UNIVERSIDADE FEDERAL DO AMAZONAS DEPARTAMENTO DE GEOCIÊNCIAS PROGRAM DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS

COMPOSIÇÃO QUÍMICA E ISÓTOPOS DE ESTRÔNCIO DAS ÁGUAS AO LONGO DO RIO SOLIMÕES NA REGIÃO ENTRE MANACAPURU E ALVARÃES – AMAZONAS - BRASIL

MARIA MIREIDE ANDRADE QUEIROZ

MANAUS 2006

UNIVERSIDADE FEDERAL DO AMAZONAS DEPARTAMENTO DE GEOCIÊNCIAS PROGRAM DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS

MARIA MIREIDE ANDRADE QUEIROZ

COMPOSIÇÃO QUÍMICA E ISÓTOPOS DE ESTRÔNCIO DAS ÁGUAS AO LONGO DO RIO SOLIMÕES NA REGIÃO ENTRE MANACAPURU E ALVARÃES – AMAZONAS - BRASIL

Dissertação apresentada ao Programa de Pós-Graduação em Geociências da Universidade Federal do Amazonas, como requesito parcial para obtenção do título de Mestre em Geociências.

Área de concentração: Geologia Ambiental.

Orientadora: Profa, Dra, Adriana Maria Coimbra Horbe

Co-orientador: Prof. Dr. Candido Augusto V. Moura

MANAUS 2006

MARIA MIREIDE ANDRADE QUEIROZ

COMPOSIÇÃO QUÍMICA E ISÓTOPOS DE ESTRÔNCIO DAS ÁGUAS AO LONGO DO RIO SOLIMÕES NA REGIÃO ENTRE MANACAPURU E ALVARÃES – AMAZONAS - BRASIL

Dissertação apresentada ao Programa de Pós-Graduação em Geociências da Universidade Federal do Amazonas, como requesito parcial para obtenção do título de Mestre em Geociências.

Área de concentração: Geologia Ambiental

BANCA EXAMINADORA

Orientadora: Profa. Dra. Adriana Maria Coimbra Horbe Universidade Federal do Amazonas - UFAM

Prof. Dr. Carlos Edwar de Carvalho Freitas Universidade Federal do Amazonas - UFAM

Prof. Dr. Geraldo Rezende Boaventura Universidade de Brasília – UnB

Ofereço

À Deus Humildemente

Aos meus pais, meus irmãos, sobrinhos e amigos pelo incentivo para a realização deste trabalho.

dedico

AGRADECIMENTOS

À Deus pela dádiva da vida;

À Profa. Dra. Adriana M. Coimbe Horbe, pela orientação, revisões e os incentivos para desenvolvimento dessa dissertação;

À Universidade Federal do Amazonas (UFAM), através meio do Programa de Pós-Graduação em Geociências do DEGEO, pela oportunidade de aprendizado;

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pela concessão da bolsa de estudo;

Ao pesquisador Dr. Candido Augusto V. Moura, pela amizade e coorientação;

A todos os pesquisadores do departamento que de forma direta ou indireta auxiliaram na formação desta dissertação;

À minha amiga Fernanda Guilhon por todo o apoio, principalmente no trabalho de laboratório e, acima de tudo pelo coleguismo durante a maior parte deste trabalho;

À Rosimeire Brabo Monteiro (técnica) e Adriana Bordalo do Laboratório de Geologia Isotópica da UFPA, pelo precioso auxílio nas análises de isótopos de estrôncio;

Aos amigos Edson, Benícia, Isabella, Marcos (técnico), Ângela (colombiana), Joelma (lanchonete), Ângela (graduação), Dorian, Ercila, J.B, Deborah, pelo bom convívio e acima de tudo por todos os momento bons em que estivemos juntos;

A todos que contribuíram direta ou indiretamente para realização deste trabalho.

O trabalho sem amor, te faz escravo.
O êxito sem amor, te faz arrogante.
A autoridade sem amor, te faz tirano.
A justiça sem amor, te faz implacável.
A riqueza sem amor, te faz ávaro.
A fé sem amor, te deixa fanático.
A beleza sem amor, te deixa ridículo.
A vida sem amor... não tem sentido.

Autor desconhecido.

ABSTRACT

The present study evaluated the physical-chemical aspects of 64 water samples from

the Solimões, Purus rivers and their tributaries and Japurá river (29 from the surface, 27

from sediments in suspension and 8 of wells and springs), collected in November 2004 in

the state of Amazonas between the cities of Manacapuru and Alvarães as well as Anamã

and pirarauara. Chemical analyses of the higher elements, trace-elements, rare earth

elements, Sr isotopes, were carried out in addition to mineralogical composition analyses

on the sediments in suspension collected according to the rules in Standard Methods for

Examination of Water and Wastewater. The studied waters were divided into two groups:

black-water and white-water. The former, which includes the Solimões and Purus rivers

tributaries presents a higher SiO₂, Fe, and Al concentration, whereas the latter portrays the

highest concentration in Ca²⁺, Na⁺, K⁺, Mg²⁺, HCO³⁻, Mn, Ba, Sr, B, Ce and As. In general,

the Solimões river tributaries present higher chemical load than those of Purus river, and

white waters more than black waters. The results obtained on the isotopic ratios ⁸⁷Sr/⁸⁶Sr

showed higher ratios in the Solimões rives white waters whereas its tributaries are less

radiogenic than those of the Purus river. Kaolinite is the most abundant mineral in the

sediments in suspension, with a higher rate in the Solimões river tributaries that in the other

investigated ones. The suspended material in Ti, Zn, Ba and V, represents 98% of the total

chemical composition, since Ge is negligible in all studied waters.

KEYWORDS: Amazônia, black and white waters, trace-elements.

RESUMO

O presente estudo procurou avaliar os aspectos físico-químico de 64 amostras (29 de águas superficiais, 27 de sedimentos em suspensão e 8 de poços e fontes), coletado em novembro de 2004 no Estado do Amazonas entre as cidades de Manacapuru-Alvarães e Anamã-Pirarauara. Foram realizadas análises de elementostraço, isótopos de estrôncio, elementos terras raras, composição mineralógica e análise de componentes principal (PCA) nas águas e sedimentos coletados de acordo com as normas contidas no Standard Methods for Examination of Water and Wastewater. As águas estudadas dividiram-se dois grupos. O primeiro constituindo as águas pretas e o segundo as brancas. No primeiro grupo as águas têm menor concentração de materiais em suspensão, pH, condutividade elétrica, turbidez, SiO₂. No segundo, há maior concentração em Ca²⁺, Na⁺, K⁺, Mg²⁺, HCO₃⁻, Al, Mn, Ba, Sr, B, Ce e As. Nos elementos-traço, o Fe e Al predominam em todas as drenagens investigadas, com maior concentração nas águas pretas. De modo geral, os afluentes do Solimões têm maior carga química que os do Purus. Os resultados obtidos nas razões isotópicas 87Sr/86Sr evidenciaram razões mais elevadas nas águas brancas do rio Solimões que os demais rios, enquanto nos seus afluentes ocorreu o inverso. Os resultados obtidos a partir das análises mineralógica conclui-se que a caulinita predomina em todas as drenagens investigadas, com maior proporção nos afluentes do rio Solimões e em menor nos do Purus e nos rios Solimões, Purus, Japurá e furo Parati Grande. O material em suspensão apresentou grande variação na concentração dos elementos-traço, especialmente em Ti, Zn, Ba e V, que representam 98% do total da composição química desse material, já o Ge é inexpressivo em todas as águas estudadas.

PALAVRAS-CHAVE: Amazônia, Águas pretas e brancas; elementos-traço.

LISTA DE FIGURAS

Figura 1- Mapa de localização das amostras coletadas	22
Figura 2 - Esquema adotados para análises físicas e químicas das amostras	28
Figura 3 - Distribuição dos valores de pH nas águas estudadas	34
Figura 4 - Condutividade elétrica das amostras de água	35
Figura 5 - Turbidez das amostras de água	36
Figura 6 - Distribuição dos cátions; Ca ²⁺ , Na ⁺ , K ⁺ e Mg ²⁺ nas águas estudadas	38
Figura 7 - Distribuição de ânions; HCO ₃ -, SO ₄ ²⁻ , SiO ₂ , PO ₄ ³⁻ e Cl ⁻ nas águas estudad	las
	41
Figura 8 – Mapa de localização das amostras com valores de δ ⁸⁷ Sr	48
Figura 9 $ ^{87}$ Sr/ 86 Sr v s 1/Sr de amostras de água pretas e brancas dos afluentes c	los
Solimões e Purus e rios Solimões, Purus e Japurá em relação a rochas e sediment	tos
(Henderson, 1984; Faure, 1988 e Allègre <i>et al</i> . 1996)	50
Figura 10– Difratograma de Caulinita, Illita, Muscovita e Quartzo da amostra	de
sedimento em suspensão do igarapé Água Fria	52
Figura 11 - Fracionamento dos ETR em relação aos condritos no sedimento o	em
suspensão em μg L ⁻¹ (A), (B), (C) e (D)	60
Figura 12- Fracionamento dos ETR em relação à média crustal no sedimento e	em
suspensão em μg L ⁻¹ (A), (B), (C) e (D)	60
Figura 13 - Fracionamentos dos ETR em relação a NASC no sedimento em suspens	ão
em μg L ⁻¹ (A), (B), (C) e (D)	61
Figura 14 - PC1 <i>versus</i> PC2 das amostras de águas estudadas	65
Figura 15 - PC1 versus PC2 das amostras de sedimentos em suspensão	67

LISTA DE TABELAS

Tabela 1 - Relação entre pH e espécie química	15
Tabela 2 - Pontos de coletas, classificação das águas e coordenadas*	27
Tabela 3 - Parâmetros, métodos e equipamentos utilizados neste trabalho	29
Tabela 4 - Parâmetros físicos das águas analisadas	33
Tabela 5 - Parâmetros químicos dos elementos em mg L ⁻¹	37
Tabela 6 - Parâmetros químicos dos elementos em mg L ⁻¹	40
Tabela 7 - Composição dos elementos-traço das águas estudadas em μg L ⁻¹	43
Tabela 8 - Composição dos elementos-traço das águas estudadas em μg L ⁻¹	44
Tabela 9 - Composição dos elementos-traço das águas estudadas em μg L ⁻¹	45
Tabela 10 - Razão isotópica de ⁸⁷ Sr/ ⁸⁶ Sr nas águas fluviais amostradas	47
Tabela 11 – Composição mineralógica dos sedimentos em suspensão	51
Tabela 12 - Composição dos elementos-traço dos sedimentos em suspensão em μg	53
Tabela 13 - Composição dos elementos-traço dos sedimentos em suspensão em μg.	54
Tabela 14 - Composição dos elementos-traço dos sedimentos em suspensão em μg	55
Tabela 15 - Razões de sedimentos em suspensão e material dissolvido analisados	57
Tabela 16 - Concentrações dos ETR em sedimentos em suspensão em μg (N.A.: I	Não
Analisado)	59
Tabela 17 - Razões dos ETR Normalizados	62
Tabela 18 - Análise de componentes principais das amostras de água	64
Tabela 19 - Análise de componentes principais das amostras de sedimentos	67
Tabela 20 - Normalização (CONDRITOS) dos ETR em sedimentos em suspensão	em
μg (N.A.: Não Analisado)	75
Tabela 21 - Normalização (MÉDIA CRUSTAL) dos ETR em sedimentos em suspen	são
em µg (N.A.: Não Analisado)	76
Tabela 22 - Normalização (NASC) dos ETR em sedimentos em suspensão em μg (N	I.A.:
Não Analisado)	77

SUMÁRIO

1	INT	NTRODUÇAO					
2	ÁGI	JAS AMAZÔNICAS	7				
	2.1	Características Gerais	7				
	2.2	Relação com o Ambiente Geológico	9				
	2.3	Relação com as Áreas inundadas e os Solos	10				
3	GE	OQUÍMICA ISOTÓPICA DO ESTRÔNCIO EM ÁGUAS NATURAIS	11				
	3.1	Características Gerais	11				
4	PAF	PARÂMETROS ANALÍTICOS DAS ÁGUAS					
	4.1	Temperatura	14				
	4.2	Condutividade Elétrica (CE)	14				
	4.3	Potencial Hidrogênio Iônico (pH)	14				
	4.4	Alcalinidade					
	4.5	Turbidez	16				
	4.6	Cloreto (Cl ⁻)	16				
	4.7	Sulfato (SO ₄ ²⁻)	16				
	4.8	Fosfato (PO ₄ ³⁻)					
	4.9	Cálcio (Ca ²⁺)	17				
	4.10	Sódio (Na ⁺)	18				
	4.11	Potássio (K ⁺)	18				
	4.12	Magnésio (Mg ²⁺)	19				
	4.13	Metais	19				
5	OB	JETIVOS	20				
6	CAF	RACTERIZAÇÃO DA ÁREA EM ESTUDO	21				
	6.1	Geologia local	23				
	6.1.	1 Formação Solimões	23				
	6.1.	2 Formação Içá	24				
	6.1.	3 Depósitos Quaternários	24				
7	MA	TERIAIS E MÉTODOS	26				
	7.1	Amostragens	26				
	7.2	Procedimentos Laboratoriais de Análises	28				

	7.	3	Aná	lise de Isótopos de Sr	.30	
		7.3.1		Preparação da Coluna de Cromatográfica	.30	
		7.3.2		Separação Cromatográfica do Sr	.30	
	7.	7.4 Difi		atometria de Raios-X	.31	
8	RESULTADOS E DISCUSSÃO			ADOS E DISCUSSÃO	.32	
	8.1 PAF		PAF	RÂMETROS FÍSICOS	.32	
		8.1.	1	Temperatura, pH, Condutividade elétrica, Turbidez	.32	
	8.	2	PAF	RÂMETROS QUÍMICOS	.36	
		8.2.	1	Cálcio, Potássio, Sódio e Magnésio	.36	
	8.2.2		2	Bicarbonato, Sulfato, Sílica, Fosfato e Cloreto	.39	
	8.3 ELF		ELE	MENTOS-TRAÇO	.42	
	8.4 ISC		ISÓ	TOPOS DE ESTRÔNCIO	.46	
	8.	8.5 MA		TERIAIS EM SUSPENSÃO	.50	
		8.5.1		Composição Mineralógica	.50	
		8.5.2		Elementos-traço nos sedimentos em suspensão	.52	
		8.5.3		Elementos terras raras	.58	
	8.	6	ANÁ	ALISE ESTATÍSTICA MULTIVARIADA	.63	
		8.6.1		Águas	.63	
		8.6.2		Sedimentos	.66	
9	9 CONCLUSÃO				.68	
10	10 REFERÊNCIAS BIBLIOGRÁFICAS					
11	1 ANEXOS					

1 INTRODUÇÃO

A água é uma das principais características da paisagem na Amazônia. O rio Amazonas e seus afluentes formam o maior sistema de rios da terra. Suas áreas inundadas (várzeas) cobrem cerca de 6 milhões de km². Um sexto de toda água doce transportada pelos rios para o oceano passa pelo rio Amazonas (Sioli, 1985). As planícies ao longo do rio Amazonas encerram aproximadamente 6.500 igarapés e lagos, os quais variam em dimensões e forma. Apenas nos últimos 400 km dos quatro maiores tributários (Japurá, Purus, Negro e Madeira) encontram-se aproximadamente 2.400 igarapés e lagos (Sippel *et al.* 1992).

Os rios da Amazônia foram classificados por Sioli em função da cor de suas águas e das suas propriedades limnológicas em rios de água branca, preta e clara. Os rios de água branca são limnologicamente eutróficos, situam-se dominantemente no sudoeste da Amazônia, voltados para região andina, enquanto os de água preta são oligotróficos e estão a noroeste e os de água clara na região oriental (Sioli & Klinger, 1962). Os principais exemplos de rios com águas brancas são Amazonas, Solimões, Marañon e Ucayali e seus afluentes Javari, Juruá, Purus e Madeira ao sul, e Içá, Japurá e o Branco ao norte; de águas claras o Tapajós, Xingu e Tocantins ao sul e Trombetas, Maicuru, Paru e Jari ao norte; e de águas pretas o Negro e Uatumã ao norte, além de inúmeros afluentes menores de toda a bacia Amazônica.

Apesar de diversos estudos descreverem a hidrologia e geoquímica dos rios da Amazônia e seus principais tributários (Forsberg *et al.* 1988; Gaillardet *et al.* 1997), um levantamento bibliográfico detalhado, revelou que há poucas informações sobre os tributários dos rios Solimões e Purus. Com vista a preencher essa lacuna, foram

selecionados vários afluentes dos rios Solimões e Purus no Estado do Amazonas, localizados entre as cidades de Manacapuru e Alvarães e Anamã e Pirarauará, respectivamente. Esses afluentes refletem a geoquímica local, ao contrário dos maiores que recebem influência de vários afluentes, misturando diversos ambientes.

2 ÁGUAS AMAZÔNICAS

2.1 Características Gerais

A bacia Amazônica é a maior bacia hidrográfica do mundo, com uma drenagem de 5,8 milhões de km², sendo 3,9 milhões no Brasil. Suas nascentes estão localizadas na Venezuela, Colômbia, Equador, Peru e Bolívia. No Brasil, abrangem os Estados do Amazonas, Pará, Amapá, Acre, Roraima, Rondônia e Mato Grosso. Como é transverso à linha do Equador, o rio Amazonas apresenta afluentes nos dois hemisférios do Planeta. Segundo Irion (1984), os principais afluentes da margem esquerda, são os rios Japurá, Negro e Trombetas e na margem direita, Juruá, Purus, Madeira, Xingu e Tapajós.

Na Amazônia encontram-se três tipos de águas superficiais, classificadas por Sioli (1967), como águas brancas, pretas e claras.

Os rios de *águas brancas*, que tem suas cabeceiras nas regiões andinas, carreiam sedimentos e os depositam nas extensas áreas alagadas da Amazônia durante as enchentes, compondo os solos férteis das várzeas (Sioli, 1960). Esses rios apresentam nas margens sedimentação e erosão intensas e simultâneas. A erosão ocorre nas margens em sentido horizontal e em alguns grandes rios ocorre o fenômeno das "terras caídas", formando "ilhas flutuantes". Tais águas têm abundante material em em suspensão, coloração marom-amarelada e são relativamente ricas em concentrações de sais minerais com uma grande percentagem de metais alcalinos terrosos, principalmente cálcio, com uma alta percentagem de bicarbonato e são chamadas águas carbonatadas com pH neutro (Sioli, 1968). Aproximadamente 85-95% dos sedimentos transportados em suspensão está na faixa granulométrica de silte e

argila e os sedimentos mais grossos são encontrados no fundo, próximos da foz (Gibbs, 1967).

Os rios de *águas pretas* nascem nos escudos pré-cambrianos das Guianas e do Brasil Central. Possuem coloração marrom e quando a profundidade ultrapassa dois metros, as águas parecem realmente pretas. Apresentam fraco processo de erosão que é reduzido ainda mais pela densa mata fluvial, o que acarreta baixa carga de sedimentos e grande transparência. Água derivada dessas áreas é pobre em elementos minerais, especialmente em metais alcalinos terrosos, tendo baixo valor de pH. A acidez e a cor real das águas pretas é atribuída, segundo Walker (1987), a presença de ácidos húmicos, originados de substâncias orgânicas não mineralizadas no solo da floresta. Não formam várzeas e sim praias, por quase não possuírem sedimentos em suspensão.

Os rios de *águas claras* possuem cor verde-azulada, são mais transparente que os de águas brancas. Carreiam poucos materiais em suspensão e tem origem na Amazônia Central, que em virtude do relevo mais regular oferece menor possibilidade de erosão. O rio que tem sua origem na própria bacia Amazônica tem águas transparentes e muito ácidas, com baixas concentrações de minerais dissolvidos e são carentes em partículas suspensas. Não formam várzeas e sim praias, possuem poucos lagos e igapós, na sua planície de inundação têm pouca produção de material orgânico e o gás predominante em suas águas é o oxigênio (Sioli, 1960).

Em virtude das correntes, as águas dos rios estão em permanente renovação e mistura, enquanto que as dos lagos permanecem por mais tempo na mesma área. Assim, os rios são considerados como sistemas abertos, com características de descarga, enquanto lagos são considerados sistemas fechados, com características de

acumulação (Hutchinson, 1975). Desse modo, as águas dos lagos estão fortemente submetidas a processos bióticos e abióticos internos, que podem oxidar ou reduzir substâncias por meios diferentes daqueles que ocorrem nos rios (Junk & Furch, 1985). Na Amazônia, todo lago está em função de seu rio e todo o rio, biologicamente, está em função das várzeas, praias e igapós (Santos & Ribeiro, 1988). Os lagos da Amazônia recebem água quando os rios sobem, estocam água e a retornam em parte para o rio, quando o nível volta a baixar. Conseqüentemente, influenciam também os parâmetros hidroquímicos dos rios a que estão ligados (Junk & Furch, 1985).

2.2 Relação com o Ambiente Geológico

Segundo Sioli & Klinge (1962), apesar das características dos três tipos de águas descritos anteriormente, estarem relacionadas à geologia, elas não são sempre claramente diferenciáveis entre si. Na natureza, existem zona de transição entre águas brancas e claras, bem como entre claras e pretas e também pode ocorrer variação de tipo, ocasionalmente, devido às variações sazonais. Diferenças no quimismo dos rios material em da Amazônia, como suspensão. revelam as acentuadas heterogeneidades geoquímicas existentes no interior da bacia. As águas que procedem dos Andes são caracterizadas por elevadas turbidez, devido à alta concentração de material em suspensão, possuem pH em torno de 7 e são quimicamente mais ricas em material dissolvido do que as oriundas do Brasil Central e Amazônia Central. Águas negras e claras possuem baixo conteúdo de íons e são caracterizadas pelas altas percentagens de metais alcalinos, principalmente sódio e potássio, e altas percentagens de metais, tais como Fe, Mg, Cu, Zn e Al. Concentrações de bicarbonato são geralmente muito baixas nesses tipos de água (Gibbs, 1972).

2.3 Relação com as Áreas inundadas e os Solos

O solo da floresta é coberto de resíduos vegetais em decomposição, formando o húmus, que se deposita em uma camada de poucos centímetros de espessura. Na época das grandes chuvas e enchentes, os rios inundam as margens, num período de três a quatro meses do ano, o que favorece a decomposição do material e a liberação de nutrientes, a presença de partículas inorgânica em suspensão e material húmico colorido em solução para os rios. Portanto, tem importante influência nas águas dos rios e lagos. Durante a vazante, a vegetação se desenvolve na margem dos rios que, posteriormente, na cheia morre e se decompõe e volta para a fase aquática auxiliando a aumentar os nutrientes do sistema (Junk, 1980).

3 GEOQUÍMICA ISOTÓPICA DO ESTRÔNCIO EM ÁGUAS NATURAIS

3.1 Características Gerais

O Sr é um metal alcalino terroso do grupo IIA. Seu raio iônico (1,13 Å) é maior que o do Ca (0,99 Å), ao qual ele substitui em muitos minerais (plagioclásio, apatita, carbonatos de cálcio). Contudo essa substituição é restrita devido ao Sr²⁺ preferir sítios de coordenação octaédrica, enquanto que o Ca²⁺ preenche também as coordenações hexaédricas. O Sr²⁺ pode substituir também o K⁺, porém, esta substituição precisa ser acompanhada da troca de Si⁴⁺ por Al³⁺, para preservar a neutralidade elétrica (Faure, 1986).

O Sr tem quatro isótopos estáveis que ocorrem naturalmente 88 Sr, 87 Sr, 86 Sr e 84 Sr. O isótopo mais abundante é o 88 Sr com 82,53% e o de menor abundância é o 84 Sr, que perfaz apenas 0,26% do total dos átomos de Sr. Somente o 87 Sr é radiogênico, sendo proveniente do decaimento do 87 Rb pela emissão de uma partícula negativa (β) como mostra a equação: 87 Rb \rightarrow 87 Sr + β + ν + Q, onde β é a partícula beta, ν é um antineutrino e Q é a energia de decaimento. Devido ao 87 Sr ser produto de decaimento radioativo, a razão 87 Sr/ 86 Sr varia com o tempo e em função da razão Rb/Sr do material. Atualmente, as razões 87 Sr/ 86 Sr medidas do Sr dissolvido na água do mar situam-se na faixa de 0,709177 e 0,70923 (KAWASHITA *et al.* 1997). Essa razão é considerada homogênea devido ao longo tempo de residência do Sr nos oceanos, de cerca de 10 3 anos (Thomas Filho *et al.* 1995).

O Sr está presente em águas naturais em quantidades variáveis. Nos oceanos apresenta concentração média de 7,7 ppm (Faure, 1986). Nos rios da Amazônia a sua concentração nos materiais em suspensão varia de 40 a 176 ppm e em solução entre

4,3 e 39 ppm (Allégre *et al.* 1996). A concentração de Sr oriunda das rochas ígneas em águas subterrâneas varia de 6 a 980 ppb, de acordo com os trabalhos de Bullen *et al.* (1996) nos Estados Unidos e de Banner *et al.* (1994) nas Antilhas.

Nas águas continentais a composição isotópica do Sr é variável e depende da idade e da razão Rb/Sr das rochas por onde as águas percolam ou escoam, bem como da solubilidade relativa dos diferentes minerais em contato com a água. Nas águas dos rios da Amazônia a razão 87 Sr/ 86 Sr no material em suspensão varia entre 0,71319 \pm 0,00002 e 0,75640 \pm 0,00002 e tem sempre mais Sr radiogênico que no material dissolvido cuja razão é 0,708776 \pm 25 e 0,733172 \pm 29. Isso pode ser explicado pelo fato do material dissolvido conter uma parte significativa de Sr derivado de águas pluviais, que possuem baixa razão 87 Sr/ 86 Sr (Allégre *et al.* 1996).

A composição isotópica do Sr em água subterrânea é bastante variável e, em geral, é uma mistura da composição isotópica do Sr da água de recarga e da composição isotópica da rocha que a água percola. Nas águas subterrâneas de Wisconsin (EUA), a razão 87 Sr/ 86 Sr varia de 0,70741 e 0,71213 (Bullen *et al.* 1996), enquanto que nas águas subterrâneas da Austrália, Collerson *et al.* (1988) encontrou, valores entre 0,70446 \pm 7 e 0,71176 \pm 4. Os valores mais baixos foram interpretados como resultado da mistura entre a água de recarga do aqüífero com rochas ígneas máficas cenozóicas que apresentam uma assinatura isotópica 87 Sr/ 86 Sr juvenil.

Segundo Lyons *et al.* (1995) a variação na composição isotópica do Sr tem sido usada para determinar: 1) a fonte de Sr de um particular corpo de água; 2) a história geoquímica dessas águas (interação rocha-água); e 3) o potencial de mistura dessas águas. Diversos trabalhos realizados registram as aplicações dos isótopos do Sr no

estudo do sistema de águas superficiais e subterrâneas. Palmer & Edmond (1992), estudaram a composição isotópica do Sr em diferentes bacias de drenagem que alimentam o oceano, para investigar os mecanismos que resultam no aumento da razão ⁸⁷Sr/⁸⁶Sr nas águas dos rios.

4 PARÂMETROS ANALÍTICOS DAS ÁGUAS

Os parâmetros analíticos fornecem informações sobre o meio ambiente estudado e avaliam as possíveis alterações que nele ocorrem.

4.1 Temperatura

A temperatura afeta muitos parâmetros de qualidade, pois a velocidade das reações químicas e bioquímicas aumenta com a temperatura, assim como a solubilidade dos minerais, enquanto que a solubilidade dos gases diminui com a elevação de temperatura.

4.2 Condutividade Elétrica (CE)

A condutividade elétrica da água expressa em μS cm⁻¹, é a medida da capacidade da água conduzir eletricidade a uma determinada temperatura, sendo portanto dependente do conteúdo iônico. Assim, quanto maior a quantidade de íons dissolvido, maior a condutividade da água.

4.3 Potencial Hidrogênio Iônico (pH)

O pH da água é definido como a medida da concentração do íon H⁺ em solução, [- log (H⁺)] e determina a capacidade da água em atacar mineral e rochas (Levinson, 1974).

A dissociação do ácido carbônico (H_2CO_3), produto da dissolução do CO_2 na água tem papel fundamental no controle do pH da água, que ocorre de acordo com as reações abaixo (Hem, 1970; Levinson, 1974).

$$CO_2 + H_2O \leftrightarrow H_2CO_3$$

 $H_2CO_3^- \leftrightarrow H^+ + HCO_3^-$
 $HCO_3^- \leftrightarrow H^+ + CO_3^{-2}$

O valor numérico do pH está diretamente relacionado com o balanço entre a contribuição de íon hidrogênio, que provoca aumento de acidez, e as espécies com propriedades básicas, como os íons Ca²⁺, Na⁺, e K⁺ que causam diminuição de acidez do meio.

4.4 Alcalinidade

Alcalinidade é a medida da concentração de íons carbonatos (CO₃²⁻), bicarbonatos (HCO₃⁻) e hidróxidos (OH⁻) na água. Somente dois deles podem estar presentes simultaneamente numa mesma amostra, pois haveria reação entre hidróxidos e bicarbonatos, que levaria a formação de carbonatos (Macedo, 2003). A concentração destes íons caracteriza a capacidade tampão da água, isto é, a capacidade de manter o pH estável. Se a quantidade de carbonatos hidrogenados e íons carbonatos forem pequenos, o valor de pH da água pode decrescer consideravelmente (queda ácida) provocando problemas para os peixes e invertebrados. A relação entre o pH e as diversas formas de alcalinidade é representada na tabela 1 a seguir.

Tabela 1 - Relação entre pH e espécie químicaFaixa de pHEspécie Química4,4 - 8,3Bicarbonato8,3 - 9,4Carbonatos e bicarbonatos> 9.4Hidróxidos e carbonatos

Os teores de bicarbonatos são obtidos a partir da determinação da alcalinidade total pela fórmula: HCO_3^- (mg L^{-1}) = alcalinidade total (mg L^{-1}) x 1,22, que é a concentração de carbonatos e bicarbonatos, que ocorrem entre pH 4,40 e 7,80 (Esteves, 1988) e correspondem aos limites mínimos e máximos das águas estudadas, o que justifica a transformação da alcalinidade total em bicarbonato.

4.5 Turbidez

A turbidez se caracteriza pela "nebulosidade" da água e pode ser interpretada como a ausência de claridade ou brilho. Ela é causada pela presença de substâncias suspensas e coloidais tais como argila, matéria orgânica e inorgânica, organismos microscópicos e algas.

4.6 Cloreto (CΓ)

O Cl⁻ está presente em todas as águas naturais, com valores situados entre 10 e 250 mg L⁻¹ nas águas doces. O Cl⁻, em geral, é muito solúvel e muito estável em solução, logo, dificilmente precipita. Não oxida e nem se reduz em águas naturais. É proveniente da lixiviação de minerais ferromagnesianos de rochas ígneas e de rochas evaporíticas tal como sal-gema. O Cl⁻ é um bom indicador de poluição para aterros sanitários e lixões. Altas concentrações de cloreto são tóxicas para a maioria dos vegetais, inibindo o seu crescimento.

4.7 Sulfato (SO_4^{2-})

Origina-se da oxidação do enxofre presente nas rochas e da lixiviação de compostos sulfatados (gipsita e anidrita). Seus compostos são moderadamente solúveis

a muito solúveis, exceto os sulfatos de estrôncio (SrSO₄) e os de bário (BaSO₄). Em água doce o sulfato de cálcio (CaSO₄) satura a 1500 mg L⁻¹ e pode chegar até 7200 mg L⁻¹ em águas salinas. Em meio redutor, com abundante matéria orgânica, pode ser reduzido por ação bacteriana a S ou S²⁻ porém em geral é estável.

4.8 Fosfato (PO_4^{3-})

Segundo Mathess & Harvey (1982), devido à ação dos microrganismos, a concentração de fosfato deve ser baixa (< 0,5 mg L⁻¹) em águas naturais. Sua concentração varia entre 0,01 e 1 mg L⁻¹, podendo chegar a 10 mg L⁻¹. Valores acima de 1,0 mg L⁻¹, são indicativos de águas poluídas.

O fosfato apresenta uma nítida tendência de formar compostos com vários íons e coligações forte como os minerais de argila.

4.9 Cálcio (Ca²⁺)

O cálcio é o elemento mais abundante existente na maioria das águas e rochas do planeta Terra. Os sais de cálcio possuem moderada a elevada solubilidade, sendo muito comum precipitar como carbonato de cálcio (CaCO₃). É um dos principais constituintes da água e o principal responsável pela dureza. Apresenta-se em geral, sob a forma de bicarbonato (HCO₃⁻) e raramente como carbonato (CO₃²-).

Ocorre principalmente nos minerais calcita, aragonita e dolomita, em rochas calcárias, sendo o plagioclásio e apatita as maiores fontes de cálcio de rochas ígneas.

4.10 Sódio (Na⁺)

O sódio está presente em todas as águas, predominantemente em algumas, devido as suas características como:

- Distribuição ampla nos minerais fontes;
- Baixa estabilidade química dos minerais que o contém;
- Solubilidade elevada e difícil precipitação da maioria dos seus compostos químicos em solução.

Ocorrem principalmente sob forma de cloretos nas águas subterrâneas e seus minerais fontes em rochas ígneas são essencialmente os feldspatos plagioclásios, feldspatóides (nefelina e sodalita), anfibólios e piroxênios.

O sódio é o principal responsável pelo aumento constante da salinidade das águas naturais do ponto de vista catiônico.

4.11 Potássio (K⁺)

Apesar do potássio e sódio pertencerem ao mesmo grupo (metais alcalinos), seus comportamentos nos processos de solubilidade são diferentes. O potássio é o sexto colocado na escala de abundância dos metais nas rochas ígneas. Ocorre em pequena quantidade ou está ausente nas águas subterrâneas, devido à sua participação intensa em processos de troca iônica, além da facilidade de ser adsorvido pelos minerais de argila e, ainda, de seus sais serem bastante utilizados pelos vegetais.

Ocorre principalmente nos feldspatos potássicos e leucitas, em rochas ígneas e metarmórficas. Altas concentrações de potássio podem ser encontradas nos minerais de carnalitas e silvinita, em evaporitos.

4.12 Magnésio (Mg²⁺)

O magnésio apresenta propriedades similares ao cálcio, porém é mais solúvel e difícil de precipitar. Quando em solução, tem a tendência de nela permanecer, produzindo o enriquecimento dos seus sais nas águas dos oceanos.

Os minerais fontes de magnésio mais freqüentes são: magnesita, biotita, granada, hornblenda, clorita, alanita e olivina. O magnésio ocorre principalmente em rochas carbonáticas. Juntamente com o cálcio é responsável pela dureza e produz gosto salobro nas águas. Ocorre sob a forma geral de bicarbonato.

4.13 Metais

Os metais existem em pequenas quantidades na crosta terrestre e são, geralmente dúcteis e maleáveis, eletropositivos, bons condutores de calor e eletricidade, e tem tendência a formar compostos iônicos.

5 OBJETIVOS

A presente dissertação tem como objetivo básico aumentar o acervo de conhecimentos sobre os aspectos físico-químico e isotópico dos principais afluentes dos rios Solimões, Purus e Japurá. Desse modo, realizou-se estudos concernentes a:

- Caracterização física e química das águas dos rios Solimões, Purus e Japurá e dos seus principais afluentes (igarapés e lagos), águas de poços e fontes encontrados entre as cidades de Manacapuru e Alvarães e Anamã e Pirarauará, respectivamente;
- Analisar o comportamento da razão isotópica de ⁸⁶Sr e ⁸⁷Sr, bem como avaliar o seu uso como traçador hidrológico nas águas estudadas;
- Correlacionar esses dados com os demais rios da região;
- Caracterização mineralógica e geoquímica dos sedimentos em suspensão dos rios
 Solimões, Purus e Japurá em alguns de seus afluentes.

6 CARACTERIZAÇÃO DA ÁREA EM ESTUDO

A região de estudo localiza-se no Estado do Amazonas e engloba os principais afluentes do rio Solimões entre as cidades de Manacapuru e Alvarães e no rio Purus entre Anamã e Pirarauara com posição geográfica limitada pelas latitudes 2º a 6º Sul e longitudes 66º a 59º16'48" Leste (Fig. 1)

O acesso aos locais de coleta só foi possível por via fluvial a partir de Manaus em barco de médio porte. Para o acesso aos rios, lagos e igarapés foi utilizado um pequeno bote de alumínio a motor.

A gênese da bacia do Solimões ainda é incerta, porém a hipótese mais recente admite a possibilidade de sua origem estar relacionada à subsidência regional, devido ao regime flexural progressivo de oeste para leste em decorrência de um rifteamento paralelo à borda oeste do continente Gonduana, no Ordoviciano (Campos *et al.* 1991; Eiras, 2000). A bacia homônima teria se formado na fase de subsidência termomecânica que sucedeu esse rifteamento, juntamente com outras depressões interiores e bacias marginais. Devido não ser encontrado registro de sedimentação Juro - Triássica na bacia do Solimões, pois nestes períodos atuaram processos erosivos causados pelo soerguimento resultante da orogenia tardiherciniana (magmatismo Penecatecua) e intrusões de extensas soleiras de diabásio (Eiras *et al.* 1994). Logo, portanto, o substrato Proterozóico sobre o qual se implantou a bacia do Solimões é parte de um núcleo mais antigo, denominado província Amazônica Central (Eiras *et al.* 2000).

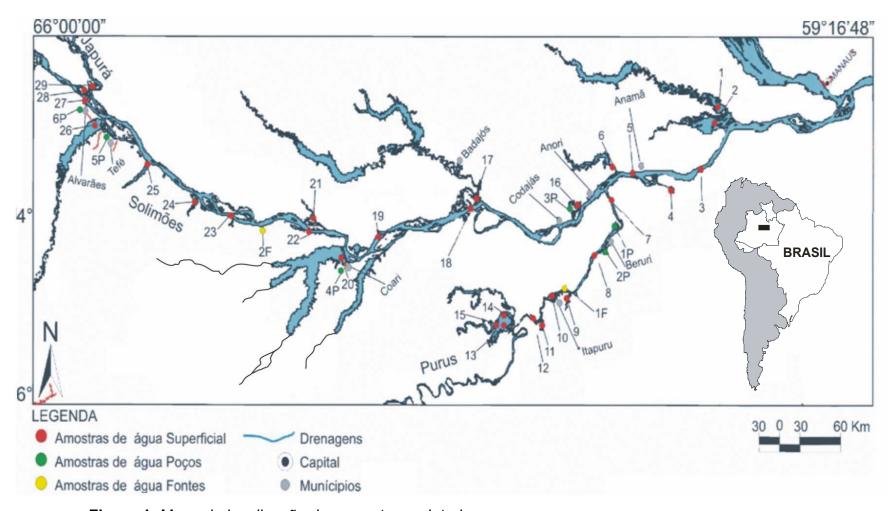


Figura 1- Mapa de localização das amostras coletadas

6.1 Geologia local

A área estudada envolve as Formações Solimões e Içá, além dos depósitos quaternário das planícies de inundação dos rios da região.

6.1.1 Formação Solimões

A Formação Solimões esta dividida em duas unidades (inferior e superior) que são discordantes sobre os depósitos da Formação Alter do Chão e subjazem com discordância erosiva à Formação Içá (Maia et al. 1977). A extensão desta formação ainda é discutida, porém o limite proposto se estende até a região do alto rio Purus. A unidade inferior consiste de argilitos de cor cinza claro, cinza, cinza esverdeado e linhitos intercalados em camadas de até 2 m de espessura. A face arenosa na parte superior da seção é constituída por arenito fino a médio, amarelo avermelhados e siltitos, localmente com conglomerados intraformacionais avermelhados, separados entre si, por uma superfície erosiva a transicional, a qual é claramente observada ao longo dos afloramentos no rios Solimões e Purus (Caputo, 1984; Nogueira et al. 2003). Este último autor descreve a presença de estratificação inclinada heterolítica nos depósitos próximos ao município de Coari/AM que são característicos de ambiente estuarino e que comprovam o último evento transgressivo no Mioceno Médio (Gingras et al.2002). Os estudos palinológicos realizados por Daemon & Contreiras (1971) sugerem idade Paleoceno-Pleistoceno, porém ostracodes encontrados nas camadas de linhito indicam idade Miocêno a Plioceno Superior, enquanto que a parte superior da unidade tem idade Pleistoceno a Holoceno (Caputo 1984). Outros autores (Hoorn, 1994; Arai et al. 2003) com base nos mesmos estudos posicionam-na no Mioceno, enguanto que Silveira (2005) a coloca no Mioceno Superior.

6.1.2 Formação Içá

Almeida (1975) denominou de Formação Içá os sedimentos sotopostos discordantes da Formação Solimões que ocorrem na porção oeste da bacia do Solimões e Acre em conveniência da denominação Sanozama. Posteriormente, para que não houvesse equívocos, Maia *et al.* (1977) sugeriu agrupar a seqüência pelítica na Formação Solimões a cobertura arenosa representada por arenitos silto-argilosos de cor amarelo avermelhados, conglomeráticos, depositados em ambiente fluvial na Formação Içá.

Segundo Maia *et al.* (1977), a Formação Içá apresenta regionalmente uma seqüência psamítica, intercalados com pelitos e conglomerados, cujo contraste textural em imagem de radar permite delinear seu contato com a Formação Solimões.

Levantamentos do Projeto Carvão no Alto Solimões executado pelo DNPM – Departamento Nacional de Produção Mineral em parceria com o CPRM – Serviço Geológico do Brasil (Maia *et al.* 1977), indicam que os afloramentos da Formação Içá estão expostos ao longo do rio homônimo até sua foz no rio Solimões, a qual, pelo conteúdo fossilífero, data do Cretáceo (Daemon & Contreiras, 1971). No entanto, Silveira (2005) com base em análises palinológicas, identificou o pólen *Alnus*, o qual aparece durante o Pleistoceno e permite atribuir essa idade a referida formação.

6.1.3 Depósitos Quaternários

Os sedimentos quaternários que afloram na região podem ser, genericamente, divididos em quaternário antigo e recente, representado respectivamente pela planície de inundação e ilhas/barras. Franzinelli & Potter (1989), ao estudarem as areais recentes dos rios da Bacia Amazônica mostraram que os sedimentos apresentam alta

heterogeneidade, maturidade textural e mineralógica entre a nascente do rio Solimões nos Andes (Peru) e a foz do rio Amazonas (Pará). Segundo estes autores os depósitos sedimentares recentes da calha do rio Solimões-Amazonas são compostos por quartzo, K-feldspato, plagioclásio, mica, hematita, fragmentos de rochas sedimentares (siltitos e arenitos), metamórficas (xistos) e vulcânicas, além de raros fragmentos de rochas carbonáticas.

7 MATERIAIS E MÉTODOS

7.1 Amostragens

A amostragens de águas e sedimentos foi realizada entre os dias 2 e 12 de novembro de 2004 no fim do período de estiagem, quando o rio atinge seu nível mais baixo.

Foram coletados 64 amostras (29 de água e 27 de sedimentos em suspensão e 8 de poços e fontes) ao longo dos rios Solimões e Purus e alguns de seus afluentes e no rio Japurá (Tab. 2). As amostras foram retiradas de jusante para montante com aproximadamente 15 centímetros de profundidade e coletadas em garrafas de polietileno de 1 L e 4,5 L previamente desmineralizadas com solução de ácido nítrico (HNO₃) a 25% (v/v), lavadas com água deionizada e seca. Durante a amostragem os recipientes foram lavados três vezes com a própria amostra.

As amostras de 1 L e 4,5 L seguiram duas abordagens distintas. Na primeira abordagem, na amostras de 1 L foram efetuadas medições de temperatura, pH, condutividade elétrica, cloreto e alcalinidade, posteriormente foram filtradas com auxílio de uma bomba de vácuo do tipo A-45 plus aspirador de marca Olidef CZ em filtro de membrana de celulose de 0,45 μm. Os primeiros 10 mL foram descartados, para diminuir a malha do filtro, no qual foram filtradas e acidificadas. Dessa mesma amostra filtrada, usou-se 400mL para digestão com HNO₃ de qualidade analítica e destilada reduzida para 100 mL para determinação de metais, análise isotópica de Sr, sílica, sulfato, fosfato e alcalinidade. Na segunda abordagem, com as amostras de 4,5 L, foram acrescentados 1 mL de sulfato de alumínio 10% (m/v) em cada amostra com o objetivo de provocar a precipitação do sedimento em suspensão. Esse precipitado das

amostras foi submetido a análises químicas e identificação mineralógica, segundo o fluxograma mostrado na figura 2.

Tabela 2 - Pontos de coletas, classificação das águas e coordenadas*

Tabela 2 - Fullos de Coletas, Classificação das aguas e Co						
Pontos	Local da coleta			Coordenadas Geográficas		
				Latitude	Longitude	
1	ig. Manacapuru	. j	A	3°12'39	60°44'40	
2	ig. Cabaliana		flu	3°18'7	60°45'8	
6	ig. Anamã		Afluentes do rio Solimões	3°33'41	61°24'55	
16	ig. Anori	.4	tes	3°56'9	61°38'3	
17	ig. Badajós		d	3°43'28	62°17'39	
20	lg. Coari	ີ່ດົ	0	4°3'47	63°9'42	
21	Ig. Copeá	\	ö	3°50'47	63°20'33	
23	ig. Ipixuna	ÁGUAS PRETAS	လွ	3°50'55	63°52'34	
24	Ig. Catuá	꾸	Į.	3°45'18	64°7'00	
25	ig. Caiambé	íñ	Õ	3°32'26	64°25'33	
26	ig. Tefé		es	3°21'22	64°45'56	
27	ig. Alvarães	တ	<u> </u>	3°12'7	64°50'13	
9	lg. Matias		!	4°16'25	61°42'44	
10	lg. Itapuru	j	Ą	4°16'30	61°49'12	
11	ig. Água Fria	. }		4°26'40	61°53'51	
12	ig. Paricatuba]	Purus	4°25'11	61°55'12	
13	Lago Aiapuá I]	Sn	4°26'41	62°7'55	
14	Lago Aiapuá II	7		4°23'40	62°6'53	
15	Lago Aiapuá III	7		4°25'57	62°11'52	
3	rio Solimões I	×	[3°32'39	60°50'8	
5	rio Solimões II	3	[3°35'28	61°18'31	
18	rio Solimões III	ÁGUAS	[3°47'12	62°19'33	
19	rio Solimões IV		[3°55'13	62°54'42	
22	rio Solimões V	BRANCAS		3°51'26	63°31'5	
28	rio Solimões VI	Ž		3°9'22	64°50'5	
7	Rio Purus I	7 8		3°44'15	61°27'48	
8	Rio Purus II	S	[4°2'31	61°31'56	
29	Rio Japurá	7	!	3°7'49	64°46'43	
4	furo Parati Gd.	7	[3°41'17	61°3'43	
1P	Beruri	7		3°54'36	61° 21'36	
2P	Itapuru	7	}	4°02'24	61° 29'24	
3P	Codajás	POÇO		3°49'12	62° 00'36	
4P	Coari	ြင္ပ	ļ	3°07'12	63° 09'36	
5P	Tefé	7	}	3°23'24	64° 41'24	
6P	Alvarães	7	!	3°13'48	64° 52'12	
1F	Itapuru	ייי	[4°14'17	61°44'10	
2F	Solimões	1		3°52'39	63°39'16	
					<u> </u>	

Ig.: igarapé; A. Purus: Afluentes do rio Purus; F.: Fonte.

^{*} As amostras estão relacionadas no sentido de jusante para montante do rio Solimões.

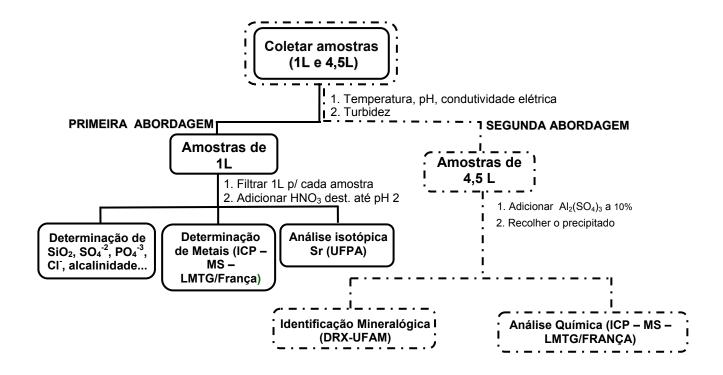


Figura 2 - Esquema adotados para análises físicas e químicas das amostras

7.2 Procedimentos Laboratoriais de Análises

Foram medidas no campo as temperaturas, pH, condutividade elétrica, alcalinidade total e cloreto, enquanto que no Laboratório de Geoquímica da UFAM mediu-se o potencial redox (Eh), turbidez, fosfato (PO₄³⁻) e o sulfato (SO₄²⁻) das águas naturais. A mineralogia do sedimento em suspensão foi investigado no Laboratório de Difração de Raios-X da Universidade Federal do Amazonas. A sílica (SiO₂), os elementos em água (Li, B, Mg, Al, Si, Ca, Sc,V, Cr, Mn, Fe, Co, Cu, Zn, Ge, As, Se, Rb, , Sr, Mo, Cd, Sb, Cs, Ba, La, Ce, Pb, U, K e Na) e sedimentos em suspensão (Ca, Sc, Ti, V, Cr, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Cd, Sn, Cs, Ba, ETR, Hf, Ta, Pb, Tl, Bi, Th, e U) no Laboratoire des Mécanismes de Transfert en Géologie (LMTG) –

Université Paul Sabatier – Toulouse – França. Os isótopos de estrôncio das águas dos rios, igarapés e lagos foram verificados no Laboratório de Geologia Isotópica do Centro de Geociências da UFPA – Pará-Iso.

As amostras de água foram analisadas obedecendo aos padrões sugeridos nos manuais técnicos: Methods for physical and Chemical Analysis of Fresh Waters (Golterman *et al.* 1978) e Standard Methods for the Examination of Wastewater (Apha, Awwa, Wpcf, 1985).

Os parâmetros, métodos analíticos e equipamentos utilizados para a análise dos constituintes dissolvidos encontram-se na tabela 3.

Tabela 3 - Parâmetros, métodos e equipamentos utilizados neste trabalho

Parâmetros / Constituintes	Métodos	Equipamentos / Marca
рН	Potenciométrico	HANDYLAB 1 – Schott
Temperatura (°C)	Termômetro de Hg	HANDYLAB 1 – Schott
Condutividade Elétrica (μS cm ⁻¹)	Condutimétrico	LF 37 – Leitfähigkeit
Alcalinidade Total (mg L ⁻¹)	Titulométrico	
Turbidez (UNT)	Turbidimétrico	AP 1000 II – Polilab
Na⁺ (mg L⁻¹)	Espectrométrico	INTRALAB AA-1475
K⁺ (mg L ⁻¹)	Espectrométrico	INTRALAB AA-1475
CI- (mg L ⁻¹)	Titulométrico	
PO ₄ ³⁻ (mg L ⁻¹)	Fotométrico	B 382 – Micronal
SO ₄ ²⁻ (mg L ⁻¹)	Fotométrico	B 382 – Micronal
SiO ₂ (mg L ⁻¹)	Espectrométrico (ICP-MS)	PERKIN ELMER ELAN-600
Elementos (1) e (2)	Espectrométrico (ICP-MS)	PERKIN ELMER ELAN-600
Mineralogia do Sedimento	Difratomêtrico	XRD 6000 - Shimadzu
Isótopos de Sr	Espectrometria de massa	FINNIGAN MAT 262

⁽¹⁾ **Elementos das Águas**: Li, B, Mg, Al, Si, Ca, Sc,V, Cr, Mn, Fe, Co, Cu, Zn, Ge, As, Se, Rb, Sr, Mo, Cd, Sb, Cs, Ba, La, Ce, Pb, e U.

⁽²⁾ *Elementos dos Sedimentos*: Ca, Sc, Ti, V, Cr, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Cd, Sn, Cs, Ba, ETR, Hf, Ta, Pb, Tl, Bi, Th, e U.

7.3 Análise de Isótopos de Sr

Da amostra filtrada foram separados 50 mL. Estas foram evaporadas completamente na chapa de grafite em temperatura em torno de 100 °C em béqueres de teflon. Em seguida foram solubilizadas com 1 mL de HNO₃ bidestilado a 3,5 N para posterior separação cromatográfica do Sr em coluna de teflon utilizando resina específica de Sr, fabricada pela indústria Eichrom tem nome comercial Sr. Spec.

7.3.1 Preparação da Coluna de Cromatográfica

Adicionou-se 300 μ L da resina Sr.spec nas colunas. O objetivo do uso da resina é separar o Sr sem interferências de metais, como cálcio, alumínio e ferro, mesmo que esses metais estejam presentes em quantidades que excedam a capacidade da coluna. Essa propriedade faz com que a Sr.spec seja ideal para a separação de Sr envolvendo amostras ambientais. Efetuou-se a limpeza da resina com duas lavagens consecutivas de 500 μ L de água ultra pura, tendo o cuidado de esperar descer toda a água para a segunda lavagem. Após a descida da água, condicionou-se a resina com 500 μ L de HNO $_3$ bidestilado a 3,5 N.

7.3.2 Separação Cromatográfica do Sr

Antes de iniciar a separação, todas as amostras foram solubilizadas com 1 mL de HNO₃. Adicionou-se 500 μL da amostra e enxaguou a coluna quatro vezes consecutiva com 300 μL de HNO₃ bidestilado a 3,5 N. Esperou a descida total de cada parcela para fazer a introdução da seguinte e após a última lavagem retirou-se o recipiente que coleta os líquidos que passaram pela coluna, os quais serão descartados e trocados por béqueres de teflon para a coleta da porção enriquecida de Sr.

Iniciou-se a eluição do Sr introduzindo duas vezes 500 μ L de água ultra pura para a coleta da solução concentrada de Sr e adicionou-se 10 μ L de ácido ortofósforico (H₃PO₄) a 0,1 M. Descartou-se a resina e lavou-se a coluna com água ultra pura. Colocou-se os béqueres na chapa aquecedora a 100 °C até secura. Encaminhou-se os béqueres da chapa aquecedora para análise espectrométrica (Tab. 2).

7.4 Difratometria de Raios-X

A determinação de minerais do sedimento em suspensão via difração de raio-X foi realizado no Laboratório de Difratometria de Geociência da Universidade Federal do Amazonas, utilizou-se o difratômetro modelo XRD-6000-Shmadzu do tipo θ -2 θ , com tubo de cobre (Cuk ∞ ₁- 1,5405 Å). A interpretação dos difratogramas é feita com o auxilio do software da Shimadzu e ICCDD-PDF. As condições instrumentais aplicadas nas análises das amostras foram: Voltagem: 40,0 (Kv), amperagem: 30 (mA), fendas usadas: 1,0 – 1,0 – 0,15, scan range: 3° a 60° (°2 θ), passo: 0,2 °2 θ , velocidade: 2° 2 θ /mim.

8 RESULTADOS E DISCUSSÃO

8.1 PARÂMETROS FÍSICOS

8.1.1 Temperatura, pH, Condutividade elétrica, Turbidez

A temperatura na área de estudo mostra que as águas pretas dos afluentes dos rios Solimões e Purus variam, respectivamente de 28,2 °C (igarapé Alvarães) a 33,3 °C (igarapé Cabaliana) e 29,3 °C (lago Aiapuá I) a 34,5 °C (lago Aiapuá II) (Tab. 4). Os rios e igarapés de água branca variam de 28,9 °C (rio Solimões V) a 33,5 °C (rio Purus II). Essas características indicam que não há variação significativa na temperatura segundo os tipos de água e a localização. As amostras com temperaturas acima de 30 °C correspondem àquelas coletadas após as 10 horas, horário de maior incidência dos raios solares, o que indica influência direta do período do dia de coleta na temperatura.

As águas pretas dos afluentes dos rios Solimões apresentaram pH (5,9-7,2) menos ácido que os do Purus (5,3-6,7), enquanto as águas brancas dos rios Solimões, Purus, Japurá e furo Parati Grande têm menor variação e são ainda mais básicas (6,5-7,1) (Tab. 4 e Fig. 3) . Esses valores são compatíveis com os encontrados nas águas pretas e brancas por Forti *et al.* (1997), Gaillardet *et al.* (1997), Küchler *et al.* (2000), entre outros na Amazônia.

Tabela 4	4 - Parâmetros físic	cos	das	águas a	analisa	das	
Pontos	Local da			Temp.		C.E.	Turb.
	Coleta			(°C)	рН	(µS/cm)	(NTU)
11	lg. Manacapuru			30,7	6,1	12,8	9
2	ig. Cabaliana		Ą	33,3	7,2	56,8	4
6	ig. Anamã		lue	30,8	6,9	86,4	8
16	ig. Anori		Afluentes	32,9	6,3	40,8	15
17	ig. Badajós		es	31,1	6,4	39,0	3
20	ig. Coari		do	29,6	6,5	21,8	4
21	ig. Copeá	A	Ξ.	29,5	6,4	61,3	12
23	ig. Ipixuna	ÁGUAS	rio Solimões	31,9	6,2	26,0	10
24	ig. Catuá	Ä	õ	31,0	6,7	22,7	7
25	ig. Caiambé		3	32,3	6,1	17,6	3,6
26	ig. Tefé	ž	õ	31,6	6,1	15,2	13
27	ig. Alvarães	ET	Ś	28,2	5,9	23,4	6
	Média	PRETAS		31,07		35,31	7,88
9	ig. Matias	0,	ì !	32,2	5,9	14,7	7
10	ig. Itapuru		_	32,3	6,7	40,5	10
11	ig. Água Fria		Α.	33,8	5,5	13,3	18
12	ig. Paricatuba		Purus	34,4	6,4	33,5	14
13	lago Aiapuá I		Su'	29,3	5,3	24,6	16
14	lago Aiapuá II		•	34,5	6,3	39,5	14
15	lago Aiapuá III			32,2	6,4	17,2	6
	Média		 	32,67		26,18	12,14
3	rio Solimões I			30,1	6,6	86,0	N.A.
5	rio Solimões II	N		29,3	7,0	92,8	14
18	rio Solimões III			29,8	6,8	94,0	11
19	rio Solimões IV	GUAS		29,6	6,5	94,7	15
22	rio Solimões V			28,9	6,7	103,3	38
28	rio Solimões VI	BR		29,2	6,7	122,4	24
	Média	BRANCAS	!	29,48		98,86	20,4
7	rio Purus I	ે		30,9	6,7	51,7	8
8	rio Purus II	AS		33,5	6,6	47,0	14
29	rio Japurá			29,7	6,5	80,5	15
4	furo Parati Gd.		[31,2	7,1	108,0	5
	Média			31,32		71,80	10,50
1P	Beruri			N.A.	5,5	41,8	0,4
2P	Itapuru	70		N.A.	6,2	137,3	3,1
3P	Codajás	Ŏ		N.A.	5,9	90,8	0,5
4P	Coari	POÇO	! 	N.A.	5,0	32,5	0,9
5P	Tefé			N.A.	4,3	130,0	0,9
6P	Alvarães			N.A.	4,7	33,5	0,6
	Média					77,65	1,06
1F	Beruri	F.		N.A.	6,5	58,1	0,5
2F	Itapuru			N.A.	6,1	24,7	0,4
	Média					41,10	0,45

Média --- 41,10 0,45

Temp.: Temperatura; C.E.: Condutividade elétrica; Turb.: Turbidez; Gd.: Grande; N.A.: Não Analisado.

As amostras poços e fontes (4,3-6,5) apresentaram maior acidez e tendem a assemelhar-se com as águas pretas estudadas. A maior acidez está nos poços Tefé e Alvarães mais a montante do rio Solimões.

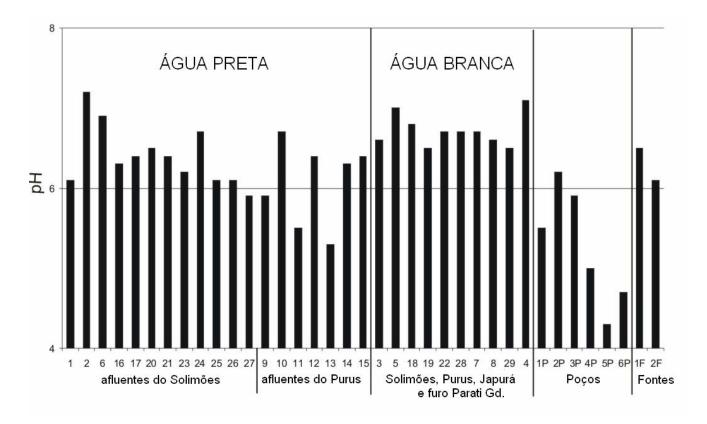


Figura 3 - Distribuição dos valores de pH nas águas estudadas

As águas brancas do rio Solimões destacam-se por terem à condutividade elétrica mais elevada (98,86 μS cm⁻¹), seguida pelos rios Purus, Japurá e furo Parati Grande (71,80 μS cm⁻¹) e as águas pretas dos afluentes dos rios Solimões (35,31 μS cm⁻¹) e as menos condutivas são os afluente do Purus (26,18 μS cm⁻¹) (Tab. 4 e Fig. 4). Esses valores estão dentro da margem de variação da águas brancas e pretas encontrados por Santos & Ribeiro (1988) e Lopes (1992).

Nos poços e fontes a condutividade elétrica apresentou-se acentuada (24,7- $137,3~\mu S~cm^{-1}$) (Tab. 4 e Fig. 4). Essas águas são as que possuem maior quantidade de íons dissolvidos, devido ao contato direto com as rochas, como será visto adiante.

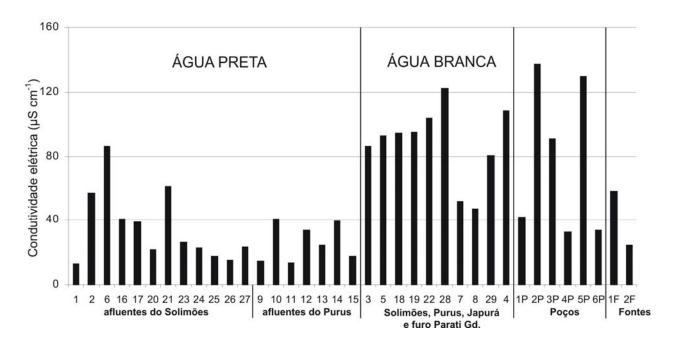


Figura 4 - Condutividade elétrica das amostras de água

As águas superficiais analisadas evidenciaram menor turbidez para as pretas das drenagens do rio Solimões (7,88 NTU) seguidas dos afluentes do rio Purus (12,14 NTU). As águas brancas do Solimões (20,4 NTU) são as mais turbidas, seguidos dos rios Purus, Japurá e furo Parati Grande (10,50 NTU) (Tab. 4 e Fig. 5). Os poços e fontes (0,75 NTU) são menos turvas, em média são três a nove vezes menos turbidas que as águas superficiais avaliadas neste estudo. A redução da turbidez para os poços e fontes deve-se a capacidade de filtração das rochas percoladas que retém o material em suspensão, enquanto, os rios têm maior contribuição dos sedimentos carreados por erosão para as bacias.

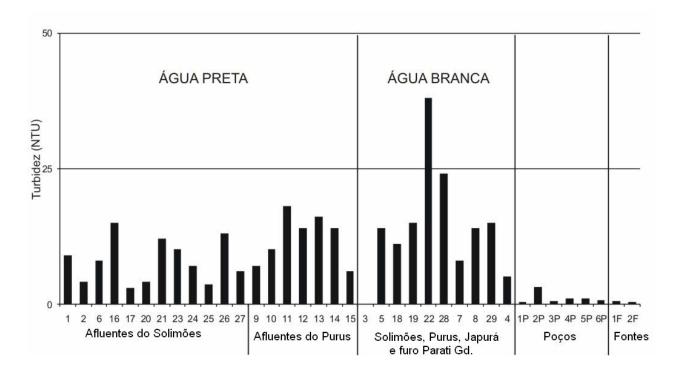


Figura 5 - Turbidez das amostras de água

8.2 PARÂMETROS QUÍMICOS

8.2.1 Cálcio, Potássio, Sódio e Magnésio

Em relação aos cátions, o Ca²⁺ é o íon mais abundante seguido do Na⁺ nas águas brancas, onde representa 63,9% da carga total de cátions. Devem-se destacar, ainda, as águas brancas dos rios Purus e Japurá que apresentam maior similaridade entre K⁺ e Na⁺ e o furo Parati Grande que se comporta quimicamente semelhante ao rio Solimões por ser um furo deste (Tab. 5 e Fig. 6).

Na maioria das águas pretas Ca²⁺ e Na⁺ se alternam como os mais abundantes, perfazem 41,9% dos cátions e são seguidos do K⁺ e Mg²⁺. Contudo há exceções, nos igarapés Catuá, Alvarães e Água Fria, o K⁺ é o mais abundante seguido do Na⁺. No Tefé, o Na⁺ e K⁺ são semelhantes. Enquanto no igarpé Ipixuna e Coari, o Na⁺ é maior que o K⁺. No igarapé Paricatuba, o K⁺ predomina e é seguido de Na⁺ e Ca²⁺.

Tabela 5 - Parâmetros químicos dos elementos em mg L⁻¹

Pontos	Local da			Ca²⁺	Na⁺	K⁺	Mg ²⁺	Σ^{+}
. 511103	Coleta	i	Γ	l	L			L
	ig. Manacapuru	į		0,50	0,76	0,39	0,13	1,78
2	ig. Cabaliana	:	Afluentes	6,32	1,84	0,98	1,31	10,4
6	ig. Anamã	ļ	<u>ue</u>	8,99	2,79	0,96	1,34	14,08
16	ig. Anori	<u> </u>	n te	3,97	1,76	0,92	0,64	7,29
17	ig. Badajós	į	Š	1,94	2,00	0,84	0,52	5,30
20	ig. Coari	!	do	0,63	1,46	1,30	0,27	3,66
21	ig. Copeá		Ž.	5,56	1,84	0,88	0,85	9,13
23	ig. Ipixuna	á	S	0,69	1,69	1,44	0,33	4,15
24	ig. Catuá	ÁGUAS	<u>Š</u>	0,81	1,38	1,61	0,38	4,18
25	ig. Caiambé	S	rio Solimões	7,21	1,15	1,30	0,27	9,93
26	ig. Tefé	P	Õ	0,57	1,00	1,07	0,14	2,78
27	ig. Alvarães	E E	S	0,94	1,46	1,78	0,28	4,46
	Média	PRETAS	<u> </u>	3,17	1,59	1,12	0,53	6,41
9	ig. Matias	S	İ	0,32	0,5	0,46	0,11	1,39
10	ig. Itapuru	!		N.A	1,69	0,92	N.A	2,61
11	ig. Paricatuba	į	Α	0,47	0,57	0,84	0,1	1,98
12	ig. Água Fria	!	Purus	2,46	1,07	1,05	0,56	5,14
13	lago Aiapuá III	İ	Ž	1	1,69	0,96	0,28	3,93
14	lago Aiapuá II	}	S	1,13	2,62	1,23	0,38	5,36
15	lago Aiapuá I	ĺ	ļ	0,33	1,23	0,78	0,12	2,46
	Média	!		0,95	1,33	0,89	0,25	3,26
3	rio Solimões I	1	Γ	8,24	2,71	1,01	1,25	13,2
5	rio Solimões II	}	[9,00	2,79	0,65	1,33	13,7
18	rio Solimões III	Þ	[9,50	2,96	1,05	1,21	14,7
19	rio Solimões IV	3	F	9,86	2,96	1,05	1,20	15,0
22	rio Solimões V	ÁGUAS	1	11,90	3,22	1,28	1,52	17,92
28	rio Solimões VI			13,62	3,30	1,25	1,70	19,8
	Média	Ž		10,35	2,99	1,04	1,36	15,7
7	rio Purus I	BRANCAS		4,29	1,76	1,28	1,10	8,43
8	rio Purus II	2		4,28	1,61	1,51	0,87	8,27
29	rio Japurá	S		8,11	1,00	0,88	1,08	11,0
4	furo Parati Grande	1		10,44	3,05	0,93	1,95	16,3
	Média	į		6,78	1,85	1,15	1,25	11,0
1P	Beruri	!		0,72	1,38	2,50	0,71	5,31
2P	Itapuru	į		9,33	4,49	4,16	3,51	21,4
3P	Codajás	PO	ļ	4,76	3,81	2,91	1,56	13,0
4P	Coari	ည့		0,35	1,30	1,66	0,93	4,24
5P	Tefé	ço		0,51	9,36	0,60	0,27	10,74
6P	Alvarães	į		0,46	1,69	1,00	0,25	3,40
	Média	!		2,68	3,67	2,13	1,20	9,70
1F	Itapuru	!		2,00 8,10	2,96	0,20	2,53	13,7
2F	Solimões	π,		2,00	0,26	1,66	0,34	4,26
	Média	!		<i>5,05</i>	1,61	0,93	1,43	9,02
. A .: Não A		i	L	J,UJ	1,01	0,33	1,43	3,02

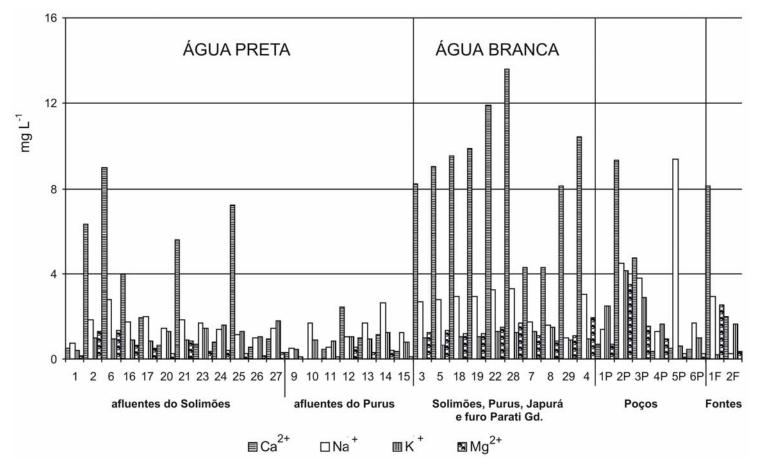


Figura 6 - Distribuição dos cátions; Ca²⁺, Na⁺, K⁺ e Mg²⁺ nas águas estudadas

Nos poços, constatou-se que o Ca²⁺ é mais elevado no Itapuru (9,33 mg L⁻¹) e Codajás (4,76 mg L⁻¹), enquanto o Na⁺ predomina em Tefé (9,36 mg L⁻¹) e Alvarães (1,69 mg L⁻¹) e Mg²⁺ no Beruri e Coari. Nos poços predomina a Ca²⁺ seguido de Na²⁺ e Mg²⁺, no de Itapuru e de K⁺ no Solimões (Tab. 5). Os teores de cátions observados nas águas de poços e fontes, em geral são mais elevados que as médias obtidas nas águas fluviais, por estarem em contato direto com as rochas.

A somatória dos cátions é maior nas águas brancas (13,85 mg L⁻¹) e se assemelha mais às águas dos poços e fontes, apesar de haver variações acentuadas

nestas últimas (Tab. 5). Nos igarapés de água preta, a somatória é um pouco maior nos afluentes do Solimões que nos do Purus.

8.2.2 Bicarbonato, Sulfato, Sílica, Fosfato e Cloreto

Na maioria das águas superficiais, o HCO₃⁻ é o ânion mais abundante exceto nos afluentes do Purus onde predomina o SO₄²⁻ e o HCO₃⁻ está abaixo do limite de detecção (< 0,02 mg L⁻¹) (Tab. 6 e Fig. 7). Nos afluentes do Solimões também há exceções, no igarapé Manacapuru predomina o SO₄²⁻ seguido do SiO₂ e no Caiambé e Tefé ocorre o inverso. No Coari e Catuá predomina o SiO₂ seguido de HCO₃⁻ e SO₄²⁻. Os teores anômalos de HCO₃⁻, SiO₂, PO₄³⁻ no Itapuru, pode ser atribuída à contaminação antrópica, visto que as amostras foram coletadas próximo ao município de Itapuru.

Em relação ao SiO₂, as águas pretas (3,57-10,30 mg L⁻¹) têm em geral teores mais elevados que as brancas (3,64-5,20 mg L⁻¹) e o conteúdo desses elementos é maior no Solimões (4,07-4,46 mg L⁻¹) que as dos seus afluentes (3,87-10,30 mg L⁻¹). Nestes últimos observa-se, inclusive, tendência de aumento de SiO₂ para os mais a montante. Nos poços e fonte somente o SiO₂ é mais elevado que as águas superficiais.

O conteúdo de PO₄³⁻ é similar nas águas estudadas, contudo há variação mais acentuada nas águas pretas do Solimões (0,50-1,65 mg L⁻¹) onde é em média mais elevado (até 1,00 mg L⁻¹) que nas do Purus (0,70 mg L⁻¹). As maiores concentrações de SiO₂ estão nas águas de poços e fontes (4,50-19,63 mg L⁻¹) por estarem em contato direto com as rochas (Tab. 6 e Fig. 7). O PO₄³⁻ apesar dos valores mais altos estarem nos poços e na fonte de Itapuru (2,62 - 2,34 mg L⁻¹, respectivamente), não indicam associação direta com as rochas.

Tabela 6 - Parâmetros químicos dos elementos em mg L⁻¹

i antia C	o - Parametros qu	411111	CUS	uus eiel		in my L	1	Ţ	r
Pontos	Local da Coleta	_		HCO ₃	SO ₄ ²⁻	SiO ₂	PO ₄ ³⁻	CI ⁻	Σ
1	ig. Manacapuru	į		< 0,02	5,31	4,02	0,71	0,20	10,24
2	ig. Cabaliana	į	Ν	15,16	5,00	5,87	0,50	0,40	26,93
6	ig. Anamã	į	f	25,19	5,42	4,31	0,70	0,80	36,42
16	ig. Anori		9	10,07	8,79	5,48	1,33	0,50	26,17
17	ig. Badajós	į	Afluentes	6,30	5,00	4,33	0,55	0,70	16,88
20	ig. Coari	!		5,07	3,72	7,79	0,51	0,40	17,49
21	ig. Copeá	į	do rio	12,60	6,38	3,87	1,12	0,20	24,17
23	ig. Ipixuna	Ď		3,50	5,00	10,30	0,65	0,20	19,65
24	ig. Catuá	3	So	5,11	5,09	8,83	1,65	0,60	21,28
25	ig. Caiambé	ÁGUAS	Solimões	0,02	3,82	7,21	1,45	0,50	13
26	ig. Tefé	,	õ	0,02	5,10	6,38	1,44	0,70	13,64
27	ig. Alvarães	꼾	ડેં	26,40	3,29	9,64	1,39	0,50	41,22
	Média	PRETAS	<u> </u>	9,12	5,16	6,50	1,00	0,47	22,25
9	ig. Matias	S	į	< 0,02	3,93	3,57	0,55	0,50	8,55
10	ig. Itapuru	!	_	< 0,02	5,85	N.A	0,83	0,70	7,38
11	ig. Água Fria	į	A.Purus	< 0,02	7,12	5,54	0,66	0,40	13,72
12	ig. Paricatuba	į	ij	< 0,02	6,91	5,41	0,54	1,40	14,26
13	lago Aiapuá I	į	sn,	< 0,02	7,91	6,18	0,88	0,30	15,27
14	lago Aiapuá II	į		< 0,02	6,59	5,77	0,96	0,30	13,62
15	lago Aiapuá III		İ 	< 0,02	15,78	4,39	0,50	0,70	21,37
	Média	<u>L</u>	<u> </u>	0,02	7,72	5,14	0,70	0,61	13,45
3	rio Solimões I	!	ļ	20,16	5,74	4,07	0,90	0,50	31,37
5	rio Solimões II	į	<u> </u>	18,78	6,80	4,25	0,83	0,30	30,96
18	rio Solimões III	Á	<u> </u>	21,37	8,35	4,20	0,90	0,20	35,02
19	rio Solimões IV	ÁGUAS	İ	23,97	7,02	4,46	0,84	1,00	37,29
22	rio Solimões V	4S	ļ	28,90	6,27	4,44	1,08	0,80	41,49
28	rio Solimões VI	B	ļ	36,51	8,57	4,07	1,72	0,50	51,37
	Média	BRANCAS	<u> </u>	24,94	7,12	4,28	1,04	0,55	37,91
7	rio Purus I	<u> </u>	ļ	12,65	7,69	4,83	0,30	0,40	25,87
8	rio Purus II	×	<u> </u>	13,82	4,04	4,91	1,52	0,40	24,69
29	rio Japurá	S	ļ	20,22	5,21	3,64	1,54	0,40	31,01
4	furo Parati Gd.	į	ļ	37,71	5,85	5,20	0,54	0,50	49,8
	Média	Ļ	į	21,10	5,69	<i>4,</i> 65	0,97	0,42	32,84
1P	Beruri	ļ	ļ	< 0,02	5,42	12,65	1,30	0,20	19,57
2P	Itapuru	į .	<u> </u>	93,25	7,23	19,63	2,62	0,10	122,83
3P	Codajás	Росо	ļ	12,60	4,68	16,62	0,96	0,70	35,56
4P	Coari	ကြွ	ļ	< 0,02	5,42	8,59	0,86	0,80	15,67
5P	Tefé	0	! !	< 0,02	5,74	4,50	0,90	2,00	13,14
6P	Alvarães	į	<u> </u>	< 0,02	5,00	7,75	0,94	0,50	14,19
	Média	Ļ	ļ	14,47	6,69	11,62	1,26	0,71	36,82
1F	Itapuru		i	< 0,02	9,67	13,38	2,34	0,10	25,49
2F	Solimões	Τ.		< 0,02	4,89	7,20	1,46	0,20	13,75
	Média	L	J	0,02	<i>7,</i> 28	10,29	1,90	0,15	19,62

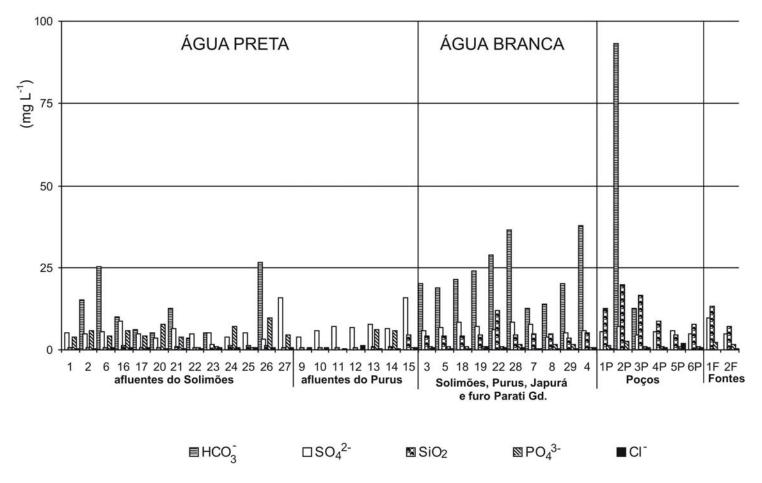


Figura 7 - Distribuição de ânions; HCO₃-, SO₄²-, SiO₂, PO₄³- e Cl⁻ nas águas estudadas

O Cl⁻ é o íon que apresentou a menor concentração dentre os ânions, sem variações entre águas pretas e brancas. A somatória dos ânions é maior nas águas brancas, enquanto os afluentes do Purus têm os menores e em ambos há tendência de aumento para montante (Tab. 6 e Fig. 7).

Na somatória da carga total dissolvida há predominância dos ânions sobre os cátions, especialmente nas águas brancas do rio Solimões, com somatória média de 37,91 mg L⁻¹. Essa diferença na carga química, que pode ser atribuída à falta de quantificação de NH₄⁺, DOC⁻, HPO₄²⁻, é natural nos rios de água clara e preta na Amazônia (Campos, 1994; Dupré *et al.* 1996; Silva *et al.* 1999 e Küchler *et al.* 2000).

A composição química das águas estudadas é similar a de Furch (1984), Gaillardet *et al.* (1997) e Külcher *et al.* (2000).

8.3 ELEMENTOS-TRAÇO

Dos elementos-traço analisados na fração dissolvida (Li, B, Al, Sc, V, Cr, Mn, Fe, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Cd, Sb, Cs, Ba, Pb, La, Ce e U), Fe, Al, Zn, Mn, Ba, Sr, Cu e B apresentaram teores mais elevados (> 0,75 μ g L⁻¹), Li, Sc, V, Cr, Co, As, Se, Rb, Pb, Mo, Cd, Sb, Cs, La, Ce e U mais baixos < 9,23 μ g L⁻¹ e somente o Ge ficou abaixo do limite de detecção (< 0,03 μ g L⁻¹) (Tabs. 7 a 9).

Apesar das variações acentuadas, o Fe é o elemento mais abundante (entre 17,4 e $2061~\mu g~L^{-1}$) nas drenagens estudadas, seguido do Al (entre 7,0 e $861~\mu g~L^{-1}$) (Tab. 7).

Ambos representam pelo menos 68,12% das cargas dos elementos traço nas águas brancas e 81,68% nas águas pretas, contudo somente o AI, mais elevado no Solimões, permite diferenciá-la das demais drenagens analisadas. Nos poços e fontes os teores desses elementos são mais baixos, exceto no poço do Beruri onde o Fe atinge valor anômalo de 2061 μg L⁻¹ e na fonte de Itapuru o Fe alcança 1900 μg L⁻¹ e AI 861 μg L⁻¹. Os teores de Fe e AI encontrados neste estudo estão na mesma unidade de grandeza que os de Gaillardet *et al.* 1997; Elbaz-Poulichet *et al.* 1998 e Mortati & Probst 2003.

Dentre os afluentes de águas pretas, apesar das variações acentuadas Zn, Ba e Sr predominam em geral nos do rio Solimões, enquanto o Mn nos do Purus. Nas águas brancas a distribuição desses elementos é bem mais homogênea e Mn, Ba e Sr tendem a ser mais elevados que nas pretas, enquanto o Zn tem teores similares (Tab. 7).

Tabela 7 - Composição dos elementos-traço das águas estudadas em µg L⁻¹

Pontos	Local da Coleta	l		Fe	AI	Zn	Mn	Ва	Sr
1	ig. Manacapuru	[[84	58	49	7	4	6
2	ig. Cabaliana			408	N.A.	180	34	34	33
6	lg. Anamã		Afluentes	216	99	43	37	53	35
16	ig. Anori		uer E	356	82	27	45	24	29
17	ig. Badajós		ı teg	189	27	11	24	19	17
20	ig. Coari		s do	238	51	15	7	9	12
21	lg. Copeá	İ	2	677	188	39	64	32	32
23	lg. lpixuna	>	rio (917	71	27	11	12	20
24	ig. Catuá	ÁGUAS	Solimões	860	63	22	16	12	22
25	ig. Caiambé	Ž	. <u>≅</u> .	293	52	29	9	9	18
26	ig. Tefé	PR	Õe	134	52	27	14	5	12
27	ig. Alvarães	R	. "	386	84	23	12	14	25
	Média	TAS	-	396	<i>7</i> 5	41	23	19	22
9	lg. Matias	S	[108	51	32	12	2	7
10	lg. Itapuru		_	N.A.	N.A.	N.A.	N.A.	N.A	N.A
11	ig. Água Fria		.≻	667	128	25	15	2	10
12	ig. Paricatuba	İ	Purus	532	96	25	64	15	30
13	Lago Aiapuá I		Su	474	N.A.	29	43	8	18
14	Lago Aiapuá II			367	71	22	28	15	17
15	Lago Aiapuá III		į	429	N.A.	19	26	4	9
	Média	L		429	87	25	31	8	15
3	rio Solimões I		ļ	265	98	30	43	37	50
5	rio Solimões II			195	121	26	30	37	55
18	rio Solimões III	>	<u>i</u> L	592	170	22	56	40	55
19	rio Solimões IV	ÁGUA	<u>.</u>	547	156	25	74	45	57
22	rio Solimões V	×	Ĺ	758	258	43	98	55	69
28	rio Solimões VI	SB	<u> </u>	359	136	21	48	51	78
	Média	R		453	157	28	58	44	61
7	rio Purus I	Ź		53	26	32	14	35	27
8	Rio Purus II	NCAS		152	54	29	24	34	24
29	rio Japurá	. 0,	<u> </u>	263	77	12	52	34	50
4	Furo Parati Gd			32	18	22	N.A.	38	66
	Média	Ĺ	<u> </u>	125	43,75	24	30	35	42
1P	Beruri		<u> </u>	2061	21	25,35	N.A.	77,05	11,65
2P	Itapuru		į L	N.A.	19	460	N.A.	143	152
3P	Codajás	ס	<u> </u>	239	7	50	62	138	116
4P	Coari	POÇO	[<u>-</u>	11,8	9	22	12	51	11
5P	Tefé	0	! !	17,4	74	15	17	36	7
6P	Alvarães	İ	 	134	34	49	33	51	14
	Média	Ĺ.	[493	27	104	31	83	52
1F	Itapuru		[1900	861	68	153	118	66
2F	Solimões	יייִ		172	13	11	172	29	12
	Média	į	[1036	437	40	163	74	39

Tabela 8 - Composição dos elementos-traço das águas estudadas em µg L-1

Lapela	a 8 - Composiçã		ios	elemer	itos-tra	ço das	aguas	estuda	adas er	ո μց ∟	· ₁		,
Ptos	Local da Coleta			Cu	Li	В	Sc	V	Cr	Co	Ce	La	U
1	ig. Manacapuru]	T	2,14	0,50	2,60	1,30	0,57	0,31	0,11	0,31	0,19	0,02
2	lg. Cabaliana]	₹	12,73	0,79	4,91	1,94	1,82	1,3	0,27	1,3	2,28	0,11
6	lg. Anamã]	Afluentes	3,17	1,07	6,77	1,41	1,84	0,54	0,24	0,54	0,30	0,08
16	ig. Anori]	ä	3,75	1,09	3,36	1,79	1,81	0,49	0,34	0,49	0,22	0,07
17	ig. Badajós]	es	2,98	1,01	3,6	1,38	0,76	0,26	0,15	0,26	0,16	0,03
20	ig. Coari]	do	1,02	1,46	3,23	2,4	0,6	0,49	0,13	0,49	0,25	0,02
21	lg. Copeá].	rio	6,44	0,83	4,63	1,28	1,95	1,46	0,57	1,46	0,63	0,11
23	lg. Ipixuna	ÁGU	0	1,37	2,09	3,55	3,46	1,07	1,03	0,21	1,03	0,47	0,02
24	lg. Catuá	Ë	Sol	0,87	1,98	2,63	2,88	0,61	0,88	0,17	0,88	0,41	0,02
25	ig. Caiambé	AS	limões	1,34	1,31	2,37	2,29	0,64	0,69	0,16	0,69	0,36	0,02
26	ig. Tefé	PRE	Õ	1,04	1,03	2,09	2,05	0,45	0,74	0,20	0,74	0,37	0,02
27	ig. Alvarães	m	S	2,3	1,32	3,93	3,00	0,91	0,77	0,40	0,77	0,68	0,02
	Média	TAS	Ĺ	3,26	1,20	3,63	2,09	1,08	1,55	0,24	0,74	0,52	0,04
9	Ig. Matias	S	[1,71	1,43	2,21	1,07	0,37	0,52	0,26	0,52	0,24	0,03
10	lg. Itapuru]	>	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
11	lg. Água Fria]		2,1	1,72	2,98	1,75	1,21	0,67	0,51	0,67	0,33	0,06
12	ig. Paricatuba]	Purus	2,09	1,45	3,17	1,73	1,17	0,82	0,6	0,82	0,36	0,06
13	Lago Aiapuá I]	S	3,1	1,48	5,15	1,84	1,23	0,59	0,52	0,59	0,28	0,03
14	Lago Aiapuá II]		2,12	1,69	6,46	1,96	1,02	0,55	0,34	0,55	0,26	0,04
15	Lago Aiapuá III]		1,66	1,25	3,30	1,43	0,83	0,27	0,4	0,27	0,14	0,02
	Média]		2,13	1,50	3,87	1,63	0,97	1,58	0,43	0,57	0,26	0,04
3	Rio Solimões I]	[4	1,16	6,74	1,35	1,7	0,72	0,34	0,66	0,32	0,09
5	Rio Solimões II	j	Ĺ	3,92	1,07	9,51	1,31	1,68	0,65	0,29	0,58	0,28	0,09
18	Rio Solimões III	ÁGU	L	4,04	1,16	7,12	1,52	2,39	0,89	0,51	1,26	0,54	0,12
19	rio Solimões IV		<u>L</u>	5,12	1,37	7,24	1,51	2,38	1,6	0,15	1,26	0,86	0,14
22	Rio Solimões V	S	L	5,21	N.A.	8,23	1,76	2,97	1,37	0,82	2,01	0,86	0,17
28	rio Solimões VI	ѿ	Ĺ	4,57	1,56	9,62	1,61	2,55	0,93	0,4	0,89	0,4	0,13
	15	₽	<u> </u>	4,47	1,26	8,07	1,51	2,27	1,02	0,41	1,11	0,54	0,12
7	Rio Purus I	Z	L	2,1	1,87	2,82	1,51	0,69	0,34	0,15	0,15	0,11	0,05
8	Rio Purus II	S	Ĺ	1,84	1,82	2,77	1,6	0,91	0,68	0,24	0,36	0,19	0,06
29	rio Japurá	S	L	2,64	0,91	5,41	1,22	1,43	0,93	0,23	0,69	0,31	0,08
4	lg. Parati Gd	ļ	ļ	1,9	1,21	6,18	1,68	0,67	1,19	0,19	0,07	0,05	0,04
	Média	<u> </u>	ļ	2,12	1,45	4,29	1,5	0,92	0,78	0,2	0,31	0,16	0,05
1P	Beruri	į	ļ	2,3	4,12	1,25	4,55	0,06	2,04	7,68	0,42	0,19	0,02
2P	Itapuru	j	11	10,65	4,07	16,22	6,61	0,13	2,49	0,67	0,1	0,06	0,01
3P	Codajás	PO	ļ	9,34	2,64	1,58	4,78	0,94	2,57	0,44	0,04	0,07	0,01
4P	Coari	ďΩ	11	13,73	5,31	7,06	2,24	0,04	2,71	2,78	0,16	0,15	0,01
5P	Tefé	0	12	13,16	3,03	1,36	1,25	0,23	0,95	1,67	3,12	2,22	0,08
6P	Alvarães	į	4	14,42	1,28	5,1	2,08	0,14	2	2,41	1,24	0,55	0,03
	Média	<u></u>	1	15,6	3,4	5,42	3,58	0,25	2,12	2,6	0,84	0,54	0,02
1F	Itapuru	_	2	29,24	4,66	13,55	3,9	8,41	2,16	6,08	6,08	2,45	0,38
2F	Solimões	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	<u> </u>	1,21	1,15	1,03	1,82	0,11	2,19	0,3	0,3	0,15	0,01
	Média	<u> </u>	12	15,22	2,90	7,29	2,86	4,26	2,17	3,19	3,19	1,3	0,19
A 00	2	1 -	0 -1			44. NI A	. A L ~ . A .	11 1 -					

Ge ≤ ,03 μg L⁻¹ exceto o ponto 2 dos poços com 0,11; **N.A**.: Não Analisado.

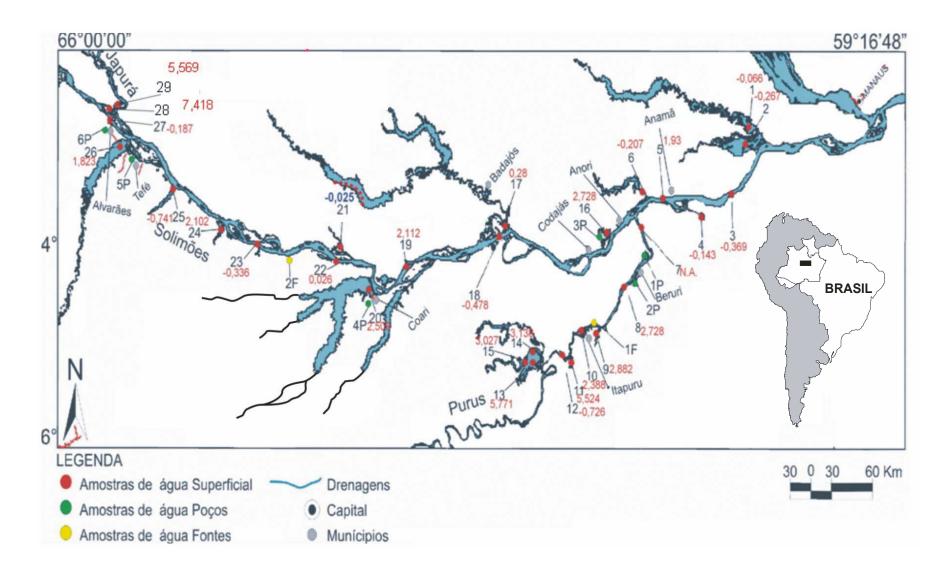
Tabela	9 - Composiçã	o do	os e	leme	ntos-	traço	das a	águas	s estu	ıdadas	em µ	g L ⁻¹
Pontos	Local da Coleta			As	Se	Rb	Мо	Cd	Sb	Cs	Pb	Σ
1	ig. Manacapuru			0,23	0,14		. – . – . – . –	0,07		0,01	0,23	2,11
2	ig. Cabaliana			1	0,22	2,67	1,12	0,16	0,5	0,03	1,32	7,02
6	ig. Anamã		Afluentes	1,03	0,44	1,85	0,04	0,07	0,27	0,02	0,53	4,25
16	ig. Anori		en	1,1	0,09	1,83	: <u>-</u>	0,09	1,19	0,02	0,33	4,69
17	ig. Badajós		ites	0,74	0,12	2,02	! — . — . — . –	4 1	0,37	0,02	0,16	3,51
20	ig. Coari		do	0,24	N.A.	3,36	0,01	0,02	0,38	0,02	0,22	4,25
21	ig. Copeá		rio	0,98	N.A.	2,14	0,09	<u> </u>	0,28	0,04	0,63	4,24
23	ig. Ipixuna	Þ	0	0,34	0,12	4,22	; — · · · · — · -	0,03	{	0,03	0,25	5,69
24	ig. Catuá	ÁGUAS	Solimões	0,28	0,04	4,51		0,02		0,03	0,18	5,3
25	ig. Caiambé	AS	3	0,18	0,05	4,11	0,03		0,34	0,03	0,45	5,36
26	ig. Tefé		ès	0,17	0,03	2,82	0,02	0,1	0,51	0,02	0,53	4,2
27	ig. Alvarães	PRET		0,16	0,1	4,59	i — - -	0,04	0,33	0,04	0,33	5,62
	Média	ГAS	İ	0,53	0,13	2,95	0,12	0,07	0,42	0,02	0,43	4,67
9	ig. Matias	S	!	0,23	0,08		!	0,14		0,02	0,75	3,49
10	ig. Itapuru			N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
11	ig. Água Fria		<u>></u>	0,28	N.A.	2,82	0,04	0,24	0,91	0,04	1,24	5,57
12	ig. Paricatuba		Purus	0,7	N.A.	2,95	0,1	0,03	2,31	0,04	0,25	6,38
13	Lago Aiapuá I		Sn	0,63	0,72	2,77	0,05	0,06	0,46	0,04	0,4	5,13
14	Lago Aiapuá II		į	0,55	0,2	3,44	0,06	0,07	0,44	0,02	0,37	5,15
15	Lago Aiapuá III			0,2	0,05	2,44	0,12	0,03	2,23	0,02	0,15	5,24
	Média	ļ	0	,43	0,26	2,74	0,06	}	1,09	0,03	0,52	5,22
3	rio Solimões I		0	,93	0,34	2,09	!	0,08	0,2	0,02	0,48	4,19
5	rio Solimões II		 	1	0,45			0,07		0,02	0,42	4,08
18	rio Solimões III	▶`	. – - –	,16	0,04	2,04		0,05		0,03	0,45	4,21
19	rio Solimões IV	G		,16	0,1	2,16	0,05	}i	0,83	0,03	0,47	4,87
22	rio Solimões V	SAL		,51	0,25	2,4		0,08	0,88	0,05	0,57	5,8
28	rio Solimões VI	ω,	1	,37	0,37	2,19	0,06	0,09	1,25	0,03	0,5	5,86
	Média	₽	;	,18	0,25	2,12	;	0,07		0,03	0,48	4,80
7	rio Purus I	RANCAS	!	,55	0,23	3,17	! 	0,05		0,02	0,32	4,56
8	rio Purus II	×	0	,64	0,07		i – . – . –	0,05		0,03	0,25	4,93
29	rio Japurá	0,	1	,28	0,1		'	0,03		0,03	0,27	4,4
4	furo Parati Gd.		} - · - · -	3,3	,			0,05		0,01	0,11	6,15
	_Média	 		,44	{ 			0,04		0,02	0,23	
1P	Beruri		0	,87	i —			0,15		0,13	0,29	11,41
2P	Itapuru			,68		6,54	0,13	0,06		0,04	4,82	14,52
3P	Codajás	P	0	,19	N.A.	6,05	0,1	0,25	0,44	< 0,01	0,16	7,19
4P	Coari	Росо	0	,01	N.A.		!	0,12		0,16	0,24	9,5
5P	Tefé	0	0	,09	0,52			0,14		0,1	0,59	5,48
6P	Alvarães		0	,04	0,07	5,34	0,04	0,09	1,4	0,21	1,99	9,18
	_Média	ļ 		,48	0,21	6,44	'	0,13		0,1	1,34	9,62
1F	Itapuru			,52	0,26		; — · · · · — · -	0,54		0,04	0,84	
2F	Solimões	.π	0	,69	N.A.			0,05		0,07	0,06	10,12
	Média	<u> </u>	(),6	0,26	3,86	0,09	0,29	1,86	0,05	0,45	7,46

N.A.: Não Analisado.

O Cu, B, V, As e U também com variações acentuadas, especialmente o primeiro, predominam nas águas do Solimões, contudo valores similares a estes ou mais altos de Cu são encontrados no igarapé Cabaliana (12,73 μg L⁻¹) e no Copeá (6,44 μg L⁻¹) (Tab. 8).

Os rios Purus, Japurá e furo Parati Grande, a concentração desses elementos se assemelha as águas pretas. Li, Sc, Cr, Co, Se, Rb, Pb, Mo Cd, Sb e Cs quase não tem variações entre as águas estudadas (Tabs. 8 e 9). Os poços e fontes têm variações acentuadas de teores de elementos-traço, mas de modo geral, eles têm teores mais elevados que nas águas das drenagens. Os poços Beruri, Itapuru e Codajás em geral têm os teores mais elevados, assim como a fonte do Itapuru (Tabs. 8 a 10).

8.4 ISÓTOPOS DE ESTRÔNCIO


Os resultados obtidos da razão isotópica 87 Sr/ 86 Sr e δ 87 Sr para as amostras de água superficiais analisadas variaram, em geral respectivamente de 0,708674 a 0,714461 e -0,025 a 7,418 ‰, os valores mais elevados estão nas águas brancas do rio Solimões (0,708861 a 0,714461 e -0,369 a 7,418 ‰) e os mais baixos nos rios Purus e Japurá (0,711135 a 0,713150 e -0,143 a 5,569 ‰). Os afluentes do rio Purus tem razões 87 Sr/ 86 Sr e δ 87 Sr entre 0,708685 a 0,713293 e -0,726 a 5, 771 ‰, enquanto os do rio Solimões são um pouco mais baixas (0,708674 a 0,710980 e -0,025 a 2,509 ‰) (Tab. 10 e Fig. 8).

Os valores encontrados para δ^{87} Sr, foram calculados com auxílio da seguinte formula: δ^{87} Sr = {[(87 Sr) 86 Sr) $_a$ / (87 Sr) 86 Sr) $_{am}$] – 1} x 1000

Onde $(^{87}\text{Sr})^{86}\text{Sr})_a$ é a razão isotópica da amostra e $(^{87}\text{Sr})^{86}\text{Sr})_{am}$ é a razão isotópica da água recente do mar (0,70920).

Tabela 10 - Razão isotópica de ⁸⁷Sr/⁸⁶Sr nas águas fluviais amostradas

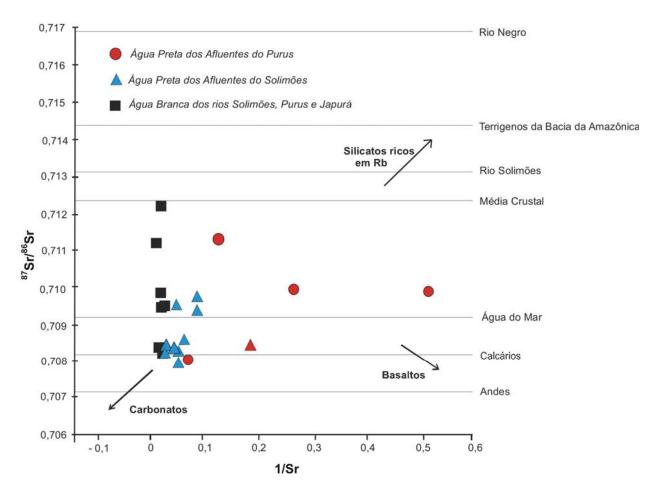

Tabela I	u - Razau isulupida (ue	31/	Si ilas aguas ilu		
Pontos	Local da Colet	а		Razão isotópica	δ ⁸⁷ Sr	Sr
		-		⁸⁷ Sr/ ⁸⁶ Sr	(‰)	(µg L ⁻¹)
1	ig. Manacapuru (E)	!	!	0,709153±34	-0,066	5,51
2	ig. Cabaliana (E)	≥	1	0,709013±16	-0,263	32,52
6	ig. Anamã (E)	Afluentes do rio Solimões	į	0,709053±19	-0,207	35,05
16	ig. Anori (E)	ä		N.A	N.A.	29,2
17	ig. Badajós (E)	Se	į	0,709399±41	0,28	16,63
20	ig. Coari (D)	do	l	0,710980±15	2,509	11,94
21	ig. Copeá (E)	귱		0,709182±68	-0,025	32,46
23	ig. Ipixuna (D)	တ္ထ	!	0,708961±01	-0,336	20,14
24	ig. Catuá (D)	ij	Á	0,710691±09	2,102	22,32
25	ig. Caiambé (D)	ñõ	Ë	0,708674±09	-0,741	17,94
26	ig. Tefé (D)	Se	P	0,710493±01	1,823	11,89
27	ig. Alvarães (D)	į	ÁGUA PRETA	0,709067±19	-0,187	24,72
	Média		Ā	0,709515±21	0,444	21,69
9	ig. Matias (D)	[0,711244±58	2,882	7,4
10	ig. Itapuru (D)	! 	:	0,710894±46	2,388	N.A
11	ig. Água Fria (D)	≻	į	0,713118±62	5,524	9,85
12	ig. Paricatuba (D)	Purus	İ	0,708685±63	-0,726	30,32
13	lago Aiapuá I (D)	Su		0,713293±43	5,771	18,27
14	lago Aiapuá II (D)		į	0,711426±14	3,138	17,49
15	lago Aiapuá III (D)		1	0,711347±60	3,027	8,77
	Média]	0,711429±49	3,142	15,35
3	rio Solimões I			0,708938±26	-0,369	50,2
5	rio Solimões II		į	0,710659±38	1,93	55,15
18	rio Solimões III		ĺ	0,708861±64	-0,478	55,37
19	rio Solimões IV		Š	0,710698±67	2,112	56,61
22	rio Solimões V		ÁGUA BRANCA	0,709219±19	0,026	69,32
28	rio Solimões VI		₽	0,714461±81	7,418	78,04
	Média		22	0,710275±50	1,770	61,48
7	rio Purus I (D)		Ž	N.A	N.A.	27,29
8	rio Purus II (D)		A	0,711135±96	2,728	24,39
29	rio Japurá (E)		1	0,713150±56	5,569	49,99
4	furo Parati Gd. (D)		1	0,709098±60	-0,143	65,73
	Média		1	0,7121425±76	2,718	33,89
D .:direita;	E.:Esquerda; N.A.: Não	Anal	isad	o.		

Figura 8 – Mapa de localização das amostras com valores de δ ⁸⁷Sr

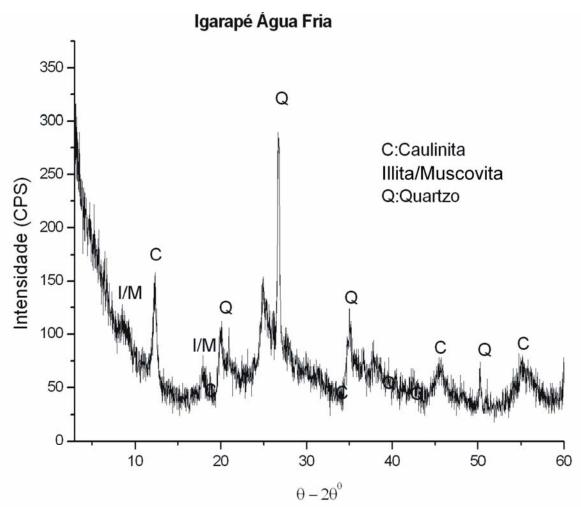
Os afluentes que se localizam a margem esquerda do rio Solimões possuem ⁸⁷Sr/⁸⁶Sr mais baixas, enquanto os igarapés da margem direita, exceto Ipixuna e Caiambé são maiores. Os afluentes da margem esquerda e direita do rio Purus não apresentam variação significativa na razão isotópica, exceto o igarapé Paricatuba que junto com o Caiambé apresentam as menores razões. Considerando-se a direção de escoamento do rio Solimões, as amostras VI, IV e II, indicam uma tendência de redução da razão isotópica (de 0,714461 para 0,709098) em direção a jusante. O rio Japurá (0,713150) tem razão isotópica mais elevada que a do Purus (0,711135) e aproxima-se da amostra Solimões VI (0,714461), o que reforça a tendência das águas terem razões ⁸⁷Sr/⁸⁶Sr mais elevadas a montante. Essa razão isotópica do rio Purus é menor que dos seus afluentes, exceto em relação ao Itapuru (0,710894) (Tab. 10).

Com relação à figura 9, que normalmente é usada para avaliar a mistura de águas que percolam regiões geologicamente distintas (Faure, 1986) em geral as amostras estudadas estão acima da razão isotópica dos Andes (0,707 - Allègre *et al.* 1996) e abaixo da média crustal (0,7123 – Allègre *et al.* 1996). Em relação à água do mar (0,709211 a 0,709241) as amostras analisadas têm razões mais elevadas, exceto nos igarapés Manacapuru, Cabaliana, Anamã, Copeá, Ipixuna, Caiambé, Alvarães, Paricatuba, furo Parati Grande e rio Solimões I,II e V, que estão concentradas sobre e/ou próximas da razão isotópicas dos calcários (0,7082 - Allègre *et al.* 1996). Destacase que todas as amostras estão abaixo da razão isotópica dos rios Solimões (0,71319 - Allègre *et al.*, 1996) e Negro (0,71698 - Allègre *et al.* 1996).

Figura 9 – ⁸⁷Sr/⁸⁶Sr *vs* 1/Sr de amostras de água pretas e brancas dos afluentes dos Solimões e Purus e rios Solimões, Purus e Japurá em relação a rochas e sedimentos (Henderson, 1984; Faure, 1988 e Allègre *et al.* 1996).

8.5 MATERIAIS EM SUSPENSÃO

8.5.1 Composição Mineralógica


Os minerais encontrados nos sedimento em suspensão da área de estudo foram quartzo, caulinita, illita e muscovita, sendo que os dois primeiros são os predominantes (Tab. 11). Nas análises mineralógicas o quartzo apresenta reflexões mais intensas devido este ser o mineral mais abundante, favorecido por sua natureza cristalina. Por esta razão as reflexões dos argilominerais apresentam intensidade intermediária a fraca

(caulinita, illita e muscovita) (Fig. 10). Esses minerais são os normalmente encontrados nos rios e nos sedimentos da região (Gaillardet *et al.* 1997).

Tabela 11 – Composição mineralógica dos sedimentos em suspensão

Tabela I		111111	Jiai	ogica dos	3Cullicitos	CIII SU	Spensau
Pontos	Local da Colet	a		Quartzo	Caulinita	Illita	Muscovita
1	lg. Manacapuru]			xxx		
2	ig. Cabaliana	_		XXX	ХХ		
6	ig. Anamã	Afluentes		XXX	ХХ	Х	
16	ig. Anori	en			XXX		
17	ig. Badajós	tes		M.I	M.I	M.I	M.I
20	ig. Coari	do		ХX	XXX	х	
21	ig. Copeá			XXX	XX	X	
23	ig. Ipixuna	Solimõ	ÁGUA	XXX	ХХ		
24	ig. Catuá	Βõ	\	XXX	ХХ	х	
25	ig. Caiambé	es	무		XXX		
26	ig. Tefé		PRETA		XXX		
27	ig. Alvarães]	⋝	XXX	XX		
9	ig. Matias	}	!		XXX	ХX	
10	ig. Itapuru			XXX	XX		
11	ig. Água Fria	₽		XXX	XX	X	
12	ig. Paricatuba	Purus		xxx	ХX	<u> </u>	<u> </u>
13	lago Aiapuá I	Sn	•	xxx	ХХ	х	
14	lago Aiapuá II	j		M.I	M.I	M.I	M.I
15	lago Aiapuá III	<u> </u>		ХХ	xxx	x	<u>[</u>
3	rio Solimões I			XXX	XX	х	
5	rio Solimões II				XXX	ХX	x
18	rio Solimões III		ÁGUA	XXX	ХХ	х	<u> </u>
19	rio Solimões IV		V	XXX	XX	X	
22	rio Solimões V			XXX	ХХ	x	[
28	rio Solimões VI		₽	XXX	XX		
7	rio Purus I		BRANCA	XXX	XX	X	
8	rio Purus II		Ď		XXX		
29	rio Japurá		<u> </u>		XXX	ХX	<u> </u>
4	furo Parati Gd.		<u> </u>	XXX	XX	х	<u> </u>

xxx: Reflexão intensa; xx: intermediária; x: fraca; M.I.: Material Insuficiente.

Figura 10– Difratograma de Caulinita, Illita, Muscovita e Quartzo da amostra de sedimento em suspensão do igarapé Água Fria

8.5.2 Elementos-traço nos sedimentos em suspensão

O Ti, Zn, Ba e V apresentaram os teores mais elevados (até 8040 μg) e representam 98% do total da composição química desse material. São seguidos do Zr, Sr, Rb, Cr, Cu, Ni, Pb e Ga (até 573 μg) (Tabs. 12 e 13). O Sc, Co, Y, Nb, Th, Sn, Cs tem teores menores (até 73 μg) e Tl, U, Hf, Cd, Bi e Ge são os mais baixos (até 36 μg) todos, em geral, estão abaixo da média crustal, com exceção do Zn (Tab. 13 e 14).

Tabela 12 - Composição dos elementos-traco dos sedimentos em suspensão em uq

labela	12 - Comp		dos (eleme	ntos-tra	aço (dos s	ediment	os em	suspe	nsão	em µg	<u> </u>
Pontos		al da oleta		Ti	Zı	n	Ва	V	Zr	Sr	Rb	Cr	Cu
1	ig. Manacar	ouru		3882	2 65	6	249	334	106	77	65	135	109
2	ig. Cabalia	na		3599	9 55	7	423	405	107	97	83	86	151
6	ig. Anam	ã	Afluentes	6203	3 63	5	899	545	162	229	184	127	132
16	ig. Anor	<u>i</u>	Jer	4829	9 67	'4	471	407	142	125	141	113	147
17	ig. Badajo	ós 💮	tes	1169			140	288	41	53	29	61	110
20	ig. Coar	<u>i</u>	d	156			141	187	45	46	32	80	76
21	ig. Cope	á	do rio Solimões	787		2	918	404	196	269	197	142	131
23	ig. Ipixun	ıa ⊳	0	4156			376	296	118	88	98	109	90
24	ig. Catua	<u>á</u> ၂ ၉	i Si	438			432	367	102	88	105	121	75
25	ig. Caiam	á AGUAS	E	158	7 63	5	120	260	50	36	29	67	92
26	ig. Tefé		čes	5432	2 96	9	399	323	139	82	117	141	97
27	ig. Alvarã	es R	-	3553			183	404	89	58	41	158	86
	Média	TAS	1	402		. —	396	352	108	104	93	112	108
9	ig. Matia	3	į	2693			263	422	78	64	79	102	71
10	ig. Itapur			4260			438	318	143	92	145	120	148
11	ig. Água F		<u>></u>	6559			696	486	172	124	207	169	111
12	ig. Paricatι		Purus	N.A			N.A.	N.A.	N.A.	N.A	N.A	N.A.	N.A
13	Lago Aiapı		Sn	467	'		408	426	153	97	143	129	131
14	Lago Aiapu		-	N.A			N.A.	N.A.	N.A.	N.A	N.A	N.A.	N.A
15	Lago Aiapu	á III	<u> </u>	722			1799		208	139	196	174	141
	Média		_	5084	90		721	414	151	103	154	139	120
3	rio Solimõe		ļ	7021	70	. —	804	386	182	243	180	130	132
5	rio Solimõe		ļ	7502	66	. – - – - –	N.A.	573	186	254	196	146	130
18	rio Solimõe		<u> </u>	7472	67		863	509	190	250	193	140	131
19	rio Solimõe	s IV	`	8040	63		962	470	199	288	199	138	114
22	rio Solimõe		ļ	6466	84		784	373	189	211	161	121	158
28	rio Solimõe			6987	79		856	442	202	248	216	145	129
	Média	BRANCAS	ļ	7248	71		854		191	249	191	137	132
7	rio Purus	<u> </u>	ļ	5969	84		607	450	290	121	171	138	108
8	rio Purus	<u>ା</u> ତୁ	ļ	5574	93		629	422	156	131	206	136	124
	Média		<u> </u>	5772	88		618	436	223	126	188	137	116
28	rio Japur		ļ	7047	69	. —	945	381	194	271	216	142	134
4	furo Parati	Gd.	\ <u></u> -	6955	73		806	544	183	203	191	144	127
	Média			7001	71	2	876	463	189	237	204	143	131
Média	Crustal	Ti		<u>Zn</u>	Ba		<u>٧ا</u>	Zr	Sr	Rb		Cr	Cu
N. A . N.ão		44x10 ⁵	. 8x		58x10⁴	15	x10⁴	15x10 ⁴	3x10⁵	15x1	0* 1x	10 ⁵	5x10⁴

N.A.: Não Analisado; Unidade da Média Crustal:mg L¹.

Tabela 13 - Composição dos elementos-traço dos sedimentos em suspensão em µg

Tabela 1	3 - Composição		eien	ento	ร-แล¢ !	o do	s sean	nento	s em	susp	ensac	<u>, em F</u>	<u>'</u>
Pontos	Local da	i		Ni	Pb	Ga	Sc	Co	Υ	Nb	Th	Sn	Cs
1	Coleta	-7	Γ	58	51	49	22	11	11	13	14	14	
1	ig. Manacapuru ig. Cabaliana			56 54	97	31	19	15	19	12	14	12	9
2		{	>	70	67	42	31	22	32	21	23	78	8 16
6 16	ig. Anamã		Į į	49	59	52	23	17	23	17	18	14	14
17	ig. Anori ig. Badajós		nt	22	28	20	8	8	23 9	<u>! /</u>	6	9	L
	ig. Coari		es	36	41	22	8	9	8	6	7	10	3
20 21	ig. Copeá		do	66	56	50	30	29	32	27	23	15	16
23	ig. Copea ig. Ipixuna		ᇙ	45	54	61	19	17	17	15	14	15	12
24	· · - · - · - · - · - · - · - ·	Á	S	46	46	46	19	16	17	16	15	16	13
24 25	ig. Catuá ig. Caiambé	ÁGUAS	ij	20	32	29	9	9	9	5	8	10	4
26	ig. Tefé	S	Afluentes do rio Solimões	45	63	59	24	22	19	21	19	10	17
27	ig. Tele ig. Alvarães	R	S	51	38	35	13	17	10	11	8	10	6
	ig. Aivaraes Média	PRETAS	İ	47	٥٥ 47	53	41	19	16	17	14	14	18
9	ig. Matias	AS	}	37	56	63	14	7	7	10	11	13	12
10	ig. Itapuru		İ	60	81	57	24	23	21	15	17	15	18
11	ig. Água Fria		≻	60	66	60	32	23 16	18	29	20	20	25
12	ig. Paricatuba		Purus	N.A	N.A	N.A	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
13	Lago Aiapuá I	{	Ĕ	58	65	80	27	26	19	16	19	17	17
14	Lago Alapua II		¦	N.A	N.A	N.A	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
15	Lago Alapuá III			77	69	73	38	39	25	26	23	21	22
	Média		<u> </u>	58	67	67	27	22	18	19	18	17	19
3	rio Solimões I			63	74	48	32	27	30	23	22	8	15
5	rio Solimões II	-		77	68	50	33	28	32	25	25	16	17
18	rio Solimões III		<u></u>	 78	59	45	31	28	32	25	23	14	15
19	rio Solimões IV	>`		63	54	43	31	29	32	27	23	15	15
22	rio Solimões V	ତ		61	55	42	28	25	24	22	19	15	12
28	rio Solimões VI	ÁGUAS		75	58	50	31	26	31	25	24	16	17
	Média			80	61	46	31	27	30	25	23	14	15
7	rio Purus I	BRANCAS		68	71	53	33	28	24	21	19	19	19
8	rio Purus II	- N		60	54	59	28	28	26	21	20	16	22
	Média	AS		64	63	56	30	28	25	21	19	17	20
29	rio Japurá	-1		71	59	49	32	29	32	25	24	17	17
4	furo Parati Gd			75	74	52	32	30	33	24	24	17	18
	Média			73	66	50	32	30	32	24	24	17	17
Maria A	Ni	Pb		Ga	Sc		Со	Υ	N		Th	Sn	Cs
Média Cr	ustal 75x10 ³	1x10⁴		x10 ³	13x1		25x10 ³	3x10			x10⁴	2x10 ³	3x10 ³

N.A.: Não Analisado; Unidade da **Média Crustal**:mg L⁻¹.

Tabela 14 - Composição dos elementos-traco dos sedimentos em suspensão em uq

	14 - Composição d Local da		9.0.		·Ţ			77	
Pontos	Coleta			TI	U	Hf	Cd	Bi	Ge
1	ig. Manacapuru	-i	[1,2	2,9	3,2	1,9	1,2	0,7
2	ig. Cabaliana	7		3,5	4,5	2,7	1,6	1,8	0,7
6	ig. Anamã	<u> </u>	₽	2,6	5,2	3,7	1,3	1,5	2
16	ig. Anori	7	uei	1,2	4,9	3,1	0,9	1,7	1,2
17	ig. Badajós	7	Afluentes	0,4	2,2	1	1	1,4	0,5
20	ig. Coari	7	Ω	0,4	1,8	1,1	0,7	1 1	0,4
21	ig. Copeá	-	0	1,9	5,5	4,3	1,4	1,7	1,2
23	ig. Ipixuna	D `	rio (1,2	3,2	2,8	1,1	1,5	1,1
24	ig. Catuá	િંહ	Sol	1,4	2,9	2,6	1,1	1,2	1,6
25	ig. Caiambé	ÁGUAS	ä	0,4	1,9	1,2	0,9	1,6	0,4
26	ig. Tefé	P	Solimões	23,1	3,8	3,2	0,9	1,3	0,3
27	ig. Alvarães	PRET	0	0,7	2,3	2	0,9	1,3	0,8
	Média	TAS		3,1	3,4	2,5	1,1	1,4	0,9
9	ig. Matias	S		1,3	2,1	2,1	7,2	1,1	1
10	ig. Itapuru	1		1,2	4,6	3,5	1,8	2,2	1,4
11	ig. Água Fria	-[>	29,9	3,9	4	1,1	1,8	2
12	ig. Paricatuba	7	פ	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
13	Lago Aiapuá I	-	Purus	1,4	4,3	4	3,7	1,7	1,1
14	Lago Aiapuá II		S	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
15	Lago Aiapuá III			15,5	5	5,1	0,9	1,6	1,7
	Média		<u> </u>	9,8	3,9	3,7	2,9	1,6	1,4
3	rio Solimões I	_i	Ĺ	3,2	5,5	4,3	1,2	1,6	0,4
5	rio Solimões II	_!	<u> </u>	2	6	4,4	1,3	2,1	2,2
18	rio Solimões III			35,5	5,6	4,2	1,3	1,6	1,6
19	rio Solimões IV	Š	L	2,1	5,3	4,4	1,4	1,5	1,7
22	rio Solimões V	ÁGUAS	Ĺ	2,1	4,9	4,1	1,2	1,4	1,2
28	rio Solimões VI	S	Ĺ	4	5,5	4,4	1,2	1,6	2,1
	Média	뫄	<u>L</u>	8,1	5,4	4,3	1,2	1,6	1,5
7	rio Purus I	Ì	Ĺ	1,8	5	6,3	4,8	1,5	1,8
8	rio Purus II	BRANCAS	<u>L</u>	1,6	4,6	3,7	1,1	1,8	2,4
	Média	Ś	<u>[</u>	1,7	4,8	5	2,9	1,6	2,1
29	rio Japurá	_	<u> </u>	2,1	5,4	4,2	1,3	1,6	1,7
4	furo Parati Gd.	_	Ĺ	1,9	6	4,4	1,7	1,8	1,8
	Média	<u> </u>		1	5,7	4,3	1,5	1,7	1,7
	Média Crustal			Ti	U	Hf	Cd	Bi	Ge
	media Orustai		0,4	45x10 ³	2,5 x10 ³	3x10 ³	0,1x10 ³	$0,1 \times 10^3$	2x10 ³

N.A.: Não Analisado; Unidade da Média Crustal:mg L⁻¹.

Dentre os tipos de água, a distribuição dos elementos-traço em suspensão é em geral mais homogênea e elevada nas brancas. O Ti (5574 e 8040 μg), Zn (637 e 937 μg), Ba (607 e 962 μg) e V (373 e 573 μg) apresentam neste grupo proporção muito mais elevada que nas águas pretas que variam entre Ti (1169 e 7875 μg), Zn (544 e 1160 μg), Ba (120 e 1799 μg) e V (187 e 545 μg) (Tab.12). Uma característica marcante é que o material em suspensão dos afluentes de água preta do Solimões tem teores de elementos-traço menores que os afluentes do Purus. Em relação ao Solimões, o Purus tem em geral teores menores de Ba, Sr, Nb e Tl, enquanto Ga, Cs e Hf são maiores, os demais elementos têm teores variáveis entre os dois. O rio Japurá e o furo Parati Grande possuem composição química variável entre o Solimões e Purus (Tabs. 12 a 14). Os teores de Zn, Ba, V, Cr, Co, Ni, Cu, Rb, Sr e U encontrados por Seyler *et al.* (2003) nos rios Solimões, Purus e Japurá são inferiores aos obtidos neste trabalho.

O resultado das razões entre a composição química do sedimento em suspensão em relação ao material dissolvido (Zn, Ba, V, Sr, Cr, Cu, Sc, Co, Cs e Cd) (Tab. 15), mostram que as razões foram mais elevadas para V, Cr e Cs (> 66) e mais baixas para Sr (<14) e Sc (< 27). Os afluentes do rio Purus tem em geral as razões de Zn, Ba, V, Sr e Cr mais elevadas, enquanto nos do rio Solimões são mais baixas, exceto Co. O rio Solimões, dentre os de água branca, é o que apresentou menores razões, enquanto o Purus as mais altas, especialmente em V, Cr, Co e Cs. Essas razões tendem a aumentar para jusante, exceto Zn, Ba, Sr e Sc (Tab. 15).

Tabela 15 - Razões de sedimentos em suspensão e material dissolvido analisados

ontos	Local da	Razões											
FUIILUS	Coleta	Zn	Ва	٧	Sr	Cr	Cu	Sc	Со	Cs	C		
1	ig. Manacapuru			13	65	586	14	435	51	17	100	900	2
2	ig. Cabaliana		Afluentes do rio Solimões	3	13	223	3	66	12	10	56	267	1
6	ig. Anamã	1		15	17	296	7	235	42	22	92	800	1
16	ig. Anori			25	19	225	4	231	39	13	50	700	1
17	ig. Badajós			48	8	379	3	235	37	6	53	150	2
20	ig. Coari			41	17	312	4	163	75	3	69	150	3
21	ig. Copeá			22	29	207	8	97	20	23	51	400	1
23	ig. Ipixuna	D,		28	31	277	4	106	66	5	81	400	3
24	ig. Catuá	G		29	35	602	4	138	86	7	94	433	5
25	ig. Caiambé	ÁGUAS	3	22	14	406	2	97	69	4	56	133	
26	ig. Tefé		ões	36	78	718	7	191	93	12	110	850	
27	ig. Alvarães	PRETAS		29	14	444	2	205	37	4	43	150	2
	Média			26	28	390	5	183	52	11	71	444	2
9	ig. Matias I	S	A. Purus	N.A.	135	1141	9	196	42	13	27	N.A.	5
10	ig. Itapuru			N.A	N.A	N.A	N.A	218	N.A	N.A	68	N.A	Ν
11	ig. Água Fria			27	309	402	13	252	53	18	31	625	[- ;
12	ig. Paricatuba			N.A	N.A	N.A	N.A	N.A	N.A	N.A	N.A	N.A	Ν
13	Lago Aiapuá I			29	50	346	5	219	42	15	50	425	6
14	Lago Aiapuá II			N.A	N.A	N.A	N.A	N.A	N.A	N.A	N.A	N.A	Ν
15	Lago Aiapuá II			50	472	504	16	644	85	27	98	N.A.	3
Média			İ	35,3	242	598	11	306	56	18	55	525	3
3	rio Solimões I			24	21	227	5	181	33	24	79	750	1
5	rio Solimões II			25	N.A	341	5	225	33	25	97	850	1
18	rio Solimões III			31	21	213	5	157	32	20	55	500	2
19	rio Solimões IV	ÁGUAS	[25	21	197	5	86	22	21	193	500	2
22	rio Solimões V		19 37		14	126	3	88	30	16	30	240	1
28	rio Solimões VI				17	173	3	156	28	19	65	567	1
Média		쭈		27	19	213	4	149	30	21	87	568	1
7	rio Purus I	BRANCAS		26	17	652	4	406	51	22	187	950	9
8	rio Purus II 🤵		33		19	464	5	200	67	18	117	733	2
Média		S		30	18	558	5	303	59	20	152	842	5
29	rio Japurá		į	58	28	266	5	153	51	26	126	567	4
4	furo Parati Gd.		 	34	21	812	3	121	67	19	158	1800	3
Média				46	25	539	4	137	59	23	142	1184	3

8.5.3 Elementos terras raras

Dos ETR determinados nos sedimentos em suspensão La, Ce e Nd apresentaram as concentrações mais elevadas (até 140,3 μg/L) que representam aproximadamente 81% do total desse material. São seguidos de Pr e Sm (até 16,6 μg/L). O Eu, Gd, Tb Dy, Ho, Er, Tm, Yb e Lu tem teores mais baixos (até 9,8 μg L⁻¹) (Tab. 16).

Os sedimentos em suspensão nas águas brancas têm teores mais elevados e homogêneos que as pretas em ETR. O rio Purus dentre os de água branca é o que apresentou menor média de teor (Σ 253,6 μ g/L) e dentre os afluentes de águas pretas os do Solimões tem menor. Isto sugere que os afluentes não influenciam o conteúdo de ETR no rio principal.

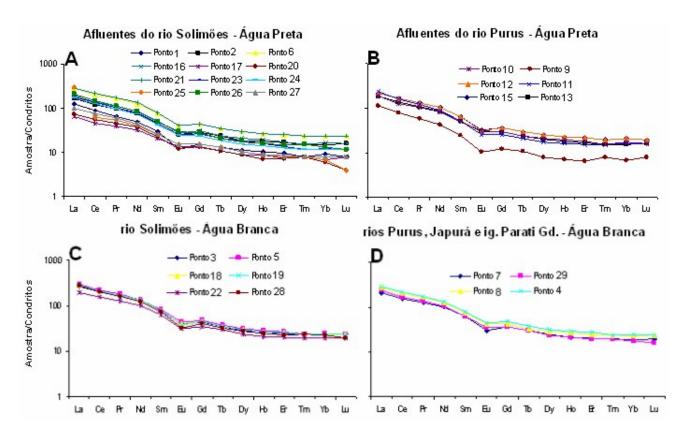
A normalização dos ETR em relação aos condritos, (Evensen *et al.* 1978 *apud* Henderson 1984) (Tab. 20 e Fig. 10), resultou em curvas paralelas com discreta concavidade para cima, suave anomalia negativa em Eu (Eu/Eu*~0,14) e evidente fracionamento com enriquecimento de leves em relação aos pesados. Em relação à média crustal (Tab. 21 e Fig. 11), aos padrões NASC (Tab. 22 e Fig. 12), o fracionamento é menos significativo com leve tendência de anomalia positiva de Er no primeiro e de Pr e Sm no segundo.

Tabela 16 - Concentrações dos ETR em sedimentos em suspensão em μg (N.A.: Não Analisado) Local da Sm Eu Σ **Pontos** Ce Pr Nd Gd Tb Dy Но Er Tm Yb La Lu Coleta 6,3 | 23,2 | 4,6 | 0,7 | 3,1 0,5 ! 2,9 0,6 | 1,6 0,2 ! 1,5 ig. Manacapuru 30,9 ! 55,8 0,2 1132,1 ig. Cabaliana 40,5; 76,2 9,2 | 35,4 | 1,5 5,8 0,9 4,8 2.8 0.4 2.4 0.4 188,4 ig. Anamã 2,4 9 3,9 320,3 6 69,5 : 131,3 : 16,3 : 60,6 : 11,7 1,3 7,5 4,1 0,6 0,6 1,5 16 ig. Anori 2,9 2,7 0,4 | 217,8 47,6 88,8 40.9 7,9 1,6 6,3 0,9 5,3 0,4 2.7 2,3 0,2 | 76,7 17 ig. Badajós 15.9 0.8 0.4 0.5 0.2 20 ig. Coari 17.8 35.7 4.5 17.6 3.5 0,7 2.8 0,4 2,3 0,4 | 1,2 0,2 0,1 88.2 1 21 ig. Copeá 334,5 70,8 | 140,3 | 16,6 | 63,7 | 12,2 8,9 0,6 0,6 1,3 7,5 1,5 7,1 2.3 202,4 23 ig. Ipixuna 43,5! 86,5 10 137.4 1,5 5,4 8,0 4.4 0.9 0.3 2 0.3 24 42,5 81,8 9,3 34,2 6,6 0,7 | 3,9 0,8 2,1 0.3 190.7 ig. Catuá 4.9 0,3 1.9 1,4 ig. Caiambé 25 72.2 5.1 19.6 0,5 2,6 0,5 1,3 0.2 0,1 151.6 40,4 0,9 3,1 51,7 94,4 ig. Tefé 0,9 2,5 10,8 39,8 7,6 1.7 5,7 0,8 | 4,7 0,4 2,2 0.3 223,5 26 ℧ 27 ig. Alvarães 24,9 47,7 5.8 21.1 0,9 3,1 0,5 ! 2,6 0.5 | 1.4 | 0.2 114.2 0.2 ! 1.3 2,3 Média 43.9 75.6 6,6 5 0.7 | 4.2 0,8 0,3 2 0,3 186 9 34 1,3 49.6 5,6 19,9 3,8 2,5 2 0.4 1.1 0.2 1,1 0.2 9 ig. Matias 27,3 0,6 0,4 114,7 10 ig. Itapuru 45,1 ! 81,3 10,2 38,7 1,8 6,2 0,9 5,3 3 0.4 ! 2.8 0.4 | 204.9 ig. Água Fria 57,7 102,8 11,9 42,4 7,8 4,4 11 1,5 5.2 8,0 0,9 2.6 0.4 2.6 0.4 241.4 12 ig. Paricatuba 6,5 1,3 3.6 54 104,3 12,8 48,6 1,8 7,5 1,1 0.5 3,4 0,5 255,9 Lago Aiapuá I 10,6 40,1 5,2 2,8 214,7 13 46,1 8,88 1,7 6,2 0,9 0,4 2,5 14 Lago Aiapuá II N.A. N.A N.A. N.A. N.A. N.A. !Ν.Α. N.A. N.A. N.A. N.A. N.A. | N.A. ! N.A. N.A. 15 Lago Aiapuá III 7,5 256,1 1104,3 112,8 48,7 110 1,9 1,3 3,6 0,5 3,4 0,5 6,5 Média 2.7 2,6 214 47,3 10,6 39,7 7,8 1.5 5.8 0.8 4.9 0.4 0.4 1 rio Solimões I 65,1 126,8 | 15,2 | 58,1 11,3 2,4 8,9 4.1 0.6 ! 3,7 0,6 307 1,3 7,4 1,5 5 rio Solimões II 72,5 140.2 17 63.2 12.5 2,6 9,8 0.6 0.6 338.2 1.4 7.8 1.6 4.4 rio Solimões III 129.8 16 60.2 11.7 2.4 9,3 4,2 0,6 315,7 18 66,8 1,3 7,5 1,5 3.8 0,6 19 rio Solimões IV 2,2 9,2 69 134,6 16,2 61,5 12 1,3 7,6 4,2 0,6 3,9 0.6 324,4 1,5 rio Solimões V 238,7 22 97.3 | 12.3 | 46.6 | 9.5 0.5 1 3.2 48,1 1.8 1.1 6.1 0.5 rio Solimões VI 0,6 28 126,7 | 15,4 | 58,1 | 11,2 | 1,9 8,3 1,2 6,9 1,4 | 3,8 3,7 0,5 306.8 67,1 Ś Média 64,7 125,9 15,3 57,9 11,3 2,2 8,7 1,2 7,2 1,4 0,5 3.7 0.5 304.5 rio Purus I 52.2 99.8 12.4 46.8 9.7 7.5 6.2 1.2 3.4 0.5 3.1 0.5 246.1 1.1 rio Purus II 106,3 13,2 49,8 9,6 2 1,2 | 3,2 8 57,8 7,5 1,1 6 0,5 ! 2,9 0,4 | 261,5 Média **55** 103 | 12,8 | 48,3 | 9,6 1,2 3,3 0,5 0,4 253,6 1,8 7,5 6,1 3 rio Japurá 67,2 128,8 | 15,7 | 59,2 | 11,3 2.5 8,8 1.2 1.5 4 0.6 3.7 0.6 312,3 furo Parati Gd 71,3 0.6 | 333.2 137,3 | 16,6 | 62,9 | 12,2 | 2,6 9,7 1.4 ! 7.9 1,6 4.5 0,6

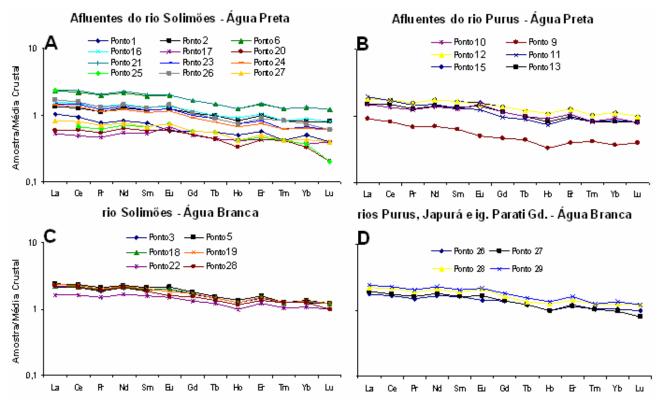
11.7 2.5

9,2

1,3


0,6

0.6 322.2


Média

69,2

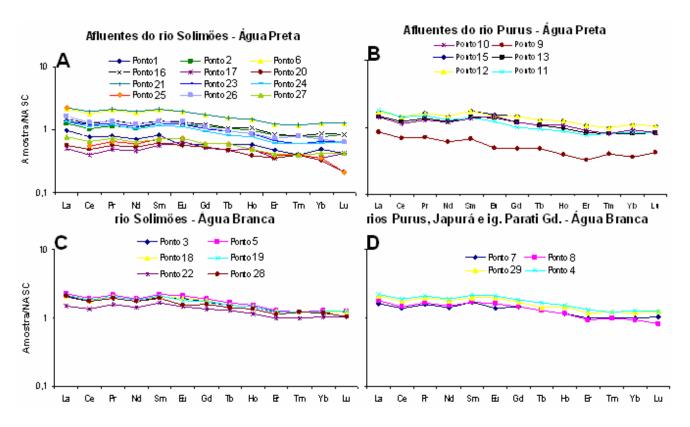

133 16.1 61

Figura 11 - Fracionamento dos ETR em relação aos condritos no sedimento em suspensão em μg L⁻¹ (A), (B), (C) e (D)

Figura 12- Fracionamento dos ETR em relação à média crustal no sedimento em suspensão em $\mu g \ L^{-1}$ (A), (B), (C) e (D)

Figura 13 - Fracionamentos dos ETR em relação a NASC no sedimento em suspensão em $\mu g L^{-1}(A)$, (B), (C) e (D)

Os fracionamentos dos ETRL em relação aos ETRP e entre os La/Eu e Gd/Lu são mais acentuados entre os afluentes do rio Solimões em La_n/Yb_n = 4,71 a 46,48, Gd_n/Yb_n = 1,68 a 3,9 e La_n/Yb_n = 9,76 a 44,30, respectivamente (Tab. 17). Essas relações indicam maior enriquecimento dos mais leves em relação aos mais pesados em todos os rios e afluentes, especialmente nos afluentes do Solimões.

As características mencionadas acima mostram similaridade nos padrões de ETR entre as amostras de águas brancas e pretas.

Tabela 17 - Razões dos ETR Normalizados

Pontos	Local da Coleta			C	ONDRITO	S	MÉ	DIA CRUS	TAL	NASC			
Politos	Local da Coleta			LaN/YbN	LaN/EuN	GdN/LuN	LaN/YbN	LaN/EuN	GdN/LuN	LaN/YbN	LaN/EuN	GdN/LuN	
1	ig. Manacapuru		[1,93	2,06	1,77	2,06	1,77	1,44	2,00	1,71	1,43	
2	ig. Cabaliana			1,80	1,69	1,08	1,69	1,08	1,34	1,63	1,05	1,34	
6	ig. Anamã	Ą		1,86	1,78	1,16	1,78	1,16	1,39	1,73	1,12	1,38	
16	ig. Anori	Afluen	İ	1,96	1,76	1,19	1,76	1,19	1,46	1,71	1,15	1,45	
17	ig. Badajós	Ē		1,68	1,45	0,80	1,45	0,80	1,25	1,40	0,77	1,25	
20	ig. Coari	s do Soli	ÁGUA	3,48	1,78	1,02	1,78	1,02	2,59	1,72	0,99	2,58	
21	ig. Copeá			1,84	1,82	1,18	1,82	1,18	1,37	1,76	1,14	1,37	
23	ig. Ipixuna			2,24	2,18	1,16	2,18	1,16	1,67	2,11	1,12	1,66	
24	ig. Catuá	olimõ		2,03	2,24	1,21	2,24	1,21	1,51	2,17	1,18	1,51	
25	ig. Caiambé)es	U	3,85	6,56	3,21	6,56	3,21	2,87	6,36	3,11	2,86	
26	ig. Tefé		R	2,36	2,35	1,22	2,35	1,22	1,76	2,28	1,18	1,75	
27	ig. Alvarães		A	1,93	1,92	1,11	1,92	1,11	1,44	1,86	1,07	1,43	
9	ig. Matias	 		1,86	1,59	1,14	1,59	1,14	1,39	1,54	1,10	1,38	
10	ig. Itapuru			N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	
11	ig. Água Fria	<u>.</u>		1,93	1,84	1,08	1,84	1,08	1,44	1,79	1,05	1,43	
12	ig. Paricatuba	n.		1,86	1,59	1,20	1,59	1,20	1,39	1,54	1,16	1,38	
13	lago Aiapuá I	SnJ		1,62	2,22	1,54	2,22	1,54	1,20	2,15	1,49	1,20	
14	lago Aiapuá II	į		1,93	1,61	1,00	1,61	1,00	1,44	1,56	0,97	1,43	
15	lago Aiapuá III		<u> </u>	1,55	2,48	1,82	2,48	1,82	1,16	2,40	1,76	1,15	
3	rio Solimões I	/ /		1,84	1,76	1,09	1,76	1,09	1,37	1,70	1,05	1,37	
5	rio Solimões II		j	2,03	1,81	1,12	1,81	1,12	1,51	1,76	1,08	1,51	
18	rio Solimões III		ÁG	1,93	1,76	1,11	1,76	1,11	1,44	1,70	1,08	1,43	
19	rio Solimões IV		ÜA	1,91	1,77	1,25	1,77	1,25	1,42	1,71	1,22	1,42	
22	rio Solimões V		D	1,76	1,50	1,07	1,50	1,07	1,31	1,46	1,04	1,31	
28	rio Solimões VI		₽	2,06	1,81	1,41	1,81	1,41	1,54	1,76	1,37	1,53	
7	rio Purus I		NC	1,86	1,68	1,23	1,68	1,23	1,39	1,63	1,19	1,38	
8	rio Purus II		×	2,33	1,99	1,16	1,99	1,16	1,74	1,93	1,12	1,73	
29	rio Japurá		j	1,82	1,82	1,08	1,82	1,08	1,36	1,76	1,04	1,35	
4	furo Parati Gd.		<u> </u>	2,01	1,78	1,10	1,78	1,10	1,50	1,73	1,06	1,49	

N.A.: Não Analisado.

8.6 ANÁLISE ESTATÍSTICA MULTIVARIADA

8.6.1 Águas

A análise estatística multivariada é uma ferramenta essencial que auxilia a avaliar, organizar, interpretar e analisar um grande número de dados. Esse método reduz a complexidade do problema em questão, sem acarretar perda relevante de informação, ao mesmo tempo em que evidencia as relações entre as variáveis constituintes da base de dados (Neto & Moita, 1987). Um dos métodos estatísticos muito utilizados é a análise multivariada por componentes principais (ACP), que tem como objetivo principal reduzir a dimensão dos dados originais permitindo a fácil visualização das informações mais importantes em um número menor de fatores ou componentes (Neto & Moita, 1997).

De todas as variáveis analisadas nas amostras de água (pH, C.E., transparência, Ca²+, Na+, K+, Mg²+, HCO₃-, SO₄²-, PO₄³-, Cl⁻, Zn, Ba, Sr, Cu, B, Sc, V, Cr, Co, Ce, La, U, As, Rb, Mo, Cd, Cs, Sb e Pb) foram consideradas somente pH, C.E., Ca²+, Mg²+, HCO₃-, SO₄²-, PO₄³-, Cl⁻, Ba, Sr, Cu, Sc, V, Co, Mo e Sb (Tab. 21). Essas variáveis foram as que apresentaram autovalores ≥ ± 0,6 por serem as que têm maior número de correlações significativas entre si e, assim são as mais representativas das características das águas. Essas variáveis estão agrupadas em dois componentes principais que representaram entre 47% e 24% da variança total (Tab.21).

Tabela 18 - Análise de componentes principais das amostras de água

Variáveis	CP1	CP2	Variáveis	CP1	CP2
рН	-0,148	0,669	В	-0,398	-0,225
C.E	-0,694	0,384	Sc	-0,792	0,316
Transp.	0,018	0,487	V	-0,684	-0,569
Ca ²⁺	-0,610	0,646	Cr	-0,400	0,573
Na⁺	-0,465	0,158	Co	-0,656	-0,496
K⁺	-0,575	-0,594	Ce	-0,318	-0,356
Mg	-0,928	0,258	La	-0,322	0,293
HCO ₃ ⁻	-0,929	0,259	U	-0,249	0,243
SO ₄ ²⁻	-0,758	0,180	As	-0,384	0,582
SiO ₂	-0,137	0,313	Rb	-0,430	0,454
PO ₄ ³⁻	-0,655	-0,620	Мо	-0,231	-0,887
Cl⁻	-0,646	-0,136	Cd	-0,191	0,099
Zn	0,216	0,045	Cs	-0,001	-0,104
Ва	-0,746	-0,195	Sb	-0,065	-0,604
Sr	-0,898	-0,170	Pb	-0,011	-0,190
Cu	-0,880	0,177	Prp.Totl	47%	24%

Com base nessas variáveis mais significativas das águas foram obtidos os escores das amostras nos dois primeiros componentes principais. Esses escores indicaram que as amostras se agrupam de acordo com o tipo de água e local de ocorrência (Fig. 13). O CP1 separa as amostras de poços e fontes, com cargas negativas das do sistema fluvial (Fig. 14). Logo, a separação dos poços e fontes ao longo do CP1 é influenciada pela condutividade elétrica, Ca²+, Mg, HCO₃-, SO₄-²-, PO₄-³-, Cl⁻, Ba, Sr, Cu, Sc, V e Co todos com cargas negativas. No geral todas essas variáveis aumentam da direita para esquerda exceto SO₄-²- e V. No CP2, é possível observar que as amostras de água branca dos rios Solimões, Purus, Japurá e furo Parati Grande, localizadas na parte inferior da figura 13 em conseqüência das cargas do CP2 ser negativa, formam um grupo separado em relação às águas pretas. Essa separação é influenciada pelas variáveis pH, Ca²+, PO₄-³-, Mo e Ba onde o valor dos dois primeiros é inversamente proporcional a carga do componente principal, enquanto os demais aumentam juntamente com a carga, ou seja, estes são mais elevados nas águas brancas. As águas pretas são as mais dispersas e se entendem entre o

segundo, terceiro e quarto quadrante (Tab. 21) ou seja, tem carga positiva no CP1 e negativas e positivas no CP2. Essa dispersão pode estar relacionada à grande distância geográfica (300 Km) entre elas e, conseqüentemente a maior variedade de ambientes percolados (Fig. 1). As águas brancas são quimicamente mais homogêneas e estão restritas aos terceiro e quarto quadrante. A homogeneidade delas pode ser conseqüência de representarem apenas 3 rios, o Solimões (6 amostras), Purus (2 amostras), Japurá (1 amostra) o Parati Grande que é um furo do primeiro (1 amostra).

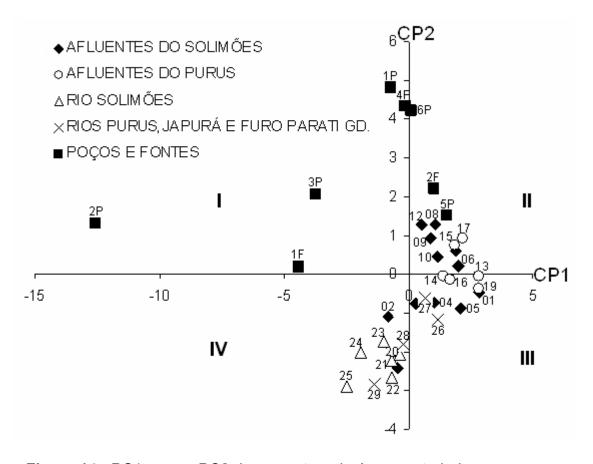


Figura 14 - PC1 versus PC2 das amostras de águas estudadas

8.6.2 Sedimentos

Nos sedimentos em suspensão foi aplicado o mesmo procedimento. As variáveis mais significativas foram Ti, Zn, V, Zr, Sr, Rb, Cr, Cu, Ni, Sc, Co, Y, Nb, Th, Cs, Tl, U, Hf, Cd e Ge, todas com cargas negativas >0,6 dispostas nos dois primeiros componentes principais que representam 70% e 10%, respectivamente da variança total (Tab. 22). Os escores das amostras, também nos dois primeiros componentes principais, separaram os sedimentos em suspensão dos afluentes do rio Solimões em relação aos demais em função do CP1 (Fig. 14) que representa o Ti, V, Zr, Sr, Rb, Cr, Cu, Ni, Sc, Co, Y, Nb, Th, Cs, Tl, U, Hf e Ge cujos teores são inversamente proporcionais às cargas ou seja, este grupo de amostras é o que tem a menor concentração desses elementos-traço.

As demais amostras (afluentes do Purus e as águas brancas) que correspondem as que tiveram cargas negativas no CP1 e conseqüentemente as maiores concentrações em Ti, V, Zr, Sr, Rb, Cr, Cu, Ni, Sc, Co, Y, Nb, Th, Cs, Tl, U, Hf e Ge não têm no sedimento em suspensão características químicas que permitam diferenciá-las em grupos separados. O CP2 representado pelo Zn e Cd apesar de terem cargas elevadas (-0,81 e -0,87) não foram capazes de influenciar significativamente na separação de grupos de amostras em função da composição química dos sedimentos em suspensão. Pode-se concluir, ainda que os sedimentos em suspensão nos afluentes do Purus e nas águas brancas são químicamente similares.

	Tabela 19 - Análise de con	nponentes principa	ais das amostras	de sedimentos
--	----------------------------	--------------------	------------------	---------------

Parâmetros	CP1	CP2	Parâmetros	CP1	CP2
Ti	-0,956	0,052	Co	-0,898	0,105
Zn	0,258	-0,806	Y	-0,911	0,247
Ва	-0,850	0,064	Nb	-0,946	-0,008
V	-0,745	-0,266	Th	-0,972	0,020
Zr	-0,917	-0,076	Sn	-0,331	-0,039
Sr	-0,796	0,242	Cs	-0,852	-0,307
Rb	-0,966	-0,020	TI	-0,343	-0,076
Cr	-0,768	-0,208	U	-0,935	0,187
Cu	-0,639	0,394	Hf	-0,922	-0,140
Ni	-0,929	0,000	Cd	0,060	-0,870
Pb	-0,594	-0,131	Bi	-0,531	0,238
Ga	-0,528	-0,593	Ge	-0,721	-0,172
Sc	-0,983	-0,050	Prp.Totl	70%	10%

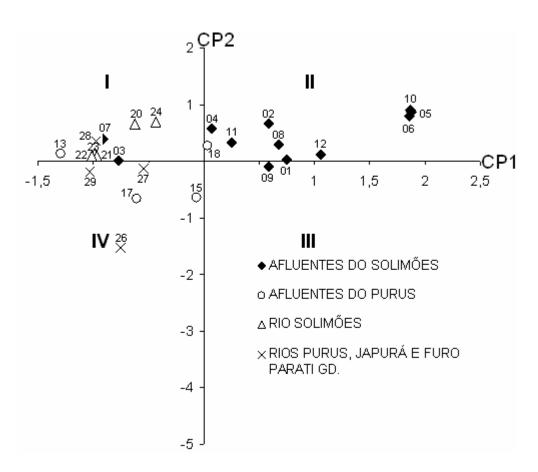


Figura 15 - PC1 versus PC2 das amostras de sedimentos em suspensão

9 CONCLUSÃO

As águas estudadas, de modo geral, podem ser divididas em dois grupos. O primeiro constituindo as águas pretas (afluentes dos rios Solimões e Purus) e o segundo as brancas (rios Solimões, Purus, Japurá e furo Parati Grande). No primeiro grupo as águas têm maior concentração SiO₂, Fe e Al. No segundo, há maior concentração em Ca²⁺, Na⁺, K⁺, Mg²⁺, HCO₃⁻, Mn, Ba, Sr, B, Ce e As já eram esperados por serem águas brancas e ricas em sedimentos em suspensão.

O furo Parati grande é equivalente ao rio Solimões, por ser um canal deste. O rio Solimões à medida que recebe tributários de águas pretas dilui suas águas, diminuindo as concentrações pH, Na⁺ e Mg²⁺.

Nos elementos-traço, o Fe e Al predominam em todas as drenagens investigadas, com maior concentração nas águas pretas. De modo geral, os afluentes do Solimões têm maior carga química que os do Purus.

Os resultados obtidos nas razões isotópicas ⁸⁷Sr/⁸⁶Sr evidenciaram razões mais elevadas nas águas brancas do rio Solimões que os demais rios, enquanto nos seus afluentes ocorreu o inverso.

Os resultados obtidos a partir das análises mineralógica, químicas e interpretações de trabalhos sobre sedimentos em suspensão na Amazônia, conclui-se que a caulinita predomina em todas as drenagens investigadas, com maior proporção nos afluentes do rio Solimões e em menor nos do Purus e nos rios Solimões, Purus, Japurá e furo Parati Grande. O material em suspensão apresentou grande variação na concentração dos elementos-traço, especialmente em Ti, Zn, Ba e V, que representam 98% do total da composição química desse material, já o Ge é inexpressivo em todas as águas estudadas.

10 REFERÊNCIAS BIBLIOGRÁFICAS

- ALLÉGRE, C.J.; DUPRÉ, B.; NÉGREL, P.; GAILLARDET, J. 1996. Sr-Nd-Pb isotopes systematics in Amazon and Congo river sistems: Constrain about erosion proceses, Chemical Geology, 131: 93-112
- ALMEIDA, L. F. G. 1975. Implicações tectônicas do Cráton Guianense na Bacia do Alto Amazonas Conferência Geológica. Interguianas Belém PA.
- ARAI, M.; NOGUEIRA, A.C.R.; SILVEIRA, R.R.; HORBE, A.M. 2003. Considerações cronoestratigráficas e paleoambientais da Formação Solimões com base em palinomorfos, região de Coari, estado do Amazonas. In: 8º Simpósio de Geologia da Amazônia. Resumos expandidos e CD.
- APHA, AWWA, WPCF. 1985. Standard methods for the examination of water and wastewater including botton sediments and sludges, 14ed., New York, 936p.
- BANNER, J.L.; MUSGROVE, M.; CAPO, .C. 1994. Tracing grownwater evolution in a limestone aquifer using Sr is otopes: Effect of multiple sources of dissolved ions and mineral solution reactios, Geology, 22: 687-690.
- BULLEN, T.D.; KRABBENHOFT, D.P.; K da ENDALL, C. 1996. Kinetic and mineralogic controls of the evolution of grou ndwater chemistry and ⁸⁷Sr/⁸⁶Sr in a sandy silicate aquifer, northern Wisconsin, Geochemistry et Cosm. Acta, 60: 1807-1821.
- CAMPOS, Z. E. S. 1994. Parâmetros Físico-químicos em igarapés de água clara e preta ao longo da rodovia BR 174 entre Manaus e Presidente Figueiredo AM. INPA
- CAMPOS, J. N. P., MURAKAMI, C. Y., MAURO FILHO, A, BARBOSA, C. M. 1991. Evolução tectono-sedimentar, habitat do petróleo e exploração da Bacia do Solimões. Manaus: Petrobras/Denoc. Relatório Nº 131-08015.
- CAPUTO, M. V. 1984. Stratigraphy, tectonics, paleoclimatology and paleogeography of northern basins of Brazil. Santa Barbara. 583 p. (Doctor of Philosofy Thesys, University of California)
- COLLERSON, K.D.; ULLMAN, W.J.; JORGERSEN, T. 1988. Groundwaters with unradiogenic ⁸⁷Sr/⁸⁶Sr ratios in the Great Artesian Basin, Autrália, Geology, 16: 59-63.
- CORNU, S.; LUCAS, Y.; AMBROSI, J. P. e DESJARDINS, T. 1999. Transfer of dissolved AI, Fe and Si in two Amazonian Florest enveronments in Brazil. European Journal of Soil Scienc, September, 49, 377-384.
- DAEMON R,F. & CONTREIRAS C. J. A. 1971. Zoneamento palinológico da Bacia do Amazonas. In: SBG, Cong. Brás. Geol., 25, São Paulo, *Anais*, 3:79-88.

- DUPRÉ, B.; GAILLARDET, J.; ROUSSEAU, D.; ALLÉGRE, J. 1996. Major and trace elements of river-borned material: The Congo Basin. *Geochimica et Cosmochimica Acta*, 60:1301-1321.
- EIRAS, J. F, BECKER C. R., SOUZA. E. M, GONZAGA. F. G. DA SILVA. J. G. F, DANIEL. L. M. F.; 1994. Bacia do Solimões. B. Geoci. Petrobrás, rio de janeiro, 8 (1): 17-45, jan./mar.
- EIRAS, J.F. 2000. Tectônica sedimentação e sistemas petrolíferos da bacia do Solimões estado do amazonas, Cenário geológico nas bacias sedimentares no Brasil em: Apostila sobre prospecção e desenvolvimento de campos de petróleo e gás (Shlumberger), Cap. 2. Segunda Parte.
- ESTEVES, F.A. 1998. Fundamentos de Limnologia. 2º ed.,vol 1, editora interciências LTDA, Rio de Janeiro RJ. 39p.
- EVENSEN, N.M.; HAMILTON, P.J.; O'NIONS, R. K. 1978. Rare earth abundances in chondritic meteorites. *Geochim. Cosmochim. Acta*, 42: 1199-1212.
- FAURE, G. 1986. Principles of Isotope Geology, 2^a Ed. New York, John Wiley & Sons, Inc. 589p.
- FRANZINELLI, E. & POTTER, P. E. 1985. Areias recentes dos rios da bacia amazônica: Composições petrográfica, textural e química. Revista Brasileira de Geociências. nº 15. v 3. p 213 220.
- FORTI, M. C.; MELFI, A. J. e AMORIN, P.R.N. 1997. Hidroquímica das águas de drenagem de uma pequena bacia hidrográfica no nordeste da Amazônia (Estado Amapá, Brasil): efeitos da sazonalidade. Geochimica Brasiliensis, vol. 3, 11, 311-340
- FURCH, K, 1984. Water chemistry of the Amazon Basin: the distribution of chemical elements among freshwaters. *In:* Sioli, H. (ed.). *The Amazon Limnology and landscape ecologyof a mighty tropical river and its basin.* Junk, Dordrecht: p.167-169.
- GAILLARDET, J.; DUPRÉ, B.; ALLÈGRE, C.; NÉGREL, P.1997. Chemical and physical denudation in the Amazon River Basin.Chemical Geology 142:141-173.
- GERAD M., SEYLER P., BENEDETTI M.F., ALVES V.P., BOAVENTURA G.R., SONDAG F. 2003 Rare Earth Elements in the Amazon Basin 2002 Hydrological Processes 17, 1379-1392

- GIBBS, R. J. 1967. Geochemistry of the Amazon River system, parte I. The factor that control the salinity and composition and contration of the suspended solids. Geol. Soc. Am. Bull. 78: 1203 a 1232.
- GINGRAS, M. K. RÄSÄNEN. M, RANZI. A. 2002. The significance of bioturbated Inclinated Heterolithic Stratification in the Southern Part of the Miocene Solimões Formation, Rio Acre, Amazônia Brasil . Palaios 17:591-601
- GIBBS, R. J. 1972. Water chemistry of Amazon river. Geochim. Cosmochimica Acta 36: 1061 a 1066.
- GOLTERMAN, H.L.; CLYMO, R.S. e OHNSTAD, M. A. M. 1978. Methods for physical and chemical analysis of fresh water. IBP handbook n. 8, Blackwell Scientific publications, 213p.
- HEM, J.D. 1970. Study and interpretation of the chemistry characteristics od natural waters, 363 p. (U. S. Geol. Surv. Water-Supply Paper 1473).
- HENDERSON, P. 1984. Rare earth element geochemistry. Amsterdam, Elsevier. p. 510.
- HERUT, B.; STARINSKY, A.; KATZ, A. 1993. Strontium in rainwater from Israel: Sources, isotopes and chemistry, Earth and planet. Sci. Lett., 120: 77-84.
- HOORN, C. 1994. Miocene palynostratigraphy and paleoenvironments of Northwestern Amazônia. Evidence for marine incursions and the influence of Andean tectonics. PhD thesis, Univ. of Amsterdam, p. 156
 - HUTCHINSON, G. E. 1975. A treatise on limnology. New York: John Wiley & Sons. 2v.
- IRION, G. 1984. Sedimentation and sediments of amazonian rivers and evolution of Amazonian landscape sice Pliocene times. The Amazon. K. Academic publischers Goup Dordrecht, Boston. Lancaster.
- JUNK, W.J. 1980. Áreas inundáveis um desafio para a Limnologia. Acta Amazônica, 10 (4): 775-795.
- JUNK, W.J.; FURCH, K. 1985. Química da água e macrófitas aquáticas de rios e igarapés na bacia Amazônica e nas áreas adjacentes. Acta amazônica, 10 (3): 611-633.
- KAWASHITA, K.; MARQUES, F.; SOARES, E.; PINTO, M.S. 1997. Propostas para valores de consenso para ⁸⁶Sr/⁸⁷Sr em carbonatos de strôncio NBS-987 e SrN (E&A), In: acta X Semana de Geoquímica / IV Congresso de Geoquímica dos Países de Língua Portuguesa, Braga, Portugal: 397-400.

- KULCHER, I.L.; MIEKELEY, N.; FORSBERG, B. 2000. A contribution to the chemical characterization of rivers in the rio Negro basin, *Brazil. J. Braz. Chem. Soc.*, 11:286-292.
- LEVINSON, A.A. 1974. Introduction to explofation geochemistry. Illinois, Applied. Publ. 614p.
- LYONS, W.B.; TYLER, S.W.; GAUDETTE, H.E.; LONDG, T. 1995. The use of strontium isotopes in determining groundwater mixing and brine fingering in playa spring zone, Lake Tyrrell, Austrália, Journal of Hidrology, 187: 225-239.
- LOPES, U.B. 1992. Aspectos Físicos, Químicos e Ecológicos das misturas naturais de águas físico-quimicamente diferentes, na Amazônia. INPA Pós- Graduação em Ciências Biológicas. Tese de Doutorado, 49p.
- MACÊDO, J.A.B.2003. Piscinas Água & Tratamento & Química. Belo Horizonte: CRQ-MG, 235p.
- MAIA, R. G. N.; GODOY, H. K.; YAMAGUTI, H. S.; MOURA, P. A.; COSTA, F. S. F.; HOLANDA, M. A.; COSTA, J. A. 1977. Projeto Carvão no alto Solimões. Relatório Final, CPRM-DNPM, 137p.
 - MATHESS, G.; HAVEY, A. 1982. The properties of Groundwater. 1 ed.
- MORTATTI, J.; PROBST, J. L. 2003. Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon Basin estimated from river water geochemistry: seasonal and spatial variations. Chemical Geology, Estados Unidos, v. 197, p. 177-196.
- NETO, J. M. M.; MOITA, G. C. 1998. Uma introdução á Análise Exploratória de Dados Multivariados. Química Nova, 21 (4).
- NORDSTROM, K.F. 1977. The use of grain-size statistics to distinguish betweenhigh-and-moderate-energy beach environments. 7. Sed. Petrol.,47:1287-1294
- NOGUEIRA, A. C. R.; ARAI, M.; HORBE, A. M. C.; HORBE, M. A.; SILVEIRA, R. R.; SILVA, J. S.; MOTTA M. B. 2003. A Influência Marinha nos Depósitos da Formação Solimões na Região de Coari (AM.): Registro da Transgressão Miocênica na Amazônia Ocidental. VIII Simpósio de Geologia da Amazônia, sessão temática: Sedimentologia e Estratigrafia.
- PALMER, M.R.; EDMOND, J.M. 1992. Controls over the strontium isotope composition of river water. Geochemistry Et Cosm. ActaN., 56: 2099-2111.
- ROSSETTI, D. de F., TOLEDO, P. M.,GÓES, A. M. 2004. New geological framework for Western Amazônia(Brazil) and implications for biogeography and evolution. Quaternary Research, p. 1-10.

- SANTOS, U. M.; RIBEIRO, M. N. G. 1988. A Hidroquímica do rio Solimões Amazonas. Acta Amazônica, 18 (3-4): 145 172.
- SEYLER, P., BOAVENTURA, G. R. 2003. Distribution and partition of trace Metals in the Amazon Basin. Hydrological Processes, England, v. 17, p. 1345-1361.
- SILVA, M.S.R.; RAMOS, J.P.; PINTO, A.G..N. 1999. Metais de transição nos sedimentos de igarapés de Manaus-AM. *Acta Limnologica Brasiliensis*, 11:89-100.
- SILVEIRA, R.R. 2005. Cronoestratigrafia e Paleoecologia da Formação Solimões (Mioceno) na Região de Coari, Bacia do Solimões. Dissertação (Mestrado em Geologia) Universidade Federal do Amazonas.
- SIOLI, H. 1960. Pesquisas limnológicas na região da Estrada de Ferro de Bragança, Estado do Pará—Brasil. Bol. Tec. Inst. Agron. Norte, (37):1-73.
- SIOLI, H. 1967. Studies in Amazonian waters. In:SIMPÓSIO SOBRE A BIOTA AMAZÔNICA. Belém, 1996. Atas. Rio de Janeiro, CNPq, 1967. v.3, p.9-50.
- SIOLI, H. 1968 Hydrochemistry and Geology in the Brazilian Amazon Region. Amazoniana Bd. I H. 3:267–277.
- SIOLI, H. 1985. Amazônia. Fundamentos de ecologia da maior região de floretas tropicais. Rio de janeiro: Ed. Vozes.
- SIOLI, H.; KLINGE, H. 1962. Solos, tipos de vegetação e águas na Amazônia. Boletim do Museu Paraense Emílio Goeldi. Série Avulsa Belém, (1):27-41.
- SIPPEL, S.J.; HAMILTON, S.K.; MELACK, J.M. 1992. Inundation area and morphometry of lakes on the Amazon river floodplain, Brazil. Arch. Hydrobiol., 123(4):385-400.
- THOMAS FILHO, A, MIZUSAKI, A.M.P, KAWASHITA, K.; TORQUATO, J.R.1995. Geocronologia Nuclear, Revista de Geologia, 8: 213-219.
- VILLAS BOAS, P. F.; MELO, A. F. F. 1994. Caracterização e distribuição da Formação Içá na porção noroeste do Estado do Amazonas. Simpósio de Geologia da Amazônia, 4. Boletim de Resumos Expandidos. Sociedade Brasileira de Geologia Núcleo Norte, 210 211.
- WALKER, I. 1987. The biology of streams as part of Amazonian forest ecology. Experientiae, (73): 279-287.
- YABE, M. J. S e OLIVEIRA, E. 1998. Metais pesados em águas superficiais como estratégia de caracterização de bacias hidrográficas. Química Nova, v.21, p.551-556.

11 ANEXOS

Tabela 20 - Normalização (CONDRITOS) dos ETR em sedimentos em suspensão em µg (N.A.: Não Analisado)

					CONE	<u> </u>	u05 L I	K em sedinientos em suspensão em pg					ein hã	(IN.A IV	-г					
	Local d	; ;				_			<u> </u>			_		_	<u> </u>					
Ptos.	Coleta	1		La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu			
1	ig. Manacapuru			126,3286	87,4745	65,3730	48,9658	29,8701	12,0648	15,1737	13,3511	11,4128	10,5820	9,6385	7,8094	9,0854	7,8771			
2	ig. Cabaliana		İ	165,5764	119,4545	95,4653	74,7150	46,1039	25,8531	28,3896	24,0320	18,8902	17,6366	16,8674	15,6189	14,5366	15,7542			
6	ig. Anamã		_	284,1373	205,8316	169,1398	127,9021	75,97403	41,3650	44,0528	34,7129	29,5159	26,4550	24,698	23,4283	23,6220	23,6313			
16	ig. Anori		Afluente	194,6034	139,2068	114,1434	86,3233	51,2987	27,5767	30,8370	24,0320	20,8579	19,4003	17,4698	15,6180	16,3537	15,7542			
17	ig. Badajós		ente	65,0040	45,7752	39,4313	32,0810	20,7792	13,7883	13,2158	10,6809	9,0515	8,8183	7,2289	7,8094	6,6626	7,8771			
20	ig. Coari		s d	72,7718	55,9648	46,6950	37,1464	22,7272	12,0648	13,7053	10,6809	9,0515	7,0546	7,2289	7,8094	6,0569	3,9385			
21	ig. Copeá		0 7.	289,4521	219,9404	172,2528	134,4449	79,2207	41,3650	43,5633	34,7129	29,5159	26,4550	25,301	23,4283	23,6220	23,6313			
23	ig. Ipixuna		io S	io S	177,8413	135,6012	103,7667	78,9362	46,1039	25,8531	26,4317	21,3618	17,3160	15,8730	13,8554	11,7141	12,1138	11,8156		
24	ig. Catuá	ÁGUA		173,7530	128,2333	96,5030	72,1823	42,8571	24,1296	23,9843	18,6915	15,3482	14,1093	12,6506	11,7141	11,5081	11,8156			
25	ig. Caiambé	SAL	lões	295,1757	63,3328	52,9210	41,3676	25,9740	15,5118	15,1737	13,3511	10,2321	8,8183	7,8313	7,8094	6,6626	3,9385			
26	ig. Tefé			211,3649	147,9856	112,0681	84,0016	49,3506	29,3002	27,9001	21,3618	18,4966	15,8730	15,0602	15,6180	13,3252	11,8156			
27	ig. Alvarães	Ę	DRETAS			ļ	101,7989	74,7766	60,1847	44,5335	25,9740	15,5118	15,1737	13,3511	10,2321	8,8183	8,4337	7,8094	7,8740	7,8771
	Média	Ś		179,8173	118,6314	93,9953	71,8833	43,0194	23,6987	24,8001	20,0267	16,6601	14,9911	13,8554	13,0157	12,6186	12,1438			
9	ig. Matias			111,6108	77,7551	58,1093	42,0008	24,6753	10,34126	12,2369	10,6809	7,8709	7,0546	6,6265	7,8094	6,6626	7,8771			
10	ig. Itapuru				184,3827	127,4494	105,8421	81,6800	50,0000	31,0237		24,0320	20,8579	19,4003	18,0722	15,6189	16,9594	15,7542		
11	ig. Água Fria		.>	235,8953	161,1538	·	89,4892	50,6493	25,8531		21,3618	17,3160	15,8730	15,6626	15,6189	15,7480	15,7542			
12	ig. Paricatuba		Purus	220,7686	163,5053	}	102,5749	64,9350	31,0237		29,3724	25,5804	22,9276	21,6867	19,5236	20,5935	19,6927			
13	Lago Aiapuá I			S	188,4710	139,2068	109,9927	84,6348	51,9480	29,3002	30,3475	{	20,4643	17,6366	16,8674	15,6189	15,1423	15,7542		
14	Lago Aiapuá II				N.A.	N.A.	N.A.	N.A.	N.A	N.A.	N.A.	N.A.	N.A	N.A.	N.A	N.A.	N.A.	N.A.		
15	Lago Aiapuá III			220,7686	163,5053	}	102,7860	 	32,7473	36,7107	29,3724	25,5804	22,9276	21,6867	19,5236	20,5935	19,6927			
	Média		:	193,6495	138,7626	;	83,8609	51,1904	26,7149		23,1419	19,6117	17,6366	16,7670	15,6189	15,9499	15,7542			
3	rio Solimões I		;	266,1488	198,7772	157,7254	122,6256	73,3766	41,3650	43,5633	34,7129	29,1223	26,4550	24,6988	23,4283	22,4106	23,6313			
5	rio Solimões II			296,4022	219,7837	ļ	133,3896	<u> </u>	44,8121		37,3831	30,6965	28,2186	26,5060	23,4283	24,2277	23,6313			
18	rio Solimões III		i	i	273,0989	203,4802	}	127,0578	}	41,3650		34,7129	{	26,4550	25,3012	23,4283	23,0163	23,6313		
19	rio Solimões IV	ÁĢ	!	282,0932	211,0049	·	129,8016		37,9179		34,7129	29,9094	26,4550	25,3012	23,4283	23,6220	23,6313			
22	rio Solimões V	UAS	:	196,6475	152,5317	127,6331	98,3537	61,6883	31,0237		29,3724	{ -	21,1640	20,4819	19,5236	19,3821	19,6927			
28	rio Solimões VI	-	i	274,3254	198,6205	}	122,6256	r	32,7473		32,0427	{	24,6913	22,8915	23,4283	22,4106	19,6927			
	Média	BRANC	;	264,7860	197,3664	159,2819	122,3090	}	38,2052		33,8228	{ -	25,5731	24,1967	22,7775	22,5116	22,3185			
7	rio Purus I	` >	;	213,4096	156,4509	128,6707	98,7758	62,9870	29,3002	36,7107	29,3724	24,3998	21,1640	20,4819	19,5236	18,7765	19,6927			
8	rio Purus II	S	!	236,3041	166,6405	136,9721	105,1076	62,3376	34,4708	<u> </u>	29,3724	23,6127	21,1640	19,2771	19,5236	17,5651	15,7542			
29	rio Japurá		1	274,7342	201,9125	162,9138	124,9472	73,3766	43,0885	43,0739	32,0427	28,3353	26,4550	24,0963	23,4283	22,4106	23,6313			
4	furoParati Gd.		:	291,4963	215,2375	;	132,7564		44,8121	47,4792	:	31,0901	28,2186	27,1084	23,4283	24,2277	23,6313			
	Média	i	<u>ئے۔۔۔</u> ز	253,9861	185,0604	150,2023	115,3968	69,4805	37,9179	40,9936	32,0427	26,8595	24,2504	22,7409	21,4759	20,7450	20,6774			

Tabela 21 - Normalização (MÉDIA CRUSTAL) dos ETR em sedimentos em suspensão em µg (N.A.: Não

Analisado)

Pontos	Local da Coleta		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Но	Er	Tm	Yb	Lu
1	ig. Manacapuru]	1,030	0,930	0,768	0,829	0,767	0,583	0,574	0,556	0,500	0,571	0,417	0,500	0,400
2	ig. Cabaliana]	1,350	1,270	1,122	1,264	1,183	1,250	1,074	1,000	0,833	1,000	0,833	0,800	0,800
6	ig. Anamã		2,317	2,188	1,988	2,164	1,950	2,000	1,667	1,444	1,250	1,464	1,250	1,300	1,200
16	ig. Anori		1,587	1,480	1,341	1,461	1,317	1,333	1,167	1,000	0,917	1,036	0,833	0,900	0,800
17	ig. Badajós		0,530	0,487	0,463	0,543	0,533	0,667	0,500	0,444	0,417	0,429	0,417	0,367	0,400
20	ig. Coari		0,593	0,595	0,549	0,629	0,583	0,583	0,519	0,444	0,333	0,429	0,417	0,333	0,200
21	ig. Copeá]	2,360	2,338	2,024	2,275	2,033	2,000	1,648	1,444	1,250	1,500	1,250	1,300	1,200
23	ig. Ipixuna	Þ	1,450	1,442	1,220	1,336	1,183	1,250	1,000	0,889	0,750	0,821	0,625	0,667	0,600
24	ig. Catuá	ÁGUA	1,417	1,363	1,134	1,221	1,100	1,167	0,907	0,778	0,667	0,750	0,625	0,633	0,600
25	ig. Caiambé	S	2,407	0,673	0,622	0,700	0,667	0,750	0,574	0,556	0,417	0,464	0,417	0,367	0,200
26	ig. Tefé	PRE	1,723	1,573	1,317	1,421	1,267	1,417	1,056	0,889	0,750	0,893	0,833	0,733	0,600
27	ig. Alvarães	TAS	0,830	0,795	0,707	0,754	0,667	0,750	0,574	0,556	0,417	0,500	0,417	0,433	0,400
	Média	S	1,466	1,261	1,105	1,216	1,104	1,146	0,938	0,833	0,708	0,821	0,694	0,694	0,617
15	Lago Aiapuá III		1,800	1,738	1,561	1,739	1,667	1,583	1,389	1,222	1,083	1,286	1,042	1,133	1,000
13	Lago Aiapuá I		1,537	1,480	1,293	1,432	1,333	1,417	1,148	1,000	0,833	1,000	0,833	0,833	0,800
12	ig. Paricatuba	1	1,800	1,738	1,561	1,736	1,667	1,500	1,389	1,222	1,083	1,286	1,042	1,133	1,000
11	ig. Água Fria		1,923	1,713	1,451	1,514	1,300	1,250	0,963	0,889	0,750	0,929	0,833	0,867	0,800
10	ig. Itapuru		1,503	1,355	1,244	1,382	1,283	1,500	1,148	1,000	0,917	1,071	0,833	0,933	0,800
9	ig. Matias		0,910	0,827	0,683	0,711	0,633	0,500	0,463	0,444	0,333	0,393	0,417	0,367	0,400
	Média		1,579	1,475	1,299	1,419	1,314	1,292	1,083	0,963	0,833	0,994	0,833	0,878	0,800
3	rio Solimões I		2,170	2,113	1,854	2,075	1,883	2,000	1,648	1,444	1,250	1,464	1,250	1,233	1,200
5	rio Solimões II		2,417	2,337	2,073	2,257	2,083	2,167	1,815	1,556	1,333	1,571	1,250	1,333	1,200
18	rio Solimões III		2,227	2,163	1,951	2,150	1,950	2,000	1,722	1,444	1,250	1,500	1,250	1,267	1,200
19	rio Solimões IV	ÁGU	2,300	2,243	1,976	2,196	2,000	1,833	1,704	1,444	1,250	1,500	1,250	1,300	1,200
22	rio Solimões V	UAS	1,603	1,622	1,500	1,664	1,583	1,500	1,315	1,222	1,000	1,214	1,042	1,067	1,000
28	rio Solimões VI	S BRA	2,237	2,112	1,878	2,075	1,867	1,583	1,537	1,333	1,167	1,357	1,250	1,233	1,000
	Média		2,159	2,098	1,872	2,070	1,894	1,847	1,623	1,407	1,208	1,435	1,215	1,239	1,133
7	rio Purus I	ري اي	1,740	1,663	1,512	1,671	1,617	1,417	1,389	1,222	1,000	1,214	1,042	1,033	1,000
8	rio Purus II	AS	1,927	1,772	1,610	1,779	1,600	1,667	1,389	1,222	1,000	1,143	1,042	0,967	0,800
29	rio Japurá		2,240	2,147	1,915	2,114	1,883	2,083	1,630	1,333	1,250	1,429	1,250	1,233	1,200
4	furo Parati Gd.		2,377	2,288	2,024	2,246	2,033	2,167	1,796	1,556	1,333	1,607	1,250	1,333	1,200
	Média]	2,071	1,968	1,765	1,953	1,783	1,833	1,551	1,333	1,146	1,348	1,146	1,142	1,050

Tabela 22 - Normalização (NASC) dos ETR em sedimentos em suspensão em µg (N.A.: Não Analisado)

Process	Tabe	la 22 - Norm	nali	za	ıção (N <i>i</i>	ASC) d	os ETI	R em s	edime	ntos er	n susp	ensão (em µg ((N.A.: N	lão Ana	alisado)			
1 Ig. Manacapuru 2 Ig. Caballane 2 Ig. Caballane 3 Ig. Ig. Ig. Caballane 3 Ig. Ig. Ig. Caballane 3 Ig. Ig. Ig. Caballane 3 Ig. Ig. Ig. Caballane 3 Ig. Ig. Ig. Ig. Caballane 3 Ig. Ig. Ig. Ig. Ig. Ig. Ig. Ig. Ig. Ig.	Ptos.				La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
Part			j	ŗ	400.000		05.070	40.000	00.070	40.005	45 454	405.474	44 440	40.500			0.005	ļ	
Fig. Fig.												 	i		ļ			 	
To Section To To Section To Section To Section To Section To Section To Section To Section To Section To Section To Section To Section To Section To Section To Section To Section To Section To Section To Section To Section To To To To To To To		 				 						 			<u> </u>	ļ		ļ	
The content of the				≥	<u> </u>	ļ					i	ļ	ļi	i	ļ	ļ 		÷	
Part Part				- lue	194,603	ļ	114,143			ŀ		+	20,858	ļ	ļ. —	15,619	{	 	
Part				nteg	65,004	∤	{					 	}		ļ. — <u></u>	} <u>-</u>		ļ .	
Second Columb	20	ig. Coari		dc	72,772	55,965	46,695	37,146		12,065	13,705	365,964	9,052	7,055	7,229	7,809	6,057	3,939	
Part Part	21	ig. Copeá		o rio So	289,452	219,940	172,253	134,445	79,221	41,365	43,563	1163,241	29,516	26,455	25,301	23,428	23,622	23,631	
173,753 128,233 96,503 72,182 42,857 24,130 23,984 640,436 15,348 14,109 12,851 17,174 11,508 13,916	23	ig. Ipixuna			177,841	135,601	103,767	78,936	46,104	25,853	26,432	705,787	17,316	15,873	13,855	11,714	12,114	11,816	
Part Fig.	24	ig. Catuá	ົດ	3	173,753	128,233	96,503	72,182	42,857	24,130	23,984	640,436	15,348	14,109	12,651	11,714	11,508	11,816	
Part Part	25	ig. Caiambé	SA	ões 	295,176	63,333	52,921	41,368	25,974	15,512	15,174	405,174	10,232	8,818	7,831	7,809	6,663	3,939	
	26	ig. Tefé	v	"	į	211,365	147,986	112,068	84,002	49,351	29,300	27,900	744,997	18,497	15,873	15,060	15,619	13,325	11,816
Media 179,817 118,631 33,995 71,883 43,019 23,699 24,800 662,220 16,660 14,991 13,855 13,016 12,619 12,144	27	ig. Alvarães	Ĩ		101,799	74,777	60,185	44,534	25,974	15,512	15,174	405,174	10,232	8,818	8,434	7,809	7,874	7,877	
NA NA NA NA NA NA NA NA		Média			179,817	118,631	93,995	71,883	43,019	23,699	24,800	662,220	16,660	14,991	13,855	13,016	12,619	12,144	
Table Tabl	15	Lago Aiapuá III			220,769	163,505	132,821	102,786	64,935	32,747	36,711	980,260	25,580	22,928	21,687	19,524	20,594	19,693	
Particulus Par	14	Lago Aiapuá II			N.A.	N.A.	N.A.	N.A.	N.A	N.A.	N.A.	N.A.	N.A	N.A.	N.A	N.A.	N.A.	N.A.	
12 19	13	Lago Aiapuá I		≻	188,471	139,207	109,993	84,635	51,948	29,300	30,348	810,348	20,464	17,637	16,867	15,619	15,142	15,754	
184,383 127,449 105,842 81,680 50,000 31,024 30,348 810,348 20,858 19,400 18,072 15,619 16,959 15,754	12	ig. Paricatuba		Pun	Pur	220,769	163,505	132,821	102,575	64,935	31,024	36,711	980,260	25,580	22,928	21,687	19,524	20,594	19,693
9 ig. Matias 111,611 77,755 58,109 42,001 24,675 10,341 12,237 326,753 7,871 7,055 6,627 7,809 6,663 7,877	11	ig. Água Fria	İ	Sn	235,895	161,154	123,482	89,489	50,649	25,853	25,453	679,647	17,316	15,873	15,663	15,619	15,748	15,754	
Média 193,650 138,763 110,512 83,861 51,190 26,715 28,634 764,602 19,612 17,637 16,767 15,619 15,950 15,754 3 rio Solimões II 266,149 198,777 157,725 122,626 73,377 41,365 43,563 1163,241 29,122 26,455 24,699 23,428 22,411 23,631 18 rio Solimões III 296,402 219,784 176,403 133,390 81,169 44,812 47,969 1280,872 30,697 28,219 26,506 23,428 24,228 23,631 19 rio Solimões IV 2282,093 211,005 168,102 129,802 77,922 37,918 45,032 1202,452 29,909 26,455 25,301 23,428 23,016 23,631 28 rio Solimões VI 28 196,648 152,532 127,633 98,354 61,688 31,024 34,753 927,979 24,006 21,164 20,482 19,524 19,382 19,693 <td>10</td> <td>ig. Itapuru</td> <td></td> <td> "</td> <td> "</td> <td>184,383</td> <td>127,449</td> <td>105,842</td> <td>81,680</td> <td>50,000</td> <td>31,024</td> <td>30,348</td> <td>810,348</td> <td>20,858</td> <td>19,400</td> <td>18,072</td> <td>15,619</td> <td>16,959</td> <td>15,754</td>	10	ig. Itapuru		"	"	184,383	127,449	105,842	81,680	50,000	31,024	30,348	810,348	20,858	19,400	18,072	15,619	16,959	15,754
Tio Solimões Tio Solimões Tio Solimões Tio Solimões 1 296,402 219,784 176,403 133,390 81,169 44,812 47,969 1280,872 30,697 28,219 26,506 23,428 24,228 23,631 23,631 23,000 23,	9	ig. Matias			111,611	77,755	58,109	42,001	24,675	10,341	12,237	326,753	7,871	7,055	6,627	7,809	6,663	7,877	
5 rio Solimões II 296,402 219,784 176,403 133,390 81,169 44,812 47,969 1280,872 30,697 28,219 26,506 23,428 24,228 23,631 19 rio Solimões IV 282,093 211,005 168,102 129,802 77,922 37,918 45,032 120,452 29,909 26,455 25,301 23,428 23,631 22 rio Solimões VI 196,648 152,532 127,633 98,354 61,688 31,024 34,753 927,979 24,006 21,164 20,482 19,524 19,382 19,693 7 rio Purus II 264,786 197,366 159,282 122,309 73,810 38,205 42,911 1145,814 28,401 25,573 24,111 19,693 8 rio Purus II 236,304 166,641 136,972 105,108 62,338 34,471 36,711 980,260 23,613 21,164 20,482 19,524 18,777 19,693 8 rio Purus II		Média			193,650	138,763	110,512	83,861	51,190	26,715	28,634	764,602	19,612	17,637	16,767	15,619	15,950	15,754	
18 rio Solimões III 273,099 203,480 166,027 127,058 75,974 41,365 45,521 1215,522 29,516 26,455 25,301 23,428 23,016 23,631 19 rio Solimões IV 282,093 211,005 168,102 129,802 77,922 37,918 45,032 1202,452 29,909 26,455 25,301 23,428 23,622 23,631 22 rio Solimões VI 196,648 152,532 127,633 98,354 61,688 31,024 34,753 927,979 24,006 21,164 20,482 19,524 19,382 19,693 28 rio Solimões VI 274,325 198,621 159,801 122,626 72,727 32,747 40,627 1084,821 27,155 24,691 22,892 23,428 22,411 19,693 7 rio Purus II 213,410 156,451 128,671 98,776 62,987 29,300 36,711 980,260 24,400 21,164 20,482 19,524 18,777 19,	3	rio Solimões I		. 	266,149	198,777	157,725	122,626	73,377	41,365	43,563	1163,241	29,122	26,455	24,699	23,428	22,411	23,631	
Trio Solimões IV Trio Solimões IV Trio Solimões IV Trio Solimões IV Trio Solimões IV Trio Solimões V Trio	5	rio Solimões II			296,402	219,784	176,403	133,390	81,169	44,812	47,969	1280,872	30,697	28,219	26,506	23,428	24,228	23,631	
22 rio Solimões V 6 196,648 152,532 127,633 98,354 61,688 31,024 34,753 927,979 24,006 21,164 20,482 19,524 19,382 19,693 Média 264,786 197,366 159,801 122,626 72,727 32,747 40,627 1084,821 27,155 24,691 22,892 23,428 22,411 19,693 7 rio Purus I 213,410 156,451 128,671 98,776 62,987 29,300 36,711 980,260 24,400 21,164 20,482 19,524 18,777 19,693 8 rio Purus II 236,304 166,641 136,972 105,108 62,987 29,300 36,711 980,260 24,400 21,164 20,482 19,524 18,777 19,693 8 rio Japurá 274,734 201,913 162,914 124,947 73,377 43,089 43,074 1150,171 28,335 26,455 24,096 23,428 22,411 23,631	18	rio Solimões III			273,099	203,480	166,027	127,058	75,974	41,365	45,521	1215,522	29,516	26,455	25,301	23,428	23,016	23,631	
22 rio Solimões V 70 70 70 70 70 70 70	19	rio Solimões IV		282,093	211,005	168,102	129,802	77,922	37,918	45,032	1202,452	29,909	26,455	25,301	23,428	23,622	23,631		
Média 274,325 198,621 199,801 122,626 72,727 32,747 40,627 1084,821 27,155 24,691 22,892 23,428 22,411 19,693 Média 264,786 197,366 159,282 122,309 73,810 38,205 42,911 1145,814 28,401 25,573 24,197 22,778 22,512 22,319 7 rio Purus II 236,304 156,451 128,671 98,776 62,987 29,300 36,711 980,260 24,400 21,164 20,482 19,524 18,777 19,693 8 rio Purus II 236,304 166,641 136,972 105,108 62,338 34,471 36,711 980,260 23,613 21,164 19,277 19,524 17,565 15,754 29 rio Japurá 274,734 201,913 162,914 124,947 73,377 43,089 43,074 1150,171 28,335 26,455 24,096 23,428 22,411 23,631 4 <t< td=""><td>22</td><td>rio Solimões V</td><td>JUE</td><td></td><td>196,648</td><td>152,532</td><td>127,633</td><td>98,354</td><td>61,688</td><td>31,024</td><td>34,753</td><td>927,979</td><td>24,006</td><td>21,164</td><td>20,482</td><td>19,524</td><td>19,382</td><td>19,693</td></t<>	22	rio Solimões V	JUE		196,648	152,532	127,633	98,354	61,688	31,024	34,753	927,979	24,006	21,164	20,482	19,524	19,382	19,693	
8 rio Purus II 6 236,304 166,641 136,972 105,108 62,338 34,471 36,711 980,260 23,613 21,164 19,277 19,524 17,565 15,754 29 rio Japurá 274,734 201,913 162,914 124,947 73,377 43,089 43,074 1150,171 28,335 26,455 24,096 23,428 22,411 23,631 4 ig. Parati Gd 291,496 215,238 172,253 132,756 79,221 44,812 47,479 1267,802 31,090 28,219 27,108 23,428 24,228 23,631	28	rio Solimões VI	i		274,325	198,621	159,801	122,626	72,727	32,747	40,627	1084,821	27,155	24,691	22,892	23,428	22,411	19,693	
8 rio Purus II 6 236,304 166,641 136,972 105,108 62,338 34,471 36,711 980,260 23,613 21,164 19,277 19,524 17,565 15,754 29 rio Japurá 274,734 201,913 162,914 124,947 73,377 43,089 43,074 1150,171 28,335 26,455 24,096 23,428 22,411 23,631 4 ig. Parati Gd 291,496 215,238 172,253 132,756 79,221 44,812 47,479 1267,802 31,090 28,219 27,108 23,428 24,228 23,631		Média	χ̈		264,786	197,366	159,282	122,309	73,810	38,205	42,911	1145,814	28,401	25,573	24,197	22,778	22,512	22,319	
29 rio Japurá 274,734 201,913 162,914 124,947 73,377 43,089 43,074 1150,171 28,335 26,455 24,096 23,428 22,411 23,631 4 ig. Parati Gd 291,496 215,238 172,253 132,756 79,221 44,812 47,479 1267,802 31,090 28,219 27,108 23,428 24,228 23,631	7	rio Purus I	S		213,410	156,451	128,671	98,776	62,987	29,300	36,711	980,260	24,400	21,164	20,482	19,524	18,777	19,693	
4 ig. Parati Gd 291,496 215,238 172,253 132,756 79,221 44,812 47,479 1267,802 31,090 28,219 27,108 23,428 24,228 23,631	8	rio Purus II	∵ >>		236,304	166,641	136,972	105,108	62,338	34,471	36,711	980,260	23,613	21,164	19,277	19,524	17,565	15,754	
	29	rio Japurá		j	274,734	201,913	162,914	124,947	73,377	43,089	43,074	1150,171	28,335	26,455	24,096	23,428	22,411	23,631	
Média 253,986 185,060 150,202 115,397 69,481 37,918 40,994 1094,623 26,860 24,250 22,741 21,476 20,745 20,677	4	ig. Parati Gd		}	291,496	215,238	172,253	132,756	79,221	44,812	47,479	1267,802	31,090	28,219	27,108	23,428	24,228	23,631	
		Média			253,986	185,060	150,202	115,397	69,481	37,918	40,994	1094,623	26,860	24,250	22,741	21,476	20,745	20,677	