacdo e sua expressibilidade. Em contrapartida, existe

uma correlagdo fraca entre a capacidade de generalizacdo e a capacidade de
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emaranhamento. Isso sugere que circuitos com maior expressibilidade podem
ser bons candidatos para tarefas de classificagdo, pois sdo capazes de explorar
uma ampla gama de estados quanticos. E também importante notar que circuitos
altamente expressiveis podem enfrentar problemas como os barren plateaus, que
dificultam a otimizagdo devido a diminuigdo do gradiente da fungado de custo.
Outros fatores como o tamanho do conjunto de treinamento, a arquitetura
do circuito e o tipo de algoritmo de otimizagdo sdo cruciais para o desempenho
das tarefas de classificacio em QML. A escolha da codificacdo dos dados também
desempenha um papel fundamental, pois, assim como em algoritmos de ML
convencionais, essa representagdo numérica afeta significativamente a perfor-
mance dos modelos de QML. Esse processo, denominado vetorizagdo (do inglés,
Embedding), pode ser feito por métodos como codificacdo de base, amplitude e
angulo (LaRose et al., 2020), e impacta diretamente nas métricas de classificacdo

como Acurdcia, Precisdo, Recall e F1-Score (RATH; DATE, 2024).

2.2.4 Modelos de QML hibridos
Os modelos hibridos de QML combinam métodos classicos e quanticos para
aproveitar as vantagens de ambos os paradigmas, visando melhorar a eficién-
cia computacional e a capacidade de aprendizado em tarefas complexas como
classificacdo, regressdo e otimizagdo. Essa abordagem se justifica pela habilidade
dos modelos quanticos de explorar espagos de Hilbert de alta dimensionalidade,
permitindo representar e separar padrdes que seriam dificeis de distinguir com
métodos cldssicos.

Um exemplo dessa combinagdo é o modelo hibrido QSVM para classi-
ticagdo (QSVC), que une a computagao classica e quantica para aprimorar a

capacidade de classificagdo. O SVM classico pode enfrentar algumas dificulda-
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des para encontrar um hiperplano que separe bem as classes disponiveis em
um conjunto de dados e mesmo utilizando um fungao de kernel classica esse
mapeamento pode ter um alto custo computacional. Por outro lado, o QSVM
supera essas limitagdes a0 mapear os dados cldssicos para um espago quantico
de dimensao superior por meio de uma fungdo kernel implementada através de
um PQC, o que proporciona uma separagao mais eficaz entre as classes. Essa
abordagem utiliza principios da mecénica quantica para otimizar o mapeamento
dos vetores de caracteristicas, como demonstrado por Schuld [2021], que rea-
lizaram a analogia entre a estrutura dos kernels e as medi¢des em algoritmos

quanticos (Petruccione et al., 2018).
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3

PROBLEMA DE DETECCAO DE
FALHAS EM MANUTENCAO

PREDITIVA

este capitulo, serdo explorados os conceitos relacionados ao pro-

blema de detec¢do de falhas em manutencgdo preditiva. Com o

objetivo de contextualizar sua relevancia, apresentar uma revisao

das estratégias ja implementadas e discutir como os avancos em computacdo
quantica podem contribuir para esse campo, particularmente no desenvolvi-

mento de solu¢des mais eficientes e robustas.

3.1 Abordagens modernas de manutencao de equi-

pamentos industriais
A evolugdo das préticas de manutencdo industrial reflete uma transigdo significa-
tiva das abordagens tradicionais para métodos mais avangados, impulsionados

por tecnologias emergentes. Entre essas abordagens, destaca-se a manutengao
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preditiva, que utiliza andlise de dados em tempo real para prever falhas com base
nas condi¢des operacionais atuais e histéricas dos equipamentos (GILABERT et
al., 2017). Essa estratégia reduz tanto o tempo de inatividade planejado quanto o
ndo planejado, prolonga a vida 1til dos ativos e melhora a eficiéncia operacional.

A Figura 9 mostra as etapas adotadas em um processo de manutencdo
preditiva, além disso, ajuda a entender onde a estratégia hibrida quantico-classica
de deteccdo de falhas desenvolvida nessa pesquisa pode atuar para melhorar a
performance desse processo. Note na Figura que ap6s um pré-processamento e
anélise dos dados coletados a partir de um sistema de IoT, conforme mostrado
nos blocos amarelo, rosa e laranja é feita a detec¢do de falhas através de um

algoritmo de aprendizagem de méquina, ilustrada no bloco verde.

Data Analysis - Data Pre-processing  [EGBA]
Diagnosis Prognosis = =
LSTM-based Anomaly Detection ‘ DBN-based Error Prediction ‘ Data Cleaning Feature Extraction
‘ DNN based Fault Classification ‘ Dm'ml D"g?damn f" Data Warehouse
‘ Decision Tree ‘ LSTM-based Time Series Pradiction ‘ Data Integration ‘ Data Transformation
‘ Support Vector Machine ARMA, Fuzzy Logic Prediction, etc. ‘ | T
Data Acquisition
U Decision Support u i
. | Temperature l
I Humidity |
""" I Vibration, etc. I
’ Wireless data collection networks |

0
R )

Machine/Equipment

Maintenance Implementation

Figura 9 — As etapas de um sistema de Manutencdo Preditiva como exemplo
para um determinado equipamento da industria 4.0.

A Manutencgdo Preditiva tem se beneficiado das tecnologias da Indtstria
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4.0, como Big Data, Internet das Coisas e Inteligéncia Artificial, que possibilitam
decisdes mais precisas por meio da andlise avangada de dados, como mostra
a Figura 9. A integracdo de informagdes coletadas por sensores embarcados
em equipamentos — como vibragdo, temperatura e velocidade — permite a
construcdo de modelos preditivos capazes de identificar padrdes operacionais,
antecipar falhas e indicar o momento ideal para interveng¢des. Essa abordagem
torna a manuten¢do mais inteligente, pois substitui o modelo reativo por a¢oes
programadas com base em previsdes confidveis. No entanto, a adocdo dessas
tecnologias enfrenta desafios importantes, como a fusdo de dados oriundos
de multiplas fontes, especialmente diante do crescente volume de informagdes
geradas em tempo real por sistemas de monitoramento industrial (FENG; LI,

2022; RAN et al., 2019).

3.2 Computacao quantica aplicada em estratégias de

deteccao de falha

A computagdo quantica representa uma fronteira emergente no processamento
de dados complexos, com potencial significativo para aprimorar estratégias de
deteccdo de falhas em sistemas industriais. Esta, por sua vez, visa antecipar
falhas em equipamentos a partir da andlise de dados provenientes de sensores
e sistemas de monitoramento, permitindo intervencdes planejadas e evitando
paralisagdes ndo programadas. No entanto, a elevada dimensionalidade e o
desbalanceamento entre as classes de Falha e Nao Falha desse conjunto de dados
impdem desafios computacionais substanciais.

Modelos de ML sdo amplamente utilizados em estratégias de deteccdo de
falha para tarefas de classificagdo, identificando padrdes que precedem certos

tipos de falhas, como falhas mecénicas e elétricas. Contudo, quando aplicados a
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grandes volumes de dados multivariados, esses modelos enfrentam limita¢des
quanto ao tempo de processamento e a capacidade de generalizacdo. Algoritmos
quanticos, como os circuitos variacionais e os classificadores quanticos como
Quantum Neural Networks e QSVM, tém demonstrado capacidade de lidar com
essas limita¢Oes ao explorar espagos de alta dimensionalidade de forma mais
eficiente. A codificacdo de dados cldssicos em estados quanticos permite explorar
correlagdes ndo triviais entre varidveis, aprimorando a sensibilidade a detecgao

de anomalias (Ajagekar, 2020).
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4

METODOLOGIA

presente pesquisa é de natureza aplicada, andlise qualitativa, quan-

titativa e abordagem descritiva, de modo a extrair informacdes

relevantes sobre a aplicacdo de QML no desenvolvimento de es-
tratégias hibridas quantico-cldssicas para aplicd-las em deteccdo de falhas. O
estudo foi conduzido por meio de uma abordagem exploratdria, objetivando a
extragdo de informacdes relevantes acerca da produgdo atual no ambito do tema.
Esse procedimento se mostra de grande relevancia, uma vez que destaca a sua
importancia para a comunidade cientifica e sua utilidade no enfrentamento de
desafios praticos ainda ndo resolvidos.

A estratégia hibrida quantico-classica aplicada em detecgao de falhas foi
desenvolvida utilizando ferramentas disponiveis em bibliotecas especificas para
a criacdo de modelos de QML, implementados na linguagem de programacao
Python utilizando as bibliotecas comuns de ML e computacdo quantica dentre
elas se destacam Scikit-Learn, Pandas e Qiskit, executada no simulador quantico
chamado kuatomu, que contem bons recursos computacionais para simular a

quantidade de qubits necesséria para a execugdo dessa estratégia (LAQCC, 2025).
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Além disso, o seu desenvolvimento foi fundamentado através de uma revisao
da literatura que incluiu estudos relevantes em diversas 4reas. Primeiramente,
foram considerados trabalhos sobre QML, com énfase em modelos de classifi-
cagdo, com contribuicdes de autores como Schuld [2021], Wittek [2014], Jerbi et
al. [2023], Mitarai et al. (2018] e Emmanoulopoulos et al. (2022). Em seguida,
foram considerados trabalhos sobre ML convencional, com énfase em modelos
de regressdo conforme apresentado por Medsker et al. (2001), Shaheen et al.
(2023) e Dangut et al. (2023). Por fim, a literatura sobre Detec¢ao de Falhas foi
analisada, com destaque para os estudos de Tscharke et al. (2023), Vilela et al.
(2023), Abidi et al. (2022), Sakhnenko et al. (2021), .

Apoés a andlise dessas literaturas, foram identificados os desafios para
responder a questdo de pesquisa dessa dissertagdo de mestrado que foi: Como o
desempenho de uma estratégia hibrida quintico-cldssica, composta por um classificador
baseado em Mdquinas de Vetores de Suporte (SVM) com kernel calculado por um
circuito quintico parametrizado, se comporta na identificacdo e classificagdo de falhas
em conjuntos de dados com alta dimensionalidade e desbalanceamento?. Assim, como
objetivo geral foi proposta uma estratégia de detec¢do de falhas utilizando um
algoritmo de maquinas de vetores suporte aprimorado por uma funcao de kernel
quantica e a partir disso, analisar os possiveis cendrios de sua utiliza¢do, com
intuito de discutir as vantagens de detecgdo de falhas usando um modelo hibrido
quantico-classico. Com o intuito de facilitar o entendimento dos procedimentos
metodolégicos adotados para solucionar cada objetivo especifico do Capitulo 1,

seguem abaixo suas relagdes com os métodos adotados, respectivamente:

1. Desenvolver modelos de SVM compostos por fun¢des de kernel quanti-

cas e cldssicas para classificagdo. Para isso, foram implementados modelos
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de SVM utilizando tanto fun¢des de kernel cldssicas quanto quanticas.

2. Desenvolver regressores para previsao de valores de cada feature em um
determinado intervalo de tempo. Foram criados modelos de regressdo
independentes para cada feature do conjunto de dados e foi estabelecido

um intervalo de tempo que serd melhor detalhado nas préximas segdes.

3. Avaliar e comparar o desempenho dos modelos quanto as métricas de
ML frequentemente utilizadas e a eficiéncia computacional. A anélise
comparativa foi conduzida por meio de métricas padronizadas, como preci-
sion, recall, accuracy, F1-score, avaliagdo das matrizes de confusao, curvas
ROC-AUC e para a eficiéncia computacional foi feita uma comparacdo
entre as métricas alcancadas e a quantidade de vetores suporte que cada

configura¢do de modelo utilizou.

4. Analisar as implicacOes praticas e os possiveis cendrios de aplicacao dos
modelos desenvolvidos. Foi realizada uma anélise considerando as van-
tagens e limitacdes de cada abordagem, com foco em cendrios industriais

reais onde essa essa estratégia poderia ser aplicada de forma eficaz.

Os procedimentos metodolégicos adotados nesse estudo foram divididos
em duas etapas principais. A primeira etapa concentrou-se na implementacao de
um modelo quantico de QML para classificacdo, Quantum Support Vector Machine,
com o objetivo de identificar a ocorréncia ou ndo de falhas, a segunda etapa
concentrou-se em um desenvolvimento mais simples de modelos de regressao
para realizar um experimento de manutengéo preditiva, como ilustrado na Figura

10. Vale ressaltar que a etapa de classificagdo realizada pelo modelo quantico
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demandou um tempo de andlise mais aprofundado, por ter sido o aspecto central

dessa pesquisa.

02 - Preparacgao dos Modelos e Treinamento

Regressores Clissicos

01 - Entrada dos Dados __TREINAMENTO
REGRESSORES

REGRESS0ORES
TREINADOS

TREINAMENTO _
QSVC

CLASSIFICADORES QUANTICOS
TREINADOS

03 - Execucao da Estratégia

Regressores classicos

PREVISAO

Modelo SVM Quéntico (QSVM)

- NO FAIL
Nao -« . CLASSIFICAGAC | S E_@ o % l{\: fb:‘
= | = B NE

Figura 10 — Framework com a estratégia hibrida de deteccdo de falhas com apren-
dizado quéntico adotada.

As segOes seguintes apresentardo maiores detalhes da metodologia para
melhor compreensdo. Na Secgdo 4.1 sera apresentado o caso de estudo dessa
pesquisa. Na secdo 4.2 serdo descritos os procedimentos de pré-processamento
dos dados para executar a estratégia. E, por fim, na se¢do 4.3 serd feita uma dis-
cussdo dos métodos usados para avaliar os resultados alcangados pelos modelos

desenvolvidos.
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4.1 Caso de Estudo

A estratégia hibrida de deteccdo de falhas implementada foi aplicada nos dados
de um sistema de um aerogerador, cuja operacao ininterrupta e eficiente é crucial
para a geracdo de energia limpa. Esses equipamentos operam em ambientes
submetidos a ventos intensos, variagdes bruscas de temperatura, elevados ni-
veis de umidade, presenca de agentes corrosivos e turbuléncias atmosféricas,
0 que contribui para o desgaste progressivo dos componentes, aumentando
significativamente o risco de danos que podem comprometer a estabilidade
do fornecimento energético. O sistema de detecgdo de falhas em aerogerado-
res envolve a coleta de dados sensoriais das principais partes da turbina, tais
como gerador, eixo principal, sistema de transmissao e pds, cujo agrupamento
em séries temporais permite inferir o comportamento do sistema ao longo do
tempo e identificar padrdes que antecedem possiveis falhas através de modelos
computacionais (Vilela et al., 2023).

O conjunto de dados utilizados encontra-se na plataforma Kaggle ! e
foi adequado para o treinamento da estratégia desenvolvida nessa dissertagdo
de mestrado. Destaca-se que esse conjunto de dados ja foi utilizado em outros
trabalhos que utilizaram modelos convencionais para executar algoritmos de
ML que identificam falhas.

Esse conjunto de dados contém trés arquivos com as seguintes descri¢des:

e O arquivo Scada.csv contém uma série temporal de medi¢des realizadas
entre maio de 2014 e maio de 2015, com intervalos regulares de 10 minutos.

Esses dados foram coletados por um sistema SCADA (do inglés, Supervi-

1 <https:/ /www.kaggle.com/code/yohanesnuwara/iiot-wind-turbine-analytics/

notebook#2.-Time-series-analysis>


https://www.kaggle.com/code/yohanesnuwara/iiot-wind-turbine-analytics/notebook#2.-Time-series-analysis
https://www.kaggle.com/code/yohanesnuwara/iiot-wind-turbine-analytics/notebook#2.-Time-series-analysis
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sory Control and Data Acquisition) e compreendem diversas features que

caracterizam o funcionamento operacional do aerogerador

e O arquivo Fault.csv registra os periodos em que foram identificadas falhas

no aerogerador, categorizadas conforme os tipos apresentados na Tabela 3;

e O arquivo Status.csv fornece informagdes sobre o status operacional da

turbina ao longo do tempo, permitindo relacionar os eventos de falha aos

diferentes modos de operacéo.

Tipo de Falha

Quantidade

Porcentagem

Causa

Falha no Sistema de Resfriamento a Ar (AF)

254 casos

45,90%

Problemas relacionados ao sis-
tema de refrigeracdo do aeroge-
rador.

Falha de Alimentagio (FF)

254 casos

45,90%

Problemas na fonte de energia do
aerogerador, como falhas na co-
nexao elétrica ou nos circuitos in-
ternos.

Falha de Excitacdo (EF)

174 casos

31,50%

Incapacidade do gerador de pro-
duzir eletricidade de maneira efi-
ciente, resultando em perda de
geracdo ou operacdo instavel.

Falha de Geragao (GF)

43 casos

7,80%

Problemas na conversio de ener-
gia mecanica em elétrica, como
defeitos no gerador.

Outras Falhas (MF)

82 casos

14,80%

Englobam falhas mecanicas e ou-
tras falhas nao especificadas.

Tabela 3 — Distribuicdo de tipos de falhas do aerogerador e suas causas.

4.2 Procedimentos para execucao da estratégia

A estratégia de deteccdo de falhas caracteriza pela Entrada dos Dados, Prepa-

ragdo dos Modelos e Execugédo da Estratégia composta pelo modelo quantico e

classico, conforme o framework exposto na Figura 10. Cada uma dessas etapas

serdo detalhadas nas préximas subsecdes.
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4.2.1 Entrada dos Dados

Conforme mencionado anteriormente, o arquivo Scada.csv estd organizado como
uma série temporal e o arquivo Fault.csv contém os registros dos instantes em
que ocorreram falhas especificas. Esses dois arquivos foram integrados e a série
temporal foi mantida de tal forma que se associou os registros de falha do
Fault.csv as respectivas instancias do arquivo Scada.csv. As instancias de tempo
que ndo apresentaram ocorréncia de falhas foram rotuladas como "Nao Falha".
Apos essa integragdo, foi realizada a etapa de limpeza dos dados, com a remocao
de valores ausentes (NaN), resultando em um conjunto final com dimensao de
49134 instancias e 54 features.

Primeiramente, testou-se a capacidade do simulador quéantico kuatomu
para treinar o classificador desenvolvido com todas as features. Entretanto, de-
vido as restri¢des do simulador (que ndo permite simular sistemas com mais
de 16 qubits), optou-se pela reducdo de dimensionalidade dos dados por meio
da Andlise de Componentes Principais PCA (do inglés, Principal Component
Analysis). Para isso, gerou-se uma curva de varidncia cumulativa do conjunto de
dados, representada no gréfico da Figura 11. Observa-se que o eixo horizontal
indica o niimero de componentes principais, e o eixo vertical, a varidncia acu-
mulada. A medida que o nimero de componentes aumenta, a varidncia cresce
de forma que, a partir de 4 componentes, atinge-se acima de 78% de variancia
cumulativa. Assim, reduziu-se a dimensionalidade para 16, 8 e 4 componentes
principais, preservando aproximadamente 93%, 91% e 78% da varidncia dos

dados, respectivamente.
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Figura 11 — Variancia Comulativa dos dados

As instancias desses tltimos conjuntos de dados com a dimensionalidade

reduzida foram divididas em dois subconjuntos: o Conjunto A, com 29.001

instancias, destinado ao treinamento e teste dos algoritmos que compordo a

estratégia hibrida, e o Conjunto B, que foi reservado para o teste.

4.2.2 Tratamento do desbalanceamento do conjunto de da-

dos

Para tratar o desbalanceamento dos dados no conjunto A, aplicou-se undersam-

pling, reduzindo a quantidade de amostras da classe majoritaria para minimizar

viés e melhorar a identificacdo das classes de falha. Além disso, foi atribuida

uma distribuicdo de pesos com base na frequéncia de cada categoria, garan-

tindo maior importancia as classes minoritdrias e equilibrando a contribuicédo de

todas as classes no treinamento. Por tltimo, antes do treinamento, aplicou-se a
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padronizacdo dos dados com StandardScaler, transformando-os para uma distri-
buicdo de média zero e desvio-padrao unitdrio garantindo que todas as features
do aerogerador estejam na mesma escala para um treinamento mais eficiente e

consistente.

4.2.3 Preparacao dos Modelos para compor a estratégia hi-

brida

Os classificadores foram inicialmente treinados com o conjunto de dados A. A
principal diferenca entre a arquitetura do SVC cldssico e o SVC quéntico estd na
fungao de kernel utilizada. Nos modelos cldssicos, foram empregadas fung¢des de
kernel convencionais: Base Radial, Linear, Polinomial e Sigméide, disponiveis
na biblioteca Scikit-learn. E, no QSVC, foram utilizadas fun¢oes de kernel quanti-
cas, que foram calculadas através dos PQCs implementados. Para isso, foram
testados trés tipos de PQCs: EfficientSU2, Real Amplitude e ZZFeatureMap.
Além disso, cada PQC foi avaliado com quatro diferentes estratégias de emara-
nhamento: Linear, Completa, Circular e Deslocada Circular Alternada. O tipo de
emaranhamento introduz diferentes tipos de correla¢des entre os estados dos
qubits, ampliando o espago de solugdes e tornando o algoritmo mais eficiente e
robusto em comparagdo com simulagdes classicas.

As Figuras 12 e 13 ilustram a estrutura de funcionamento dos kernels

quanticos utilizados.
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Figura 12 — Modelo Hibrido de Aprendizagem Quantica

Os codificadores das N features do conjunto de dados sdo os PQCs: Effici-
entSU2, Real Amplitudes e ZZFeatureMap ilustrados na Figura 13, que também
apresenta as estratégias de emaranhamento. Esses circuitos realizam o mapea-
mento dos dados para um espago de Hilbert de alta dimensionalidade (dimensao
2" para n qubits) (Petruccione et al., 2018). O classificador é hibrido, com otimi-
zagdo classica dos parametros e o PQC atuando como Feature Map. A abordagem
explora propriedades quénticas para representar as features em um espago expo-
nencialmente mais rico (2" dimensdes) com apenas n qubits, o que pode facilitar a
identificagdo de superficies de decisdo com melhor capacidade de generalizagdo

em problemas complexos.
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Figura 13 — Arquiteturas de kernels quanticos e emaranhamentos investigadas
no trabalho.

A quantidade de qubits na codificagdo varia conforme o circuito escolhido:
o Real Amplitudes utiliza & qubits para codificar N variaveis, o EfficientSU2
emprega & qubits, enquanto o ZZFeatureMap emprega N qubits para N va-
ridveis. Assim, os dois primeiros circuitos reduzem a quantidade de qubits no
espago de busca, o que pode facilitar a otimizagdo ao exigir menos qubits para
representar o problema. Além disso, o emaranhamento nos circuitos quanticos
introduz correlagdes entre os estados dos qubits que carregam a informagdo das
instancias do conjunto de dados do aerogerador, ampliando o espaco de solugdes

e tornando o algoritmo mais eficiente e robusto em comparagdo com simulag¢des
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classicas. Por fim, o treinamento dos modelos QSVC segue o mesmo principio
do SVC cléassico, pois o kernel quantico apenas mapeia os dados para um espago
de maior complexidade e o processo de otimizagdo continua sendo classico.

A previsao das features foi realizada com os regressores treinados e tes-
tados, usando a biblioteca scikit-learn nos conjuntos de dados com 16, 8 e 4
componentes principais, dentro de um intervalo de tempo de 20 periodos que é
o equivalente a 3 horas e 20 minutos, uma vez que cada instancia do conjunto de

dados possui um intervalo de tempo de 10 minutos.

4.2.4 Execucao da estratégia hibrida

Ap6s realizado o treinamento e teste dos modelos quanticos separadamente,
aqueles que alcangaram as melhores métricas foram integrados para formar
a estratégia hibrida de deteccdao de falhas. Os regressores treinados e testados
foram alimentados com os dados do Conjunto B e suas previsdes foram utilizadas
como entradas para os classificadores de tal modo que se identificasse futuras

talhas no tempo de 3h20min.

4.3 Procedimento de analise

O estudo da qualidade dos resultados foi realizada utilizando métricas conven-
cionais de Aprendizado de Médquina. Para os modelos de classificagdo, foram
consideradas as seguintes métricas: Acurdcia, que mede a proporcao de previsdes
corretas; Recall, que avalia a capacidade do modelo de identificar corretamente
todas as instancias de falha, minimizando os falsos negativos; Precisao, que
indica a proporcao de falhas corretamente identificadas entre todas as instancias
classificadas como falhas, sendo essencial para reduzir a ocorréncia de falsos
positivos; e F1-Score, que calcula a média harmonica entre precisdo e recall.

Além dessas métricas, foi feita uma andlise das matrizes de confusdo para
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verificar o desempenho detalhado dos modelos em cada classe. Para compre-
ender a complexidade dos classificadores, também foi avaliada a quantidade
de vetores de suporte utilizada por cada configuragao. E importante destacar
que um modelo mais complexo, com maior ntiimero de vetores de suporte, ndo
é necessariamente inferior. Essa complexidade reflete a dificuldade do modelo
em encontrar uma superficie de generalizacdo adequada. Assim, modelos com
mais vetores de suporte podem, inclusive, apresentar melhor desempenho que
aqueles com menos vetores e métricas inferiores.

Adicionalmente, foi realizada uma andlise aprofundada por meio da
Curva ROC, que compara a taxa de verdadeiros positivos com a de falsos posi-
tivos, e da AUC, que quantifica a capacidade do modelo de distinguir entre as
classes de falha e ndo falha. A AUC foi comparada entre os conjuntos de treino e
teste para garantir a consisténcia dos resultados.

Para os modelos de regressao, foram utilizadas as métricas MAE (Erro
Absoluto Médio), MSE (Erro Quadratico Médio), RMSE (Raiz do Erro Quadratico
Meédio) e R (Coeficiente de Determinacgdo), que mede a proporcdo da variancia

explicada pelo modelo.
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5

RESULTADOS E DISCUSSOES

este capitulo, os resultados alcangados serdo discutidos. E impor-

tante ressaltar que o principal objetivo desta dissertacdo de mes-

trado é avaliar o desempenho da estratégia hibrida quantico-classica

em detectar falhas utilizando um conjunto de dados desbalanceado e com alta
dimensionalidade.

Na Secao 5.1, sdo apresentados os resultados obtidos da performance
individual dos modelos hibridos quantico-cldssico na detecc¢do de falhas e na
Secdo 5.2 serdo apresentados os resultados de um experimento que foi feito com
os modelos hibridos quantico-classico que obtiveram melhor performance para

deteccdo de falhas aplicados em valores previstos por regressores.
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5.1 Analise da Performance dos Modelos Classico e

Quantico
Nesta secdo é apresentada a andlise comparativa realizada entre os modelos
SVM compostos por kernels quanticos e cldssicos aplicados a detecgdo de falhas
de um aerogerador. A comparagdo visa identificar as vantagens e limita¢oes de
cada abordagem, contribuindo para a escolha de estratégias mais eficazes de

deteccdo de falhas.

5.1.1 Analise dos Modelos de Classificacao

Os modelos de classificagdo SVM com kernels quanticos e cldssicos foram treina-
dos individualmente utilizando a amostra de dados do Conjunto A, conforme
descrito nas Seg¢des 4.1 e 4.2.1. Nesse contexto, foi avaliada a performance de
12 modelos SVM com kernels quanticos e 4 modelos SVM com kernels clas-
sicos, com o objetivo de realizar uma andlise comparativa do desempenho dos
modelos de SVM com esses diferentes tipos de kernels. Essa avaliac¢do foi rea-
lizada por meio das métricas padrao de aprendizagem de maquina: Acuricia,
Recall, Precisido e F1-Score. Além disso, foram utilizadas as CMs e as Curvas
RoC-AuC para investigar se houve overfitting e a capacidade da identificacao
de falhas especificas, considerando o conjunto dados resultante apés as técni-
cas aplicadas para reduzir o alto grau de desbalanceamento do conjunto de
treinamento. E importante destacar que o problema em questio é multiclasse
e, portanto, as curvas ROC-AUC foram calculadas utilizando a estratégia One-

Vs-Rest (OVR). Nessa abordagem, uma curva ROC é gerada para cada classe
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tratando-a como positiva enquanto as demais sdo combinadas como classe ne-
gativa. Além disso, a drea sob a curva (AUC) foi calculada usando a média
macro (Macro-Averaged AUC), que corresponde a média aritmética das AUCs
individuais de cada classe e a quantidade de vetores suporte foi registrada para
verificar a complexidade do modelo.

A Tabela 4 apresenta as métricas alcangadas pelos modelos de SVM
para diferentes tipos de kernels quanticos e classicos. Os dados demonstraram
variagdes significativas no desempenho que dependeu do: kernel utilizado, do
tipo de emaranhamento aplicado e do ntimero de componentes principais do

algoritmo de SVM.
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Tabela 4 — Resultados das métricas para diferentes tipos de kernel treinados e
testados com a base de teste do conjunto A.

Kernel Emaranhamento Comp. Principais N° de Vetores Suporte Acurdcia Precisdo Recall F1-Score
ZZFeatureMap Linear 8 778 62.80% 59.22% 62.80% 56.63%
4 320 68.00% 68.54% 68.00% 67.58%

Full 8 880 59.20% 52.77% 59.20% 50.71%

4 328 36.40% 41.57% 36.40% 38.34%

Circular 8 803 61.60% 57.80% 61.60% 54.85%

4 315 41.60% 44.98% 41.60% 41.37%

SCA 8 803 61.60% 57.80% 61.60% 54.85%

4 315 41.60% 44.98% 41.60% 41.37%

Real Amplitudes Linear 16 290 75.60% 78.66% 75.60% 75.63%
8 224 63.60% 64.94% 63.60% 62.89%

4 297 22.80% 39.86% 22.80% 27.18%

Full 16 307 80.40% 80.67% 80.40% 79.96%

8 213 76.80% 77.41% 76.80% 76.09%

4 297 22.80% 39.86% 22.80% 27.18%

Circular 16 292 75.60% 78.10% 75.60% 75.25%

8 220 62.80% 67.53% 62.80% 63.54%

4 297 22.80% 39.86% 22.80% 27.18%

SCA 16 292 75.60% 78.10% 75.60% 75.25%

8 220 62.80% 67.53% 62.80% 63.54%

4 297 22.80% 39.86% 22.80% 27.18%

EfficientSU2 Linear 16 229 66.40% 68.11% 66.40% 66.62%
8 321 32.00% 40.87% 32.00% 35.28%

4 285 24.00% 36.67% 24.00% 26.77%

Full 16 236 66.00% 71.20% 66.00% 67.61%

8 321 32.00% 40.87% 32.00% 35.28%

4 285 24.00% 36.67% 24.00% 26.77%

Circular 16 235 65.60% 68.82% 65.60% 66.72%

8 321 32.00% 40.87% 32.00% 35.28%

4 285 24.00% 36.67% 24.00% 26.77%

SCA 16 235 65.60% 68.82% 65.60% 66.72%

8 321 32.00% 40.87% 32.00% 35.28%

4 285 24.00% 36.67% 24.00% 26.77%

Classical Kernel: Linear - 16 198 66.80% 72.40% 68.80% 68.34%
8 256 61.60% 68.29% 61.60% 60.44%

4 235 65.20% 65.65% 65.20% 62.15%

Classical Kernel: Polinomial - 16 184 7520% 77.53% 75.20% 74.20%
8 190 74.00% 75.92% 74.00% 73.21%

4 232 63.20% 66.58% 63.20% 63.25%

Classical Kernel: Rbf - 16 164 76.00% 78.95% 76.00% 75.85%
8 166 68.8% 70.52% 68.80% 68.94%

4 201 42.00% 44.80% 42.00% 42.35%

Classical Kernel: Sigmoid - 16 152 43.20% 56.45% 43.20% 48.23%
8 155 37.60% 54.35% 37.60% 43.92%

4 159 36.40% 53.74% 36.40% 42.68%

Modelos Classicos e Quanticos de Classificagio com 16 PCs
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Os resultados dos modelos com 16 componentes principais, apresentados
na Tabela 4, indicam que o modelo SVM com kernel Real Amplitudes e emara-
nhamento Full obteve o melhor desempenho entre as abordagens testadas. Esse
modelo alcangou uma acurdacia de 80.40%, uma precisdo de 80.67%, um recall
de 80.40% e um F1-Score de 79.96%. Esses valores refletem um bom equilibrio
entre as métricas, sugerindo que o modelo possui uma capacidade eficaz de
classificagdo e generalizagdo.

Por outro lado, o modelo SVM com kernel EfficientSU2 e emaranhamento
Full apresentou o pior desempenho para o conjunto de 16 features, com uma
acurécia de 66.00%, uma precisdo de 71.20%, um recall de 66.00% e um F1-Score
de 67.61%. Esses resultados indicam que essa configuragdo foi menos eficiente em
comparacdo ao modelo baseado no kernel Real Amplitudes com emaranhamento
Full.

Dentre os modelos cléssicos, 0 SVM com kernel Polinomial alcangou uma
acurdcia de 75.20%, com precisdo de 77.53%, recall de 75.20% e F1-Score de 74.20%.
Esses resultados indicam um desempenho sélido e equilibrado, embora ligeira-
mente inferior ao modelo SVM com kernel Real Amplitudes. Ja o modelo com kernel
RBF obteve uma acuracia de 76.00%, precisao de 78.95%, recall de 76.00% e um
F1-Score de 75.85%, destacando-se como um dos modelos cldssicos mais eficazes.
Em contraste, o kernel Sigmoid apresentou o pior desempenho, com uma acura-
cia de apenas 43.20% e métricas de precisao, recall e F1-Score significativamente
inferiores.

Além das métricas tradicionais de Aprendizagem de Maquina, as analises
das matrizes de confusdo dos modelos sdo essenciais, especialmente em cendrios

onde o conjunto de dados apresenta um alto grau de desbalanceamento entre as
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classes. A avaliacdo dessas matrizes permite uma compreensdo mais detalhada
dos erros de classificagdo, auxiliando na identificagdo de possiveis ajustes para
melhorar o desempenho do modelo.

As matrizes de confusdo referente aos modelos de SVM com kernels

quanticos com 16 Componentes Principais estdo mostradas na Figura 14.
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Figura 14 — Matrizes de Confusdao SVM com 16 Componentes Principais

Observando as matrizes de confusdo, dentre os modelos do tipo Real
Amplitudes o que alcangou maiores métricas foi com emaranhamento quantico
Full. Ele conseguiu identificar corretamente 5 tipos de Falha AF, 15 tipos de Falha
ME, 30 tipos de Falha FF, 5 tipos de Falha EF, 1 tipo de Falha GF e 134 tipos de
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Nao Falha. Apesar de ter alcangado as melhores métricas, conforme apresentado
na Tabela 5, esse modelo cometeu erros ao classificar quatro instancias que ndo
correspondiam a falhas como sendo falhas. Além disso, os modelos com emara-
nhamento Linear, Circular e SCA demonstraram um desempenho ligeiramente
superior na identificagdo correta de casos de falha do tipo FF.

Embora o modelo SVM com kernel que utiliza emaranhamento Full tenha
apresentado os melhores resultados, é fundamental destacar que esse tipo de
emaranhamento é altamente custoso para a implementa¢do em computadores
quanticos reais. Isso ocorre devido a complexidade associada a implementagao de
portas de controle, como as portas CNOT, que exigem um alto nivel de fidelidade
e aumentam significativamente os recursos computacionais necessarios. Portanto,
aqui é necessdria uma andlise mais aprofundada e que estd fora do escopo
deste trabalho, para verificar a viabilidade de implementacdo em dispositivos
quanticos reais.

Por outro lado, em relacdo ao modelo SVM com kernel quantico Effici-
entSU2, note que nesse caso, dentro dos casos de Falhas os modelos apresentaram
resultados semelhantes entre os tipos de emaranhamento. Porém, o que con-
seguiu identificar mais tipos de falhas corretamente foi o modelo SVM com
o kernel também tendo emaranhamento Full. O modelo conseguiu identificar
corretamente 6 Falhas AF, 14 Falhas MF, 30 Falhas FF, 5 Falhas EF, 1 Falha GF.
Além disso identificou corretamente 109 tipos de Nao Falha, Apesar disso, ele
identificou incorretamente 29 tipos de casos de Nao Falha como Falha. Além
disso, vale a pena destacar que apesar desse modelo ter identificado correta-
mente mais casos de Falha. Os modelos com emaranhamento Circular e SCA

conseguiram identificar corretamente mais tipos de Falha FF e uma quantidade
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maior de casos de Nao Falha.

Por fim, se tratando de execu¢do em dispositivos quanticos reais, seria
interessante, em trabalhos futuros, testar um algoritmo quantico como o Effi-
cientSU2, esses circuitos utilizaram somente 4 qubits e alcancaram resultados
interessantes para 16 componentes principais. Uma andlise de viabilidade pode
ser estudada para implementagdo em dispositivos da era NISQ.

Em contrapartida, dentre os tipos de kernel classicos o que conseguiu
identificar um maior ntiimero de Falhas foi RBF. Esse modelo conseguiu identi-
ficar corretamente 3 tipos de Falha AF, 18 Falhas MF, 42 Falhas FF, 5 Falhas EF,
1 Falha GE. Além disso, identificou corretamente 132 tipos de Falhas 132, mas
identificou incorretamente 6 casos de Nao Falha como Falha.

As curvas RoC-AuC referente aos modelos de SVM com kernel quantico

utilizando 16 componentes principais sdo mostradas na Figura 15.
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Figura 15 — Curvas RoC-AuC com 16 Componentes Principais

No caso do Real Amplitudes com emaranhamento Full, em geral apresen-
tou um bom desempenho. Somente na generalizagdo da classe GF que o AUC
tico aproximadamente 0.50. J& o modelo que apresentou o melhor resultado, em
geral, para todas as classes obteve um excelente desempenho.

Por outro lado, embora as curvas ROC-AUC do modelo SVM com kernel
EfficientSU2 tenham apresentado um 6timo desempenho durante o treinamento,
as métricas obtidas ao testar o modelo com novos tipos de instancias foram
relativamente baixas. Isso indica que o modelo ndo conseguiu generalizar bem

para novos dados. Esse trade-off é indicativo de overfitting, o que pode estar
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associado ao conjunto de dados ou a baixa complexidade do modelo, visto que o
EfficientSU2 é um circuito que reduz a dimensado do espago de features a quarta
parte.

Dentre os kernels cldssicos, de modo geral, demonstraram um bom de-
sempenho durante o treinamento e, com base nas métricas obtidas, indicaram
uma capacidade satisfatéria de generalizacdo para o conjunto com 16 features.
No entanto, o kernel sigmoid, embora tenha apresentado valores elevados de
AUC para determinadas classes no treinamento, ndo obteve um desempenho sa-
tisfatdrio na distingdo entre os diferentes tipos de falhas presentes nas instancias
do conjunto de testes.

Por fim, a andlise da complexidade dos modelos na tarefa de generaliza-
¢do é ilustrada na Figura 16, que apresenta a quantidade de vetores de suporte
utilizados na abordagem One vs. Rest para cada classe de falha. A média desses
valores, consolidada na Tabela 3, fornece uma estimativa do esforco computacio-
nal associado a separabilidade de cada classe. Valores mais elevados indicam
maior esfor¢o do modelo para identificar fronteiras decisérias, possivelmente de-
vido a maior sobreposigado entre as classes ou variabilidade interna. Essa anélise
permite avaliar a complexidade intrinseca do problema e contribui para decisdes

sobre escalabilidade e otimizac¢do do sistema.
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Figura 16 — Ntmero de vetores de suporte utilizados para separar cada classe
das demais na estratégia One vs. Rest para 16 componentes principais

O modelo SVC com kernel Real Amplitudes e emaranhamento Full, utili-
zando 16 componentes principais, apresentou o maior desempenho entre todos
os modelos testados, com uma média de aproximadamente 307 vetores de su-
porte. A Figura 16 revela que a separacado da classe NF (Nao Falha) das demais
exigiu a maior quantidade de vetores, o que pode ser atribuido ao fato de essa ser
a classe majoritaria, mesmo apo6s a aplicacdo de técnicas de undersampling. Esse
comportamento sugere que, apesar da redugao do desequilibrio, a dominancia
da classe NF ainda impde maior esfor¢o ao modelo para estabelecer uma super-
ticie de decisdo adequada, refletindo uma possivel dificuldade em distinguir
instancias marginais dessa classe em relacdo as classes minoritérias.

O segundo melhor desempenho foi observado no modelo cldssico com
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kernel RBF, também com 16 componentes principais, que utilizou em média
164 vetores de suporte — praticamente metade do niimero utilizado pelo mo-
delo quantico. Ainda assim, esse modelo também apresentou maior ntimero de
vetores de suporte na separacdo da classe NF, refor¢cando a hipdtese de que a
estrutura do conjunto de dados, especialmente o desequilibrio residual, impde
uma complexidade adicional a modelagem dessa classe.

Essa diferenca no niimero de vetores de suporte entre os dois modelos evi-
dencia uma troca entre complexidade e desempenho: embora o modelo baseado
em Real Amplitudes tenha exigido maior capacidade de generalizacdo (indicada
pelo niimero mais alto de vetores), isso resultou em um desempenho superior.
Isso mostra que, a maior complexidade ndo deve ser interpretada negativamente,
mas sim como uma resposta necessdria as caracteristicas do problema.

Modelos cldssicos e quanticos de classificagio com 8 componentes prin-
cipais

Os resultados dos modelos com 8 features apresentados na Tabela 6 mos-
tram que o modelo SVM com kernel Real Amplitudes e emaranhamento Full se
destacou como o melhor modelo entre os SVMs treinados com 8 features. Esse
modelo alcangou uma acurdcia de 76.80%, uma precisao de 77.41%, recall de
76.80% e F1-Score de 76.09%. Por outro lado, o modelo SVM com kernel Effici-
entSU2 e emaranhamento Full apresentou um desempenho inferior, evidenciado
por métricas mais baixas. Esse resultado pode ser atribuido a estrutura do mo-
delo, que reduz a dimensionalidade do espaco de features para um quarto do
original. Com apenas dois qubits para representar as oito componentes princi-
pais, ha uma perda substancial de capacidade representacional, comprometendo

a separacao eficiente entre as classes, tais métricas foram: Acuracia de32.00%,
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precisdo de 40.87%, recall de 32.00% e F1-Score de 35.28%.

Além disso, observa-se que as diferentes estratégias de emaranhamento
ndo impactaram significativamente os resultados desse modelo. Isso se deve
ao fato de que, com apenas dois qubits disponiveis, as variagdes no padrao de
emaranhamento ndo geram correlagdes expressivas entre os estados quanticos,
limitando seu efeito na capacidade de generalizacdo do modelo.

O modelo SVM com kernel ZZFeatureMap e emaranhamento Linear para
oito componentes principais obteve uma acuracia de 62.80%, precisao de 59.22%,
recall de 62.80% e F1-Score de 56.63%. Esse modelo apresentou o melhor desem-
penho entre os SVMs treinados com oito componentes principais. No entanto, de
forma geral, 0 ZZFeatureMap ndo alcangou métricas expressivas nesse cendrio,
o que é um aspecto relevante a ser destacado, dado que esse método mantém a
quantidade de qubits igual ao ndmero de componentes principais do conjunto
de dados.

Dentre os modelos classicos, o Kernel Polinomial obteve uma acura-
cia de 74.00%, com precisdao de 75.92%, recall de 74.00% e F1-Score de 73.21%,
oferecendo um bom desempenho, semelhante ao Real Amplitudes com ema-
ranhamento Full. O Kernel Rbf, por sua vez, obteve uma acuracia de 68.80%,
com precisdo de 70.52%, recall de 68.80% e F1-Score de 68.94%, destacando-se
como um dos melhores modelos cldssicos e mostrando um bom equilibrio entre
precisdo e recall.

Por outro lado, o Kernel Sigmoid apresentou , novamente, o pior de-
sempenho, com uma acurédcia de 37.60%, precisdo de 54.35%, Recall de 37.60% e
F1-Score de 43.92%. Este modelo, portanto, ndo foi eficaz na tarefa de classificacdo

para os dados analisados.
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Em sintese, o kernel Real Amplitudes e estratégia de emaranhamento Full
com 8 features se mostrou superior, tanto entre os modelos quanticos quanto
classicos, enquanto os modelos cldssicos com kernels Polinomial também apre-
sentou um bom desempenho. Por fim, o ZZFeatureMap e o Kernel Sigmoid
ticaram abaixo das expectativas, com resultados inferiores aos demais.

As matrizes de confusdo referente aos modelos de SVM com kernels

quanticos com 8 Componentes Principais estdo mostradas na Figura 17.
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Figura 17 — Matrizes de Confusdao SVM 8 Componentes Principais
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As matrizes de confusdo mostraram que dentre os modelos SVM que utili-
zaram o kernel ZZFeatureMap. O emaranhamento Circular foi o que alcangou os
melhores resultados, identificando corretamente 16 tipos de Falhas somente. Em
geral, esses modelos foram os que apresentaram os mais baixos desempenhos
para 8 Features em comparagdo com os outros tipos de kernel.

Por outro lado, as matrizes de confusdo dos modelos com kernel Real
Amplitudes, mostraramm que o kernel com emaranhamento Full novamente
se destacou diante dos demais identificando corretamente 2 tipos de casos de
Falhas AF, 18 Falhas MF, 36 Falhas FF, 5 Falhas EF e 0 tipos de Falha GE. Além
disso identificou corretamente 131 casos de Nao Falha. Em geral esse modelo
se destacou diante dos demais com 8 componentes principais. Outro ponto
relevante é que os outros modelos conseguiram identificar pelo menos um caso
de falha do tipo GF enquanto o que utilizou emaranhamento Full ndo conseguiu.

Em contrapartida, as matrizes de confusdo dos modelos SVM com kernel
EfficientSU2 ndo demonstraram variacdo de performance em relacdo ao tipo
de emaranhamento. Como explicado nos paragrafos anteriores, esse algoritmo
quantico utiliza uma quantidade de qubits que é a quarta parte da quantidade de
componentes principais, como mostrado na Figura 13. Como sdo 8 componentes,
esse algoritmo quantico s6 terd 2 qubits e ao variar a estratégia de emaranha-
mento, as correlagdes geradas pelo emaranhamento ndo apresentardo variagoes,
pois o circuito continuard sendo o mesmo. Além disso, existiram muitos erros
nas identificacoes das classes como mostradas nas matrizes de confusao da Fi-
gura 17 e nas métricas da Tabela 5. Isso pode ser justificado por terem muito
poucos estados dos sistemas quanticos, ao ponto do algoritmo néo ser capaz de

encontrar uma superficie de generalizacdo para o problema que é complexo.
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Por fim, o modelo cldssico que apresentou melhores desempenhos para
identificar tipos de Falhas foi o que utilizou kernel Polinomial e kernel RBE.
Conseguiram identificar corretamente 56 e 55 tipos de Falha respectivamente.
O modelo com kernel Polinomial identificou corretamente 3 tipos de falhas
AF, 17 falhas MF, 31 falhas FF, 5 falhas EF e 0 falhas GF e conseguiu identificar
corretamente 129 casos de ndo falha, classificando incorretamente 9 tipos de casos
de ndo falha como falha. O modelo com kernel RBF identificou corretamente 4
tipos de falhas AF, 14 falhas MF, 32 falhas FF, 5 falhas EF e conseguiu identificar
corretamente 117 casos de nio falha, classificando incorretamente 21 casos de
ndo falha como falha.

As curvas RoC-AuC referente aos modelos de SVM com 8 componentes

principais sdo mostradas na Figura 18.
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Figura 18 — Curvas RoC-AuC 8 Componentes Principais

Os modelos baseados em ZZFeatureMap apresentaram desempenho sig-
nificativamente varidvel. A configuracdo ZZFeatureMap + Full atingiu um de-
sempenho quase ideal, com valores de AUC préximos a 1 para todas as classes,
enquanto as versdes Linear e Circular exibiram comportamento mais instavel,
possivelmente devido a maneira como os dados foram projetados no espaco

quantico.
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Na segunda linha, os kernels baseados em Real Amplitudes mostraram
maior robustez, especialmente nas configurag¢oes Full e Circular, onde a sepa-
rabilidade das classes foi maximizada. No entanto, a versdo Linear apresentou
menor desempenho, sugerindo que o uso de um espago de caracteristicas mais
complexo melhora a capacidade discriminativa do modelo.

Os kernels EfficientSU2 demonstraram desempenho intermediario en-
tre as abordagens anteriores, com variagdes significativas entre as métricas de
similaridade. A versdo Full obteve métricas mais altas, enquanto as versdes
Linear e SCA tiveram desempenho inferior em algumas classes, indicando que a
profundidade do circuito pode impactar a efetividade do aprendizado.

Os modelos SVM com kernels classicos RBF e Polynomial mostraram de-
sempenho competitivo, enquanto o kernel Sigmoid apresentou resultados mais
inconsistentes. Em alguns cendrios, os kernes quanticos superaram os métodos
classicos, evidenciando o potencial das abordagens hibridas para problemas de
classificacdo complexos.

Por fim, a anédlise da complexidade dos modelos para 8 componentes
principais na tarefa de generalizagdo é ilustrada na Figura 19, que apresenta a
quantidade de vetores de suporte utilizados na abordagem One vs. Rest para

cada classe de falha.
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Figura 19 — Quantidade de vetores suporte utilizadas para tentar separar cada
classe das outras na estratégia One Vs. Rest para 8 componentes
principais.

O modelo SVC com kernel Real Amplitudes e emaranhamento Full utili-
zando 8 componentes principais, apresentou novamente o maior desempenho,
com uma média de aproximadamente 213 vetores suporte. A Figura 19 mostra
também que a separagdo da classe NF das demais exigiu maior quantidade
de vetores suporte e mostra também que a quantidade de vetores suporte dos
kernels cldssicos em relagdo ao kernel quantico real amplitudes foi em média
igual. Note também que o kernel quantico EfficientSU2 necessitou de muitos
vetores suporte e ndo conseguiu obter uma superficie que generalizasse bem,

semelhante ao ZZFeatureMap.

Modelos Classicos e Quanticos de Classificagdo com 4 Componentes Princi-
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pais

Os resultados dos modelos com 4 features apresentados na Tabela 6
mostram que o modelo SVM com kernel ZZFeatureMap com emaranhamento
Linear se destacou como o melhor modelo entre os SVMs treinados com 4
componentes principais. Esse modelo alcangou uma acuracia de 68.00%, uma
precisdo de 68.54%, recall de 68.00% e F1-Score de 67.58%. Apesar disso, ao
utilizar 4 componentes principais os modelos SVMs com kernels quanticos e
classicos, em geral, ndo conseguiram alcangar 6timos resultados.

Por outro lado, os modelos SVM com kernel EfficientSU2 e Real Amplitu-
des apresentaram um desempenho significativamente inferior, evidenciado por
métricas mais baixas. Esse resultado pode ser atribuido a estrutura do modelo,
que reduz a dimensionalidade do espaco de features para um quarto e a metade
do original, respectivamente. Com apenas um qubit e dois qubits para represen-
tar as quatro componentes principais, hd uma perda substancial de capacidade
representacional, comprometendo a separagdo eficiente entre as classes. Como
consequéncia, esses modelos atingiram uma acurdcia em torno de 23.00%, preci-
sdo de 38.00%, recall de 23.00% e F1-Score de 30.00%. Além disso, observa-se que
as diferentes estratégias de emaranhamento ndo impactaram significativamente
os resultados desses modelos. Devido ao mesmo fato ja discutido nos pardgrafos
anteriores

Dentre os modelos SVM com kernels classicos, o Linear, obteve uma
acurdcia de 65.20%, com precisao de 65.65%, recall de 65.20% e F1-Score de
62.15%, oferecendo um desempenho um pouco menor do que o modelo SVM
com o kernel quantico ZZFeatureMap Linear. Por outro lado, o Kernel Sigmoid

apresentou , novamente, o pior desempenho, com uma acuracia de 36.40%,
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precisdo de 53.74%, Recall de 36.40% e F1-Score de 42.68%. Este modelo, portanto,
ndo foi eficaz na tarefa de classificagdo para os dados analisados.
As matrizes de confusdo referente aos modelos de SVM com 4 componen-

tes principais sdo mostradas na Figura 20.

uantum Kernel: Quantum Kernel: uantum Kernel: Quantum Kernel:

ZzZFeatureMap linear ZzFeatureMap full ZzFeatureMap circular ZzFeatureMap sca
AF- 2 1 1 1 2 4 @ AF- 0 0 0 1 1 9 " AF- 3 0 0 1 2 5 w0 AF-3 0 0 1 2 s o
w © » )
MF- 0 1 3 0 1 24 MF- 1 2 13 1 o0 12 MF- 0 1 4 1 2 21 MF- 0 1 4 1 2 21
L3 s © B
FF- 3 17 13 4 3 25 s FF- 3 19 13 3 2 25 o FF- 3 19 9 5 0 29 . FF- 3 19 9 5 0 29 .
© w w
EF-0 0 0 3 0 2 EF-0 0 0 3 0 2 Lo EF-0 0 0 3 0 2 EF- 0 0 0 3 0 2
» = »
GF- 0 0 0 0 o0 2 0 G- 1 0 0 0 o 1 [0 G- 1 1 0 0 o0 0 » G- 1 1 0 0 o0 o0 »
| 0
NF- 9 17 16 7 3 - © NF- 10 22 18 11 4 - NF- 13 16 10 8 3 o NF- 13 16 10 8 3 °
—— o B, o e e e Y o e e el o
AF MF FF EF GF NF AF MF FF EF GF NF AF MF FF EF GF AF MF FF EF GF NF
Quantum Kernel: Quantum Kernel: Quantum Kernel: Quantum Kernel:
RealAmplitudes linear RealAmplitudes full RealAmplitudes circular RealAmplitudes sca
AF- 1 0 2 1 4 3 AF- 1 0 2 1 4 3 AF- 1 0 2 1 4 3 AF- 1 0 2 1 4 3
w0 w0 w0 w0
ME- 5 9 1 2 3 9 ME- 5 9 1 2 3 9 ME- 5 9 1 2 3 9 ME- 5 9 1 2 3 9
0 0 0 0
FF- 10 103 9 m FF- 10 103 9 m FF- 10 103 9 m FF- 10 103 9 m
EF-1 3 0 0 1 0 = EF-1 3 0 0 1 o0 = EF-1 3 0 0 1 o0 = EF- 1 3 0 0 1 0 =
G- 0 0 1 0o o 1 G- 0 0 1 0o o 1 G- 0 0 1 0o o 1 G- 0 0 1 0o o 1
10 10 10 10
NF-147 y NF-147 5 , NF-147 5 ,. NF-147 B ,,
3 S s v -0 ; . o, o ; ., . o ; ., . o
AF MF FF EF GF NF AF MF FF EF GF NF AF MF FF EF GF NF AF MF FF EF GF NF
Quantum Kernel: Quantum Kernel: Quantum Kernel: Quantum Kernel:
EfficientsU2 linear Efficientsu2 full EfficientSU2 circular EfficientSU2 circular
AF- 0 1 0 9 o 1 w0 AF- 0 1 0 9 o 1 w0 AF- 0 1 0 9 o 1 B AF- 0 1 0 9 o 1 o
ME- 0 0 1 10 o 18 s ME- 0 0 1 10 o 18 s0 MF- 0 0 1 10 o 18 s0 ME- 0 0 1 10 o 18 s0
FF- 0 4 4 21 o0 n o FF- 0 4 4 21 0 n o FF- 0 4 4 21 0 n @ FF- 0 4 4 22 0 H o
EF-0 1 0 1 0 3 [> EF- 0 1 0 1 0 3 (> EF-0 1 0 1 0 3 [> EF- 0 1 0 1 o0 3 [*
2 2 n n
GF- 0 0 0 0 o0 2 GF-0 0 0 0 o0 2 G- 0 0 0 0 o0 2 G- 0 0 0 o0 o0 2
n n " "
ne- 1 10 6 G o EEH ne- 1 10 6 G o §EH ne- 1 10 6 G o NES ne- 1 10 6 M o NES
(o . -0 , - I \ -0 - — , -0 - — \ °
AF MF FF EF GF NF AF MF FF EF GF NF AF MF FF EF GF NF AF MF FF EF GF NF
Classical Kernel: Classical Kernel: Classical Kernel:
‘ol e Sigmo
1 20 ™
AF- 0 0 1 0 0 10 AF- 1 0 0 0 1 9 AF- 1 1 0 0 0 9 AF- 0 0 0 8 o0 3
©
200 100 100
MF- 0 16 6 0 0 7 MF- 3 9 5 1 5 6 MF- 1 11 8 0 3 6 MF- 1 11 2 5 5 5 w
0 w0 w0
FF- 1 17 23 0 4 20 FF- 5 10 27 0 6 17 FF- 1 18 38 0 2 10 FF- 1 10 11 7 12 24 w0
o 3 w
EF-0 0 0 0 0 5 EF-0 0 0 0 0 5 EF-0 0 o0 1 0 4 EF- 0 0 0 0 2 3 Fo0
W w0 w0 w
GF- 0 0 0 0 o0 2 G- 0 1 0 o0 o 1 G- 1 0 0 o0 o 1 G- 0 0 0 1 o 1
n » 2 o
NF- 0 11 2 o 1 [ged NF- 4 5 3 3 2 [NEN NF- 5 3 5 1 1 Ne- 2 2 u 27 27 [
e 3 S ——— o T T 3 , o, T — o
AF MF FF EF GF NF AF MF FF EF GF NF AF MF FF EF  GF AF MF FF EF GF NF

Figura 20 — Matrizes de Confusdo SVM com 4 Componentes Principais

De acordo com as matrizes de confusdao acima, o modelo com kernel

ZZFeatureMap com emaranhamento Linear foi o que conseguiu identificar mais
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casos de falha, totalizando 47 falhas. Dentre essas 47, o modelo identificou cor-
retamente 1 falha do tipo AF, 11 falhas do tipo MF, 34 falhas do tipo FF, 1 falha
do tipo EF e 0 falha do tipo GF. Além disso, esse modelo conseguiu identificat
corretamente 123 casos de néo falha e classificou incorretamente 15 casos de ndo
falha como falha. E importante destacar que nesse caso o tipo de estratégia de
emaranhamento gerou grandes divergéncias entre os modelos. Em contrapar-
tida, analisando as matrizes de confusdo referente dos modelos de SVM com
kernel quantico Real Amplitudes, observa-se que elas apresentaram o mesmo
resultado. Isso pelo mesmo motivo ja discutido, como esse tipo de kernel reduz
a quantidade de qubits para a metade gerou-se um sistema quantico possuindo
somente dois qubits. Portanto o tipo de emaranhamento, nesse caso, ndo influen-
ciou para gerar divergéncias entre os resultados e em geral o desempenho desse
modelo ndo apresentou bons resultados. Conseguindo identificar corretamente
apenas 1 tipo de falha AF, 9 falhas MF, 1 falha FF, 0 falhas EF e GF. Além disso,
esses modelos identificaram corretamente 46 casos de ndo falha e classificaram
incorretamente 92 casos de ndo falha como falha.

Por outro lado, as matrizes de confusao referente aos modelos de SVM
com kernel quantico EfficientSU2 também se repetiu para esse tipo de kernel.
Observe que todos os modelos alcangaram os mesmos resultados insatisfatorios,
identificando corretamente somente 4 tipos de falha FF, 1 falha EF. Além disso,
identificaram corretamente 55 tipos de casos de nédo falha e erraram ao identificar
83 casos de ndo falha como falha.

Por altimo, ao analisar as matrizes de confusio referente aos modelos de
SVM com kernels classicos, nota-se que o modelo que se destacou em identificar

mais tipos de falha foi o kernel linear. Identificou corretamente 16 tipos de falha
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MF, 23 falhas FF. Além disso, identificou corretamente 124 casos de ndo falha e
errou classificando 24 casos de ndo falha como falha.
As curvas RoC-AuC referente aos modelos de SVM 4 componentes prin-

cipais sdo mostradas na Figura 21.
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Figura 21 — Curvas RoC-AuC com 4 Componentes Principais

Dentre os kernels quanticos ZZFeatureMap, observa-se que a configuracdo

ZZFeatureMap + Full apresentou os melhores resultados, com valores de AUC ele-
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vados e uma separabilidade bem definida. Os emaranhamentos Linear e Circular
demonstraram maior variabilidade no desempenho, enquanto o kernel ZZFeatu-
reMap + SCA também apresentou uma performance competitiva, sugerindo uma
representacdo eficaz dos dados.

Para os kernels baseados em Real Amplitudes, o kernel Real Amplitudes +
Full obteve um desempenho consistente, indicando que essa abordagem permite
uma melhor separagdo das classes. No entanto, as versdes Linear e Circular de-
monstraram maior sensibilidade a escolha da métrica de similaridade, enquanto
o Real Amplitudes + SCA obteve resultados intermedidrios.

Ja os kernels baseados em EfficientSU2 apresentaram um desempenho
mais instavel. A configuracdo EfficientSU2 + Full foi a tnica que demonstrou
uma curva ROC bem definida, enquanto as versdes Linear e Circular tiveram
uma performance inferior, possivelmente devido a complexidade do circuito e a
escolha da métrica de similaridade. O kernel EfficientSU2 + SCA apresentou a
maior variabilidade, indicando dificuldades na generaliza¢do dos dados.

Em comparagdo com os modelos classicos, o kernel RBF se destacou
como a abordagem mais robusta, confirmando sua eficdcia em problemas de
separabilidade nado-linear. O kernel Linear teve um desempenho aceitdvel, mas
inferior as melhores configura¢des quanticas. Ja o kernel Polynomial apresentou
variagdes significativas, sugerindo dificuldades de ajuste, e, por dltimo, o kernel
Sigmoid teve um dos piores desempenhos, reforando sua menor aplicabilidade
para esse problema.

Por fim, a andlise da complexidade dos modelos para 4 componentes
principais na tarefa de generalizacdo ¢ ilustrada na Figura 22, que apresenta a

quantidade de vetores de suporte utilizados na abordagem One vs. Rest para
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cada classe de falha.
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Figura 22 — Quantidade de vetores suporte utilizadas para tentar separar cada
classe das outras na estratégia One Vs. Rest para 4 componentes
principais.

Os modelos, em geral, ndo apresentaram bons resultados para 4 compo-
nentes principais, todavia o ZZFeatureMap com emaranhamento linear utili-
zando 4 componentes principais, apresentou relativamente o maior desempenho
usando 320 vetores suporte. A Figura 22 mostra novamente que a separacdo
da classe NF das demais exigiu maior quantidade de vetores suporte e mostra
também que a quantidade de vetores suporte dos kernels cldssicos se assemelhou

a utilizada pelo ZZFeatureMap.

Modelos classicos de Regressao

Os modelos de regressdao também foram treinados com base no Conjunto
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A. A avaliagdo desses modelos foi realizada por meio das métricas Mean Abso-
lute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE)
e Coeficiente de Determinacado (R?), conforme descrito na Secdo 4.3. A Tabela 5

mostra os valores de tais métricas.

Nimero de Features | MAE | MSE | R?
4 1.1 6.42 | 0.37
8 0.89 3.65 | 0.35
16 0.65 223 10.22
o =0.4921

Tabela 5 — Métricas de desempenho para diferentes nimeros de features. O MAE
é comparado com um limite aceitavel.

Os resultados apresentados na Tabela 6 fornecem uma visdo detalhada
sobre o desempenho do modelo preditivo para diferentes niimeros de features.
Inicialmente, com 4 features, o modelo obteve um MAE de 1.1 e um MSE de 6.42,
o que indica que o modelo ainda estava cometendo erros relativamente grandes.
Comparado ao desvio padrdo dos dados de treino (0.4921), esses valores sugerem
que o modelo ndo estd capturando de forma eficiente a variabilidade dos dados.
O coeficiente de determinagao (R?) também foi de 0.37, refletindo que o modelo
foi capaz de explicar 37% da variabilidade dos dados, mas ainda ha uma grande
parte das variagdes ndo modeladas.

Ao adicionar 8 features ao modelo, houve uma melhora em ambas as
métricas de erro. O MAE reduziu para 0.89 e o MSE caiu para 3.65, o que
indica que o aumento no ntimero de features contribuiu para uma melhoria
nas previsdes, embora o erro ainda fosse superior ao desvio padrdo. Apesar
dessa melhoria, o R? caiu para 0.35, indicando que, embora o modelo estivesse
acertando melhor suas previsdes, sua capacidade de explicar a variabilidade

dos dados ndo aumentou significativamente. Esse comportamento sugere que
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o modelo pode ndo estar aproveitando todo o potencial das features adicionais
para melhorar a generalizacdo dos dados.

Com 16 features, o modelo apresentou uma redugdo ainda maior no MAE,
que chegou a 0.65, e 0 MSE caiu para 2.23. Esse comportamento reforga a ideia
de que a adicdo de features permite uma maior precisdo nas previsdes, mas, ao
mesmo tempo, R? continuou a cair, atingindo 0.22. Esse declinio no R? sugere
que o modelo pode estar se ajustando demais aos dados de treino, um sinal claro
de overfitting, onde o modelo se adapta excessivamente as particularidades dos
dados, sem melhorar sua capacidade de generalizacdo para novos conjuntos de
dados.

Em comparagdo com o desvio padrdo dos dados de treino, que foi de
0.4921, o modelo ainda apresenta um MAE significativamente maior, o que
indica que, mesmo com a redugdo dos erros, o modelo nédo esta alcangando
uma precisdo ideal. Isso sugere que o modelo ainda pode ter dificuldades em
prever de forma exata os valores, dado que o erro médio estd bem acima do
limite aceitdvel, representado pelo desvio padrdo. Esse fendmeno é comum em
modelos que ainda ndo capturaram toda a complexidade dos dados, sugerindo
que ajustes adicionais sdo necessarios.

Por fim, os resultados demonstram que, enquanto o aumento do niimero
de features melhora a precisdo do modelo, a queda no R? levanta preocupagdes
sobre a sua capacidade de generaliza¢do. O modelo pode estar se ajustando ex-
cessivamente aos dados de treino, o que limita sua aplicagdo em novos conjuntos
de dados.

A partir disso, dado esses dados previstos ainda no conjunto A, foram

utilizados os classificadores ja treinados para verificar se eles conseguem uma
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boa classificagdo. A Tabela 7 mostra as métricas de ML alcangadas para os mode-

los que apresentaram maiores métricas para cada quantidade de componentes

principais da Tabela 6.

Kernel Emaranhamento | Comp. Principais | Acurdcia | Precisdo | Recall | F1-Score

Real Amplitudes Full 16 74.11% 22.31% 29.10% | 22.82%

Real Amplitudes Full 8 74.11% 16.49% 20.75% | 14.64%

ZZFeatureMap Linear 4 67.76% 16.46% 19.90% | 14.10%

Classical Kernel: Rbf - 16 70.81% 16.17% 12.12% | 13.86%

Classical Kernel: Polynomial - 8 91.38% 16.21% 15.64% | 15.92%

Classical Kernel: Linear - 4 57.53% 17.01% 14.42% | 13.35%

Tabela 6 — Resultados de desempenho dos diferentes kernels usando o Conjunto
A.

De acordo com a Tabela 6, os experimentos indicaram que os classificado-
res apresentaram um desempenho insatisfatério na identificacdo das classes de
falha. Além disso, observa-se indicios de overfitting na classificacdo dos valores
previstos pelos regressores.

A baixa qualidade das previsdes geradas pelos regressores pode ser atri-
buida as métricas MAE, MSE e R?, que apresentam valores significativamente
superiores ao desvio padrdo dos dados. Esse comportamento sugere que a
presenca de outliers no conjunto de dados pode ter impactado negativamente
a modelagem, tornando necessdria a investigagdo de abordagens alternativas
para a implementacdo dos regressores, a fim de melhorar o desempenho das
previsoes.

Neste estudo, optou-se por testar modelos mais simples para previsdo
de séries temporais. No entanto, ao integrar esses modelos aos classificadores
para a identificagdo das classes de falha e ndo falha, observou-se um decréscimo
substancial no desempenho dos classificadores, indicando que essa abordagem

pode ndo ser a mais adequada para o problema em questao.
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5.2 Resultados da abordagem hibrida classico-quantica

integrada aos regressores
Na etapa de integracdo da Abordagem Hibrida Cl4ssico-Quantica, os modelos
foram combinados para avaliagdo conjunta. Para essa fase, foi utilizado o Con-
junto B, que havia sido previamente reservado como conjunto de teste, apds o
treinamento independente dos modelos, conforme descrito na segdo anterior.
Nesse conjunto de teste, os regressores foram empregados para prever os
valores futuros das varidveis, e, em seguida, os classificadores foram aplicados

para categorizar as previsdes em uma das classes possiveis: Falha ou Nao Falha.

Kernel Emaranhamento | Comp. Principais | Acurdcia | Precisdo | Recall | F1-Score
Real Amplitudes Full 16 99.66% | 55.23% | 57.98% | 56.17%
Real Amplitudes Full 8 99.66% | 48.51% | 48.32% | 47.80%
ZZFeatureMap Linear 4 94.56% 34.52% | 30.81% | 32.17%
Classical Kernel: Rbf - 16 97.92% | 34.48% | 37.53% | 33.30%
Classical Kernel: Polynomial - 8 92.26% 33.20% | 69.34% | 40.90%
Classical Kernel: Linear - 4 96.82% 22.23% | 36.82% | 25.06%

Tabela 7 — Resultados de desempenho dos diferentes kernels.

A inclusdo dos regressores resultou em uma queda no desempenho dos
modelos, conforme apresentado na Tabela 7. Esse comportamento pode ser
atribuido a natureza do conjunto de dados, no qual as falhas geralmente se
encontram fora do desvio padréo, caracterizando-se como outliers. Consequen-
temente, os regressores tendem a se ajustar preferencialmente aos casos de nao
talha, dificultando a correta previsdo das falhas.

Embora esses resultados ndo fossem teoricamente esperados, conclui-
se que utilizar a abordagem implementada com esse tipo de regressores ndo
apresentou um desempenho satisfatério na pratica. Em cendrios como esse,

a simples implementacdo de um regressor dessa forma nao é suficiente para
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garantir uma modelagem eficaz do comportamento das varidveis desse conjunto
de dados. Uma vez que os modelos de classificagdo foram treinados e testados
com as amostras de dados do conjunto A de tal modo que eles conseguiram
alcangar resultados satisfatorios.

Por fim, o capitulo 6 desta dissertacdo tem o intuito de discutir as con-
sideragdes finais desta dissertagdo destacando os pontos que foram tratados e

sugestdes de trabalhos futuros.
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8

CONSIDERACOES FINAIS

esta disertagdo, foi desenvolvida uma estratégia hibrida de detec¢ao

de falhas de um aerogerador. A metodologia utilizou um modelo

hibrido quantico-cldssico para detectar falhas. Esse modelo, de-
nominado QSVM, utilizou um circuito quantico para realizar o mapeamento
das features em um espago de maior complexidade, proporcionando, em deter-
minados cendrios, um desempenho competitivo ou superior aos dos modelos
classicos.

Dentre os modelos avaliados, destacou-se 0 SVM com kernel Real Ampli-
tudes e emaranhamento Full, aplicado a 16 componentes principais, alcangando
80.40% de acurécia, 80.67% de precisdo, 80.40% de recall e 79.96% de F1-score nos
testes com o "conjunto A". Adicionalmente, os regressores foram treinados nesse
mesmo conjunto, preservando a estrutura temporal dos dados para garantir
previsdes consistentes. Outros modelos também demonstraram desempenho
relevante, como os SVMs com emaranhamentos Linear e Circular, ambos utili-
zando 8 componentes principais. O primeiro atingiu 75.60% de acurécia, 78.66%

de precisdo, 75.60% de recall e 75.63% de Fl-score, enquanto o segundo apresen-
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tou resultados similares, evidenciando a influéncia do tipo de emaranhamento
na eficacia da classificacdo.

Entretanto, um dos principais desafios enfrentados foi a limitagdo do
conjunto de dados, o que impediu a construcdo de um modelo preditivo capaz
de fazer previsdes com lags superiores a 3 horas e 40 minutos. Tentativas de
treinamento para periodos mais longos comprometeriam a qualidade da divisao
dos dados, afetando tanto o desempenho dos algoritmos de regresséo e classifi-
cacdo quanto a integracdo da estratégia hibrida para testes com o "conjunto B".
Além disso, a disponibilidade de conjuntos de dados adequados para esse tipo
de estudo ainda é um obstaculo significativo. Dados de falhas de equipamen-
tos frequentemente apresentam limita¢des, como baixa quantidade de eventos
registrados, falta de padronizac¢do nos rétulos e dificuldades na obtencdo de
séries temporais completas e confidveis. Isso reforca a necessidade de estraté-
gias robustas para o tratamento e enriquecimento dos dados, garantindo que os
modelos sejam capazes de generalizar adequadamente para diferentes cendrios
operacionais.

Diferentes abordagens para a estratégia hibrida também foram considera-
das, como a utilizagdo de redes neurais recorrentes para previsao e redes neurais
quanticas para classificacdo. No entanto, este estudo concentrou-se na investiga-
¢do de algoritmos quanticos, QSVM, com o intuito de avaliar suas vantagens na
resolucao de problemas de classificagdo em espacos de maior complexidade. E,
em virtude disso, foram utilizados modelos de previsdo baseado em regressao,
pois foram mais simples de serem implementados e interpretados. Os resultados
obtidos sugerem que modelos hibridos quantico-classicos podem oferecer ga-

nhos em certos cendrios de deteccdo de falhas. Todavia, vale ressaltar que este
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projeto foi desenvolvido utilizando simuladores quénticos e a estratégia ndo foi
testada em computadores quanticos reais, uma vez que o objetivo foi estudar
o comportamento da estratégia hibrida em cendrios de manutengdo preditiva
simulando um dispositivo quantico que seja tolerante a falhas feito no simu-
lador. Esses resultados contribuem para abordagens algoritmicas inovadoras
que se consiga explorar o potencial da computacdo quéntica aplicada na area de
manutengdo preditiva.

Este trabalho foi apresentado em 2023 no 1° Encontro Regional de Gru-
pos de Pesquisa em Computacgao e Informagao Quantica - EGPCIQ, um evento
regional ocorrido no Rio de Janeiro que abordou temas relacionados as tecno-
logias quanticas. Ele também foi aceito para apresentacdo no evento chamado
BRACIS 2025 (Brazilian Conference on Intelligent Systems) (Nooblath; Bessa;
Freitas, 2025), uma conferéncia com grande relevancia nacional voltado para
pesquisas em Inteligéncia Artificial. A aceitagdo nesta conferéncia reforca a re-
levancia cientifica da proposta e o potencial das solugdes quantico-classicas no

contexto da IA aplicada a manutengdo preditiva.

8.1 Trabalhos Futuros

Com base nos resultados obtidos neste trabalho, observa-se vérias possibilidades
para investigac¢des futuras na drea de manutencao preditiva utilizando modelos
hibridos quantico-classicos. Um caminho promissor consiste na exploragao de
outras arquiteturas quanticas, como as Redes Neurais Quénticas, a fim de avaliar
seu desempenho em comparagdo aos kernels quanticos empregados no QSVM.

Adicionalmente, a investigacdo de diferentes estratégias de treinamento e otimi-
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zagdo dos circuitos quanticos pode contribuir significativamente para aprimorar
a estabilidade e 0 desempenho dos modelos, além da execugdo da estratégia em
hardware quantico real.

Dado que este estudo teve como foco principal a etapa de classificacdo
por meio de algoritmos quanticos, a etapa de regressao ainda apresenta oportuni-
dades de melhoria, visando aumentar o desempenho global da estratégia. Nesse
sentido, recomenda-se explorar técnicas de regularizagdo, bem como revisar
o conjunto de varidveis de entrada, com o objetivo de mitigar o overfitting e
aumentar a robustez do modelo diante de novos dados. Além disso, a adocao
de estratégias como a validagdo cruzada pode assegurar um desempenho mais
consistente e confidvel em diferentes parti¢des do conjunto de dados.

A aplicagdo da estratégia hibrida proposta em diferentes tipos de equipa-
mentos industriais representa outra vertente de investigacdo promissora, pois
possibilita avaliar a adaptabilidade do método em distintos contextos operacio-
nais. Além disso, a andlise da escalabilidade da solu¢do em hardwares quanticos
reais, considerando limitag¢des relacionadas ao ruido e a profundidade dos cir-
cuitos, configura-se como um desafio crucial para avangos futuros.

Por fim, a busca por novos algoritmos hibridos com menor complexidade
computacional e maior eficiéncia na classificacdo de falhas permanece como
uma linha de pesquisa aberta e altamente relevante. A identificagdo de casos
especificos em que algoritmos quanticos superem abordagens cladssicas podera
representar um avango significativo para a drea, fomentando novas investigagdes
e contribuindo para o desenvolvimento da Manutencado Preditiva baseada em

Computagdo Quantica
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