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Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d

better make it quantum mechanical, and by golly it’s a wonderful problem, because it

doesn’t look so easy.

Richard Feynman
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Resumo

Nesta dissertação, é explorado o uso de funções de kernel quânticas em modelos

híbridos clássico-quânticos voltados à detecção de falhas em turbinas eólicas.

Foram utilizados circuitos quânticos parametrizados para mapear dados em

espaços de Hilbert de alta dimensionalidade. As arquiteturas dos circuitos foram:

ZZFeatureMap, RealAmplitudes e EfficientSU2 com quatro estratégias de emara-

nhamento: Linear, Full, Circular e Shift-Circular-Alternate, comparando-se a quatro

kernels clássicos: Linear, Polinomial, Radial Based Function e Sigmoid em um algo-

ritmo de Máquinas de vetores Suporte. O conjunto de dados, com 54 atributos

aquisionados por sensores, foi submetido a um algoritmo de Análise de compo-

nentes principais para reduzir sua dimensionalidade para 4, 8 e 16 componentes,

considerando a variância cumulativa dos dados. O modelo RealAmplitudes com

emaranhamento Full e 16 componentes superou o kernel Radial Based Function em

métricas padrão de aprendizado de máquina. Análises adicionais com curvas

ROC-AUC e matrizes de confusão indicaram ausência de overfitting, reforçando

o potencial dos kernels quânticos em aplicações industriais.

Palavras-chave: aprendizado de máquina, computação quântica, dataset desba-

lanceado, função de kernel, manutenção preditiva, redução de dimensionalidade.
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Abstract

This master’s thesis investigates the use of quantum kernel functions in hybrid

classical–quantum models for fault detection in wind turbines. Parameterized

quantum circuits were used to map input data into high-dimensional Hilbert

spaces. The quantum circuit architectures analyzed include ZZFeatureMap, Re-

alAmplitudes, and EfficientSU2, each implemented with four entanglement

strategies: Linear, Full, Circular, and Shift-Circular-Alternate. These were com-

pared with classical kernels—Linear, Polynomial, Radial Basis Function, and

Sigmoid—within a Support Vector Machine framework. The dataset, comprising

54 features collected by turbine sensors, was reduced via Principal Component

Analysis to 4, 8, and 16 components based on cumulative variance. The RealAm-

plitudes circuit with Full entanglement and 16 components outperformed the

Radial Based Function kernel in standard machine learning metrics. ROC-AUC

curves and confusion matrices showed no overfitting, reinforcing the potential

of quantum kernels in industrial fault detection.

Keywords: machine learning, quantum computing, imbalanced dataset, kernel

methods, predictive maintenance, dimensionality reduction.
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1

INTRODUÇÃO

A Computação Quântica (QC, do inglês Quantum Computing) constitui

um campo multidisciplinar que integra os fundamentos da mecâ-

nica quântica aos princípios da ciência da computação. Essa área

tem se destacado pelo potencial de resolver determinadas classes de problemas

com maior eficiência em comparação aos métodos computacionais clássicos,

destacando-se em tarefas que exigem representações mais adequadas, bem como

maior capacidade de armazenamento e processamento de informações (Niel-

sen et al., 2010). Esse ganho de eficiência está relacionado aos computadores

quânticos utilizarem sistemas que obedecem às propriedades da mecânica quân-

tica como unidades de informação, esses sistemas são conhecidos como QuBit

(do inglês, quantum bits). Portanto, tais sistemas conseguem assumir estados

de superposição e emaranhamento permitindo aproveitá-los para desenvolver

novas abordagens algorítmicas. Um exemplo notável é o algoritmo quântico

desenvolvido por Peter Shor (Shor, 1996) para fatoração de números inteiros e o

de Lov. Grover (Grover, 1996) para busca em listas não estruturadas, onde, teori-

camente, exemplificam reduções significativas de complexidade computacional
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em relação às abordagens convencionais.

Apesar dessas vantagens teoricamente alcançadas, a implementação prá-

tica de algoritmos em hardwares quânticos reais ainda enfrenta diversas limita-

ções, sobretudo devido ao fenômeno da decoerência quântica e ao acúmulo de

erros durante a execução. Isso ocorre porque os sistemas quânticos são extrema-

mente sensíveis às interações com o ambiente ao qual estão submetidos (Park et

al., 2024), exigindo, assim, códigos corretores de erros mais robustos ou novas

arquiteturas de chips quânticos.

Nos últimos anos, avanços na engenharia de hardware têm buscado mi-

tigar o acúmulo de erros e decoerência quântica. Por exemplo, o chip Willow

(GoogleQ, 2024), desenvolvido pela Google, apresentou uma redução exponen-

cial no acúmulo de erros à medida que o número de qubits aumentava. Além

disso, a Microsoft (Microsoft, 2025) propôs uma nova abordagem de imple-

mentação baseada em férmions de Majorana1, possibilitando a construção de

qubits mais confiáveis e escaláveis. Esses avanços no hardware mencionados

anteriormente, têm sido impulsionados tanto pelo aprimoramento de códigos de

correção de erros quanto por pesquisas voltadas ao desenvolvimento de novas

arquiteturas de hardware, com o objetivo de aumentar o tempo de coerência dos

qubits e, consequentemente, a viabilidade de sistemas quânticos em larga escala.

No entanto, os algoritmos desenvolvidos para computação quântica ainda

se concentram na utilização de chips com número reduzido de qubits e com

tolerância a ruídos limitada. Esses chips são conhecidos como dispositivos quân-

ticos ruidosos de escala intermediária NISQ (do inglês, Noisy Intermediate-Scale
1 Férmions de Majorana: Férmions neutros idênticos à sua antipartícula, propostos por Et-

tore Majorana. Embora não observados como partículas fundamentais, quasipartículas com
propriedades de Majorana foram detectadas em sistemas de matéria condensada (e.g., super-
condutores topológicos), sendo candidatas a qubits topológicos em computação quântica
(Aguado; Kouwenhoven, 2020).
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Quantum) e, geralmente são aplicados em tarefas específicas com a finalidade

de encontrar alguma vantagem computacional (Preskill, 2018). Pesquisas de-

senvolvidas nos últimos anos apresentaram resultados promissores ao executar

algoritmos quânticos em processadores NISQ por meio da implementação de

algoritmos baseados em técnicas como Simulated Annealing (Dwave, 2024) e

algoritmos estruturados na forma de Circuitos Quânticos Parametrizados (PQC,

do inglês Parameterized Quantum Circuits2) (Horvat et al., 2022), compostos por

um número restrito de operações e camadas (Horvat et al., 2022). Assim, há um

esforço contínuo na proposição de novos algoritmos quânticos capazes de explo-

rar possíveis ganhos de desempenho em relação aos métodos clássicos, muitos

dos quais são validados por meio de simuladores que simulam o comportamento

de dispositivos quânticos com tolerância a ruídos (Biamonte et al., 2017).

Nesse contexto, várias aplicações são desenvolvidas na área da computa-

ção quântica. Dentre elas se destaca a Aprendizagem de Máquina Quântica —

QML (do inglês, Quantum Machine Learning). Essa aplicação investiga a utilização

de algoritmos quânticos para otimizar modelos clássicos de aprendizado de má-

quina. Diversos estudos, tanto teóricos quanto experimentais, têm demonstrado

o potencial da QML em diferentes setores da economia, indicando que o uso de

algoritmos quânticos em tarefas específicas pode melhorar significativamente

o desempenho de modelos clássicos. Por exemplo, o trabalho prático de Na-

guleswaran (Naguleswaran, 2024) investiga funções de kernel calculadas por

algoritmos quânticos que podem ser empregados para potencializar algoritmos

como Máquina de Vetores Suporte - SVM (do inglês, Support Vector Machine) e

redes neurais convolucionais CNN (do inglês, Convolutional Neural Networks),
2 Essa abordagem é conhecida como computação quântica universal. Ela é mais comum para

implementar algoritmos quânticos conforme discutido no Capítulo 2.
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explorando condições nas quais uma vantagem quântica é alcançada, especial-

mente por meio de kernels projetados de forma dependente dos dados. Outro

estudo que vale à pena ser ressaltado é o estudo teórico desenvolvido por Schuld

(Schuld, 2021) que apresenta uma formulação matemática que evidencia as van-

tagens do mapeamento de dados em espaços de alta dimensionalidade por meio

de algoritmos quânticos variacionais, o que favorece a construção de superfícies

de generalização e melhora o desempenho de algoritmos como as Máquinas

de Vetores de Suporte Quântico — QSVM (do inglês, Quantum Support Vector

Machine).

Algoritmos quânticos podem oferecer vantagens quando aplicados a pro-

blemas de aprendizado de máquina, especialmente em cenários caracterizados

por conjuntos de dados com elevado grau de desbalanceamento e alta dimensio-

nalidade. Um exemplo típico de aplicação com essas características é a detecção

de falhas em sistemas e equipamentos industriais, conforme apontado nos es-

tudos de Abidi et al. (Abidi et al., 2022) e Zeguendry et al. (Zeguendry et al.,

2023). Essas pesquisas evidenciam que a implementação adequada de estratégias

de detecção de falhas, aliada à disponibilidade de recursos para a aquisição de

dados, contribui significativamente para a adoção de práticas de manutenção

preditiva, reduzindo custos operacionais e evitando paradas inesperadas.

No setor aeronáutico, por exemplo, a detecção de falhas é empregada

para o monitoramento contínuo das condições de componentes críticos das aero-

naves (Chowdhury et al., 2023). No setor de manufatura, essa técnica tem sido

utilizada para o acompanhamento de equipamentos como máquinas de Controle

Numérico por Computador e robôs industriais, possibilitando intervenções ante-

cipadas, conforme discutido por (Gupta et al., 2023), que destacam a integração
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com sistemas baseados em Internet das Coisas. Em usinas de geração de energia,

algoritmos de detecção de falhas vêm sendo aplicados ao monitoramento de

turbinas, geradores e outros componentes essenciais, promovendo melhorias na

gestão da manutenção, como evidenciado por (Salehi, 2023).

1.1 Problemática e questão de pesquisa
O desenvolvimento de estratégias de detecção de falhas pode trazer diversas

vantagens para vários setores industrias. No entanto, ainda enfrentam alguns

desafios devido às limitações e a dificuldade de manipular conjunto de dados

com múltiplas colunas ou variáveis, features, conforme também abordado nos

trabalhos de Abidi et al. (Abidi et al., 2022) e Zeguendry et al. (Zeguendry et

al., 2023). Além disso, ao trabalhar com conjunto de dados com alto grau de

desbalanceamento e dimensionalidade como é característico dos problemas

de detecção de falhas, é necessário realizar um pré-processamento criterioso

dos dados para evitar que o modelo enfrente dificuldades para generalizar a

identificação de novas falhas ao utilizar os modelos convencionais de ML.

De acordo com Schuld (Schuld, 2021), algoritmos quânticos possuem a

característica de atuar como funções de kernel capazes de mapear dados para

espaços vetoriais de alta dimensionalidade. Esse mapeamento possibilita a iden-

tificação de superfícies de generalização com menor custo computacional, su-

perando limitações observadas em kernels clássicos. Nesse contexto, o uso de

algoritmos quânticos como funções de kernel em modelos de Máquinas de Ve-

tores de Suporte (SVM) representa uma alternativa promissora, ao incorporar

paradigmas de processamento baseados nos princípios da mecânica quântica.

Essa abordagem pode ser particularmente vantajosa na detecção de falhas em

sistemas industriais compostos por múltiplos componentes, onde a falha pode
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estar associada a alterações sutis em variáveis específicas. Diante disso, surge a

seguinte questão de pesquisa:

• Como o desempenho de uma estratégia híbrida quântico-clássica, com-

posto por um classificador baseado em Máquinas de Vetores Suporte

com um kernel calculado por um circuito quântico parametrizado se

comporta para identificar e classificar falhas com base em um conjunto

de dados com alta dimensionalidade e desbalanceamento?

Diante do exposto, a investigação proposta busca explorar o potencial dos

kernels quânticos como alternativa para superar os desafios impostos por dados

complexos na detecção de falhas. Para investigar essa abordagem, estabelecem-se

os seguintes objetivos:

1.2 Objetivos
O objetivo geral desta dissertação de mestrado consiste em propor uma estra-

tégia de detecção de falhas utilizando um algoritmo de máquinas de vetores

suporte aprimorado por uma função de kernel quântica. A partir disso, serão ana-

lisados possíveis cenários de sua utilização, com intuito de discutir as vantagens

de detecção de falhas usando um modelo híbrido quântico-clássico. Durante o

desenvolvimento desse estudo, emergirão questões críticas relacionadas à aplica-

bilidade e eficácia dessas estratégias: Quais são os limites das abordagens atuais

de detecção de falhas? Como validar a eficácia dos modelos de classificação

quântica propostos na detecção de falhas? Essas indagações levam à orientar a

formulação dos objetivos específicos da pesquisa, que incluem:

1. Desenvolver modelos de Máquinas de Vetores Suporte compostos por

funções de kernel quânticas e clássicas;
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2. Desenvolver regressores para prever valores de cada feature em um de-

terminado lag de tempo e os modelos QSVM implementados classifica-

rem se há falha ou não;

3. Avaliar e comparar o desempenho dos modelos em relação às métricas

obtidas após a realização dos testes, considerando tanto a precisão dos

resultados quanto a eficiência do processamento para cada abordagem;

4. Analisar as implicações práticas e os possíveis cenários de utilidade dos

modelos.

1.3 Organização da Dissertação
A presente dissertação encontra-se dividida em 6 capítulos, listados a seguir:

• No Capítulo 1 são estabelecidos o contexto da pesquisa, a motivação do

estudo, a definição do problema, os objetivos gerais e específicos.

• No Capítulo 2 são explorados os fundamentos teóricos que sustentam

a pesquisa. Aborda-se a computação quântica, incluindo seus princípios

básicos, modelos de computação e algoritmos relevantes. Em seguida,

discute-se a aprendizagem de máquina quântica, destacando como os

algoritmos quânticos podem ser aplicados a problemas de aprendizado

de máquina, com ênfase em classificadores quânticos e suas vantagens

potenciais sobre métodos clássicos.

• No Capítulo 3 é apresentada uma revisão abrangente da literatura rela-

cionada à manutenção preditiva. São discutidas as técnicas tradicionais
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utilizadas bem como os desafios enfrentados, como a complexidade dos sis-

temas e a necessidade de detecção precoce de falhas. Além disso, explora-se

como a computação quântica pode contribuir para superar essas limitações,

oferecendo novas abordagens para o diagnóstico e prognóstico de falhas.

• No Capítulo 4 detalha-se a abordagem metodológica adotada na pesquisa.

Descreve-se o processo de coleta e pré-processamento dos dados operacio-

nais das turbinas eólicas, a seleção das variáveis relevantes e a construção

dos modelos de aprendizado de máquina. São apresentados tanto o modelo

clássico quanto o modelo quântico, incluindo suas arquiteturas, algoritmos

utilizados e parâmetros de treinamento. Além disso, discute-se a estraté-

gias de validação e as métricas de desempenho empregadas para avaliar

os modelos.

• No Capítulo 5 são apresentados os resultados obtidos a partir da aplicação

dos modelos desenvolvidos. Compara-se o desempenho dos modelos clás-

sico e quântico em termos de acurácia, precisão, recall, F1-score. Analisa-se

a eficácia de cada modelo na detecção de falhas em diferentes componentes

da turbina eólica, considerando cenários com e sem redução de dimensio-

nalidade. Os resultados são discutidos baseados nas hipóteses formuladas

e das contribuições potenciais para a área de manutenção preditiva.

• No Capítulo 6 serão apresentadas as considerações finais dessa dissertação

e os trabalhos futuros.
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2

APRENDIZAGEM QUÂNTICA DE

MÁQUINA

Este capítulo apresenta a fundamentação teórica necessária para uma

compreensão aprofundada do trabalho proposto: a Seção 2.1 explora

os principais conceitos de computação quântica que são necessários

para o entendimento dessa pesquisa, os tipos de arquiteturas de computação

quântica e os desafios relacionados à sua aplicação no contexto deste estudo,

enfatizando algumas vantagens do uso de simuladores de sistemas quânticos

para executar algoritmos quânticos. Por último, a Seção 2.2 revisa os modelos

de aprendizagem de máquina, englobando abordagens clássicas, quânticas e

híbridas.

2.1 Computação quântica
Os Computadores quânticos utilizam qubits para processar informações. Ao

contrário dos computadores clássicos, que seguem a física newtoniana, os qubits

podem assumir uma superposição de estados e se emaranharem entre si, o
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que amplia a capacidade de processamento em busca de soluções ótimas para

determinados problemas (Nielsen et al., 2010). No modelo de circuitos quânticos,

os qubits são inicializados no estado computacional |0〉, e uma sequência de

operações unitárias, que são operações que preservam a métrica do espaço

vetorial e portanto garantem que a mudança no estado também seja um estado

quântico, faz o sistema evoluir para um estado final, permitindo a extração da

solução do problema. As operações em qubits são implementadas no nível de

hardware por pulsos de controle, como micro-ondas para qubits supercondutores

e pulsos de laser para íons aprisionados, sendo a precisão desses pulsos essencial

para manipular os estados quânticos. Essas operações são representadas por

matrizes unitárias U que atuam sobre o estado de um ou mais qubits, descrito

por um vetor de estado em um espaço de Hilbert. Tais matrizes correspondem a

portas lógicas quânticas e a composição sequencial dessas operações, dadas pelo

produto de matrizes Uk, ..., U1, define um circuito quântico.

Os detalhes matemáticos dessa manipulação, que pode ser entendida

como mudanças no estado quântico que descreve o qubit através dessas ope-

rações unitárias, serão abordados na subseção 2.1.1, enquanto a subseção 2.1.2

explorará os diferentes ambientes de programação de hardwares reais de com-

putação quântica e simuladores quânticos .

2.1.1 Manipulação de qubits

O formalismo matemático para o processamento de informação quântica fundamenta-

se na representação de estados por vetores unitários e operações por transfor-

mações unitárias em um espaço de Hilbert complexo. Em outras palavras, o

processamento da informação quântica é formalmente descrito de acordo com

a álgebra linear sobre espaços de Hilbert complexos. Um estado de um qubit é
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definido por um vetor unitário escrito numa determinada base vetorial, (|0〉)|1〉),

onde suas amplitudes correspondem à números complexos. A soma do módulo

quadrático deve ser 1 (vetor normalizado), devido à natureza probabilística da

mecânica quântico garantindo que o vetor esteja normalizado (Nielsen et al.,

2010).

A diferença fundamental entre bits clássicos e qubits reside em seus es-

paços vetoriais: enquanto o primeiro opera em um espaço discreto binário 0,1,

tipicamente implementado por níveis de tensão em circuitos digitais, o qubit,

como sistema quântico de dois níveis, habita um espaço de Hilbert bidimensi-

onal complexo (Mermin, 2007). Essa natureza quântica permite a existência de

superposições coerentes de estados, em que a diferença de fase entre os estados

base permanece constante, conforme descrito pela notação de Dirac na Equação

2.1.

|ψ〉 = α|0〉+ β|1〉 como |0〉 =

1

0

 e |1〉 =

0

1

⇒ (2.1)

|ψ〉 = α

1

0

+ β

0

1

 =

α
β


A notação de Dirac (bra-ket) fornece uma representação abstrata e in-

dependente de base para estados quânticos, onde vetores de estado (kets, |·〉)

e seus duais (bras, 〈·|) permitem expressar operações e produtos internos de

forma concisa, sem necessidade de representação matricial explícita, embora

nas aplicações esta representação será utilizada. A notação |·〉, chamada de ket,

representa vetores coluna, enquanto 〈·|, chamada de bra, representa vetores linha

que pertencem a espaços de Hilbert diferentes. O bra 〈·| é obtido a partir do ket

|·〉 por transposição conjugada, indicada por †, ou seja, |·〉† = 〈·|.
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Para estados quânticos normalizados, a relação |α|2 + |β|2 = 1 deve ser

satisfeita, com α, β ∈ C, cujos módulos ao quadrado representam as amplitudes

de probabilidade (Griffiths et al., 2011). É importante destacar que, como α e

β pertencem ao conjunto dos números complexos, o espaço C2 possui quatro

graus de liberdade — as partes real e imaginária de cada coeficiente.

Um exemplo de estado superposto assumido por um sistema quântico

é mostrado na Equação 2.2, onde α = β = 1√
2
. Nesse caso, a probabilidade de

o estado superposto colapsar para o estado |0〉 ou |1〉 após uma medida é dada

pelo módulo quadrático dos coeficientes α e β, isto é, |α|2 = |β|2 = 1
2
.

|ψ〉 =
|0〉+ |1〉√

2
(2.2)

Os estados quânticos pertencem ao espaço vetorial de Hilbert, que pode

ser finito ou infinito-dimensional, dependendo do sistema (Griffiths et al., 2011).

Os qubits, por serem sistemas quânticos de dois níveis, pertencem a um espaço

vetorial complexo de dimensão finita C2. Seus estados puros podem ser represen-

tados geometricamente na esfera de Bloch por meio de um vetor |ψ〉 que aponta

para tal estado, como mostrado na Figura 1 (Mermin, 2007).
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Figura 1 – Esfera de Bloch com um vetor |ψ〉 apontando para um estado de um
qubit.

Note que na Figura 1 o estado quântico |ψ〉 pode ser representado por

um vetor que aponta para um ponto na superfície da esfera. Portanto, uma

alternativa para representar um QuBit é por meio de uma parametrização que

utiliza os ângulos θ (ângulo medido entre o eixo Z e o vetor, correspondente ao

eixo polar) e φ (ângulo medido no plano xy, correspondente ao eixo equatorial)

da esfera. Essa parametrização é expressa pela equação 2.3.

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφsin

(
θ

2

)
|1〉 (2.3)

Observe que se a fase φ for múltiplos de 0, 2π, ..., 2nπ para n ∈ Z e

θ = π/2, o estado |ψ〉 assumirá a forma representada na equação 2.3. O ângulo

θ, correspondente ao eixo polar da esfera de Bloch, é medido entre o eixo Z e o

vetor de estado |ψ〉. O ângulo φ, eixo equatorial da esfera de Bloch é medido no

plano xy. Estes dois parâmetros são utilizados para descrever a posição de um
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estado quântico na Esfera de Bloch (Nielsen et al., 2010).

Dado um estado quântico |ψ〉 de um QuBit e uma determinada operação

neste estado, representada por O, afimar-se que quando um operador atuar em

|ψ〉 este estado sofrerá uma transformação linear ou rotação na esfera de Bloch.

Matematicamente, isto pode ser representado pela equaçao 2.4.

O|ψ〉 = |ψ〉′ (2.4)

Quando um sistema quântico é composto por n qubits, o estado total

do sistema pode ser representado por um produto tensorial na forma |ψ〉⊗n.

Esse sistema pertence a um espaço vetorial de dimensão 2n, e a relação entre

os qubits é expressa por meio de produtos tensoriais. Assim, tem-se: |ψ〉⊗n =

|ψn〉 ⊗ ...⊗ |ψ1〉 ⊗ |ψ0〉 = |ψn...|ψ1〉|ψ0〉 (IBMQ, 2023).

Um operador é simplesmente uma matriz que ao ser aplicado ao vetor

de estado ||ψ〉, faz com que a esfera de Bloch rotacione, fazendo-o apontar para

um outro estado quântico. A partir disto, suponha que se tenha um operador

genérico O =

a b

c d

, ao aplicá-lo em |ψ〉, resultará na Equação 2.5.

O|ψ〉 =

a b

c d

 ∗
α
β

 =

(αa+ βb)

(αc+ βd)

 (2.5)

Fazendo (αa+ βb) = α′ e (αc+ βd) = β′ e definindo |ψ〉′ =

α′
β′

 se tem a

relação representada pela Equação 2.4.

Isto é necessário para entender como os algoritmos quânticos univer-

sais costumam funcionar. Estes são representados por circuitos, semelhante ao

mostrado na Figura 2.
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Figura 2 – Modelo de algoritmo quântico baseado em circuito lógico.

Observe que o sistema quântico inicial deste circuito possui dois QuBits

(QuBit0 e QuBit1) ambos inicializados no estado |0〉. A primeira parte do circuito

prepara o estado, a segunda parte processa o estado e a terceira mede o estado.

Os operadores ao serem aplicados no estado inicial fará com que este sofra

rotações na esfera de Bloch. A porta lógica Hadamard - H é uma das principais

operações para se obter vantagem quântica, pois ela faz com que o sistema inicial

entre em superposição. Inicialmente se tem a seguinte configuração.

|ψ〉 = |0〉 ⊗ |0〉 (2.6)

Após isso aplica-se as portas Hadamards em cada QuBit, logo:

H|ψ〉 = H|0〉 ⊗H|0〉 (2.7)

A porta lógica H é equivalente ao seguinte operadorH = 1√
2

1 1

1 −1

. Ao

aplicar essa matriz no estado |0〉 resultará em um estado superposto representado

pela equação 2.8:

H|0〉 =
|0〉+ |1〉√

2
. (2.8)
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Portanto na primeira parte do circuito, obtem-se o estado representado

pela equação 2.9.

|ψ〉 =
|0〉+ |1〉√

2
⊗ |0〉+ |1〉√

2

=
|00〉+ |01〉+ |10〉+ |11〉

2

(2.9)

Observe que cada estado possui a probabilidade de |1
2
|2 para ser medido.

Ao aplicar a porta H cada QuBit foi rotacionado em π
2

em torno do eixo Y. (IBMQ,

2023)

Em seguida, é aplicada uma porta de rotação parametrizada em torno

do eixo x da esfera e Bloch no qubit 0. Esta operação rotaciona o estado do qubit

0 por um ângulo definido, variando o estado conforme o parâmetro de rotação θ.

Por fim, é aplicada uma porta CNOT (do inglês: Controlled-NOT), com o qubit 0

funcionando como o qubit de controle e o qubit 1 como o qubit alvo. Isso significa

que, se o qubit de controle estiver no estado |1〉, a operação Not será aplicada

no qubit 1, trocando seu estado de |0〉 para |1〉, ou vice-versa. Na equação 2.10

é mostrado os cálculos da evolução dos qubits desde o estado de mais baixa

energia até o estado resultante1.

|ψ〉 = |0〉1 ⊗ |0〉0

|ψ〉 = H|0〉1 ⊗H|0〉0 =

(
|0〉1 + |1〉1√

2

)
⊗
(
|0〉0 + |1〉0√

2

)
=

(
|0〉1 + |1〉1√

2

)
⊗Rz

(π
2

)( |0〉0 + |1〉0√
2

)

Dado que H =
1√
2

1 1

1 −1

 e Rz

(
θ

2

)
=

e−iπ4 0

0 ei
π
4


⇒ |ψ〉 =

1√
2

(|0〉1 + |1〉1)⊗
e−iπ/4|0〉+ eiπ/4|1〉√

2

(2.10)

1 No apêndice 1 são mostradas as matrizes das portas e os efeitos delas nos estados dos qubits
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É importante sanar que embora todas as portas rotacione o QuBit na

esfera de Bloch, o nome das portas RX, RY e RZ também são chamadas de portas

de rotação. As portas que representam os operadores nos algoritmos quânticos

são derivadas das matrizes de Pauli que são σx =

0 1

1 0

, σy =

0 −i

i 0

 e

σz =

1 0

0 −1

 e a matriz identidade I =

1 0

0 1

. No caso das portas de Rotação

a equação 2.11 indica o efeito de tais portas.

Ri = e−i
θ
2
σi tal que i = x, y, z (2.11)

Por isso que, a partir desta relação, a matriz RZ, por exemplo, pode ser de-

finida como RZ = ei
θ
2
σz . Esta relação pode ser calculada utilizando a identidade

denotada pela equação 2.12.

Rz(θ) =cos
θ

2
I − isinθ

2
Z

=

e−i θ2 0

0 ei
θ
2

 (2.12)

A última etapa do circuito é a medição do estado. Por exemplo, ao medir

1024 vezes o circuito representado na Figura 2, todos os estados armazenados

no sistema |ψ〉 têm uma probabilidade aproximadamente igual de P (|00〉) =

P (|01〉) = P (|10〉) = P (|11〉) =
∣∣∣ 1−i
2
√
2

∣∣∣2 de colapsar para um desses estados após a

medição.

O histograma representado na Figura 3 mostra a distribuição de probabi-

lidade obtida para 1024 medidas.
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Figura 3 – Estatística dos estados colapsados após 1024 medidas realizadas no
circuito quântico da Figura 2. Cada estado com aproximadamente o
mesmo número de ocorrências.

2.1.2 Computadores quânticos reais e simulados

Em 1982, Richard Feynman (Feynman, 1982) introduziu a ideia de utilizar siste-

mas quânticos como unidades de informação, estabelecendo as bases teóricas

para a computação quântica. Desde então, avanços significativos têm sido alcan-

çados na construção de dispositivos quânticos reais, com qubits implementados

em diversos chips físicos com diferentes arquiteturas. A Tabela 1 mostra os

principais tipos de qubits utilizados em computadores quânticos baseados em

diferentes abordagens físicas.

Empresa Tipo de qubit Descrição
IBM, IQM e Google qubits Supercondutores Utiliza circuitos supercondutores e operam em tempe-

raturas criogênicas para reduzir ruídos e decoerência.
Xanadu2 qubits Fotônicos Utilizam fótons como qubits, manipulados por circui-

tos ópticos.
IonQ3 e Quanti-
nuum

qubits Iônicos Utiliza íons aprisionados, confinados por meio de
campos eletromagnéticos.

QuERA4 e Pasqal qubits de Átomos Neutros Utiliza átomos neutros controlados por lasers e arma-
dilhas ópticas, permitindo alta escalabilidade e preci-
são.

Tabela 1 – Arquiteturas reais de Computação Quântica.
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A diversidade de abordagens físicas para implementação de qubits reflete

o caráter exploratório atual da computação quântica. Os qubits supercondutores,

adotados por líderes como IBM (IBMQ, 2023) e Google (Google Quantum, 2023),

destacam-se pela integração com tecnologias de fabricação de semicondutores

convencionais, porém exigem infraestrutura criogênica complexa abaixo de

15 mK para manter a coerência quântica e o estado de supercondução. Já os

qubits fotônicos da Xanadu (Xanadu, 2023) operam em temperatura ambiente e

permitem interconexões via fibra óptica, porém enfrentam desafios na detecção

eficiente de fótons individuais.

Na categoria de íons aprisionados, soluções como as da IonQ (IonQ, 2025)

alcançam tempos de coerência excepcionais (tempo durante o qual as caracte-

rísticas quânticas do sistema se mant e portas lógicas com alta fidelidade com

um valor maior que 99.9%, embora necessitem de sistemas de vácuo ultra-alto e

controle de lasers de precisão. Por fim, os átomos neutros adotados pelas empre-

sas QuERA(QuERA, 2024) e Pasqal (Pasqal, 2025) emergem como plataforma

promissora para escalabilidade tridimensional, onde arranjos ópticos permitem

reconfiguração dinâmica de qubits durante a computação.

Esta fragmentação tecnológica evidencia a ausência de um hardware

quântico dominante, direcionando investimentos para aplicações específicas:

supercondutores para integração em data centers, fótons para redes quânticas, e

átomos neutros para simulação de materiais.

Utilizar hardwares quânticos atualmente é acessível via nuvem (Amazon

Braket, 2023; IBMQ, 2023), todavia a mitigação do ruído intrínseco permanece

um desafio crítico, comprometendo a precisão dos resultados. O ruído intrín-

seco decorre da sensibilidade dos qubits a fatores externos, como temperatura e
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vibrações, além de interações indesejadas que aumentam com a escalabilidade

do sistema. Para viabilizar aplicações práticas, é essencial o aprimoramento de

códigos corretores de erros quânticos. Avanços recentes incluem o chip Willow

da Google (GoogleQ, 2024), que demonstra maior resistência a ruídos por meio

de técnicas aprimoradas de correção de erros (PAN et al., 2023). Além disso, essa

empresa tem apresentado avanços significativos no desenvolvimento de códigos

corretores de erros, conforme indicado em (IQM, 2024), e projeta alcançar a era

da fault tolerance nos próximos cinco anos.

Circuitos quânticos podem ser implementados em diversos frameworks

que permitem sua execução em dispositivos quânticos reais (Amazon Braket,

2023). Cada operação sobre qubits é realizada por pulsos eletromagnéticos, ca-

racterizados por frequência e amplitude, que induzem a evolução do estado

quântico. A execução em hardware real exige a transpilação (Nielsen et al., 2010),

processo que adapta o circuito à arquitetura do dispositivo. Esse processo en-

volve o mapeamento de qubits lógicos para qubits físicos, a tradução de portas

quânticas de alto nível para operações nativas do dispositivo real e a otimização

do circuito para minimizar ruídos e erros.

Geralmente a ligação entre os qubits no dispositivo quântico real é repre-

sentada através de um tipo de Grafo chamado Chimera Graph. A Figura 4, mostra

a ligação entre os 127 qubits de um dispositivo quântico (IBMQ, 2023).
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Figura 4 – Esquema de conexão entre os 127 qubits de um dispositivo quântico
supercondutor.

O processo de execução de um circuito quântico em um dispositivo

quântico real, passará pelas etapas descritas acima. Por exemplo, o circuito

representado na Figura 2 ao ser executado nesse dispositivo passará pela etapa

de mapeamento dos qubits de acordo com o grafo da Figura 4. Após isso, as

portas serão traduzidas para as portas nativas desse dispositivo que, nesse caso,

são: ECR, Identidade, Rotação em torno do eixo Z, SX e X. Por último, a etapa de

otimização que cuidará do número de operações do circuito ao gerar o circuito

da Figura 4. Portanto, o circuito da Figura 2 vai ser transpilado para um circuito

equivalente representado na Figura 5 (IBMQ, 2023).

Figura 5 – Algoritmo quântico adaptado para as portas nativas do dispositivo
quântico.
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Embora a execução de algoritmos quânticos em hardware real seja crucial

para investigar o comportamento dos circuitos sob ruído e avaliar seu desem-

penho, os dispositivos atuais ainda não contam com códigos de correção de

erros plenamente desenvolvidos (Park et al., 2024). Essa limitação compromete a

consistência dos resultados e eleva significativamente os custos computacionais.

Enquanto a implementação de mecanismos mais eficazes de correção de erros

permanece um desafio prático, simuladores quânticos que utilizam GPUGPUs

(do inglês, Graphical Processing Unit) e TPUTPUs (do inglês, Tensor Processing

Unit) continuam sendo alternativas viáveis para benchmarking e otimização de

algoritmos, permitindo sua execução em cenários com ou sem ruído.

2.2 Aprendizagem de máquina
Aprendizagem de Máquina - ML (Machine Learning) é definida como um

campo de estudo que capacita sistemas a adquirirem conhecimento empírico

por si próprios, ao extrair padrões de dados brutos (Goodfellow et al., 2016).

Existem duas categorias principais de aprendizagem: (i) Aprendizagem Super-

visionada que ocorre quando um modelo aprende a relação entre uma variável

Y e uma instância ~X e (ii) Não Supervisionada que ocorre quando o modelo

"aprende"um determinado tipo de padrão entre as variáveis contidas em uma

base de dados ~X (Petruccione et al., 2018).

Nesta pesquisa, foram utilizados dois algoritmos de aprendizagem super-

visionada que compõem a estratégia de detecção de falhas. Portanto as subseções

seguintes farão uma revisão dos fundamentos teóricos dos modelos de Regres-

são e modelos quânticos de máquinas de vetores suporte - QSVC (do inglês,

Quantum Support Vector Classification. O algoritmo QSVC será discutido na última

subseção por se tratar de um algoritmo híbrido composto por um algoritmo
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clássico de otimização e um algoritmo quântico que desempenhará o papel de

função de kernel.

2.2.1 Modelos de aprendizagem de máquina convencional

Os modelos de aprendizagem de máquina utilizados no desenvolvimento dessa

dissertação são: regressores e os modelos de SVM.

1. Regressores

Em ML, a Regressão é um tipo de algoritmo de aprendizado supervisio-

nado que calcula a relação entre os tipos de variáveis através de um ajuste dos

parâmetros de uma equação de acordo com os dados observados. Quando há

apenas uma característica (do inglês, feature) independente, a regressão é sim-

ples, e quando há mais de uma feature, é conhecida como regressão múltipla. Da

mesma forma, quando há apenas uma variável dependente, é considerada regres-

são univariada, quando se tem mais de uma variável dependente, é considerada

regressão multivariada (Goodfellow et al., 2016).

Seja a seguinte regressão representada pela equação ŷ = Xẇ que possui

um vetor ~X de dimensão m× n e um vetor de pesos ajustáveis ~w de dimensão

n× 1, onde n é a quantidade de características independentes e m é a quantidade

de instâncias do conjunto de dados. Ao calcular os valores estimados ŷ para

todas as m instâncias utilizando os pesos w, é necessário avaliar o quanto o

estimador está errando. Essa avaliação é feita por meio de uma função de perda,

que pode ser representada pelo erro médio quadrático (MSE, do inglês mean

squared error), conforme mostrado na Equação 2.13 (Goodfellow et al., 2016).

e =
1

m

m∑
i

(ŷi(w)− yi)2 (2.13)
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O objetivo da regressão é minimizar o erro e utilizando um algoritmo

de otimização. Isso significa que, ao minimizar o erro médio, será estimado o

vetor de coeficientes w, que, ao ser multiplicado pelos valores das variáveis

independentes X, fornecerá a estimativa do valor da variável dependente. Em

geral, esse processo de ajuste de pesos é chamado de treinamento do modelo de

aprendizagem de máquina.

2. Máquinas de vetores suporte

SVM é uma técnica robusta que pode ser aplicada em problemas de

classificação que tem como base encontrar um hiperplano que separe todas as

características pertencentes ao banco de dados da melhor forma num espaço n-

dimensional (Santos et al., 2002). A Figura 6 mostra a abordagem que o algoritmo

SVM utiliza para um banco de dados com duas dimensões, onde x1 e x2 são duas

features de uma base de dados genérica (Chollet, 2021).

Figura 6 – Fronteira de decisão resultante do treinamento do classificador SVM,
evidenciando os vetores de suporte que definem a margem máxima
entre as classes representadas pelas cores azul e verde.
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Em um problema de classificação em duas dimensões, com dois grupos

(verde e azul), o objetivo é encontrar uma reta que maximize a distância entre

esses grupos. O vetor ~w é perpendicular a essa reta e possui uma norma ||w||.

Para maximizar a separação entre os grupos, é equivalente a maximizar ||w||

ou, de forma equivalente, minimizar a distância entre os dois hiperplanos de

margens, dada por 2
|~w| , sujeito à restrição 2.14.

yi(w
T ∗ xi + b) ≥ 1,∀ 0 ≤ i ≤ n. (2.14)

Onde yi é a classe que a instância xi pertence, w é o vetor normal a reta, e

b é o viés.

Uma das principais vantagens desse método é que seu processo de trei-

namento não se baseia no método do gradiente descendente5. Por isso, ele não

corre o risco de ficar preso a mínimos locais, o que é um problema comum em

métodos não convexos . O problema que o SVM busca resolver é um problema

de otimização convexa, o que garante que a solução encontrada será globalmente

ótima. O SVM depende da distribuição dos dados para encontrar uma reta ou

hiperplano ótimo que separe as classes de um conjunto de dados de forma ade-

quada (Chollet, 2021). A Figura 7 ilustra a distribuição de um conjunto de dados

de difícil separabilidade, encontrar uma superfície que separe tais classes de

forma eficiente é um problema complexo, portanto o SVM utiliza um recurso

adicional chamado função de kernel.
5 Método de otimização utilizado para encontrar um mínimo local de uma função.
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Figura 7 – Conjunto de dados artificialmente construído com classes de difícil
separação linear.

As funções de Kernel, por sua vez, permitem ao SVM lidar com problemas

não lineares, mapeando os dados de entrada para um espaço de características de

maior dimensionalidade, (do inglês, feature map), onde é mais provável encontrar

um hiperplano de separação. Diversos tipos de funções de kernel são utilizados

no SVM para realizar tal mapeamento, como as funções de kernel polinomiais, as

funções de kernel de base radial e as funções de kernel sigmóides, permitindo que

o SVM encontre hiperplanos de separação quando os dados não são linearmente

separáveis no espaço original (Chollet, 2021). Assim, a função de kernel é um

recurso essencial do SVM para lidar com problemas de classificação não lineares,

permitindo que o algoritmo encontre uma superfície de generalização ótima em

um espaço de características de maior dimensionalidade.

2.2.2 Modelos de aprendizagem quântica de máquina

Os princípios fundamentais da QC têm o potencial de aprimorar o desempenho

dos modelos de ML em vários casos, uma vez que dados podem ser preparados e
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processados de forma muito mais eficiente do que nos algoritmos convencionais.

Existem quatro formas distintas de combinar técnicas de QC e ML, que se

distinguem pelo tipo de dado do problema e o tipo de hardware empregado

para processar o algoritmo sendo ou quântico ou clássico (Dunjko; TAYLOR;

BRIEGEL, 2016). Essas abordagens e suas descrições estão ilustradas na Tabela 2.

Tipo de Modelo
C Q

C
Processamento de Dados Clássicos

utilizando modelos de ML
inspirados em quântica

Processamento de Dados Clássicos
utilizando modelos de QML

Ti
po

de
D

ad
o

Q Processamento de dados Quânticos
utilizando algoritmos de ML

Processamento de Dados Quânticos
utilizando modelos de QML

Tabela 2 – Abordagens em QML para Processamento de Dados Clássicos e Quân-
ticos.

Vale ressaltar que a estratégia de detecção de falhas desenvolvida nesta

pesquisa enquadra-se na categoria de processamento de dados clássicos utili-

zando algoritmos de QML conforme mostrado na Tabela 2. Esses algoritmos são

construídos com base em circuitos quânticos parametrizados - PQC. A seguir,

serão discutidos os fundamentos essenciais desses algoritmos.

2.2.3 Circuitos quânticos variacionais

Os Circuitos Quânticos Variacionais também conhecidos como Circuitos Quân-

ticos Parametrizados, são compostos por uma sequência de portas quânticas

unitárias, algumas das quais dependem de parâmetros contínuos que podem ser

ajustados durante o processo de treinamento de um modelo de ML. Esses tipos

de circuitos são fundamentais para o trabalho com QML. Dentre as propriedades
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fundamentais para circuitos quânticos variacionais, Sim et al. [2019] propuse-

ram duas métricas importantes para avaliação: expressabilidade, que mede a

capacidade do circuito de explorar o espaço de estados quânticos, e capacidade

de emaranhamento, que avalia o grau de correlação quântica entre os qubits

no circuito. O circuito mostrado na Figura 8 é um exemplo de um circuito que

possui expressibilidade e capacidade de emaranhamento.

Figura 8 – Circuito com Expressibilidade e Capacidade de Emaranhamento.

O circuito descrito possui uma camada com portas Hadamard (H), rotação

em Z (Rz), porta CNOT (Cx) e rotação em Y (Ry). As portas Hadamard aplicam

superposição aos qubits, rotacionando suas esferas de Bloch em torno do eixo X

por π
2
. As portas Rz, parametrizadas por um vetor de ângulos ~Θ, giram o estado

dos qubits em torno do eixo Z. A configuração circular de portas CNOT entre

os qubits [q4, q0], [q0, q1], [q1, q2], [q2, q3], [q3, q4] emaranha os estados dos qubits.

Finalmente, as portas Ry aplicam rotações ao redor do eixo Y, gerando mais

estados emaranhados e preenchendo a esfera de Bloch.

De acordo com Hubregtsen et al.[2020], os PQCs, utilizados como modelos

para classificação em tarefas de ML, apresentam uma forte correlação entre sua

capacidade de generalização e sua expressibilidade. Em contrapartida, existe

uma correlação fraca entre a capacidade de generalização e a capacidade de
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emaranhamento. Isso sugere que circuitos com maior expressibilidade podem

ser bons candidatos para tarefas de classificação, pois são capazes de explorar

uma ampla gama de estados quânticos. É também importante notar que circuitos

altamente expressíveis podem enfrentar problemas como os barren plateaus, que

dificultam a otimização devido à diminuição do gradiente da função de custo.

Outros fatores como o tamanho do conjunto de treinamento, a arquitetura

do circuito e o tipo de algoritmo de otimização são cruciais para o desempenho

das tarefas de classificação em QML. A escolha da codificação dos dados também

desempenha um papel fundamental, pois, assim como em algoritmos de ML

convencionais, essa representação numérica afeta significativamente a perfor-

mance dos modelos de QML. Esse processo, denominado vetorização (do inglês,

Embedding), pode ser feito por métodos como codificação de base, amplitude e

ângulo (LaRose et al., 2020), e impacta diretamente nas métricas de classificação

como Acurácia, Precisão, Recall e F1-Score (RATH; DATE, 2024).

2.2.4 Modelos de QML híbridos

Os modelos híbridos de QML combinam métodos clássicos e quânticos para

aproveitar as vantagens de ambos os paradigmas, visando melhorar a eficiên-

cia computacional e a capacidade de aprendizado em tarefas complexas como

classificação, regressão e otimização. Essa abordagem se justifica pela habilidade

dos modelos quânticos de explorar espaços de Hilbert de alta dimensionalidade,

permitindo representar e separar padrões que seriam difíceis de distinguir com

métodos clássicos.

Um exemplo dessa combinação é o modelo híbrido QSVM para classi-

ficação (QSVC), que une a computação clássica e quântica para aprimorar a

capacidade de classificação. O SVM clássico pode enfrentar algumas dificulda-
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des para encontrar um hiperplano que separe bem as classes disponíveis em

um conjunto de dados e mesmo utilizando um função de kernel clássica esse

mapeamento pode ter um alto custo computacional. Por outro lado, o QSVM

supera essas limitações ao mapear os dados clássicos para um espaço quântico

de dimensão superior por meio de uma função kernel implementada através de

um PQC, o que proporciona uma separação mais eficaz entre as classes. Essa

abordagem utiliza princípios da mecânica quântica para otimizar o mapeamento

dos vetores de características, como demonstrado por Schuld [2021], que rea-

lizaram a analogia entre a estrutura dos kernels e as medições em algoritmos

quânticos (Petruccione et al., 2018).
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3

PROBLEMA DE DETECÇÃO DE

FALHAS EM MANUTENÇÃO

PREDITIVA

Neste capítulo, serão explorados os conceitos relacionados ao pro-

blema de detecção de falhas em manutenção preditiva. Com o

objetivo de contextualizar sua relevância, apresentar uma revisão

das estratégias já implementadas e discutir como os avanços em computação

quântica podem contribuir para esse campo, particularmente no desenvolvi-

mento de soluções mais eficientes e robustas.

3.1 Abordagens modernas de manutenção de equi-

pamentos industriais
A evolução das práticas de manutenção industrial reflete uma transição significa-

tiva das abordagens tradicionais para métodos mais avançados, impulsionados

por tecnologias emergentes. Entre essas abordagens, destaca-se a manutenção



Capítulo 3. Problema de Detecção de falhas em Manutenção Preditiva 42

preditiva, que utiliza análise de dados em tempo real para prever falhas com base

nas condições operacionais atuais e históricas dos equipamentos (GILABERT et

al., 2017). Essa estratégia reduz tanto o tempo de inatividade planejado quanto o

não planejado, prolonga a vida útil dos ativos e melhora a eficiência operacional.

A Figura 9 mostra as etapas adotadas em um processo de manutenção

preditiva, além disso, ajuda a entender onde a estratégia híbrida quântico-clássica

de detecção de falhas desenvolvida nessa pesquisa pode atuar para melhorar a

performance desse processo. Note na Figura que após um pré-processamento e

análise dos dados coletados a partir de um sistema de IoT, conforme mostrado

nos blocos amarelo, rosa e laranja é feita a detecção de falhas através de um

algoritmo de aprendizagem de máquina, ilustrada no bloco verde.

Figura 9 – As etapas de um sistema de Manutenção Preditiva como exemplo
para um determinado equipamento da indústria 4.0.

A Manutenção Preditiva tem se beneficiado das tecnologias da Indústria
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4.0, como Big Data, Internet das Coisas e Inteligência Artificial, que possibilitam

decisões mais precisas por meio da análise avançada de dados, como mostra

a Figura 9. A integração de informações coletadas por sensores embarcados

em equipamentos — como vibração, temperatura e velocidade — permite a

construção de modelos preditivos capazes de identificar padrões operacionais,

antecipar falhas e indicar o momento ideal para intervenções. Essa abordagem

torna a manutenção mais inteligente, pois substitui o modelo reativo por ações

programadas com base em previsões confiáveis. No entanto, a adoção dessas

tecnologias enfrenta desafios importantes, como a fusão de dados oriundos

de múltiplas fontes, especialmente diante do crescente volume de informações

geradas em tempo real por sistemas de monitoramento industrial (FENG; LI,

2022; RAN et al., 2019).

3.2 Computação quântica aplicada em estratégias de

detecção de falha
A computação quântica representa uma fronteira emergente no processamento

de dados complexos, com potencial significativo para aprimorar estratégias de

detecção de falhas em sistemas industriais. Esta, por sua vez, visa antecipar

falhas em equipamentos a partir da análise de dados provenientes de sensores

e sistemas de monitoramento, permitindo intervenções planejadas e evitando

paralisações não programadas. No entanto, a elevada dimensionalidade e o

desbalanceamento entre as classes de Falha e Não Falha desse conjunto de dados

impõem desafios computacionais substanciais.

Modelos de ML são amplamente utilizados em estratégias de detecção de

falha para tarefas de classificação, identificando padrões que precedem certos

tipos de falhas, como falhas mecânicas e elétricas. Contudo, quando aplicados a
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grandes volumes de dados multivariados, esses modelos enfrentam limitações

quanto ao tempo de processamento e à capacidade de generalização. Algoritmos

quânticos, como os circuitos variacionais e os classificadores quânticos como

Quantum Neural Networks e QSVM, têm demonstrado capacidade de lidar com

essas limitações ao explorar espaços de alta dimensionalidade de forma mais

eficiente. A codificação de dados clássicos em estados quânticos permite explorar

correlações não triviais entre variáveis, aprimorando a sensibilidade à detecção

de anomalias (Ajagekar, 2020).
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4

METODOLOGIA

A presente pesquisa é de natureza aplicada, análise qualitativa, quan-

titativa e abordagem descritiva, de modo a extrair informações

relevantes sobre a aplicação de QML no desenvolvimento de es-

tratégias híbridas quântico-clássicas para aplicá-las em detecção de falhas. O

estudo foi conduzido por meio de uma abordagem exploratória, objetivando a

extração de informações relevantes acerca da produção atual no âmbito do tema.

Esse procedimento se mostra de grande relevância, uma vez que destaca a sua

importância para a comunidade científica e sua utilidade no enfrentamento de

desafios práticos ainda não resolvidos.

A estratégia híbrida quântico-clássica aplicada em detecção de falhas foi

desenvolvida utilizando ferramentas disponíveis em bibliotecas específicas para

a criação de modelos de QML, implementados na linguagem de programação

Python utilizando as bibliotecas comuns de ML e computação quântica dentre

elas se destacam Scikit-Learn, Pandas e Qiskit, executada no simulador quântico

chamado kuatomu, que contem bons recursos computacionais para simular a

quantidade de qubits necessária para a execução dessa estratégia (LAQCC, 2025).
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Além disso, o seu desenvolvimento foi fundamentado através de uma revisão

da literatura que incluiu estudos relevantes em diversas áreas. Primeiramente,

foram considerados trabalhos sobre QML, com ênfase em modelos de classifi-

cação, com contribuições de autores como Schuld [2021], Wittek [2014], Jerbi et

al. [2023], Mitarai et al. (2018] e Emmanoulopoulos et al. (2022). Em seguida,

foram considerados trabalhos sobre ML convencional, com ênfase em modelos

de regressão conforme apresentado por Medsker et al. (2001), Shaheen et al.

(2023) e Dangut et al. (2023). Por fim, a literatura sobre Detecção de Falhas foi

analisada, com destaque para os estudos de Tscharke et al. (2023), Vilela et al.

(2023), Abidi et al. (2022), Sakhnenko et al. (2021), .

Após a análise dessas literaturas, foram identificados os desafios para

responder a questão de pesquisa dessa dissertação de mestrado que foi: Como o

desempenho de uma estratégia híbrida quântico-clássica, composta por um classificador

baseado em Máquinas de Vetores de Suporte (SVM) com kernel calculado por um

circuito quântico parametrizado, se comporta na identificação e classificação de falhas

em conjuntos de dados com alta dimensionalidade e desbalanceamento?. Assim, como

objetivo geral foi proposta uma estratégia de detecção de falhas utilizando um

algoritmo de máquinas de vetores suporte aprimorado por uma função de kernel

quântica e a partir disso, analisar os possíveis cenários de sua utilização, com

intuito de discutir as vantagens de detecção de falhas usando um modelo híbrido

quântico-clássico. Com o intuito de facilitar o entendimento dos procedimentos

metodológicos adotados para solucionar cada objetivo específico do Capítulo 1,

seguem abaixo suas relações com os métodos adotados, respectivamente:

1. Desenvolver modelos de SVM compostos por funções de kernel quânti-

cas e clássicas para classificação. Para isso, foram implementados modelos
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de SVM utilizando tanto funções de kernel clássicas quanto quânticas.

2. Desenvolver regressores para previsão de valores de cada feature em um

determinado intervalo de tempo. Foram criados modelos de regressão

independentes para cada feature do conjunto de dados e foi estabelecido

um intervalo de tempo que será melhor detalhado nas próximas seções.

3. Avaliar e comparar o desempenho dos modelos quanto às métricas de

ML frequentemente utilizadas e a eficiência computacional. A análise

comparativa foi conduzida por meio de métricas padronizadas, como preci-

sion, recall, accuracy, F1-score, avaliação das matrizes de confusão, curvas

ROC-AUC e para a eficiência computacional foi feita uma comparação

entre as métricas alcançadas e a quantidade de vetores suporte que cada

configuração de modelo utilizou.

4. Analisar as implicações práticas e os possíveis cenários de aplicação dos

modelos desenvolvidos. Foi realizada uma análise considerando as van-

tagens e limitações de cada abordagem, com foco em cenários industriais

reais onde essa essa estratégia poderia ser aplicada de forma eficaz.

Os procedimentos metodológicos adotados nesse estudo foram divididos

em duas etapas principais. A primeira etapa concentrou-se na implementação de

um modelo quântico de QML para classificação, Quantum Support Vector Machine,

com o objetivo de identificar a ocorrência ou não de falhas, a segunda etapa

concentrou-se em um desenvolvimento mais simples de modelos de regressão

para realizar um experimento de manutenção preditiva, como ilustrado na Figura

10. Vale ressaltar que a etapa de classificação realizada pelo modelo quântico
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demandou um tempo de análise mais aprofundado, por ter sido o aspecto central

dessa pesquisa.

Figura 10 – Framework com a estratégia híbrida de detecção de falhas com apren-
dizado quântico adotada.

As seções seguintes apresentarão maiores detalhes da metodologia para

melhor compreensão. Na Seção 4.1 será apresentado o caso de estudo dessa

pesquisa. Na seção 4.2 serão descritos os procedimentos de pré-processamento

dos dados para executar a estratégia. E, por fim, na seção 4.3 será feita uma dis-

cussão dos métodos usados para avaliar os resultados alcançados pelos modelos

desenvolvidos.
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4.1 Caso de Estudo
A estratégia híbrida de detecção de falhas implementada foi aplicada nos dados

de um sistema de um aerogerador, cuja operação ininterrupta e eficiente é crucial

para a geração de energia limpa. Esses equipamentos operam em ambientes

submetidos a ventos intensos, variações bruscas de temperatura, elevados ní-

veis de umidade, presença de agentes corrosivos e turbulências atmosféricas,

o que contribui para o desgaste progressivo dos componentes, aumentando

significativamente o risco de danos que podem comprometer a estabilidade

do fornecimento energético. O sistema de detecção de falhas em aerogerado-

res envolve a coleta de dados sensoriais das principais partes da turbina, tais

como gerador, eixo principal, sistema de transmissão e pás, cujo agrupamento

em séries temporais permite inferir o comportamento do sistema ao longo do

tempo e identificar padrões que antecedem possíveis falhas através de modelos

computacionais (Vilela et al., 2023).

O conjunto de dados utilizados encontra-se na plataforma Kaggle 1 e

foi adequado para o treinamento da estratégia desenvolvida nessa dissertação

de mestrado. Destaca-se que esse conjunto de dados já foi utilizado em outros

trabalhos que utilizaram modelos convencionais para executar algoritmos de

ML que identificam falhas.

Esse conjunto de dados contém três arquivos com as seguintes descrições:

• O arquivo Scada.csv contém uma série temporal de medições realizadas

entre maio de 2014 e maio de 2015, com intervalos regulares de 10 minutos.

Esses dados foram coletados por um sistema SCADA (do inglês, Supervi-
1 <https://www.kaggle.com/code/yohanesnuwara/iiot-wind-turbine-analytics/

notebook#2.-Time-series-analysis>

https://www.kaggle.com/code/yohanesnuwara/iiot-wind-turbine-analytics/notebook#2.-Time-series-analysis
https://www.kaggle.com/code/yohanesnuwara/iiot-wind-turbine-analytics/notebook#2.-Time-series-analysis
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sory Control and Data Acquisition) e compreendem diversas features que

caracterizam o funcionamento operacional do aerogerador

• O arquivo Fault.csv registra os períodos em que foram identificadas falhas

no aerogerador, categorizadas conforme os tipos apresentados na Tabela 3;

• O arquivo Status.csv fornece informações sobre o status operacional da

turbina ao longo do tempo, permitindo relacionar os eventos de falha aos

diferentes modos de operação.

Tipo de Falha Quantidade Porcentagem Causa
Falha no Sistema de Resfriamento a Ar (AF) 254 casos 45,90% Problemas relacionados ao sis-

tema de refrigeração do aeroge-
rador.

Falha de Alimentação (FF) 254 casos 45,90% Problemas na fonte de energia do
aerogerador, como falhas na co-
nexão elétrica ou nos circuitos in-
ternos.

Falha de Excitação (EF) 174 casos 31,50% Incapacidade do gerador de pro-
duzir eletricidade de maneira efi-
ciente, resultando em perda de
geração ou operação instável.

Falha de Geração (GF) 43 casos 7,80% Problemas na conversão de ener-
gia mecânica em elétrica, como
defeitos no gerador.

Outras Falhas (MF) 82 casos 14,80% Englobam falhas mecânicas e ou-
tras falhas não especificadas.

Tabela 3 – Distribuição de tipos de falhas do aerogerador e suas causas.

4.2 Procedimentos para execução da estratégia
A estratégia de detecção de falhas caracteriza pela Entrada dos Dados, Prepa-

ração dos Modelos e Execução da Estratégia composta pelo modelo quântico e

clássico, conforme o framework exposto na Figura 10. Cada uma dessas etapas

serão detalhadas nas próximas subseções.
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4.2.1 Entrada dos Dados

Conforme mencionado anteriormente, o arquivo Scada.csv está organizado como

uma série temporal e o arquivo Fault.csv contém os registros dos instantes em

que ocorreram falhas específicas. Esses dois arquivos foram integrados e a série

temporal foi mantida de tal forma que se associou os registros de falha do

Fault.csv às respectivas instâncias do arquivo Scada.csv. As instâncias de tempo

que não apresentaram ocorrência de falhas foram rotuladas como "Não Falha".

Após essa integração, foi realizada a etapa de limpeza dos dados, com a remoção

de valores ausentes (NaN), resultando em um conjunto final com dimensão de

49134 instâncias e 54 features.

Primeiramente, testou-se a capacidade do simulador quântico kuatomu

para treinar o classificador desenvolvido com todas as features. Entretanto, de-

vido às restrições do simulador (que não permite simular sistemas com mais

de 16 qubits), optou-se pela redução de dimensionalidade dos dados por meio

da Análise de Componentes Principais PCA (do inglês, Principal Component

Analysis). Para isso, gerou-se uma curva de variância cumulativa do conjunto de

dados, representada no gráfico da Figura 11. Observa-se que o eixo horizontal

indica o número de componentes principais, e o eixo vertical, a variância acu-

mulada. À medida que o número de componentes aumenta, a variância cresce

de forma que, a partir de 4 componentes, atinge-se acima de 78% de variância

cumulativa. Assim, reduziu-se a dimensionalidade para 16, 8 e 4 componentes

principais, preservando aproximadamente 93%, 91% e 78% da variância dos

dados, respectivamente.
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Figura 11 – Variância Comulativa dos dados

.

As instâncias desses últimos conjuntos de dados com a dimensionalidade

reduzida foram divididas em dois subconjuntos: o Conjunto A, com 29.001

instâncias, destinado ao treinamento e teste dos algoritmos que comporão a

estratégia híbrida, e o Conjunto B, que foi reservado para o teste.

4.2.2 Tratamento do desbalanceamento do conjunto de da-

dos

Para tratar o desbalanceamento dos dados no conjunto A, aplicou-se undersam-

pling, reduzindo a quantidade de amostras da classe majoritária para minimizar

viés e melhorar a identificação das classes de falha. Além disso, foi atribuída

uma distribuição de pesos com base na frequência de cada categoria, garan-

tindo maior importância às classes minoritárias e equilibrando a contribuição de

todas as classes no treinamento. Por último, antes do treinamento, aplicou-se a
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padronização dos dados com StandardScaler, transformando-os para uma distri-

buição de média zero e desvio-padrão unitário garantindo que todas as features

do aerogerador estejam na mesma escala para um treinamento mais eficiente e

consistente.

4.2.3 Preparação dos Modelos para compor a estratégia hí-

brida

Os classificadores foram inicialmente treinados com o conjunto de dados A. A

principal diferença entre a arquitetura do SVC clássico e o SVC quântico está na

função de kernel utilizada. Nos modelos clássicos, foram empregadas funções de

kernel convencionais: Base Radial, Linear, Polinomial e Sigmóide, disponíveis

na biblioteca Scikit-learn. E, no QSVC, foram utilizadas funções de kernel quânti-

cas, que foram calculadas através dos PQCs implementados. Para isso, foram

testados três tipos de PQCs: EfficientSU2, Real Amplitude e ZZFeatureMap.

Além disso, cada PQC foi avaliado com quatro diferentes estratégias de emara-

nhamento: Linear, Completa, Circular e Deslocada Circular Alternada. O tipo de

emaranhamento introduz diferentes tipos de correlações entre os estados dos

qubits, ampliando o espaço de soluções e tornando o algoritmo mais eficiente e

robusto em comparação com simulações clássicas.

As Figuras 12 e 13 ilustram a estrutura de funcionamento dos kernels

quânticos utilizados.
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Figura 12 – Modelo Híbrido de Aprendizagem Quântica

Os codificadores das N features do conjunto de dados são os PQCs: Effici-

entSU2, Real Amplitudes e ZZFeatureMap ilustrados na Figura 13, que também

apresenta as estratégias de emaranhamento. Esses circuitos realizam o mapea-

mento dos dados para um espaço de Hilbert de alta dimensionalidade (dimensão

2n para n qubits) (Petruccione et al., 2018). O classificador é híbrido, com otimi-

zação clássica dos parâmetros e o PQC atuando como Feature Map. A abordagem

explora propriedades quânticas para representar as features em um espaço expo-

nencialmente mais rico (2n dimensões) com apenas n qubits, o que pode facilitar a

identificação de superfícies de decisão com melhor capacidade de generalização

em problemas complexos.
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Figura 13 – Arquiteturas de kernels quânticos e emaranhamentos investigadas
no trabalho.

A quantidade de qubits na codificação varia conforme o circuito escolhido:

o Real Amplitudes utiliza N
2

qubits para codificar N variáveis, o EfficientSU2

emprega N
4

qubits, enquanto o ZZFeatureMap emprega N qubits para N va-

riáveis. Assim, os dois primeiros circuitos reduzem a quantidade de qubits no

espaço de busca, o que pode facilitar a otimização ao exigir menos qubits para

representar o problema. Além disso, o emaranhamento nos circuitos quânticos

introduz correlações entre os estados dos qubits que carregam a informação das

instâncias do conjunto de dados do aerogerador, ampliando o espaço de soluções

e tornando o algoritmo mais eficiente e robusto em comparação com simulações
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clássicas. Por fim, o treinamento dos modelos QSVC segue o mesmo princípio

do SVC clássico, pois o kernel quântico apenas mapeia os dados para um espaço

de maior complexidade e o processo de otimização continua sendo clássico.

A previsão das features foi realizada com os regressores treinados e tes-

tados, usando a biblioteca scikit-learn nos conjuntos de dados com 16, 8 e 4

componentes principais, dentro de um intervalo de tempo de 20 períodos que é

o equivalente à 3 horas e 20 minutos, uma vez que cada instância do conjunto de

dados possui um intervalo de tempo de 10 minutos.

4.2.4 Execução da estratégia híbrida

Após realizado o treinamento e teste dos modelos quânticos separadamente,

aqueles que alcançaram as melhores métricas foram integrados para formar

a estratégia híbrida de detecção de falhas. Os regressores treinados e testados

foram alimentados com os dados do Conjunto B e suas previsões foram utilizadas

como entradas para os classificadores de tal modo que se identificasse futuras

falhas no tempo de 3h20min.

4.3 Procedimento de análise
O estudo da qualidade dos resultados foi realizada utilizando métricas conven-

cionais de Aprendizado de Máquina. Para os modelos de classificação, foram

consideradas as seguintes métricas: Acurácia, que mede a proporção de previsões

corretas; Recall, que avalia a capacidade do modelo de identificar corretamente

todas as instâncias de falha, minimizando os falsos negativos; Precisão, que

indica a proporção de falhas corretamente identificadas entre todas as instâncias

classificadas como falhas, sendo essencial para reduzir a ocorrência de falsos

positivos; e F1-Score, que calcula a média harmônica entre precisão e recall.

Além dessas métricas, foi feita uma análise das matrizes de confusão para
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verificar o desempenho detalhado dos modelos em cada classe. Para compre-

ender a complexidade dos classificadores, também foi avaliada a quantidade

de vetores de suporte utilizada por cada configuração. É importante destacar

que um modelo mais complexo, com maior número de vetores de suporte, não

é necessariamente inferior. Essa complexidade reflete a dificuldade do modelo

em encontrar uma superfície de generalização adequada. Assim, modelos com

mais vetores de suporte podem, inclusive, apresentar melhor desempenho que

aqueles com menos vetores e métricas inferiores.

Adicionalmente, foi realizada uma análise aprofundada por meio da

Curva ROC, que compara a taxa de verdadeiros positivos com a de falsos posi-

tivos, e da AUC, que quantifica a capacidade do modelo de distinguir entre as

classes de falha e não falha. A AUC foi comparada entre os conjuntos de treino e

teste para garantir a consistência dos resultados.

Para os modelos de regressão, foram utilizadas as métricas MAE (Erro

Absoluto Médio), MSE (Erro Quadrático Médio), RMSE (Raiz do Erro Quadrático

Médio) e R (Coeficiente de Determinação), que mede a proporção da variância

explicada pelo modelo.
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5

RESULTADOS E DISCUSSÕES

Neste capítulo, os resultados alcançados serão discutidos. É impor-

tante ressaltar que o principal objetivo desta dissertação de mes-

trado é avaliar o desempenho da estratégia híbrida quântico-clássica

em detectar falhas utilizando um conjunto de dados desbalanceado e com alta

dimensionalidade.

Na Seção 5.1, são apresentados os resultados obtidos da performance

individual dos modelos híbridos quântico-clássico na detecção de falhas e na

Seção 5.2 serão apresentados os resultados de um experimento que foi feito com

os modelos híbridos quântico-clássico que obtiveram melhor performance para

detecção de falhas aplicados em valores previstos por regressores.
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5.1 Análise da Performance dos Modelos Clássico e

Quântico
Nesta seção é apresentada a análise comparativa realizada entre os modelos

SVM compostos por kernels quânticos e clássicos aplicados à detecção de falhas

de um aerogerador. A comparação visa identificar as vantagens e limitações de

cada abordagem, contribuindo para a escolha de estratégias mais eficazes de

detecção de falhas.

5.1.1 Análise dos Modelos de Classificação

Os modelos de classificação SVM com kernels quânticos e clássicos foram treina-

dos individualmente utilizando a amostra de dados do Conjunto A, conforme

descrito nas Seções 4.1 e 4.2.1. Nesse contexto, foi avaliada a performance de

12 modelos SVM com kernels quânticos e 4 modelos SVM com kernels clás-

sicos, com o objetivo de realizar uma análise comparativa do desempenho dos

modelos de SVM com esses diferentes tipos de kernels. Essa avaliação foi rea-

lizada por meio das métricas padrão de aprendizagem de máquina: Acurácia,

Recall, Precisão e F1-Score. Além disso, foram utilizadas as CMs e as Curvas

RoC-AuC para investigar se houve overfitting e a capacidade da identificação

de falhas específicas, considerando o conjunto dados resultante após as técni-

cas aplicadas para reduzir o alto grau de desbalanceamento do conjunto de

treinamento. É importante destacar que o problema em questão é multiclasse

e, portanto, as curvas ROC-AUC foram calculadas utilizando a estratégia One-

Vs-Rest (OvR). Nessa abordagem, uma curva ROC é gerada para cada classe
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tratando-a como positiva enquanto as demais são combinadas como classe ne-

gativa. Além disso, a área sob a curva (AUC) foi calculada usando a média

macro (Macro-Averaged AUC), que corresponde à média aritmética das AUCs

individuais de cada classe e a quantidade de vetores suporte foi registrada para

verificar a complexidade do modelo.

A Tabela 4 apresenta as métricas alcançadas pelos modelos de SVM

para diferentes tipos de kernels quânticos e clássicos. Os dados demonstraram

variações significativas no desempenho que dependeu do: kernel utilizado, do

tipo de emaranhamento aplicado e do número de componentes principais do

algoritmo de SVM.
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Tabela 4 – Resultados das métricas para diferentes tipos de kernel treinados e
testados com a base de teste do conjunto A.

Kernel Emaranhamento Comp. Principais No de Vetores Suporte Acurácia Precisão Recall F1-Score

ZZFeatureMap Linear 8 778 62.80% 59.22% 62.80% 56.63%
4 320 68.00% 68.54% 68.00% 67.58%

Full 8 880 59.20% 52.77% 59.20% 50.71%
4 328 36.40% 41.57% 36.40% 38.34%

Circular 8 803 61.60% 57.80% 61.60% 54.85%
4 315 41.60% 44.98% 41.60% 41.37%

SCA 8 803 61.60% 57.80% 61.60% 54.85%
4 315 41.60% 44.98% 41.60% 41.37%

Real Amplitudes Linear 16 290 75.60% 78.66% 75.60% 75.63%
8 224 63.60% 64.94% 63.60% 62.89%
4 297 22.80% 39.86% 22.80% 27.18%

Full 16 307 80.40% 80.67% 80.40% 79.96%
8 213 76.80% 77.41% 76.80% 76.09%
4 297 22.80% 39.86% 22.80% 27.18%

Circular 16 292 75.60% 78.10% 75.60% 75.25%
8 220 62.80% 67.53% 62.80% 63.54%
4 297 22.80% 39.86% 22.80% 27.18%

SCA 16 292 75.60% 78.10% 75.60% 75.25%
8 220 62.80% 67.53% 62.80% 63.54%
4 297 22.80% 39.86% 22.80% 27.18%

EfficientSU2 Linear 16 229 66.40% 68.11% 66.40% 66.62%
8 321 32.00% 40.87% 32.00% 35.28%
4 285 24.00% 36.67% 24.00% 26.77%

Full 16 236 66.00% 71.20% 66.00% 67.61%
8 321 32.00% 40.87% 32.00% 35.28%
4 285 24.00% 36.67% 24.00% 26.77%

Circular 16 235 65.60% 68.82% 65.60% 66.72%
8 321 32.00% 40.87% 32.00% 35.28%
4 285 24.00% 36.67% 24.00% 26.77%

SCA 16 235 65.60% 68.82% 65.60% 66.72%
8 321 32.00% 40.87% 32.00% 35.28%
4 285 24.00% 36.67% 24.00% 26.77%

Classical Kernel: Linear - 16 198 66.80% 72.40% 68.80% 68.34%
8 256 61.60% 68.29% 61.60% 60.44%
4 235 65.20% 65.65% 65.20% 62.15%

Classical Kernel: Polinomial - 16 184 75.20% 77.53% 75.20% 74.20%
8 190 74.00% 75.92% 74.00% 73.21%
4 232 63.20% 66.58% 63.20% 63.25%

Classical Kernel: Rbf - 16 164 76.00% 78.95% 76.00% 75.85%
8 166 68.8% 70.52% 68.80% 68.94%
4 201 42.00% 44.80% 42.00% 42.35%

Classical Kernel: Sigmoid - 16 152 43.20% 56.45% 43.20% 48.23%
8 155 37.60% 54.35% 37.60% 43.92%
4 159 36.40% 53.74% 36.40% 42.68%

Modelos Clássicos e Quânticos de Classificação com 16 PCs
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Os resultados dos modelos com 16 componentes principais, apresentados

na Tabela 4, indicam que o modelo SVM com kernel Real Amplitudes e emara-

nhamento Full obteve o melhor desempenho entre as abordagens testadas. Esse

modelo alcançou uma acurácia de 80.40%, uma precisão de 80.67%, um recall

de 80.40% e um F1-Score de 79.96%. Esses valores refletem um bom equilíbrio

entre as métricas, sugerindo que o modelo possui uma capacidade eficaz de

classificação e generalização.

Por outro lado, o modelo SVM com kernel EfficientSU2 e emaranhamento

Full apresentou o pior desempenho para o conjunto de 16 features, com uma

acurácia de 66.00%, uma precisão de 71.20%, um recall de 66.00% e um F1-Score

de 67.61%. Esses resultados indicam que essa configuração foi menos eficiente em

comparação ao modelo baseado no kernel Real Amplitudes com emaranhamento

Full.

Dentre os modelos clássicos, o SVM com kernel Polinomial alcançou uma

acurácia de 75.20%, com precisão de 77.53%, recall de 75.20% e F1-Score de 74.20%.

Esses resultados indicam um desempenho sólido e equilibrado, embora ligeira-

mente inferior ao modelo SVM com kernel Real Amplitudes. Já o modelo com kernel

RBF obteve uma acurácia de 76.00%, precisão de 78.95%, recall de 76.00% e um

F1-Score de 75.85%, destacando-se como um dos modelos clássicos mais eficazes.

Em contraste, o kernel Sigmoid apresentou o pior desempenho, com uma acurá-

cia de apenas 43.20% e métricas de precisão, recall e F1-Score significativamente

inferiores.

Além das métricas tradicionais de Aprendizagem de Máquina, as análises

das matrizes de confusão dos modelos são essenciais, especialmente em cenários

onde o conjunto de dados apresenta um alto grau de desbalanceamento entre as
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classes. A avaliação dessas matrizes permite uma compreensão mais detalhada

dos erros de classificação, auxiliando na identificação de possíveis ajustes para

melhorar o desempenho do modelo.

As matrizes de confusão referente aos modelos de SVM com kernels

quânticos com 16 Componentes Principais estão mostradas na Figura 14.

Figura 14 – Matrizes de Confusão SVM com 16 Componentes Principais

Observando as matrizes de confusão, dentre os modelos do tipo Real

Amplitudes o que alcançou maiores métricas foi com emaranhamento quântico

Full. Ele conseguiu identificar corretamente 5 tipos de Falha AF, 15 tipos de Falha

MF, 30 tipos de Falha FF, 5 tipos de Falha EF, 1 tipo de Falha GF e 134 tipos de
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Não Falha. Apesar de ter alcançado as melhores métricas, conforme apresentado

na Tabela 5, esse modelo cometeu erros ao classificar quatro instâncias que não

correspondiam a falhas como sendo falhas. Além disso, os modelos com emara-

nhamento Linear, Circular e SCA demonstraram um desempenho ligeiramente

superior na identificação correta de casos de falha do tipo FF.

Embora o modelo SVM com kernel que utiliza emaranhamento Full tenha

apresentado os melhores resultados, é fundamental destacar que esse tipo de

emaranhamento é altamente custoso para a implementação em computadores

quânticos reais. Isso ocorre devido à complexidade associada à implementação de

portas de controle, como as portas CNOT, que exigem um alto nível de fidelidade

e aumentam significativamente os recursos computacionais necessários. Portanto,

aqui é necessária uma análise mais aprofundada e que está fora do escopo

deste trabalho, para verificar a viabilidade de implementação em dispositivos

quânticos reais.

Por outro lado, em relação ao modelo SVM com kernel quântico Effici-

entSU2, note que nesse caso, dentro dos casos de Falhas os modelos apresentaram

resultados semelhantes entre os tipos de emaranhamento. Porém, o que con-

seguiu identificar mais tipos de falhas corretamente foi o modelo SVM com

o kernel também tendo emaranhamento Full. O modelo conseguiu identificar

corretamente 6 Falhas AF, 14 Falhas MF, 30 Falhas FF, 5 Falhas EF, 1 Falha GF.

Além disso identificou corretamente 109 tipos de Não Falha, Apesar disso, ele

identificou incorretamente 29 tipos de casos de Não Falha como Falha. Além

disso, vale à pena destacar que apesar desse modelo ter identificado correta-

mente mais casos de Falha. Os modelos com emaranhamento Circular e SCA

conseguiram identificar corretamente mais tipos de Falha FF e uma quantidade
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maior de casos de Não Falha.

Por fim, se tratando de execução em dispositivos quânticos reais, seria

interessante, em trabalhos futuros, testar um algoritmo quântico como o Effi-

cientSU2, esses circuitos utilizaram somente 4 qubits e alcançaram resultados

interessantes para 16 componentes principais. Uma análise de viabilidade pode

ser estudada para implementação em dispositivos da era NISQ.

Em contrapartida, dentre os tipos de kernel clássicos o que conseguiu

identificar um maior número de Falhas foi RBF. Esse modelo conseguiu identi-

ficar corretamente 3 tipos de Falha AF, 18 Falhas MF, 42 Falhas FF, 5 Falhas EF,

1 Falha GF. Além disso, identificou corretamente 132 tipos de Falhas 132, mas

identificou incorretamente 6 casos de Não Falha como Falha.

As curvas RoC-AuC referente aos modelos de SVM com kernel quântico

utilizando 16 componentes principais são mostradas na Figura 15.
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Figura 15 – Curvas RoC-AuC com 16 Componentes Principais

No caso do Real Amplitudes com emaranhamento Full, em geral apresen-

tou um bom desempenho. Somente na generalização da classe GF que o AUC

fico aproximadamente 0.50. Já o modelo que apresentou o melhor resultado, em

geral, para todas as classes obteve um excelente desempenho.

Por outro lado, embora as curvas ROC-AUC do modelo SVM com kernel

EfficientSU2 tenham apresentado um ótimo desempenho durante o treinamento,

as métricas obtidas ao testar o modelo com novos tipos de instâncias foram

relativamente baixas. Isso indica que o modelo não conseguiu generalizar bem

para novos dados. Esse trade-off é indicativo de overfitting, o que pode estar
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associado ao conjunto de dados ou a baixa complexidade do modelo, visto que o

EfficientSU2 é um circuito que reduz a dimensão do espaço de features a quarta

parte.

Dentre os kernels clássicos, de modo geral, demonstraram um bom de-

sempenho durante o treinamento e, com base nas métricas obtidas, indicaram

uma capacidade satisfatória de generalização para o conjunto com 16 features.

No entanto, o kernel sigmoid, embora tenha apresentado valores elevados de

AUC para determinadas classes no treinamento, não obteve um desempenho sa-

tisfatório na distinção entre os diferentes tipos de falhas presentes nas instâncias

do conjunto de testes.

Por fim, a análise da complexidade dos modelos na tarefa de generaliza-

ção é ilustrada na Figura 16, que apresenta a quantidade de vetores de suporte

utilizados na abordagem One vs. Rest para cada classe de falha. A média desses

valores, consolidada na Tabela 3, fornece uma estimativa do esforço computacio-

nal associado à separabilidade de cada classe. Valores mais elevados indicam

maior esforço do modelo para identificar fronteiras decisórias, possivelmente de-

vido à maior sobreposição entre as classes ou variabilidade interna. Essa análise

permite avaliar a complexidade intrínseca do problema e contribui para decisões

sobre escalabilidade e otimização do sistema.
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Figura 16 – Número de vetores de suporte utilizados para separar cada classe
das demais na estratégia One vs. Rest para 16 componentes principais

O modelo SVC com kernel Real Amplitudes e emaranhamento Full, utili-

zando 16 componentes principais, apresentou o maior desempenho entre todos

os modelos testados, com uma média de aproximadamente 307 vetores de su-

porte. A Figura 16 revela que a separação da classe NF (Não Falha) das demais

exigiu a maior quantidade de vetores, o que pode ser atribuído ao fato de essa ser

a classe majoritária, mesmo após a aplicação de técnicas de undersampling. Esse

comportamento sugere que, apesar da redução do desequilíbrio, a dominância

da classe NF ainda impõe maior esforço ao modelo para estabelecer uma super-

fície de decisão adequada, refletindo uma possível dificuldade em distinguir

instâncias marginais dessa classe em relação às classes minoritárias.

O segundo melhor desempenho foi observado no modelo clássico com
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kernel RBF, também com 16 componentes principais, que utilizou em média

164 vetores de suporte — praticamente metade do número utilizado pelo mo-

delo quântico. Ainda assim, esse modelo também apresentou maior número de

vetores de suporte na separação da classe NF, reforçando a hipótese de que a

estrutura do conjunto de dados, especialmente o desequilíbrio residual, impõe

uma complexidade adicional à modelagem dessa classe.

Essa diferença no número de vetores de suporte entre os dois modelos evi-

dencia uma troca entre complexidade e desempenho: embora o modelo baseado

em Real Amplitudes tenha exigido maior capacidade de generalização (indicada

pelo número mais alto de vetores), isso resultou em um desempenho superior.

Isso mostra que, a maior complexidade não deve ser interpretada negativamente,

mas sim como uma resposta necessária às características do problema.

Modelos clássicos e quânticos de classificação com 8 componentes prin-

cipais

Os resultados dos modelos com 8 features apresentados na Tabela 6 mos-

tram que o modelo SVM com kernel Real Amplitudes e emaranhamento Full se

destacou como o melhor modelo entre os SVMs treinados com 8 features. Esse

modelo alcançou uma acurácia de 76.80%, uma precisão de 77.41%, recall de

76.80% e F1-Score de 76.09%. Por outro lado, o modelo SVM com kernel Effici-

entSU2 e emaranhamento Full apresentou um desempenho inferior, evidenciado

por métricas mais baixas. Esse resultado pode ser atribuído à estrutura do mo-

delo, que reduz a dimensionalidade do espaço de features para um quarto do

original. Com apenas dois qubits para representar as oito componentes princi-

pais, há uma perda substancial de capacidade representacional, comprometendo

a separação eficiente entre as classes, tais métricas foram: Acurácia de32.00%,
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precisão de 40.87%, recall de 32.00% e F1-Score de 35.28%.

Além disso, observa-se que as diferentes estratégias de emaranhamento

não impactaram significativamente os resultados desse modelo. Isso se deve

ao fato de que, com apenas dois qubits disponíveis, as variações no padrão de

emaranhamento não geram correlações expressivas entre os estados quânticos,

limitando seu efeito na capacidade de generalização do modelo.

O modelo SVM com kernel ZZFeatureMap e emaranhamento Linear para

oito componentes principais obteve uma acurácia de 62.80%, precisão de 59.22%,

recall de 62.80% e F1-Score de 56.63%. Esse modelo apresentou o melhor desem-

penho entre os SVMs treinados com oito componentes principais. No entanto, de

forma geral, o ZZFeatureMap não alcançou métricas expressivas nesse cenário,

o que é um aspecto relevante a ser destacado, dado que esse método mantém a

quantidade de qubits igual ao número de componentes principais do conjunto

de dados.

Dentre os modelos clássicos, o Kernel Polinomial obteve uma acurá-

cia de 74.00%, com precisão de 75.92%, recall de 74.00% e F1-Score de 73.21%,

oferecendo um bom desempenho, semelhante ao Real Amplitudes com ema-

ranhamento Full. O Kernel Rbf, por sua vez, obteve uma acurácia de 68.80%,

com precisão de 70.52%, recall de 68.80% e F1-Score de 68.94%, destacando-se

como um dos melhores modelos clássicos e mostrando um bom equilíbrio entre

precisão e recall.

Por outro lado, o Kernel Sigmoid apresentou , novamente, o pior de-

sempenho, com uma acurácia de 37.60%, precisão de 54.35%, Recall de 37.60% e

F1-Score de 43.92%. Este modelo, portanto, não foi eficaz na tarefa de classificação

para os dados analisados.
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Em síntese, o kernel Real Amplitudes e estratégia de emaranhamento Full

com 8 features se mostrou superior, tanto entre os modelos quânticos quanto

clássicos, enquanto os modelos clássicos com kernels Polinomial também apre-

sentou um bom desempenho. Por fim, o ZZFeatureMap e o Kernel Sigmoid

ficaram abaixo das expectativas, com resultados inferiores aos demais.

As matrizes de confusão referente aos modelos de SVM com kernels

quânticos com 8 Componentes Principais estão mostradas na Figura 17.

Figura 17 – Matrizes de Confusão SVM 8 Componentes Principais
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As matrizes de confusão mostraram que dentre os modelos SVM que utili-

zaram o kernel ZZFeatureMap. O emaranhamento Circular foi o que alcançou os

melhores resultados, identificando corretamente 16 tipos de Falhas somente. Em

geral, esses modelos foram os que apresentaram os mais baixos desempenhos

para 8 Features em comparação com os outros tipos de kernel.

Por outro lado, as matrizes de confusão dos modelos com kernel Real

Amplitudes, mostraramm que o kernel com emaranhamento Full novamente

se destacou diante dos demais identificando corretamente 2 tipos de casos de

Falhas AF, 18 Falhas MF, 36 Falhas FF, 5 Falhas EF e 0 tipos de Falha GF. Além

disso identificou corretamente 131 casos de Não Falha. Em geral esse modelo

se destacou diante dos demais com 8 componentes principais. Outro ponto

relevante é que os outros modelos conseguiram identificar pelo menos um caso

de falha do tipo GF enquanto o que utilizou emaranhamento Full não conseguiu.

Em contrapartida, as matrizes de confusão dos modelos SVM com kernel

EfficientSU2 não demonstraram variação de performance em relação ao tipo

de emaranhamento. Como explicado nos parágrafos anteriores, esse algoritmo

quântico utiliza uma quantidade de qubits que é a quarta parte da quantidade de

componentes principais, como mostrado na Figura 13. Como são 8 componentes,

esse algoritmo quântico só terá 2 qubits e ao variar a estratégia de emaranha-

mento, as correlações geradas pelo emaranhamento não apresentarão variações,

pois o circuito continuará sendo o mesmo. Além disso, existiram muitos erros

nas identificações das classes como mostradas nas matrizes de confusão da Fi-

gura 17 e nas métricas da Tabela 5. Isso pode ser justificado por terem muito

poucos estados dos sistemas quânticos, ao ponto do algoritmo não ser capaz de

encontrar uma superfície de generalização para o problema que é complexo.
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Por fim, o modelo clássico que apresentou melhores desempenhos para

identificar tipos de Falhas foi o que utilizou kernel Polinomial e kernel RBF.

Conseguiram identificar corretamente 56 e 55 tipos de Falha respectivamente.

O modelo com kernel Polinomial identificou corretamente 3 tipos de falhas

AF, 17 falhas MF, 31 falhas FF, 5 falhas EF e 0 falhas GF e conseguiu identificar

corretamente 129 casos de não falha, classificando incorretamente 9 tipos de casos

de não falha como falha. O modelo com kernel RBF identificou corretamente 4

tipos de falhas AF, 14 falhas MF, 32 falhas FF, 5 falhas EF e conseguiu identificar

corretamente 117 casos de não falha, classificando incorretamente 21 casos de

não falha como falha.

As curvas RoC-AuC referente aos modelos de SVM com 8 componentes

principais são mostradas na Figura 18.
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Figura 18 – Curvas RoC-AuC 8 Componentes Principais

Os modelos baseados em ZZFeatureMap apresentaram desempenho sig-

nificativamente variável. A configuração ZZFeatureMap + Full atingiu um de-

sempenho quase ideal, com valores de AUC próximos a 1 para todas as classes,

enquanto as versões Linear e Circular exibiram comportamento mais instável,

possivelmente devido à maneira como os dados foram projetados no espaço

quântico.
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Na segunda linha, os kernels baseados em Real Amplitudes mostraram

maior robustez, especialmente nas configurações Full e Circular, onde a sepa-

rabilidade das classes foi maximizada. No entanto, a versão Linear apresentou

menor desempenho, sugerindo que o uso de um espaço de características mais

complexo melhora a capacidade discriminativa do modelo.

Os kernels EfficientSU2 demonstraram desempenho intermediário en-

tre as abordagens anteriores, com variações significativas entre as métricas de

similaridade. A versão Full obteve métricas mais altas, enquanto as versões

Linear e SCA tiveram desempenho inferior em algumas classes, indicando que a

profundidade do circuito pode impactar a efetividade do aprendizado.

Os modelos SVM com kernels clássicos RBF e Polynomial mostraram de-

sempenho competitivo, enquanto o kernel Sigmoid apresentou resultados mais

inconsistentes. Em alguns cenários, os kernes quânticos superaram os métodos

clássicos, evidenciando o potencial das abordagens híbridas para problemas de

classificação complexos.

Por fim, a análise da complexidade dos modelos para 8 componentes

principais na tarefa de generalização é ilustrada na Figura 19, que apresenta a

quantidade de vetores de suporte utilizados na abordagem One vs. Rest para

cada classe de falha.
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Figura 19 – Quantidade de vetores suporte utilizadas para tentar separar cada
classe das outras na estratégia One Vs. Rest para 8 componentes
principais.

O modelo SVC com kernel Real Amplitudes e emaranhamento Full utili-

zando 8 componentes principais, apresentou novamente o maior desempenho,

com uma média de aproximadamente 213 vetores suporte. A Figura 19 mostra

também que a separação da classe NF das demais exigiu maior quantidade

de vetores suporte e mostra também que a quantidade de vetores suporte dos

kernels clássicos em relação ao kernel quântico real amplitudes foi em média

igual. Note também que o kernel quântico EfficientSU2 necessitou de muitos

vetores suporte e não conseguiu obter uma superfície que generalizasse bem,

semelhante ao ZZFeatureMap.

Modelos Clássicos e Quânticos de Classificação com 4 Componentes Princi-
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pais

Os resultados dos modelos com 4 features apresentados na Tabela 6

mostram que o modelo SVM com kernel ZZFeatureMap com emaranhamento

Linear se destacou como o melhor modelo entre os SVMs treinados com 4

componentes principais. Esse modelo alcançou uma acurácia de 68.00%, uma

precisão de 68.54%, recall de 68.00% e F1-Score de 67.58%. Apesar disso, ao

utilizar 4 componentes principais os modelos SVMs com kernels quânticos e

clássicos, em geral, não conseguiram alcançar ótimos resultados.

Por outro lado, os modelos SVM com kernel EfficientSU2 e RealAmplitu-

des apresentaram um desempenho significativamente inferior, evidenciado por

métricas mais baixas. Esse resultado pode ser atribuído à estrutura do modelo,

que reduz a dimensionalidade do espaço de features para um quarto e a metade

do original, respectivamente. Com apenas um qubit e dois qubits para represen-

tar as quatro componentes principais, há uma perda substancial de capacidade

representacional, comprometendo a separação eficiente entre as classes. Como

consequência, esses modelos atingiram uma acurácia em torno de 23.00%, preci-

são de 38.00%, recall de 23.00% e F1-Score de 30.00%. Além disso, observa-se que

as diferentes estratégias de emaranhamento não impactaram significativamente

os resultados desses modelos. Devido ao mesmo fato já discutido nos parágrafos

anteriores

Dentre os modelos SVM com kernels clássicos, o Linear, obteve uma

acurácia de 65.20%, com precisão de 65.65%, recall de 65.20% e F1-Score de

62.15%, oferecendo um desempenho um pouco menor do que o modelo SVM

com o kernel quântico ZZFeatureMap Linear. Por outro lado, o Kernel Sigmoid

apresentou , novamente, o pior desempenho, com uma acurácia de 36.40%,
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precisão de 53.74%, Recall de 36.40% e F1-Score de 42.68%. Este modelo, portanto,

não foi eficaz na tarefa de classificação para os dados analisados.

As matrizes de confusão referente aos modelos de SVM com 4 componen-

tes principais são mostradas na Figura 20.

Figura 20 – Matrizes de Confusão SVM com 4 Componentes Principais

De acordo com as matrizes de confusão acima, o modelo com kernel

ZZFeatureMap com emaranhamento Linear foi o que conseguiu identificar mais
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casos de falha, totalizando 47 falhas. Dentre essas 47, o modelo identificou cor-

retamente 1 falha do tipo AF, 11 falhas do tipo MF, 34 falhas do tipo FF, 1 falha

do tipo EF e 0 falha do tipo GF. Além disso, esse modelo conseguiu identificat

corretamente 123 casos de não falha e classificou incorretamente 15 casos de não

falha como falha. É importante destacar que nesse caso o tipo de estratégia de

emaranhamento gerou grandes divergências entre os modelos. Em contrapar-

tida, analisando as matrizes de confusão referente dos modelos de SVM com

kernel quântico Real Amplitudes, observa-se que elas apresentaram o mesmo

resultado. Isso pelo mesmo motivo já discutido, como esse tipo de kernel reduz

a quantidade de qubits para a metade gerou-se um sistema quântico possuindo

somente dois qubits. Portanto o tipo de emaranhamento, nesse caso, não influen-

ciou para gerar divergências entre os resultados e em geral o desempenho desse

modelo não apresentou bons resultados. Conseguindo identificar corretamente

apenas 1 tipo de falha AF, 9 falhas MF, 1 falha FF, 0 falhas EF e GF. Além disso,

esses modelos identificaram corretamente 46 casos de não falha e classificaram

incorretamente 92 casos de não falha como falha.

Por outro lado, as matrizes de confusão referente aos modelos de SVM

com kernel quântico EfficientSU2 também se repetiu para esse tipo de kernel.

Observe que todos os modelos alcançaram os mesmos resultados insatisfatórios,

identificando corretamente somente 4 tipos de falha FF, 1 falha EF. Além disso,

identificaram corretamente 55 tipos de casos de não falha e erraram ao identificar

83 casos de não falha como falha.

Por último, ao analisar as matrizes de confusão referente aos modelos de

SVM com kernels clássicos, nota-se que o modelo que se destacou em identificar

mais tipos de falha foi o kernel linear. Identificou corretamente 16 tipos de falha
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MF, 23 falhas FF. Além disso, identificou corretamente 124 casos de não falha e

errou classificando 24 casos de não falha como falha.

As curvas RoC-AuC referente aos modelos de SVM 4 componentes prin-

cipais são mostradas na Figura 21.

Figura 21 – Curvas RoC-AuC com 4 Componentes Principais

Dentre os kernels quânticos ZZFeatureMap, observa-se que a configuração

ZZFeatureMap + Full apresentou os melhores resultados, com valores de AUC ele-
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vados e uma separabilidade bem definida. Os emaranhamentos Linear e Circular

demonstraram maior variabilidade no desempenho, enquanto o kernel ZZFeatu-

reMap + SCA também apresentou uma performance competitiva, sugerindo uma

representação eficaz dos dados.

Para os kernels baseados em Real Amplitudes, o kernel Real Amplitudes +

Full obteve um desempenho consistente, indicando que essa abordagem permite

uma melhor separação das classes. No entanto, as versões Linear e Circular de-

monstraram maior sensibilidade à escolha da métrica de similaridade, enquanto

o Real Amplitudes + SCA obteve resultados intermediários.

Já os kernels baseados em EfficientSU2 apresentaram um desempenho

mais instável. A configuração EfficientSU2 + Full foi a única que demonstrou

uma curva ROC bem definida, enquanto as versões Linear e Circular tiveram

uma performance inferior, possivelmente devido à complexidade do circuito e à

escolha da métrica de similaridade. O kernel EfficientSU2 + SCA apresentou a

maior variabilidade, indicando dificuldades na generalização dos dados.

Em comparação com os modelos clássicos, o kernel RBF se destacou

como a abordagem mais robusta, confirmando sua eficácia em problemas de

separabilidade não-linear. O kernel Linear teve um desempenho aceitável, mas

inferior às melhores configurações quânticas. Já o kernel Polynomial apresentou

variações significativas, sugerindo dificuldades de ajuste, e, por último, o kernel

Sigmoid teve um dos piores desempenhos, reforçando sua menor aplicabilidade

para esse problema.

Por fim, a análise da complexidade dos modelos para 4 componentes

principais na tarefa de generalização é ilustrada na Figura 22, que apresenta a

quantidade de vetores de suporte utilizados na abordagem One vs. Rest para
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cada classe de falha.

Figura 22 – Quantidade de vetores suporte utilizadas para tentar separar cada
classe das outras na estratégia One Vs. Rest para 4 componentes
principais.

Os modelos, em geral, não apresentaram bons resultados para 4 compo-

nentes principais, todavia o ZZFeatureMap com emaranhamento linear utili-

zando 4 componentes principais, apresentou relativamente o maior desempenho

usando 320 vetores suporte. A Figura 22 mostra novamente que a separação

da classe NF das demais exigiu maior quantidade de vetores suporte e mostra

também que a quantidade de vetores suporte dos kernels clássicos se assemelhou

a utilizada pelo ZZFeatureMap.

Modelos clássicos de Regressão

Os modelos de regressão também foram treinados com base no Conjunto
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A. A avaliação desses modelos foi realizada por meio das métricas Mean Abso-

lute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE)

e Coeficiente de Determinação (R2), conforme descrito na Seção 4.3. A Tabela 5

mostra os valores de tais métricas.

Número de Features MAE MSE R2

4 1.1 6.42 0.37
8 0.89 3.65 0.35

16 0.65 2.23 0.22
σ = 0.4921

Tabela 5 – Métricas de desempenho para diferentes números de features. O MAE
é comparado com um limite aceitável.

Os resultados apresentados na Tabela 6 fornecem uma visão detalhada

sobre o desempenho do modelo preditivo para diferentes números de features.

Inicialmente, com 4 features, o modelo obteve um MAE de 1.1 e um MSE de 6.42,

o que indica que o modelo ainda estava cometendo erros relativamente grandes.

Comparado ao desvio padrão dos dados de treino (0.4921), esses valores sugerem

que o modelo não está capturando de forma eficiente a variabilidade dos dados.

O coeficiente de determinação (R2) também foi de 0.37, refletindo que o modelo

foi capaz de explicar 37% da variabilidade dos dados, mas ainda há uma grande

parte das variações não modeladas.

Ao adicionar 8 features ao modelo, houve uma melhora em ambas as

métricas de erro. O MAE reduziu para 0.89 e o MSE caiu para 3.65, o que

indica que o aumento no número de features contribuiu para uma melhoria

nas previsões, embora o erro ainda fosse superior ao desvio padrão. Apesar

dessa melhoria, o R2 caiu para 0.35, indicando que, embora o modelo estivesse

acertando melhor suas previsões, sua capacidade de explicar a variabilidade

dos dados não aumentou significativamente. Esse comportamento sugere que
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o modelo pode não estar aproveitando todo o potencial das features adicionais

para melhorar a generalização dos dados.

Com 16 features, o modelo apresentou uma redução ainda maior no MAE,

que chegou a 0.65, e o MSE caiu para 2.23. Esse comportamento reforça a ideia

de que a adição de features permite uma maior precisão nas previsões, mas, ao

mesmo tempo, R2 continuou a cair, atingindo 0.22. Esse declínio no R2 sugere

que o modelo pode estar se ajustando demais aos dados de treino, um sinal claro

de overfitting, onde o modelo se adapta excessivamente às particularidades dos

dados, sem melhorar sua capacidade de generalização para novos conjuntos de

dados.

Em comparação com o desvio padrão dos dados de treino, que foi de

0.4921, o modelo ainda apresenta um MAE significativamente maior, o que

indica que, mesmo com a redução dos erros, o modelo não está alcançando

uma precisão ideal. Isso sugere que o modelo ainda pode ter dificuldades em

prever de forma exata os valores, dado que o erro médio está bem acima do

limite aceitável, representado pelo desvio padrão. Esse fenômeno é comum em

modelos que ainda não capturaram toda a complexidade dos dados, sugerindo

que ajustes adicionais são necessários.

Por fim, os resultados demonstram que, enquanto o aumento do número

de features melhora a precisão do modelo, a queda no R2 levanta preocupações

sobre a sua capacidade de generalização. O modelo pode estar se ajustando ex-

cessivamente aos dados de treino, o que limita sua aplicação em novos conjuntos

de dados.

A partir disso, dado esses dados previstos ainda no conjunto A, foram

utilizados os classificadores já treinados para verificar se eles conseguem uma
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boa classificação. A Tabela 7 mostra as métricas de ML alcançadas para os mode-

los que apresentaram maiores métricas para cada quantidade de componentes

principais da Tabela 6.

Kernel Emaranhamento Comp. Principais Acurácia Precisão Recall F1-Score
Real Amplitudes Full 16 74.11% 22.31% 29.10% 22.82%
Real Amplitudes Full 8 74.11% 16.49% 20.75% 14.64%
ZZFeatureMap Linear 4 67.76% 16.46% 19.90% 14.10%

Classical Kernel: Rbf - 16 70.81% 16.17% 12.12% 13.86%
Classical Kernel: Polynomial - 8 91.38% 16.21% 15.64% 15.92%

Classical Kernel: Linear - 4 57.53% 17.01% 14.42% 13.35%

Tabela 6 – Resultados de desempenho dos diferentes kernels usando o Conjunto
A.

De acordo com a Tabela 6, os experimentos indicaram que os classificado-

res apresentaram um desempenho insatisfatório na identificação das classes de

falha. Além disso, observa-se indícios de overfitting na classificação dos valores

previstos pelos regressores.

A baixa qualidade das previsões geradas pelos regressores pode ser atri-

buída às métricas MAE, MSE e R2, que apresentam valores significativamente

superiores ao desvio padrão dos dados. Esse comportamento sugere que a

presença de outliers no conjunto de dados pode ter impactado negativamente

a modelagem, tornando necessária a investigação de abordagens alternativas

para a implementação dos regressores, a fim de melhorar o desempenho das

previsões.

Neste estudo, optou-se por testar modelos mais simples para previsão

de séries temporais. No entanto, ao integrar esses modelos aos classificadores

para a identificação das classes de falha e não falha, observou-se um decréscimo

substancial no desempenho dos classificadores, indicando que essa abordagem

pode não ser a mais adequada para o problema em questão.
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5.2 Resultados da abordagem híbrida clássico-quântica

integrada aos regressores
Na etapa de integração da Abordagem Híbrida Clássico-Quântica, os modelos

foram combinados para avaliação conjunta. Para essa fase, foi utilizado o Con-

junto B, que havia sido previamente reservado como conjunto de teste, após o

treinamento independente dos modelos, conforme descrito na seção anterior.

Nesse conjunto de teste, os regressores foram empregados para prever os

valores futuros das variáveis, e, em seguida, os classificadores foram aplicados

para categorizar as previsões em uma das classes possíveis: Falha ou Não Falha.

Kernel Emaranhamento Comp. Principais Acurácia Precisão Recall F1-Score
Real Amplitudes Full 16 99.66% 55.23% 57.98% 56.17%
Real Amplitudes Full 8 99.66% 48.51% 48.32% 47.80%
ZZFeatureMap Linear 4 94.56% 34.52% 30.81% 32.17%

Classical Kernel: Rbf - 16 97.92% 34.48% 37.53% 33.30%
Classical Kernel: Polynomial - 8 92.26% 33.20% 69.34% 40.90%

Classical Kernel: Linear - 4 96.82% 22.23% 36.82% 25.06%

Tabela 7 – Resultados de desempenho dos diferentes kernels.

A inclusão dos regressores resultou em uma queda no desempenho dos

modelos, conforme apresentado na Tabela 7. Esse comportamento pode ser

atribuído à natureza do conjunto de dados, no qual as falhas geralmente se

encontram fora do desvio padrão, caracterizando-se como outliers. Consequen-

temente, os regressores tendem a se ajustar preferencialmente aos casos de não

falha, dificultando a correta previsão das falhas.

Embora esses resultados não fossem teoricamente esperados, conclui-

se que utilizar a abordagem implementada com esse tipo de regressores não

apresentou um desempenho satisfatório na prática. Em cenários como esse,

a simples implementação de um regressor dessa forma não é suficiente para
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garantir uma modelagem eficaz do comportamento das variáveis desse conjunto

de dados. Uma vez que os modelos de classificação foram treinados e testados

com as amostras de dados do conjunto A de tal modo que eles conseguiram

alcançar resultados satisfatórios.

Por fim, o capítulo 6 desta dissertação tem o intuito de discutir as con-

siderações finais desta dissertação destacando os pontos que foram tratados e

sugestões de trabalhos futuros.
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8

CONSIDERAÇÕES FINAIS

N esta disertação, foi desenvolvida uma estratégia híbrida de detecção

de falhas de um aerogerador. A metodologia utilizou um modelo

híbrido quântico-clássico para detectar falhas. Esse modelo, de-

nominado QSVM, utilizou um circuito quântico para realizar o mapeamento

das features em um espaço de maior complexidade, proporcionando, em deter-

minados cenários, um desempenho competitivo ou superior aos dos modelos

clássicos.

Dentre os modelos avaliados, destacou-se o SVM com kernel Real Ampli-

tudes e emaranhamento Full, aplicado a 16 componentes principais, alcançando

80.40% de acurácia, 80.67% de precisão, 80.40% de recall e 79.96% de F1-score nos

testes com o "conjunto A". Adicionalmente, os regressores foram treinados nesse

mesmo conjunto, preservando a estrutura temporal dos dados para garantir

previsões consistentes. Outros modelos também demonstraram desempenho

relevante, como os SVMs com emaranhamentos Linear e Circular, ambos utili-

zando 8 componentes principais. O primeiro atingiu 75.60% de acurácia, 78.66%

de precisão, 75.60% de recall e 75.63% de F1-score, enquanto o segundo apresen-
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tou resultados similares, evidenciando a influência do tipo de emaranhamento

na eficácia da classificação.

Entretanto, um dos principais desafios enfrentados foi a limitação do

conjunto de dados, o que impediu a construção de um modelo preditivo capaz

de fazer previsões com lags superiores a 3 horas e 40 minutos. Tentativas de

treinamento para períodos mais longos comprometeriam a qualidade da divisão

dos dados, afetando tanto o desempenho dos algoritmos de regressão e classifi-

cação quanto a integração da estratégia híbrida para testes com o "conjunto B".

Além disso, a disponibilidade de conjuntos de dados adequados para esse tipo

de estudo ainda é um obstáculo significativo. Dados de falhas de equipamen-

tos frequentemente apresentam limitações, como baixa quantidade de eventos

registrados, falta de padronização nos rótulos e dificuldades na obtenção de

séries temporais completas e confiáveis. Isso reforça a necessidade de estraté-

gias robustas para o tratamento e enriquecimento dos dados, garantindo que os

modelos sejam capazes de generalizar adequadamente para diferentes cenários

operacionais.

Diferentes abordagens para a estratégia híbrida também foram considera-

das, como a utilização de redes neurais recorrentes para previsão e redes neurais

quânticas para classificação. No entanto, este estudo concentrou-se na investiga-

ção de algoritmos quânticos, QSVM, com o intuito de avaliar suas vantagens na

resolução de problemas de classificação em espaços de maior complexidade. E,

em virtude disso, foram utilizados modelos de previsão baseado em regressão,

pois foram mais simples de serem implementados e interpretados. Os resultados

obtidos sugerem que modelos híbridos quântico-clássicos podem oferecer ga-

nhos em certos cenários de detecção de falhas. Todavia, vale ressaltar que este
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projeto foi desenvolvido utilizando simuladores quânticos e a estratégia não foi

testada em computadores quânticos reais, uma vez que o objetivo foi estudar

o comportamento da estratégia híbrida em cenários de manutenção preditiva

simulando um dispositivo quântico que seja tolerante à falhas feito no simu-

lador. Esses resultados contribuem para abordagens algorítmicas inovadoras

que se consiga explorar o potencial da computação quântica aplicada na área de

manutenção preditiva.

Este trabalho foi apresentado em 2023 no 1o Encontro Regional de Gru-

pos de Pesquisa em Computação e Informação Quântica - EGPCIQ, um evento

regional ocorrido no Rio de Janeiro que abordou temas relacionados às tecno-

logias quânticas. Ele também foi aceito para apresentação no evento chamado

BRACIS 2025 (Brazilian Conference on Intelligent Systems) (Nooblath; Bessa;

Freitas, 2025), uma conferência com grande relevância nacional voltado para

pesquisas em Inteligência Artificial. A aceitação nesta conferência reforça a re-

levância científica da proposta e o potencial das soluções quântico-clássicas no

contexto da IA aplicada à manutenção preditiva.

8.1 Trabalhos Futuros
Com base nos resultados obtidos neste trabalho, observa-se várias possibilidades

para investigações futuras na área de manutenção preditiva utilizando modelos

híbridos quântico-clássicos. Um caminho promissor consiste na exploração de

outras arquiteturas quânticas, como as Redes Neurais Quânticas, a fim de avaliar

seu desempenho em comparação aos kernels quânticos empregados no QSVM.

Adicionalmente, a investigação de diferentes estratégias de treinamento e otimi-
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zação dos circuitos quânticos pode contribuir significativamente para aprimorar

a estabilidade e o desempenho dos modelos, além da execução da estratégia em

hardware quântico real.

Dado que este estudo teve como foco principal a etapa de classificação

por meio de algoritmos quânticos, a etapa de regressão ainda apresenta oportuni-

dades de melhoria, visando aumentar o desempenho global da estratégia. Nesse

sentido, recomenda-se explorar técnicas de regularização, bem como revisar

o conjunto de variáveis de entrada, com o objetivo de mitigar o overfitting e

aumentar a robustez do modelo diante de novos dados. Além disso, a adoção

de estratégias como a validação cruzada pode assegurar um desempenho mais

consistente e confiável em diferentes partições do conjunto de dados.

A aplicação da estratégia híbrida proposta em diferentes tipos de equipa-

mentos industriais representa outra vertente de investigação promissora, pois

possibilita avaliar a adaptabilidade do método em distintos contextos operacio-

nais. Além disso, a análise da escalabilidade da solução em hardwares quânticos

reais, considerando limitações relacionadas ao ruído e à profundidade dos cir-

cuitos, configura-se como um desafio crucial para avanços futuros.

Por fim, a busca por novos algoritmos híbridos com menor complexidade

computacional e maior eficiência na classificação de falhas permanece como

uma linha de pesquisa aberta e altamente relevante. A identificação de casos

específicos em que algoritmos quânticos superem abordagens clássicas poderá

representar um avanço significativo para a área, fomentando novas investigações

e contribuindo para o desenvolvimento da Manutenção Preditiva baseada em

Computação Quântica
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