UNIVERSIDADE FEDERAL DO AMAZONAS-UFAM INSTITUTO DE CIÊNCIAS EXATAS-ICE PROGRAMA DE PÓS-GRADUAÇÃO EM QUIMICA-PPGQ

Análise da composição lipídica de seis espécies de peixes amazôn	icos
Danny Silva Danhaga	
Banny Silva Barbosa	

Manaus -Amazonas

Janeiro - 2013

UNIVERSIDADE FEDERAL DO AMAZONAS-UFAM INSTITUTO DE CIÊNCIAS EXATAS-ICE PROGRAMA DE PÓS-GRADUAÇÃO EM QUIMICA-PPGQ

Banny Silva Barbosa

Análise da composição lipídica de seis espécies de peixes amazônicos

Dissertação apresentada ao Programa de Pós-graduação em Química, Universidade Federal do Amazonas, para obtenção do título de Mestre em Química, Área de concentração em Química Orgânica.

Orientador: Dr. Sergio Massayoshi Nunomura

Manaus -Amazonas

Janeiro – 2013

Banny Silva Barbosa

Análise da composição lipídica de seis espécies de peixes amazônicos.

Dissertação apresentada ao Programa de Pós-graduação em Química, Universidade Federal do Amazonas, para obtenção do título de Mestre em Química, Área de concentração em Química Orgânica.

Aprovada em 30 de janeiro de 2013.

BANCA EXAMINADORA

Prof. Dr. Sergio Massayoshi Nunomura Instituto Nacional de Pesquisas da Amazônia

Prof. Dr. Adrian Martin Pohlit Instituto Nacional de Pesquisas da Amazônia

Prof. Dr. Nilson Luiz de Aguiar Carvalho Instituto Nacional de Pesquisas da Amazônia

Dedico à minha família que me proporcionou educação e confiança, em especial à minha avó materna Francisca de Melo Ribeiro (in memorian) que me ensinou a lutar - "O Senhor è o meu pastor e nada me faltará".

AGRADECIMENTOS

A Deus pela graça, sabedoria, misericórdia e o seu imenso amor;

A minha mãe, Rosangela Ribeiro, pela confiança, ao meu padrasto, Francisco Pontes, minha irmãs Bonny Barbosa e Fernanda Pontes, meu irmão André Pontes, minha Tia, Waldecira Oliveira, meu pai, Waldenei Barbosa e familiares pelo apoio;

Ao Prof. Dr. Sergio Massayoshi Nunomura, pela orientação segura, confiança, paciência, incentivo, educação e conhecimentos compartilhados para o meu aprendizado, meu AGRADECIMENTO ESPECIAL;

Á Prof. Dra. Rita Nunomura pelo apoio;

Ao Prof. Msc Roberto Figliuolo que cedeu boa parte dos padrões comerciais de lipídeos e nos estimulou a iniciar essa linha de pesquisa no grupo;

Aos amigos de turma do mestrado e companheiros do Laboratório de Princípios Ativos da Amazônia – LAPAAM:, Rita Cynara, Magno Muniz, Andréia Montoia, Tiago Pereira, Marycleuma Henrique, Suniá, Ellen Cristina, Patrícia Pinto, Kethellin Galeno, Viviane Guedes, Berna, David, Paulo Senna e Renata, em especial à Andreza Barreto, Paula Suellen e Mauro Garcia pelo apoio e valorosas discussões;

Às amigas da Nova Igreja Batista – NIB, Aline Bentes, Aline Amaral, Cecília Caetano, Daniele Araújo, Helenkássya Araújo, Jeanne Costa, Jeane Cristini, Karol Diniz, Auxiliadora Rodriguez, Milena, Nágila Lima, Patrícia Rocha, Sandrelany Pinho, Talita Oliveira e Vanessa Brito, pelo apoio e incentivo;

Aos amigos Dione, Ana Pantoja, Alessandra, Amanda e Andréa, pelo apoio;

Ao Programa de Pós-Graduação em Química da UFAM pela oportunidade de realização do curso de mestrado;

Ao Instituto Nacional de Pesquisas da Amazônia – INPA, onde realizei as atividades experimentais;

À CAPES pela bolsa concedida;

À FINEP e CNPq por incentivo financeiro ao grupo LAPAAM;

E finalmente um agradecimento a todos os demais que, direta ou indiretamente contribuíram para a realização deste trabalho.

Ficha Catalográfica (Catalogação realizada pela Biblioteca Central da UFAM)

Barbosa, Banny Silva

B238a

Análise da composição lipídica de seis espécies de peixes amazônicos / Banny Silva Barbosa. — Manaus, 2013.

159 f.; il. color.

Dissertação (Mestrado em Química) — Universidade Federal do Amazonas.

Orientador: Dr. Sergio Massayoshi Nunomura

1. Ácidos graxos 2. Lipídeos 3. Glicolipídeos 4. Peixes da Amazônia I. Nunomura, Sergio Massayoshi (Orient.) II. Universidade Federal do Amazonas III. Título

CDU (2007) 613.281(811.3)(043.3)

RESUMO

Considerando a importância do pescado para o povo amazônico, o seu potencial no mercado, a sua valorização nutritiva, e à escassez de informações referentes à composição lipídica dos peixes amazônicos objetivou-se determinar a composição lipídica presente no músculo dorsal de seis espécies de peixes amazônicos, jaraqui, curimatã, pacu, sardinha, pescada e surubim, através das análises dos ácidos graxos constituintes de suas diferentes classes de lipídeos e dos esteróides presentes em seus lipídeos insaponificáveis. O estudo envolveu o desenvolvimento e a aplicação de metodologias para extração dos lipídeos totais, separação de classes de lipídeos, extração de lipídeos insaponificáveis, derivatização de ácidos graxos e esteróides, análises por cromatografia gasosa com detector de ionização de chamas e com espectrometria de massas para avaliação quanti e qualitativa de esteróides e de ácidos graxos dos lipídeos em classes. E ainda abordou a determinação da qualidade nutricional dos lipídeos através dos índices de aterogenecidade, de trombogenecidade e pela quantidade de ácidos graxos hipocolesterolêmicos. Os resultados indicaram que os peixes em estudo contêm lipídeos interessantes, possuindo maior quantidade de lipídeos totais os peixes curimatã e pacu, com maior participação dos lipídeos neutros, e colesterol como esteróide marjoritário para todos os peixes. Os ácidos graxos insaturados, essenciais para a saúde humana, foi encontrado em maior quantidade nos peixes sardinha e pacu na classe dos fosfolipídeos e nos peixes peixes curimatã, pescada, jaraqui e surubim na classe dos lipídeos neutros. Apesar de o peixe pacu ter mostrado maior quantidade de ácidos graxos de ômega 3 e 6 o peixe pescada se destacou pela qualidade nutricional.

Palavras-chaves: ácidos graxos poliinsaturados, lipídeos neutros, fosfolipídeos, glicolipídeos, esteróides.

ABSTRACT

Seeing the importance of fish for amazonian people, it potential in the market, it nutritive value, and information shortages relative to the lipid composition of amazonian fish, it was aimed to determinate the lipid composition attendant in dorsal muscle of six amazonia fish species, jaraqui, curimatã, pacu, sardinha, pescada and surubim, through fatty acids analyses constituent of their different classes of lipids and attendant steroids in their unsaponifiable lipids. This study involved the development and methodology application for extraction of total lipids, separation of lipid class, extraction of unsaponifiable lipids, derivatization of fatty acids and steroids, analyses of gas chromotagraphy with detector of flames ionization and with mass spectrometry for quantitative and qualitative evaluation of steroids and fatty acids of lipids in class. And also approached the determination of lipids nutritional quality through atherogenicity, thrombogenicity index and quantity of hypercholesterolemic fatty acids. The results indicated the fish in study have interesting lipids, having bigger quantity of total lipids the fishes curimatã and pacu, with bigger participation of neutral lipids, and cholesterol as majority steroid for all fishes. The unsaturated fatty acids, essentials for human health, it was found in bigger quantity in fishes sardinha and pacu in phospholipids class and in pescada (whitefish), curimatã, jaraqui and surubim in neutral lipids class. Besides pacu fish has shown bigger quantity of omega 3 and 6 fatty acids, the fish pescada (whitefish) highlighted for nutritional quality.

Keywords: polyunsaturated fatty acids, neutral lipids, phospholipids, glycolipids, steroids.

LISTA DE ILUSTRAÇÃO

Página

Figura 1. Principais características morfológicas externas de um peixe da ordem Characiformes
exemplificado por um aracu (<i>Leporinus</i> sp.)
Figura 2. Principais características morfológicas externas de um peixe da ordem Peciformes,
exemplificado por um acará (<i>Apistogramma</i> sp.)
Figura 3. Ésteres de glicerol (1- e 2- MAG, 1,2- e 1,3 – DAG e TAG). RCO representa o grupo
acil dos ácidos graxos RCOOH. Todas as outras letras estão relacionadas aos átomos derivados
da molécula de glicerol
Figura 4. Ácido fosfátidico e suas ramificações mais comuns
Figura 5. Estrutura básica dos esfingolipídeos
Figura 6. Estrutura dos ácidos graxos poli-insaturados
Figura 7. Reação de transesterificação de triacilglicerideo com ácool primário produzindo
glicerol e ésteres alquilicos
Figura 8. Prostaglandinas resultantes dos ácidos graxos AA e EPA
Figura 9. Colesterol e sitosterol
Figura 10. Tocoferóis e tocotrienóis. Tocoferóis tem uma cadeia lateral C 16 saturada,
tocotrienóis tem ligações duplas nas três posições indicadas pelas setas. $R=H$ ou CH_3 ; $\alpha=5,7,8$ -
trimetiltocol; β = 5,8-dimetiltocol; γ = 7,8-dimetiltocol; δ = 8-metiltocol
Figura 11. B-caroteno. Outros carotenos variam na natureza nos grupos terminais cíclicos 19
Figura 12. Mecanismo genérico da reação de sililação
Figura 13. Peixes jaraqui (Semaprochilodus insignis Schomburgk, 1841)
Figura 14. Peixes sardinha (<i>Triportheus elongatus</i> Gunther, 1864)
Figura 15. Peixe pacu (Mylossoma duriventre Cuvier, 1817)
Figura 16. Peixes curimată (<i>Prochilodus nigricans</i> Agassiz, 1829)
Figura 17. Peixe surubim (<i>Pseudoplatystoma fasciatum</i> Linnaeus, 1766)
Figura 18. Peixe pescada (<i>Plagioscion squamosissimus</i> Heckel, 1840)
Figura 19. Perfil cromatográfico por CCD dos lipídeos neutros de sardinha (Triportheus
elongatus Gunther 1864) extraídos com diferentes solventes

Figura 20. Perfil cromatográfico de EFS 7,8, 5 e 6.1 representando a fração referente a MTB	E,
EFS 7,8, 5 e 6.2 a fração de acetona e EFS 7,8, 5 e 6.3 a última fração	. 53
Figura 21. Perfil cromatográfico, onde 1= material insaponificável, 2= padrão de colesterol e 3	3=
tocoferol	. 57
Gráfico 1. Curva analítica do fame C 19:0 em 7 concentrações	. 50
Gráfico 2. Curva analítica do esteróide sitosterol em 4 concentrações	. 56
Gráfico 3. Curva analítica do EMAG C19:0 em 5 concentrações	. 78

LISTA DE TABELAS

011	
σ_{11}	กล
	ш

Tabela 1. Alguns ácidos graxos de ocorrência natural	13
Tabela 2. Informações das espécies em estudo	22
Tabela 3. Proporção de mistura se solventes para extração de lipídeos totais	26
Tabela 4. Quantidade em peso de cada espécie de peixe e de padrão interno usado para extração	
Tabela 5. Condições testadas para desenvolvimento do método de separação de classes d	le
lipídeos	30
Tabela 6. Peso de lipídeos totais de cada peixe utilizado para a separação de classes de lipídeos .	31
Tabela 7. Relação de reagentes, solvente e amostra de lipídeos neutros (L.N.) na reação d	le
saponificação para os peixes em estudo	32
Tabela 8. Otimização do método	35
Tabela 9. As primeiras oito condições testadas para otimização do método de derivatização par	a
análise de cadeia graxa por CG	38
Tabela 10. As demais condições testadas para otimização do método de derivatização par	a
análise de cadeia graxa por CG	39
Tabela 11. Quantidade de massa usada por cada amostra para a reação de derivatização par	a
análise da cadeia graxa por cromatografia gasosa	40
Tabela 12. Padrões comerciais disponíveis de ésteres metílicos de ácidos graxos	42
Tabela 13. Otimização do método de análise de ácidos graxos	44
Tabela 14. Rendimento percentual dos extratos de lipídeos totais (L.T)	49
Tabela 15. Áreas resultantes das análises do padrão de éster metílico do ácido nonandecanóico	50
Tabela 16. Concentração e eficiência do método de extração de lipídeos totais	51
Tabela 17. Rendimento das frações obtidas para separação de lipídeos, comparando-se o métod	O
de Johnston e EFS	51
Tabela 18. Frações da EFS com solventes não-organoclorados	52
Tabela 19. Rendimento em percentual das classes de lipídeos dos métodos diferentes testados	53
Tabela 20. Rendimento em percentual dos lipídeos em classes nos peixes em estudo	54
Tabela 21. Rendimentos percentuais dos lipídeos insaponificáveis dos peixes	55
Tabela 22. Áreas resultantes das análises do padrão de β-sitosterol	55

Tabela 23. Quantidade em mg/mg de sitosterol nos lipídeos insaponificáveis dos peixes	56
Tabela 24. Observação da resolução dos cromatogramas obtidos durante o desenvolvimento	do
método para análise de lipídeos insaponificáveis	63
Tabela 25. Identificação do tempo de retenção (min) de cada esteróide na mistura usada p	oara
otimização do método de análise de esteroides	64
Tabela 26. Identificação pelo tempo de retenção (min) de esteróides nos peixes estudados	71
Tabela 27. Quantidade em mg/mg de esteróides nos peixes em estudo	72
Tabela 28. Percentual de esteróides nos lipídeos insaponificáveis	72
Tabela 29. Rendimento em percentual para a reação de derivatização	73
Tabela 30. Rendimento real em percentual para a reação de derivatização depois de filtrados	por
fase sólida	74
Tabela 31. Rendimento real em percentual para a reação de derivatização depois de filtrados	por
fase sólida	76
Tabela 32. Rendimento real em percentual para a reação de derivatização depois de filtrados	por
fase sólida	77
Tabela 33. Áreas resultantes das análises do padrão de EMAG C 19:0	77
Tabela 34. Quantidade em mg/mg de EMAG C 19:0 nos lipídeos neutros dos peixes	78
Tabela 35. Tempos de retenção em min da mistura dos padrões comerciais ésteres metílicos	s de
ácidos graxos disponíveis	91
Tabela 36. Quantidade em mg de ácidos graxos/g de peixe nos lipídeos neutros	97
Tabela 37. Relação percentual dos tipos de ácidos graxos presentes em lipídeos neutros	98
Tabela 38. Quantidade em mg de ácidos graxos/g de peixe nos glicolipídeos	. 104
Tabela 39. Relação percentual dos tipos dde ácidos graxos em glicolipídeos	. 105
Tabela 40. Quantidade em mg de ácidos graxos/g de peixe nos fosfolipídeos	. 109
Tabela 41. Relação percentual dos tipos de ácidos graxos nos fosfolipídeos	. 110
Tabela 42. Qualidade nutricional dos lipídeos neutros dos peixes	. 111
Tabela 43. Qualidade nutricional dos glicolipídeos dos peixes	. 111
Tabela 44. Qualidade nutricional dos fosfolipídeos dos peixes	. 112
Tabela 45. Constituintes dos lipídeos totais dos peixes	. 112

LISTA DE CROMATOGRAMAS

Página

Cromatograma 1. Perfil cromatográfico do padrão de colesterol e tocoferol trimetilsililados na
condição patrícia
Cromatograma 2. Perfil cromatográfico do padrão de colesterol e tocoferol trimetilsililados na
condição Col+toc1
Cromatograma 3. Perfil cromatográfico do padrão de colesterol e tocoferol trimetilsililados na
condição Col+toc4
Cromatograma 4. Perfil cromatográfico do padrão de colesterol e tocoferol trimetilsililados na
condição Col+toc 6
Cromatograma 5. Perfil cromatográfico do padrão de colesterol e tocoferol trimetilsililados na
condição Col+toc1161
Cromatograma 6. Perfil cromatográfico do padrão de colesterol e tocoferol trimetilsililados na
condição Col+toc2361
Cromatograma 7. Perfil cromatográfico do padrão de colesterol e tocoferol trimetilsililados na
condição Col+toc23 no CG-DIC
Cromatograma 8. Perfil cromatográfico dos trimetilsililados padrões comerciais de esteróides
analisado nas condições do método silil_II
Cromatograma 9. Perfil cromatográfico dos trimetilsililados padrões comerciais de esteróides
analisado nas condições do método col+toc 23
Cromatograma 10. Perfil cromatográfico dos esteróides trimetilsililados analisados no peixe
curimatã (Prochilodus nigricans Agassiz, 1829)
Cromatograma 11. Perfil cromatográfico dos esteróides trimetilsililados analisados no peixe
pescada (Plagioscion squamosissimus Heckel, 1840)
Cromatograma 12. Perfil cromatográfico dos esteróides trimetilsililados analisados no peixe
sardinha (Triportheus elongatus Gunther, 1864)
Cromatograma 13. Perfil cromatográfico dos esteróides trimetilsililados analisados no peixe
jaraqui (Semaprochilodus insignis Schomburgk, 1841)
Cromatograma 14. Perfil cromatográfico dos esteróides trimetilsililados analisados no peixe
surubim (<i>Pseudoplatystoma fasciatum</i> Linnaeus, 1766)

Cromatograma 15. Perfil cromatográfico dos esteróides trimetilsililados analisados no peixe pacu
(Mylossoma duriventre Cuvier, 1817)71
Cromatograma 16. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos
graxos analisado em coluna apolar (A) e polar (B) no método BB179
Cromatograma 17. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos
graxos analisado em coluna apolar (A) e polar (B) no método BB280
Cromatograma 18. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos
graxos analisado em coluna apolar (A) e polar (B) no método BB3
Cromatograma 19. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos
graxos analisado em coluna apolar (A) e polar (B) no método BB482
Cromatograma 20. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos
graxos analisado em coluna apolar (A) e polar (B) no método BB5
Cromatograma 21. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos
graxos analisado em coluna apolar (A) e polar (B) no método BB8
Cromatograma 22. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos
graxos analisado em coluna apolar (A) e polar (B) no método BB9
Cromatograma 23. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos
graxos analisado em coluna polar nas condições do método BB11
Cromatograma 24. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos
graxos analisado em coluna polar nas condições do método BB32
Cromatograma 25. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos
graxos analisado em coluna polar nas condições do método MIX18
Cromatograma 26. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos
graxos analisado em coluna polar nas condições do método MIX39
Cromatograma 27. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos
graxos analisado em coluna polar nas condições do método MIX64
Cromatograma 28. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos
graxos analisado em coluna polar nas condições do método MIX 14A
Cromatograma 29. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos
graxos analisado em coluna polar nas condições do método MIX 30A

Cromatograma 30. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos
graxos analisado em coluna polar nas condições do método MIX 39A
Cromatograma 31. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos
graxos analisado em coluna polar nas condições do método MIX 43A
Cromatograma 32. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos
graxos analisado em coluna polar nas condições do método MIX 43 A no espectrometro de
massas90
Cromatograma 33. Perfil cromatográfico dos ésteres metílicos dos lipídeos neutros de curimatã
(Prochilodus nigricans Agassiz, 1829)92
Cromatograma 34. Perfil cromatográfico dos ésteres metílicos dos lipídoes neutros de pescada
(Plagioscion squamosissimus Heckel, 1840)94
Cromatograma 35. Perfil cromatográfico dos ésteres metílicos dos lipídeos neutros de sardinha
(Triportheus elongatus Gunther, 1864)94
Cromatograma 36. Perfil cromatográfico dos ésteres metílicos dos lipídeos neutros de jaraqui
(Semaprochilodus insignis Schomburgk, 1841)95
Cromatograma 37. Perfil cromatográfico dos ésteres metílicos dos lipídeos neutros de surubim
(Pseudoplatystoma fasciatum Linnaeus, 1766)96
Cromatograma 38. Perfil cromatográfico dos ésteres metílicos dos lipídeos neutros de pacu
(Mylossoma duriventre Cuvier, 1817)96
Cromatograma 39. Perfil cromatográfico dos ésteres metílicos dos glicolipídeos de curimatã
(Prochilodus nigricans Agassiz, 1829)
Cromatograma 40. Perfil cromatográfico dos ésteres metílicos dos glicolipídeos de pescada
(Plagioscion squamosissimus Heckel, 1840)
Cromatograma 41. Perfil cromatográfico dos ésteres metílicos dos glicolipídeos de sardinha
(Triportheus elongatus Gunther, 1864)
Cromatograma 42. Perfil cromatográfico dos ésteres metílicos dos glicolipídeos de jaraqui
(Semaprochilodus insignis Schomburgk, 1841)
Cromatograma 43. Perfil cromatográfico dos ésteres metílicos dos glicolipídeos de surubim
(Pseudoplatystoma fasciatum Linnaeus, 1766)
Cromatograma 44. Perfil cromatográfico dos ésteres metílicos dos glicolipídeos de pacu
(Mylossoma duriventre Cuvier, 1817)

Cromatograma 45. Perfil cromatográfico dos ésteres metílicos dos fosfolipídeos de curimatã
(Prochilodus nigricans Agassiz, 1829)
Cromatograma 46. Perfil cromatográfico dos ésteres metílicos dos fosfolipídeos de pescada
(Plagioscion squamosissimus Heckel, 1840)
Cromatograma 47. Perfil cromatográfico dos ésteres metílicos dos fosfolipídeos de sardinha
(Triportheus elongatus Gunther, 1864)
Cromatograma 48. Perfil cromatográfico dos ésteres metílicos dos fosfolipídeos de jaraqui
(Semaprochilodus insignis Schomburgk, 1841)
Cromatograma 49. Perfil cromatográfico dos ésteres metílicos dos fosfolipídeos de surubim
(Pseudoplatystoma fasciatum Linnaeus, 1766)
Cromatograma 50. Perfil cromatográfico dos ésteres metílicos dos fosfolipídeos de pacu
(Mylossoma duriventre Cuvier, 1817)

LISTA DE ESPECTROS

011	
	.110

Espectro 1. Espectro de massas do pico no tempo de retenção em	42 min da amostra de lipídeos
neutros do peixe curimatã (Prochilodus nigricans Agassiz, 1829).	66
Espectro 2. Espectro de massas do pico no tempo de retenção em	42 min da amostra de lipídeos
neutros do peixe curimatã (Prochilodus nigricans Agassiz, 1829).	93

LISTA DE EQUAÇÕES

	Página
Equação 1. IA	47
Equação 2. IT	47
Equação 3. HH	47

LISTA DE ANEXOS

റ	าก	
		1
		u

ANEXO 1. Espectros de massas dos componentes detectados na análise	da mistura de padrões
comerciais esteróides disponíveis por CG-EM	119
ANEXO 2. Espectros de massas dos componentes detectados na análise	da mistura de padrões
comerciais de ésteres metílicos de ácidos graxos disponíveis por CG-EM	121

ABREVIATURAS

AA Ácido araquidônico

AGI Ácidos graxos insaturados

AGL Ácidos graxos livres

AGMI Ácidos graxos monoinsaturados

AGPI Ácidos graxos poliinsaturados

AGS Ácidos graxos saturados

BF₃ Trifluoreto de boro

BHT Butil hidróxi tolueno

BSTFA N,O-bis(trimethylsilyl)trifluoroacetamide

CCD Cromatografia em camada delgada

CG-DIC Cromatografia Gasosa com Detecção por Ionização de Chama

CG-EM Cromatografia Gasosa acoplada à Espectrometria de Massas

DAG Diglicerídeo

DHA docosahexanoic acid

EFS Extração em fase sólida

EMAG Éster metílico de ácido graxo

EPA Eicosapentanoic acid

EtOH Etanol

FL Fosfolipídeos

GL Glicolipídeos

HH Hipocolesterolêmicos/Hipercolesterolêmicos

HPLC High peformance liquid chromatography

IA Índice de aterogenicidade

IT Índice de trombogenicidade

LAPAAM Laboratório de Princípios Ativos da Amazônia

L.N. Lipídeos Neutros

L.T. Lipídeos Totais

MeOH Metanol

MAG Monoacilglicerídeo

MTBE Metyl-Tert- Butyl Ether

AP Alta Polaridade

rcf relative centrifugal force

TAG Triacilglicerídeo

TMCS Trimethylchlorosilane

TMS Trimetilsilil

SUMÁRIO

	Página
RESUMO	VII
ABSTRACT	VIII
LISTA DE ILUSTRAÇÕES	IX
LISTA DE TABELAS	XI
LISTA DE CROMATOGRAMAS	XIII
LISTA DE ESPECTROS	XVII
LISTA DE EQUAÇÕES	XVIII
LISTA DE ANEXOS	XIX
ABREVIATURAS	XX
1 INTRODUÇÃO	1
1.1 Contexto e motivação	1
1.2 Considerações gerais sobre os grupos dos peixes amazônicos estudados	3
1.2.1 Superordem Ostariophysi	3
1.2.2 Superordem Acantopterygii	5
1.3 Lipídeos	7
1.3.1 Lipídeos Saponificáveis	7
1.3.1.1 Gliceróis	7
1.3.1.2 Fosfolipídeos	9
1.3.1.3 Esfingolipídeos	11
1.3.1.4 Ceras	12
1.3.1.5 Ácidos graxos	12
1.3.3 Reações comuns envolvendo lipídeos saponificáveis	14
1.3.4 Ocorrência de ácidos graxos poliinsaturados em peixes e sua importância	na saúde humana
	15
1.3.5 Lipídeos Insaponificáveis	17
1.3.5.1 Esteróides	17
1.3.5.2 Tocóis	18
1.3.5.3 Carotenóides	19
1.3.6 Reacões comuns envolvendo lipídeos insaponificáveis	19

1.3.7 Ocorrência de lipídeos insaponificáveis e importância na saúde humana	20
1.4 Informações referentes às espécies de peixes selecionadas para estudo	21
2 OBJETIVOS	23
2.1 Geral	23
2.2 Específicos	23
3 PARTE EXPERIMENTAL	24
3.1 Material	24
3.1.1 Seleção das espécies e coleta do material biológico	24
3.1.2 Reagentes, solventes e instrumentos cromatográficos utilizados	24
3.2 Métodos	25
3.2.1 Extração de lipídeos totais	25
3.2.1.1 Desenvolvimento de metodologia de extração de lipídeos totais	25
3.2.1.2 Extração de lipídeos totais dos peixes em estudo	26
3.2.1.3 Monitoramento da eficiência do método de extração de lipídeos totais	27
3.2.2 Separação em classes e de seus componentes	28
3.2.2.1 Desenvolvimento de metodologia para separação de classes de lipídeos	28
3.2.2.2 Separação de classes de lipídeos dos peixes em estudo	31
3.2.3 Extração de lipídeos insaponificáveis	31
3.2.3.1 Verificação do método de extração de insaponificáveis	31
3.2.3.2 Extração de lipídeos insaponificáveis dos peixes em estudo	32
3.2.3.3 Monitoramento da eficiência do método de extração de lipídeos insaponificáveis	33
3.2.4 Preparação de amostras para análise de esteroides	33
3.2.4.1 Verificação do método de reação de sililação	33
3.2.4.2 Aplicação do método de reação de sililação nos peixes em estudo	33
3.2.5 Análise de esteróides por cromatografia gasosa	34
3.2.5.1 Otimização da metodologia de análise de esteróides por cromatografia gasosa (CG-I	DIC e
CG-EM)	34
3.2.5.2 Análise qualitativa de esteroides dos peixes em estudo por CG-EM	36
3.2.5.3 Análise quantitativa dos esteroides dos peixes em estudo por CG-DIC	36
3.2.6 Preparação de amostra para análise da cadeia graxa	36
3.2.6.1 Otimização da metodologia de derivatização de ác. graxos em seus ésteres metílicos.	36

3.2.6.2 Aplicação do método otimizado nos lipídeos dos peixes em estudo	40
3.2.6.3 Monitoramento da eficiência das etapas envolvidas para análise dos lipídeos neutros	41
3.2.7 Análise da composição da cadeia graxa por cromatografia gasosa	41
3.2.7.1 Otimização da metodologia da análise de cadeia graxa por cromatografia gasosa (CG-	·DIC
e CG-EM)	41
3.2.7.2 Análise qualitativa da composição da cadeia graxa dos peixes em estudo por CG-EM.	46
3.2.7.3 Análise quantitativa da composição da cadeia graxa dos peixes em estudo por CG-DIG	C 46
3.8 Determinação da qualidade nutricional dos lipídeos dos peixes	46
4 RESULTADOS E DISCUSSÃO	48
4.1. Seleção das espécies e coleta do material biológico	48
4.2 Extração de lipídeos totais	49
4.2.1 Desenvolvimento de metodologia de extração de lipídeos totais	49
4.2.2 Extração de lipídeos totais dos peixes em estudo	49
4.2.3 Monitoramento da eficiência do método de extração de lipídeos totais	50
4.3 Separação em classes e de seus componentes	51
4.3.1 Desenvolvimento de metodologia para separação de classes de lipídeos	51
4.3.2 Separação de classes de lipídeos dos peixes em estudo	53
4.4 Extração de lipídeos insaponificáveis	54
4.4.1 Verificação do método de extração de insaponificáveis	54
4.4.2 Extração de lipídeos insaponificáveis dos peixes em estudo	55
4.4.3 Monitoramento da eficiência do método de extração de lipídeos insaponificáveis	55
4.5 Preparação de amostras para análise de esteroides	57
4.5.1 Verificação do método de reação de sililação	57
4.6 Análise de esteróides por cromatografia gasosa	57
4.6.1 Otimização da metodologia de análise de esteróides por cromatografia gasosa (CG-D	IC e
CG-EM)	57
4.6.2 Análise qualitativa de esteroides dos peixes em estudo por CG-EM	65
4.6.3 Análise quantitativa dos esteroides dos peixes em estudo por CG-DIC	72
4.7 Preparação de amostra para análise da cadeia graxa	73
4.7.1 Otimização da metodologia de derivatização de ácidos graxos em seus ésteres metílicos	73
4.7.2 Aplicação do método otimizado nos lipídeos dos peixes em estudo	76

4.7.3 Monitoramento da eficiência das etapas envolvidas para análise dos lipídeos neutros77
4.8 Análise da composição da cadeia graxa por cromatografia gasosa
4.8.1 Otimização da metodologia da análise de cadeia graxa por cromatografia gasosa (CG-DIC e
CG-EM)
4.8.2 Análise da composição da cadeia graxa dos peixes em estudo
4.8.2.1 Lipídeos neutros
4.8.2.2 Glicolipídeos
4.8.2.3 Fosfolipídeos
4.9 Qualidade nutricional dos lipídeos em classe
4.9.1 Lipídeos neutros
4.9.2 Glicolipídeos
4.9.3 Fosfolipídeos
4.9.4 Lipideos no total
5 CONCLUSÃO
6 REFERÊNCIAS BIBLIOGRÁFICAS
ANEXOS 119

1 INTRODUÇÃO

1.1 Contexto e motivação

Um grande potencial da produção de peixes de água doce se situa na Bacia Amazônica que representa 20% de toda a água doce do mundo contendo mais de 2.000 espécies das mais variadas ordens de peixes, representando 75% de todas as espécies de água doce do Brasil e 30% da fauna de peixes do mundo (Roubach *et al.*, 2003).

A capital do Estado do Amazonas, Manaus, com um desembarque que varia entre 22.000 e 35.000 t/ano é o maior centro produtor e consumidor da região (Santos *et al.*, 2009). Sendo o Estado do Amazonas possuidor de um dos maiores índices de consumo de peixes do mundo, entre 38,5 e 55,0 Kg/pessoa/ano na capital Manaus e 510 a 600 g/pessoa/dia no interior do Amazonas, enquanto que no mundo esse índice chega somente à de 16 Kg/pessoa/ano (Batista *et al.*, 1998, Barthem *et al.*, 2003).

O consumo de pescado no Amazonas se encontra distribuído entre várias espécies, somente nos mercados de Manaus, são encontradas pelo menos 100 diferentes espécies biológicas, sendo os peixes mais consumidos: tambaqui, jaraqui, curimatã, matrinxã, tucunaré, pacus, sardinhas, pescada, pirapitinga e caparari (confundido com surubim) tais, peixes ocorrem em diferentes rios de águas clara, branca ou preta (Santos *et al.*, 2009). Considerando que a composição química depende, dentre outros fatores, da espécie, do seu habitat, do período do ano, do tipo e quantidade de alimento disponível e do estado de maturidade sexual, o teor de proteínas, lipídeos e minerais em cada uma dessas espécies deve ser significativamente variável (Arbeláez-Rojas *et al.*, 2002).

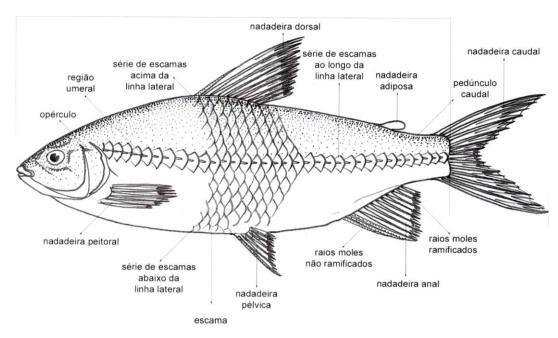
O interesse pela composição química de peixe tem crescido, principalmente em relação à composição lipídica, pelo fato do consumo de ácidos graxos estar diretamente relacionado com a saúde humana (Blanchet *et al.*, 2005; Almeida *et al.*, 2007, Almeida *et al.*, 2008; Inhamuns *et al.*, 2009, Inhamuns *et al.*, 2001). Na natureza, os ácidos graxos podem está presentes na sua forma livre ou principalmente como ésteres em óleos e gorduras (mono-, di- e triacilglicerídeos), como ésteres com alcóois de cadeia longa em ceras ou então como ésteres com uma ligação fosfatídica em estruturas de membranas (fosfolipídeos). Os ácidos graxos de ocorrência natural têm diferentes estruturas variando desde o tamanho da cadeia carbônica, como na presença de ligações duplas (insaturações), ramificações, outras funções orgânicas ou até mesmo a presença

de estruturas cíclicas. Os ácidos graxos considerados essenciais, isto é, imprescindíveis para o homem e que não podem ser sintetizados pelo mesmo, subdividem-se em duas subclasses: os ômega 3 (ω-3) e ômega 6 (ω-6). Os ácidos da série ω-3, que são encontrados principalmente em óleos de peixes (Alexander, 1998), são responsáveis por evitar distúrbios neurológicos e visuais, porque são importantes no desenvolvimento do cérebro (Kasim-Karakas, 2001; Hanahan, 1997). E ainda, relata-se que, o consumo do ácido graxo da série ω-3, ácido 5,8,11,14,17-eicosapentaenóico (EPA), tem sido associado à redução dos riscos de aterosclerose, câncer, trombose e pressão alta (Simão *et al.*, 2007).

O aumento do consumo de ácidos graxos poliinsaturados na alimentação, bem como a redução de ácidos graxos saturados é responsável pela redução dos elevados índices dos lipídeos de baixa densidade LDL (low density lipids) no sangue, que podem conduzir a doenças coronarianas (Cozza e Costa, 2000). O estudo da absorção sobre diferentes formas químicas de ácidos graxos poliinsaturados em humanos demonstrou que a estrutura química, na qual o ácido se encontra ligado, possui influência para a saúde do ser humano (Netleton, 1995).

Poucos estudos sobre a composição de lipídeos em peixes existem no Brasil, sobretudo em peixes amazônicos, porém aqueles que têm sido publicados mostraram que peixes de água doce apresentam interessantes valores nutricionais (Almeida *et al.*, 2006; Almeida *et al.*, 2006; Bentes *et al.*, 2009; Moreira *et al.*, 2003; Inhamuns *et al.*, 2009; Inhamuns *et al.*, 2001).

Assim, considerando a importância do pescado no mercado regional, o seu potencial nutritivo, e a escassez de informações referentes à composição lipídica dos peixes amazônicos, este trabalho tem como objetivo determinar o perfil de ácidos graxos, os esteróides presentes, bem como a qualidade nutricional dos lipídeos de seis espécies de peixes amazônicos: jaraqui (Semaprochilodus insignis), curimatã (Prochilodus nigricans), pacu (Mylossoma duriventre), sardinha (Triportheus elongatus Gxunther, 1864), pescada (Plagioscion squamosissimus Heckel, 1840) e surubim (Pseudoplatystoma fasciatum Linnaeus, 1766).


1.2 Considerações gerais sobre os grupos dos peixes amazônicos estudados

A ictiofauna amazônica está representada principalmente pela superordem *Ostariophysi*, que agrupa cerca de 85% das espécies amazônicas (mais de 1700 espécies), das quais 43% estão incluídos na ordem *Characiformes*, 39% na ordem *Siluriformes* (bagres) e 3% na ordem *Gimnotiformes* (peixe elétrico). E ainda representando a ictiofauna amazônica há a superordem dos *Acanthopterygii*, que apesar de contribuir com apenas cerca de 500 espécies, possui papel importante no comércio de peixes do Amazonas (Val *et al.*, 1995 e Barthem *et al.*, 2003).

1.2.1 Superordem Ostariophysi

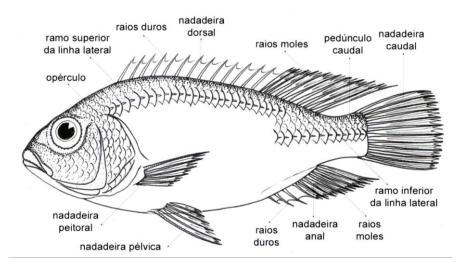
É o grupo mais dominante de peixes de água doce no mundo. A formação do *weberian apparatus*, uma modificação de quatro ou mais vértebra anterior que conecta bexiga nadatória ao ouvido interno para transmissão de som, aparenta ser a única característica que é compartilhada por todos os membros deste grupo. Todas as subordens de *Ostariophysi* são representadas no Amazonas, exceto para a *Cypriniformes* (peixes tipo carpa). Os *Ostariophysans* amazônicos incluem no mínimo 12 famílias da ordem *Characiformes*, 12 de *Siluriformes* e 6 de *Gymnotiformes* (Val *et al.*, 1995).

A ordem dos *Characiformes*, conhecidos também como peixes de escama, possui como maioria, as espécies migradoras de curta distância, movimentando-se entre rios e lagos. Possui boca em posição variável, geralmente terminal, ou seja, no mesmo nível do eixo longitudinal do corpo, e possui ainda ausência de espinhos na região ventral e nadadeira adiposa (nadadeira ímpar localizada entre a caudal e a dorsal) (Santos *et al.*, 2009). São considerados como os que possuem a morfologia do corpo mais bruta generalizada dos *Ostariophysans* amazônicos. Incluem cerca de 1200 espécies distribuídas entre 12 famílias (Val *et al.*, 1995).

Figura 1. Principais características morfológicas externas de um peixe da ordem *Characiformes* exemplificado por um aracu (*Leporinus* sp.) (Lima, 2005).

Uma das famílias representante pela ordem *Characiformes* é a *Characidae*, que em geral inclui peixes de diferentes modos de reprodução e hábitos alimentares. A disposição dos dentes é muito variável, caracterizando sua capacidade de explorar uma grande variedade de habitats. Por causa da grande variedade de formas é difícil caracterizar morfologicamente o grupo como um todo. Grande parte das espécies possui nadadeira anal longa, maxilar superior fixo, com dentes firmemente implantados e nadadeira dorsal com cerca de 10-13 raios (Soares *et al.*, 2008).

Outra família representante dos *characiformes* é a família *Prochilodontidae*, que se caracteriza pelo formato fusiforme do corpo (alongado e ligeiramente abaulado no meio), presença de um espinho na base da nadadeira dorsal, lábios carnosos, boca protrátil (que tem a capacidade de se estender para frente), em forma de ventosas. Os dentes são numerosos, diminutos e enfileirados, fracamente implantados sobre os lábios. O intestino é muito longo e o estômago tem paredes grossas e musculares. Seus representantes apresentam hábito alimentar detritívoro (que se alimenta de detritos) e iliófago (se alimenta de lodo ou detritos), consumindo matéria orgânica particulada, algas e perifíton (organismos aquáticos que vivem aderidos ao substrasto do ambiente). São migradores, formam cardumes e realizam movimentos dentro do ecossistema aquático com fins de se alimentar e reproduzir. A família é formada por cerca de 40 espécies de 3 gêneros, *Prochilodus*, *Ichthyoelephas* e *Semaprochilodus*, que estão distribuídos


amplamente na América do Sul. Na Amazônia, seus representantes são conhecidos como jaraqui e curimatã (Soares *et al.*, 2008).

Outra ordem, que juntamente com a ordem do Characiformes são as mais importantes na Amazônia é a dos Siluriformes. Esse último caracteriza-se por conter corpo nu, sem escamas ou coberto parcialmente com placas ósseas (Barthem et al., 2003 e Santos et al., 2009). A família Pimelodidae da ordem do Siluriformes compreende formas diversificadas, com exemplares muito pequenos e grandes. Possui corpo nu, aberturas branquiais amplas, prolongando-se para a frente, até próximo ao queixo e para trás, além da inserção do primeiro raio da nadadeira peitoral. As espécies pertencentes a esta família apresentam, em geral, a dorsal e peitoral providas de espinhos afiados e a nadadeira adiposa sempre presente. Possuem um par de barbilhões maxilares (na extremidade do maxilar superior) e dois pares mentonianos (no queixo ou mento), dentes diminutos e frágeis com borda incisiva, mas não cortante, localizados sobre uma placa óssea nas maxilas e palato. A maioria das espécies apresenta canais da linha lateral cutâneos ramificados ou anastomosados (em forma de redes) na cabeça e parte anterior do corpo, possuem hábito noturno e tem órgãos sensitivos para explorar o ambiente na ausência de luz (barbilhões e barbelas quimioreceptoras). A família inclui 31 gêneros e 90 espécies, denominadas conjuntamente de bagres ou peixes-lisos, mas com vários nomes populares específicos. Alguns representantes desse grupo estão entre os maiores peixes de água doce da América do Sul e a maioria apresenta destacada importância na pesca comercial ou de subsistência. No mercado de Manaus foram encontradas 22 espécies pertencentes a 16 gêneros (Soares et al., 2008 e Santos et al., 2009).

1.2.2 Superordem Acanthopterygii

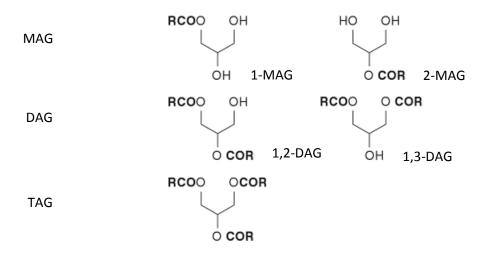
Muitas das ordens que a incluem (*cyprinodontiformes*, *symbranchiformes*, *pleuronectiformes*, *tetraodontiformes* e *perciformes*) são extremamente importantes no Amazonas do ponto de vista comercial (Val *et al.*, 1995 e Barthem *et al.*, 2003).

A ordem dos *Perciformes* caracteriza-se por serem peixes sedentários, típicos de lagos e caracterizados por corpo coberto com escamas, nadadeiras dorsal, anal e pélvica com alguns raios duros, em forma de espinho; nadadeira pélvica situada logo abaixo ou a frente da nadadeira peitoral (Santos *et al.*, 2009). Essa ordem inclui as famílias *Scianidae*, *Nandidae*, e *Cichlidae* (Val *et al.*, 1995).

Figura 2. Principais características morfológicas externas de um peixe da ordem *Peciformes*, exemplificado por um acará (*Apistogramma* sp.) (Lima, 2005)

Os peixes da família *Scianidae* são caracterizados por serem peixes *acantopterígios*, ou seja, possuem as nadadeiras com espinhos precedidos de raios e apresentam dois espinhos na nadadeira anal; e ainda por possuírem linha lateral contínua, da cabeça até o final da nadadeira caudal, sendo que as escamas da linha lateral maiores que aquelas do restante do corpo. Normalmente a nadadeira dorsal é longa e nadadeira caudal com uma projeção mediana em forma de lança. As espécies destacam-se pela presença de otólitos (estruturas calcárias) muito grandes em relação aos outros grupos de peixes. Esse grupo é formado por cerca de 70 gêneros, principalmente marinhos e estuarinos, amplamente distribuído pelos oceanos, sendo cinco deles exclusivamente de água doce; quatro ocorrem na Amazônia (*Petilipinnis, Plagioscion, Pachypops* e *Pachyurus*), com cerca de quatorze espécies (Soares *et al.*, 2008 e Santos *et al.*, 2009).

1.3 Lipídeos


Lipídeos caracterizam-se por ser um grupo complexo de substâncias baseadas em ácidos graxos ou relacionadas a eles, como óleos e gorduras (ésteres formados a partir de ácidos graxos), fosfolipídeos (diésteres do ácido 3-glicerofosfórico), glicolipídeos (diacilgliceróis ligados a unidades de carboidratos), ceras (cujos principais componentes são ésteres de ácidos graxos e alcoóis de cadeia longa), esteróides, terpenos, sabões, detergentes e sais biliares. Aqueles contendo cadeia graxa são chamados lipídeos saponificáveis e os que não os contém são lipídeos insaponificáveis (Curi *et al.*, 2002 e Hanahan, 1997, Gunstone, 2008).

1.3.1 Lipídeos saponificáveis

1.3.1.1 Gliceróis

Os gliceróis são compostos por uma molécula de glicerol esterificada com ácidos graxos. Dependendo do número de grupos hidroxila do glicerol esterificados, os acilgliceróis são denominados monoacilgliceróis (MAG), diacilgliceróis (DAG) e triacilgliceróis (TAG) (Nelson e Cox, 2005).

Há dois tipos de monoacilglicerol designado com números ou letras gregas como, por exemplo, 1-(ou α-) monoestearina e 2-(ou β-) monoestearina. Também há dois isômeros para diacilgliceróis designados, por exemplo, 1,2-diestearina e 1,3-diestearina, algumas vezes descritos como isômeros simétrico (1,3-) e assimétrico (1,2-); porém muito frequentemente ocorrerão grupos acila diferentes e isso aumentará o numero de formas de isômeros, assim como na molécula de triacilglicerídeo também (Gunstone, 2008). Quando os ácidos graxos presentes nos gliceróis naturais são iguais, estes são ditos gliceróis simples, quando diferentes são chamados gliceróis mistos (Gurr, 2002).

Figura 3. Ésteres de glicerol (1- e 2- MAG, 1,2- e 1,3 – DAG e TAG). **RCO** representa o grupo acil dos ácidos graxos **RCOOH**. Todas as outras letras estão relacionadas aos átomos derivados da molécula de glicerol.

Nos triacilgliceróis, como os grupos polares hidroxilas e carboxila dos ácidos graxos fazem ligações de ésteres, são apolares, moléculas hidrofóbicas, e essencialmente insolúveis em água. O ponto de fusão dos triacilglicerídeos é determinado, fundamentalmente, pela natureza dos ácidos graxos na molécula e são extremamente importantes no armazenamento de energia nos organismos, devido à vantagem de que o átomo de carbono dos ácidos graxos é mais reduzido que aquele contido no açúcar, sendo o rendimento da oxidação de triacilglicerídeos duas vezes maior em energia que a oxidação de carbohidrato, e ainda porque triacilgliceróis são hidrofóbicos e assim desidratados, resultando que o organismo que carrega gordura como fonte de energia não necessita carregar o peso extra da água de hidratação que é associado com polisacarídeos estocados (Nelson e Cox, 2005; Voet e Voet, 2011).

Triacilglicerídeos são produzidos a partir de duas vias biossintéticas principais conhecidas, a via sn-glicerol 3-fosfato que predomina no fígado e no tecido adiposo, e uma via de monoacilglicerol no intestino. Em sementes de plantas de maturação e de alguns tecidos de origem animal, uma terceira via tem sido reconhecido na qual um diacilglicerol transferase está envolvido. A principal via de biossíntese de triacilglicerol é a sn-glicerol-3-fosfato, por meio do qual mais de 90% de triacilgliceróis do fígado são produzidos, no qual esta molécula sofre uma esterificação com ésteres de ácido graxo coenzima A, sendo o fosfato removido por reação de

hidrólise antes da última esterificação. A molécula de sn-glicerol-3-fosfato, também particpa como precursor dos fosfolipídeos, aqui classificada como outra classe de lipídeos (Christie, 2011; Dewick, 2002; Nelson e Cox, 2005).

1.3.1.2 Fosfolipídeos

Os fosfolipídeos são classificados, como os lipídeos que contém grupo fosfato presentes em suas estruturas moleculares, como os glicerofosfolipídeos e podendo compreender parte dos esfingolipídeos, mas especificamente as esfingomielinas. São conhecidos por suas propriedades biológicas e químicas, sendo componentes primários das membranas e essencial para a função celular, além de atuar como agentes emulsificante (composto que promove a dispersão coloidal de um líquido em outro) e surfactante (composto que reduz a tensão superficial de uma solução, como detergentes), devido a sua característica de substância anfifílica (Curi *et al.*, 2002; Hanahan, 1997; Nelson e Cox, 2005; Voet e Voet, 2011).

Apesar das diferenças estruturais, todos os glicerofosfolipídeos são constituídos de uma porção apolar e alifática de dois ácidos graxos conectados por uma ligação de éster no primeiro e segundo carbono da molécula de glicerol (ou com menos uma ligação éter no primeiro carbono), conhecida como "cauda", e de uma porção polar, que contêm normalmente uma unidade de fosfato ou outros grupos carregados (polares) no terceiro carbono, denominada "cabeça" (Curi *et al.*, 2002; Gurr, 2002; Nelson e Cox, 2005; Voet e Voet, 2011). Eles são denominados como derivados do composto ácido fosfatídico, de acordo com o álcool polar do grupo "cabeça", e os ácidos graxos em suas estruturas compreende uma grande variedade, contendo, em geral, um ácido graxo saturado C16 ou C18 no C-1 e um ácido graxo insaturado C18 a C20 no C-2 (Nelson e Cox, 2005; Voet e Voet, 2011).

Figura 4. Ácido fosfátidico e suas ramificações mais comuns: fosfatidilserina (FS), fosfatidilglicerol (FG), fosfatidilinositol (FI), fosfatidilcolina (FC) e fosfatidiletanolamina (FE).

FΙ

Sob condições fisiológicas (pH 7,4), as formas mono- e diprotonada do ácido fosfórico estão em equilíbrio rápido. Assim, o ácido fosfatídico resultante é novamente capaz, através de sofrer reação de condensação éster com diferentes álcoois, e formar uma grande variedade de fosfolipídios, isto é, a fosfatidilcolina (FC), fosfatidiletanolamina (FE), bem como a fosfatidilserina (FS), fosfatidilglicerol, (FG), fosfatidilinositol (PI) e compostos derivados altamente fosforilados, como fosfolipídios de carga negativa (figura 4).

Os fosfolipídeos constituem uma grande e generalizada classe de biomoléculas, onde, com excessão das esfingomielinas, todos são fosfoacilgliceróis. Quando em concentrações apropriadas, os fosfolopídeos suspensos em água se organizam em estruturas ordenadas na forma de micelas ou bicamadas lipídicas (Motta, 2005, Curi *et al.*, 2002 e Gunstone, 2008). As esfingomielinas, também contem uma "cabeça" polar e duas "caudas" apolares, mas diferente do glicerofosfolípideo não tem contem glicerol, ela é composta por uma molécula de esfingosina,

que é um álcool amina de cadeia longa, uma molécula de ácido graxo de cadeia longa e um grupo "cabeça" polar que realiza uma ligação fosfodiéster (Gurr, 2002; Nelson e Cox, 2005).

1.3.1.3 Esfingolipídeos

Os esfingolipídeos são o segundo maior componente lipídico das membranas animais e vegetais, não contem glicerol, mas apresentam como esqueleto básico da molécula, alcoóis amino de C₁₈, que são a esfingosina e dihidroesfingosina, e seus homólogos C₁₆, C₁₇, C₁₉, e C₂₀. As moléculas mais simples desse grupo são as ceramidas, derivadas de ácidos graxos ligados ao grupo amino (–NH₂) no C2 da esfingosina, ocorrem apenas em pequenas quantidades em tecidos de plantas e animais, mas formam os compostos progenitores dos esfingolípidos mais abundantes:

- Esfingomielinas são ceramidas que contém tanto uma fosfocolina ou uma fosfoetanolamina em suas estruturas, podendo ser classificada, mais especificamente, como esfingofosfolipídeos.
- Cerebrosídeos são ceramidas com o grupo "cabeça" consistindo de um resíduo de um único açúcar, sendo os galactocerebrosídeos possuídores do açúcar β–D-galactose e os glucocerebrosídeos contendo como açúcar no grupo "cabeça" a β-D-glucose.
- Gangliosídeos são ceramidas oligosacarídeos que incluem entre seus grupos de açúcares no mínimo um resíduo de ácido siálico (ácido N-acetilneuramínico e seus derivados) (Motta, 2005; Nelson e Cox, 2005; Voet e Voet, 2011).

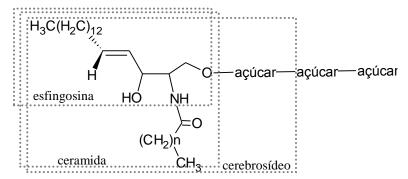


Figura 5. Estrutura básica dos esfingolipídeos.

1.3.1.4 Ceras

A maioria das ceras são ésteres de ácidos graxos de cadeia longa (C_{14} a C_{36}) saturada e insaturada com alcoóis de cadeia longa (C_{16} a C_{30}). Seus pontos de fusão geralmente são mais altos que aqueles dos triacilglicerídeos, e possuem funções variadas, para fitoplânctons, por exemplo, elas são a principal forma de fonte de energia metabólica, mas também funcionam como revestimento de proteção em folhas, caules, frutos e na pele de animais, devido a sua propriedade de impermeável à água (Nelson e Cox, 2005).

1.3.1.5 Ácidos graxos

Os ácidos graxos, assim como estruturas diretamente a eles relacionadas (como álcoois, aldeídos ou aminas) são, em geral, componentes fundamentais dos lipídeos, que desempenham um papel vital na sobrevivência dos organismos vivos. Deve ser enfatizado que ácidos graxos na sua forma livre existem em níveis muitos baixos, e ocorrem principalmente na forma de ésteres ou amidas (Curi *et al.*, 2002; Hanahan, 1997).

Os ácidos graxos são ácidos carboxílicos, geralmente monocarboxílico, de longas cadeias de hidrocarbonetos acíclicas, apolares, na maioria das vezes sem ramificações e número par de átomos de carbono. Podem ser saturados, monoinsaturados (contém uma ligação dupla) ou poliinsaturados (contêm duas ou mais ligações duplas). Os mais abundantes contêm 16 e 18 átomos de carbono e em geral, as ligações duplas nos ácidos graxos poliinsaturados estão separadas por um grupo metileno, -CH=CH-CH₂-CH=CH-, ou seja, suas duplas ligações estão dispostas em um arranjo não-conjugado, o que os torna suscetíveis a serem oxidados a hidroperóxidos (Belitz *et al.*, 2004).

Os ácidos graxos insaturados naturais ocorrem normalmente com configuração *cis* (*Z*). Na tabela 1, são apresentados exemplos dos ácidos graxos mais comuns com suas respectivas cadeias e nomenclatura oficial da IUPAC (União Internacional Química Pura e Aplicada).

Tabela 1. Alguns ácidos graxos de ocorrência natural (Gunstone *et al.*, 2004; Gurr, 1999; Gurr, 2002).

Butírico butanóico 4 -7,9 Capróico hexanóico 6 -8,0 Caprílico octanóico 8 12,7 Cáprico decanóico 10 29,6 Láurico dodecanóico 12 42,2 Mirístico tetradecanóico 14 52,1 Palmítico hexadecanóico 16 60,7 Palmítico hexadecanóico 16 60,7 Palmíticó cis-9-hexadecenóico 18 69,6 Oleico cis-9-hexadecenóico 18 16,0 Petroselenico cis-9-octadecanóico 18 16,0 Petroselenico cis-6-octadecenóico 18 33,0 Linoleico cis-9,12- octadecadenóico 18 -5,0 α-linolênico cis-9,12,15-octadecatrienóico 18 -11,0 γ-linolênico cis-6,9,12- octadecatrienóico 18 -11,0 γ-linolênico cis-6,9,12- octadecatrienóico 20 75,4 Gondóico cis-1,14 - eicosen	Família
Caprólico hexanóico 6 -8,0 Caprílico octanóico 8 12,7 Cáprico decanóico 10 29,6 Láurico dodecanóico 12 42,2 Mirístico tetradecanóico 14 52,1 Palmítico hexadecanóico 16 60,7 Palmitoléico cis-9 - hexadecenóico 16 1,0 Esteárico octadecanóico 18 69,6 Oleico cis-9 - octadecenóico 18 16,0 Petroselenico cis-6 - octadecenóico 18 33,0 Linoleico cis-9,12- octadecadienóico 18 -5,0 α-linolênico cis-9,12,15-octadecatrienóico 18 -11,0 γ-linolênico cis-6,9,12- octadecatrienóico 18 -11,0 γ-linolênico cis-6,9,12- octadecatrienóico 20 75,4 Gondóico cis-11-eicosenóico 20 24,0 - cis-8,11,14 - eicosatrienóico 20 - Araquidônico <td< th=""><th></th></td<>	
Caprílico octanóico 8 12,7 Cáprico decanóico 10 29,6 Láurico dodecanóico 12 42,2 Mirístico tetradecanóico 14 52,1 Palmítico hexadecanóico 16 60,7 Palmitoléico cis-9 - hexadecenóico 16 1,0 Esteárico octadecanóico 18 69,6 Oleico cis-9- octadecenóico 18 16,0 Petroselenico cis-6- octadecenóico 18 33,0 Linoleico cis-9,12- octadecadienóico 18 -5,0 α-linolênico cis-9,12,15-octadecatrienóico 18 -11,0 γ-linolênico cis-6,9,12- octadecatrienóico 18 -11,0 γ-linolênico cis-6,9,12- octadecatrienóico 20 75,4 Gondóico cis-11-eicosenóico 20 24,0 - cis-8,11,14 -eicosatrienóico 20 - - cis-8,11,14 -eicosatetraenóico 20 -49,5 EPA	-
Cáprico decanóico 10 29,6 Láurico dodecanóico 12 42,2 Mirístico tetradecanóico 14 52,1 Palmítico hexadecanóico 16 60,7 Palmitoléico cis -9 -hexadecenóico 16 1,0 Esteárico octadecanóico 18 69,6 Oleico cis -9 - octadecenóico 18 16,0 Petroselenico cis -6 - octadecenóico 18 33,0 Linoleico cis -9,12- octadecadrienóico 18 -5,0 α-linolênico cis -9,12,15-octadecatrienóico 18 -11,0 γ-linolênico cis -6,9,12- octadecatrienóico 18 -11,0 γ-linolênico cis -6,9,12- octadecatrienóico 18 - Araquidico eicosanóico 20 75,4 Gondóico cis -11,4-eicosenóico 20 - - cis -8,11,14 -eicosatrienóico 20 - - cis -8,11,14,17-eicosapentaenóico 20 -	-
Láurico dodecanóico 12 42,2 Mirístico tetradecanóico 14 52,1 Palmítico hexadecanóico 16 60,7 Palmitoléico cis-9-hexadecenóico 16 1,0 Esteárico octadecanóico 18 69,6 Oleico cis-9- octadecenóico 18 16,0 Petroselenico cis-6- octadecenóico 18 33,0 Linoleico cis-9,12- octadecadienóico 18 -5,0 α-linolênico cis-9,12,15-octadecatrienóico 18 -11,0 γ-linolênico cis-6,9,12- octadecatrienóico 18 - Araquidico eicosanóico 20 75,4 Gondóico cis-11,14 -eicosenóico 20 24,0 - cis-8,11,14 -eicosatrienóico 20 - - cis-8,11,14-eicosatetraenóico 20 -49,5 EPA cis-5,8,11,14,17-eicosapentaenóico 20 - Behênico docosanóico 22 80,0 Erúcico cis-13-docosenóico 22 24,0 - cis 13,16	-
Mirístico tetradecanóico 14 52,1 Palmítico hexadecanóico 16 60,7 Palmitoléico cis-9 - hexadecenóico 16 1,0 Esteárico octadecanóico 18 69,6 Oleico cis-9 - octadecenóico 18 16,0 Petroselenico cis-6 - octadecenóico 18 33,0 Linoleico cis-9,12- octadecadienóico 18 -5,0 α-linolênico cis-9,12,15-octadecatrienóico 18 -11,0 γ-linolênico cis-6,9,12- octadecatrienóico 18 - Araquidônico cis-6,9,12- octadecatrienóico 20 75,4 Gondóico cis-11-eicosenóico 20 24,0 - cis-11,14 -eicosenóico 20 - - cis-8,11,14 -eicosatrienóico 20 - Araquidônico cis-5,8,11,14,17-eicosapentaenóico 20 -49,5 EPA cis-5,8,11,14,17-eicosapentaenóico 20 - Behênico docosanóico 22 80,0 Erúcico cis 13,16 docosadienoico 22 - </td <td>-</td>	-
Palmítico hexadecanóico 16 60,7 Palmitoléico cis -9 -hexadecenóico 16 1,0 Esteárico octadecanóico 18 69,6 Oleico cis - 9- octadecenóico 18 16,0 Petroselenico cis - 6- octadecenóico 18 33,0 Linoleico cis - 9,12- octadecadienóico 18 -5,0 α-linolênico cis - 9,12,15-octadecatrienóico 18 -11,0 γ-linolênico cis -6,9,12- octadecatrienóico 18 - Araquidico eicosanóico 20 75,4 Gondóico cis -11-eicosenóico 20 24,0 - cis - 8,11,14 -eicosatrienóico 20 - - cis - 8,11,14 -eicosatetraenóico 20 -49,5 EPA cis - 5,8,11,14,17-eicosapentaenóico 20 -49,5 EPA cis - 5,8,11,14,17-eicosapentaenóico 22 80,0 Erúcico cis - 13-docosenóico 22 24,0 - cis 13,16 docosadienoico 22 -	-
Palmitoléico cis-9 -hexadecenóico 16 1,0 Esteárico octadecanóico 18 69,6 Oleico cis- 9- octadecenóico 18 16,0 Petroselenico cis- 6- octadecenóico 18 33,0 Linoleico cis- 9,12- octadecadienóico 18 -5,0 α-linolênico cis- 9,12,15-octadecatrienóico 18 -11,0 γ-linolênico cis-6,9,12- octadecatrienóico 18 - Araquidico eicosanóico 20 75,4 Gondóico cis-11-eicosenóico 20 24,0 - cis -11,14 -eicosanóico 20 - - cis-8,11,14 -eicosaterianóico 20 - Araquidônico cis-5,8,11,14-eicosaterianóico 20 -49,5 EPA cis -5,8,11,14,17-eicosapentaenóico 20 - Behênico docosanóico 22 80,0 Erúcico cis 13,16 docosadienoico 22 -	-
Esteárico octadecanóico 18 69,6 Oleico cis - 9- octadecenóico 18 16,0 Petroselenico cis - 6- octadecenóico 18 33,0 Linoleico cis - 9,12- octadecadienóico 18 -5,0 α-linolênico cis - 9,12,15-octadecatrienóico 18 -11,0 γ-linolênico cis - 6,9,12- octadecatrienóico 18 -11,0 α-linolênico cis - 6,9,12- octadecatrienóico 18 -7,4 Gondóico cis - 11-eicosenóico 20 75,4 Gondóico cis - 11-eicosenóico 20 24,0 - cis - 11,14 -eicosenóico 20 - Araquidônico cis - 5,8,11,14 -eicosatrienóico 20 -49,5 EPA cis - 5,8,11,14,17-eicosapentaenóico 20 - Behênico docosanóico 22 80,0 Erúcico cis - 13-docosenóico 22 -24,0 - cis 13,16 docosadienoico 22 -	-
Oleico cis - 9- octadecenóico 18 16,0 Petroselenico cis - 6- octadecenóico 18 33,0 Linoleico cis - 9,12- octadecadienóico 18 -5,0 α-linolênico cis - 9,12,15-octadecatrienóico 18 -11,0 γ-linolênico cis -6,9,12- octadecatrienóico 18 - Araquidico eicosanóico 20 75,4 Gondóico cis -11-eicosenóico 20 24,0 - cis -11,14 -eicosatrienóico 20 - - cis -8,11,14 -eicosatrienóico 20 - Araquidônico cis -5,8,11,14-eicosatetraenóico 20 -49,5 EPA cis -5,8,11,14,17-eicosapentaenóico 20 - Behênico docosanóico 22 80,0 Erúcico cis -13-docosenóico 22 24,0 - cis 13,16 docosadienoico 22 -	-
Petroselenico cis - 6- octadecenóico 18 33,0 Linoleico cis - 9,12- octadecadienóico 18 -5,0 α-linolênico cis - 9,12,15-octadecatrienóico 18 -11,0 γ-linolênico cis -6,9,12- octadecatrienóico 18 - Araquidico eicosanóico 20 75,4 Gondóico cis -11-eicosenóico 20 24,0 - cis -11,14 -eicosatrienóico 20 - - cis -8,11,14 -eicosatrienóico 20 - Araquidônico cis -5,8,11,14-eicosatetraenóico 20 -49,5 EPA cis -5,8,11,14,17-eicosapentaenóico 20 - Behênico docosanóico 22 80,0 Erúcico cis -13-docosenóico 22 24,0 - cis 13,16 docosadienoico 22 -	-
Linoleico cis - 9,12- octadecadienóico 18 -5,0 α-linolênico cis - 9,12,15-octadecatrienóico 18 -11,0 γ-linolênico cis -6,9,12- octadecatrienóico 18 - Araquidico eicosanóico 20 75,4 Gondóico cis -11-eicosenóico 20 24,0 - cis -11,14 -eicosenóico 20 - - cis -8,11,14 -eicosatrienóico 20 - Araquidônico cis -5,8,11,14-eicosatetraenóico 20 -49,5 EPA cis -5,8,11,14,17-eicosapentaenóico 20 - Behênico docosanóico 22 80,0 Erúcico cis -13-docosenóico 22 24,0 - cis 13,16 docosadienoico 22 -	-
α-linolênico cis - 9,12,15-octadecatrienóico 18 -11,0 γ-linolênico cis -6,9,12- octadecatrienóico 18 - Araquidico eicosanóico 20 75,4 Gondóico cis -11-eicosenóico 20 24,0 - cis -11,14 -eicosenóico 20 cis -8,11,14 -eicosatrienóico 20 - Araquidônico cis -5,8,11,14-eicosatetraenóico 20 -49,5 EPA cis -5,8,11,14,17-eicosapentaenóico 20 - Behênico docosanóico 22 80,0 Erúcico cis -13-docosenóico 22 24,0 - cis -13,16 docosadienoico 22	-
γ-linolênico cis -6,9,12- octadecatrienóico 18 - Araquidico eicosanóico 20 75,4 Gondóico cis -11-eicosenóico 20 24,0 - cis -11,14 -eicosatrienóico 20 cis -8,11,14 -eicosatrienóico 20 - Araquidônico cis -5,8,11,14-eicosatetraenóico 20 -49,5 EPA cis -5,8,11,14,17-eicosapentaenóico 20 - Behênico docosanóico 22 80,0 Erúcico cis -13-docosenóico 22 24,0 - cis -13,16 docosadienoico 22 -	ω-6
Araquidico eicosanóico 20 75,4 Gondóico cis-11-eicosenóico 20 24,0 - cis -11,14 -eicosenóico 20 - - cis-8,11,14 -eicosatrienóico 20 - Araquidônico cis-5,8,11,14-eicosatetraenóico 20 -49,5 EPA cis -5,8,11,14,17-eicosapentaenóico 20 - Behênico docosanóico 22 80,0 Erúcico cis-13-docosenóico 22 24,0 - cis 13,16 docosadienoico 22 -	ω-3
Gondóico cis-11-eicosenóico 20 24,0 - cis -11,14 -eicosenóico 20 - - cis- 8,11,14 -eicosatrienóico 20 - Araquidônico cis-5,8,11,14-eicosatetraenóico 20 -49,5 EPA cis-5,8,11,14,17-eicosapentaenóico 20 - Behênico docosanóico 22 80,0 Erúcico cis-13-docosenóico 22 24,0 - cis 13,16 docosadienoico 22 -	ω-6
- cis -11,14 -eicosenóico 20 - - cis- 8,11,14 -eicosatrienóico 20 - Araquidônico cis-5,8,11,14-eicosatetraenóico 20 -49,5 EPA cis -5,8,11,14,17-eicosapentaenóico 20 - Behênico docosanóico 22 80,0 Erúcico cis-13-docosenóico 22 24,0 - cis 13,16 docosadienoico 22 -	-
- cis- 8,11,14 -eicosatrienóico 20 - Araquidônico cis-5,8,11,14-eicosatetraenóico 20 -49,5 EPA cis -5,8,11,14,17-eicosapentaenóico 20 - Behênico docosanóico 22 80,0 Erúcico cis-13-docosenóico 22 24,0 - cis 13,16 docosadienoico 22 -	-
Araquidônico cis-5,8,11,14-eicosatetraenóico 20 -49,5 EPA cis-5,8,11,14,17-eicosapentaenóico 20 - Behênico docosanóico 22 80,0 Erúcico cis-13-docosenóico 22 24,0 - cis 13,16 docosadienoico 22 -	ω-6
EPA cis -5,8,11,14,17-eicosapentaenóico 20 - Behênico docosanóico 22 80,0 Erúcico cis-13-docosenóico 22 24,0 - cis 13,16 docosadienoico 22 -	ω-3
Behênico docosanóico 22 80,0 Erúcico cis-13-docosenóico 22 24,0 - cis 13,16 docosadienoico 22 -	ω-3
Erúcico cis-13-docosenóico 22 24,0 - cis 13,16 docosadienoico 22 -	-
- cis 13,16 docosadienoico 22 -	-
	-
cis 13 16 10 docosatrianóico 22	ω-6
- <i>cis</i> -13,10,13- docosatificition 22	ω-3
- <i>cis</i> - 7,10,13,16 – docosatetraenóico 22 -	ω-6
DHA cis-4,7,10,13,16,19- docosahexaenóico 22 -	ω-3
Nervônico cis -15-tetracoseinóico 24 -	-

Os ácidos graxos poliinsaturados possuem outra nomenclatura, além da IUPAC, bastante utilizada para descrevê-los, que é o sistema ômega, que se refere à posição das ligações duplas, em relação ao carbono mais afastado do grupo carboxila. Por exemplo, o ácido linoléico que possui nome da IUPAC como ácido (Z, Z)-9,12-octadecadienóico pertence à série ω -6, enquanto que o ácido δ -linolênico nomeado de ácido (Z, Z)-9,12-15-octadecatrienóico, pertence à série ω -3 (Curi *et al.*, 2002).

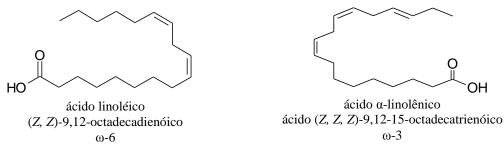


Figura 6. Estrutura dos ácidos graxos poliinsaturados.

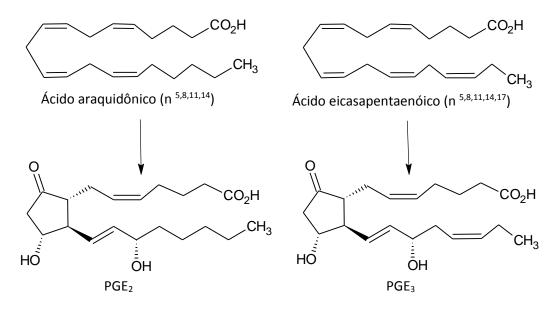
Os pontos de fusão dos ácidos graxos podem ser definidos por suas estruturas, como podemos ver na tabela 1, podem ser relacionados com o aumento do comprimento da cadeia hidrocarbonada aumentando o ponto de fusão, e com cadeias ramificadas e ligações duplas *cis* abaixando o ponto de fusão das cadeias saturadas equivalentes. E ainda é interessante o fato de o ponto de fusão depender da cadeia ser par ou ímpar, e determinar o estado físico da matéria, onde ácidos graxos saturados com dez ou mais átomos de carbono são sólidos em temperatura ambiente e todos os insaturados são líquidos nesta temperatura (Gurr *et al.*, 2002; Motta, 2005).

1.3.3 Reações comuns envolvendo lipídeos saponificáveis

Reações comuns envolvendo lipídeos saponificáveis são a transesterificação e a esterificação, onde a transesterificação consiste de um éster resultando em outro éster e a esterificação consiste em ácido graxo produzindo um éster. Ambas as reações se processam da reação com um álcool de cadeia curta, na presença de um catalisador, podendo ser uma base ou um ácido para a primeira e somente via ácida para a segunda (Barreto, 2010).

Figura 7. Reação de transesterificação de triacilglicerideo com ácool produzindo glicerol e ésteres alquilícos.

1.3.4 Ocorrência de ácidos graxos poliinsaturados em peixes e sua importância na saúde humana


As principais funções dos ácidos graxos poliinsaturados, em peixes e nos mamíferos terrestres superiores, são como reserva de energia na forma de triacilglicerídeos, como precursores de eicosaenóides (produtos naturais com 20 átomos de carbonos que são divididos como prostaglandinas, leucotrienos e tromboxanos) e como constituintes essenciais de fosfolipídios de biomembranas. Os ácidos graxos de peixes diferem dos poliinsaturados encontrados em plantas, por serem de cadeia mais longa, com a presença de um maior número de insaturações e pertencerem à série ômega 3 (ω-3), ao invés da ômega 6 (ω-6). Tanto a série ω-3, quanto a ω-6, possui ácidos graxos essenciais ao homem, ou seja, que o ser humano não consegue sintetizar, como o ácido linoléico e o ácido linolênico, que são fundamentais para o metabolismo e obtidos a partir da dieta. Os ácidos graxos essenciais são precursores para a biossíntese de vários metabólitos importantes (Motta, 2005). Os ácidos da série ω-6 são responsáveis pela proteção dérmica e pela produção de importantes mediadores farmacológicos lipídicos como os derivados do ácido araquidônico. Os ácidos da família ω-3 são responsáveis por evitar distúrbios neurológicos e visuais, porque são importantes no desenvolvimento do cérebro (Kasim-Karakas, 2001; Hanahan, 1997).

Oleos de peixes são ricos em ômega 3, porque peixes naturalmente consomem dietas ricas em tais ácidos. Os ácidos graxos poliinsaturados são sintetizados por fitoplânctons, que são consumidos por peixes, moluscos e crustáceos (cadeia alimentar). Normalmente os peixes possuem fosfolipídios com alto teor dos ácidos docosahexaenóico e eicosapentaenóico, mais conhecidos por suas siglas em inglês, DHA e EPA, respectivamente. Esses ácidos graxos constituem mais de 50% do total de ácidos graxos em alguns fosfolipídeos de peixes, geralmente numa razão de cerca de 2:1. Já o ácido araquidônico, também conhecido por sua sigla em inglês – AA, normalmente é responsável por somente 1 a 2% do total de ácidos graxos existentes em fosfoglicerídeos de peixes, com a notável exceção das fosfotadilinositols, onde o ácido araquidônico pode ser o principal ácido graxo poliinsaturado (Netleton, 1995).

A quantidade de ácido graxo ômega 3 que ocorre em diferentes espécies de peixes varia muito, com as espécies ricas em gordura tendo as maiores quantidades de ácidos graxos ômega. O tipo e a quantidade de ácidos graxos nos peixes variam principalmente com o que o peixe come, mas outros fatores também influenciam na composição de ácidos graxos: tamanho ou

idade, estado reprodutivo, localização geográfica e estação do ano influenciam todo o conteúdo de gordura e composição (Netleton, 1995).

Para o homem, o consumo de uma dieta rica de ácidos graxos da série ω-3 reduz riscos associados a doenças cardiovasculares, arterosclerose, hipertensão, inflamações em geral, asma, artrite, psoríase e de vários tipos de câncer (Andrade et al., 2009; Moura et al., 2006). Os mecanismos pelos quais os ácidos graxos ω-3 e 6 previnem doenças está relacionado ao fato de que a partir dos ácidos graxos poliinsaturados se derivam substâncias denominadas eicosanóides, que são hormônios paracrinos, isto é, atuam somente em células próximas ao local onde foram sintetizados por um curto período de tempo, devido a sua rápida degradação. Estes compostos são produzidos em quantidades muito pequenas, mas que apresentam funções metabólicas potentes, como regulação da pressão sanguínea, diurese, agregação plaquetária, sistema imune, secreções gástricas, reprodução, contração de músculos lisos, etc., porém a ingestão desequilibrada de ω-6, ou seja, excessiva, está associada ao aumento da produção de eicosanóides que potencializam as inflamações. Então a ingestão de ω-6 equilibrada com ω-3 ou somente deste último previnem doenças por estar relacionado à substituição de ω-6, especialmente AA, por ácidos ω-3 como EPA e DHA, reduzindo a produção de prostaglandina tipo E2, de tromboxano tipo A2, e contribuindo para a formação de leucotrieno B4, que é indutor da resposta inflamatória, aumento da concentração de prostaglandina E3 e leucotrieno A5 (Netleton, 1995).

Figura 8. Prostaglandinas resultantes (PGE₂ e PGE₃) dos ácidos graxos araquidônico e eicosapentaenóico.

E ainda um importante ácido graxo para o homem é CLA (ácido linoleico conjugado), que embora possua poucos estudos, há evidência de propriedades anticancerígenas. Tal evidência vem a partir de estudos de cultura de células (incluindo células humanas) e de estudos com animais vivos, principalmente ratos e camundongos, (Gurr, 1999).

1.3.5 Lipídeos insaponificaveis

Dentre os compostos insaponificáveis podemos destacar os esteróides, tocóis e carotenóides, que serão comentados a seguir (Gurr, 1999).

1.3.5.1 Esteróides

Os esteróides são triterpenos modificados contendo o sistema de anel tetracíclico do lanosterol, mas faltando três grupos metila nos carbonos C-4 e C-14, o qual confere à molécula a caraterística de ser quase planar e relativamente rígida, por causa do anel fundido não permitir rotação na ligação C-C. São comuns nas membranas dos organismos eucarióticos, onde eles são importantes para propocionar a estabilidade. Eles ocorrem em muitos óleos e gorduras, compartilham algumas das suas propriedades fisicas e estão relacionados intimamente aos óleos e gorduras em discussões de alimentação e saúde, podendo ser encontrados em suas formas livres e também esterificadas (Dewick, 2002; Gunstone, 2008; Gurr, 2002; Nelson e Cox, 2005).

O colesterol, o principal esteróide em tecido animal, que exemplifica a estrutura fundamental dos esteróides, é anfipático com um grupo "cabeça" polar e um corpo de hidrocarboneto apolar. Tem sido associado com doenças coronárias e muitas recomendações de ingestão de lipídeos estão relacionados a sua influência no sitema cardiovascular. Esteróides similares sao encontrados em outros eucariontes: estigmasterol em plantas e ergoesterol em fungos, por exemplo. Os esteróides, no geral, são um precursor essencial de ácidos biliares, corticóides, hormônios sexuais e hormônios derivados da vitamina D (Gunstone, 2008, Nelson e Cox, 2005).

Figura 9. Colesterol (esquerda) e sitosterol (direita).

1.3.5.2 **Tocóis**

Os tocóis são compostos com fenólicos heterocíclicos com cadeia lateral isoprenóide lipofílica de 16 carbonos. Compreendem os tocoferóis e os tocotrienóis, que possuem duas qualidades, mas são propriedades idênticas: apresentam atividade da vitamina E e poderosos antioxidantes naturais lipofílicos, isto porque como são hidrofóbicos, se associam com membranas celulares, depósitos lipídicos e lipoproteínas no sangue, e ainda porque o anel aromático reage e destrói formas de oxigênio radicalares, protegendo ácidos graxos insaturados de oxidação (Gunstone, 2008, Nelson e Cox, 2005).

Os tocóis, em geral, são encontrados em proporções variáveis em plantas, sendo que as fontes principais são óleos vegetais, germe de trigo, sementes oleaginosas, vegetais folhosos verde-escuros e alimentos de origem animal, principalmente gema de ovo e fígado. Tanto tocoferóis como tocotrienóis ocorrem em uma variedade de isômeros que diferem na estrutura de acordo com o número e a localização de grupos substituintes no anel cromanol. Os isômeros mais abundantes nos alimentos são γ - e o α - tocoferol (Gurr, 2002).

Figura 10. Tocoferóis e tocotrienóis. Tocoferóis tem uma cadeia lateral C_{16} saturada, tocotrienóis tem ligações duplas nas três posições indicadas pelas setas. R = H ou CH_3 ; $\alpha = 5,7,8$ -trimetiltocol; $\beta = 5,8$ -dimetiltocol; $\gamma = 7,8$ -dimetiltocol; $\delta = 8$ -metiltocol.

1.3.5.3 Carotenóides

Os carotenóides são um grande grupo de pigmentos presentes na natureza que desempenham papéis fundamentais na saúde humana, sendo essenciais para a visão. O β-caroteno e outros carotenóides foram reconhecidos no século XX como as principais fontes de vitamina A, sendo que a conversão ocorre naturalmente no fígado (Nelson e Cox, 2005).

Quanto à estrutura química, os carotenóides são tetraterpenóides, terpenos de 40 carbonos unidos por unidades opostas no centro da molécula e a ciclização, hidrogenação, desidrogenação, migração de duplas ligações, encurtamento ou alongamento da cadeia, rearranjo, isomerização, introdução de funções com oxigênio ou a combinação destes processos resultam na diversidade de estruturas dos carotenóides. Quando estes são compostos somente de carbono e hidrogênio são chamados de carotenos e quando oxidados, carotenóides (Rodrigues-Amaya *et al.*, 1999).

Figura 11. β-caroteno. Outros carotenos variam na natureza nos grupos terminais cíclicos.

1.3.6 Reações comuns envolvendo componentes insaponificáveis de óleos

Uma reação comum com lipídeos insaponificáveis, especificamente com esteróides, para realização de sua análise é a sililação, a qual trata-se de uma reação que busca bloquear os sítios próticos, havendo uma redução de interações do tipo dipolo-dipolo, elevando a volatilidade dos compostos, usando-se normalmente compostos trimetilsilil como reagente, além de gerar produtos com polaridade reduzida. O mecanismo de reação é via substituição nucleofilica de segunda ordem, conforme mostrado a seguir (Becker, 2012).

amostra—OH
$$+$$
 H_3C — $Si-X$ \longrightarrow $\begin{bmatrix} CH_3 \\ ABC \end{bmatrix}$ $\begin{bmatrix} CH_$

Figura 12. Mecanismo genérico da reação de sililação, onde X varia de acordo com os diferentes derivatizantes (Becker, 2012).

1.3.7 Ocorrência de componentes insaponificavéis em óleos de peixes e a importância na saúde humana

Estudos com peixes, mais especificamente estudos com tubarão, apontam para a presença de lipídeos insaponificáveis em sua composição, sendo tais lipídeos importantes para a saúde humana (Gunstone, 2004). O colesterol, apesar de atualmente ser visto frequentemente como uma substância maléfica à saúde humana, possui função importante para o transporte de ácidos graxos através do sangue na forma de lipoproteínas, as quais são de grande interesse para pesquisas sobre arterosclerose, apresentando níveis acima de 7000 ppm como componentes em óleo de peixe (Gunstone, 2008).

Outro lipídeo insaponificavel de grande importancia para o homem são os tocóis, por desempenhar papel de antioxidante, protegendo ácidos graxos poliinsaturados vulneráveis (ou ácidos graxos residuais de lipídeos) em membranas celulares e lipoproteínas de processos de peroxidação (Fulchs *et al.*, 2001), já que os produtos da peroxidação de lipídeos podem causar danos as células. Os tocotrienóis são encontrados como poderosos inibidores da enzima que cataliza a etapa limitante na biossíntese do colesterol (Gurr, 1999). Esses compostos se apresentam como pouca quantidade em óleos de peixe, mas possuem papéis significativos na saúde. Bem como os carotenoides, que mais recentemente, apresentaram efeitos benéficos contra cânceres, doenças de coração e degeneração macular e foram estimuladas intensas investigações sobre o papel desses compostos como anti-oxidantes e como reguladores de resposta do sistema imune (Almeida *et al.*, 2006; Delgado-Vargas *et al.*, 2000; Orban *et al.*, 2011; Orban *et al.*, 2000; Prego *et al.*, 2012).

1.4 Informações referentes às espécies de peixes selecionadas para estudo

Informações gerais das espécies a serem estudadas se encontram descritas na Tabela 2. Quanto à estudos existentes sobre lipídeos não foram encontrados para as espécies amazônicas estudadas neste trabalho.

Tabela 2. Informações sobre as espécies em estudo (Santos *et al.*, 2009; Soares *et al.*, 2008).

	Sardinha comprida	Curimatã	Pacu comum ou pacu manteiga	Jaraqui-de –escama- grossa	Pescada branca	Surubim
Espécies	Triportheus elongatus Gunther, 1864	Prochilodus nigricans Agassiz, 1829	Mylossoma duriventre Cuvier, 1817	Semaprochilodus insignis Schomburgk, 1841	Plagioscion squamosissimus Heckel, 1840	Pseudoplatystoma fasciatum Linnaeus, 1766
Ordem	Characiformes	Characiformes	Characiformes	Characiformes	Perciformes	Siluriformes
Família	Characidae	Prochilodontidae	Characidae	Prochilodontidae	Sciaenidae	Pimelodidae
Porte	médio porte	Grande porte	Porte médio	Grande porte	Grande porte	Grande porte
Biologia	Pelágica	bentopelágica	pelágica		bentopelágica	Bentônico
Ocorrência	águas brancas, claras e pretas	Águas claras, pretas e branca.	águas brancas, claras e pretas	águas brancas, claras e pretas	Claras, brancas, pretas e mixtas	águas brancas, claras e pretas
Alimentação	onívora com tendência herbívora	Detrívoro	Herbívoro, com tendência onívora	detritívoro	carnívoro	Piscívoro
Hábito	diurno, migradora	Diurno, migrador	diurno, migradora	diurno, migradora	Noturno	Noturno, migradora
Desova	Total em rios de águas brancas	Total, em águas claras e brancas	Total em confluências de rios de águas pretas e brancas	Total em rios de águas pretas e brancas	parcelada	Total na enchente
Fecundação	Externa	Externa	externa	externa	Externa	Externa
Época sazonal para reprodução	Seca inicio da enchente	Final da seca inicio da enchente	Seca e cheia	início da enchente	Todo o ano com pico na enchente	Entre a enchente e cheia
Importância econômica	Insignificante no geral e destacada no grupo	Moderada, domina o mercado em épocas do ano	Insignificante no geral e destacada no grupo	Destacada no geral e no grupo	Insignificante no geral e destacada no grupo	Insignificante, pesca comercial na Amazônia internacional
Participação da produção pesqueira do amazonas	9,17% (2003)	9,41% (2003)	15% as duas espécies (2003)	30,7% as duas especies (2003)	0,94% (2003)	2,07% (2003)

Destacada: acima de 20%; **Moderada:** entre 5 e 20 %; **Insignificante:** abaixo de 5%.

2 OBJETIVOS

2.1 Geral

Conhecer e quantificar os constituintes lipídicos de óleos de seis espécies de peixes amazônicos, jaraqui (*Semaprochilodus insignis*), curimatã (*Prochilodus nigricans*), pacu (*Mylossoma duriventre*), sardinha (*Triportheus elongatus* Gxunther, 1864), pescada (*Plagioscion squamosissimus* Heckel, 1840) e surubim (*Pseudoplatystoma fasciatum* Linnaeus, 1766), utilizando métodos inéditos de análises.

2.2 Específicos

- Obter lipídeos totais de seis espécies de peixes amazônicos;
- Separar os óleos extraídos por classe de lipídeos utilizando métodos cromatográficos;
- Otimizar a derivatização dos diferentes lipídeos a ésteres metílicos de ácidos graxos para análise por cromatografia gasosa- CG;
- Otimizar o método de análise de ésteres metílicos de ácidos graxos poliinsaturados por cromatografia gasosa de alta resolução com detector de ionização por chama- CG-DIC;
- Confirmar a identificação dos ácidos graxos poliinsaturados por cromatografia gasosa acoplada com detector de espectrometria de massas- CG-EM;
 - Identificar os ácidos graxos nas classes de lipídeos dos peixes.
 - Quantificar os diferentes ácidos graxos identificados nas amostras analisadas;
 - Identificar os esteróides presentes nos lipídeos dos peixes;
 - Quantificar esteróides presentes nos lipídeos dos peixes.

3 PARTE EXPERIMENTAL

3.1 Material

3.1.1 Seleção das espécies e coleta do material biológico

Foram estudadas seis espécies diferentes de peixes, selecionadas dentre as que apresentam maior importância econômica para o Estado do Amazonas, segundo levantamento realizado pelo Instituto Nacional de Pesquisas da Amazônia - INPA (Santos *et al.*, 2009), listadas a seguir: jaraqui (*Semaprochilodus insignis*), curimatã (*Prochilodus nigricans*), pacu (*Mylossoma duriventre*), sardinha (*Triportheus elongatus* Gxunther, 1864), pescada (*Plagioscion squamosissimus* Heckel, 1840) e surubim (*Pseudoplatystoma fasciatum* Linnaeus, 1766).

Os peixes foram adquiridos no mercado de Manaus, na Feira da Manaus Moderna, na manhã do dia 05 de abril de 2012, sendo 5 pacus, 8 sardinhas, 6 jaraquis, 2 surubims, 5 curimatãs e 2 pescadas. Todos na fase adulta, a quantidade de cada peixe foi estabelecida baseada no critério de se obter pelo menos 300 g de músculo dorsal e também uma variedade mínima de dois indivíduos de cada espécie. Sendo a coleta dos peixes realizada no período de enchente (janeiro a junho), a qual do ano em questão, 2012, apresentou a maior cheia até o momento superando a de 2009 um mês antes, com 29,97 m contra 29,77 m de 2009 (http://www.portodemanaus.com.br/?pg=nivelhj.php).

A identificação das espécies foi feita comparando-se com a literatura (Soares *et al.*, 2008 e Santos *et al.*, 2009).

3.1.2 Reagentes, solventes e instrumentos cromatográficos utilizados

Acetato de etila – Química CREDIE

Acetona – Química CREDIE

Ácido acético (99,8%) – Merck

Ácido fosfomolíbdico P.A – Merck

Água destilada

Alumina 90 – Merck

Anisaldeído (18%) – Vetec

Trifluoreto de Boro em meio metanólico (BF3 12%) – Aldrich

Clorofórmio PA – Química CREDIE

Éter etílico – Labsynth

Etanol anidro (99,5%) – Química CREDIE

Fenolftaleína PA – Nuclear

Hexano, grau HPLC (95%) – TEDIA

Hidróxido de potássio (85%) - Merck

Metanol (99,85%) – Química CREDIE

Metilato de sódio (30%) – COGNIS

Metil t-butil éter, grau HPLC – TEDIA

Nitrogênio comprimido -WHITE MARTINS

Silica gel (0,040-0,063 mm) – Merck

Cromatográfo gasoso com detector de ionização de chamas (CG-DIC) - Agilent, modelo HP 6890 Plus, configurado com detectores de ionização por chama, sistema de injeção automática, Chemstation.

Cromatográfico gasoso acoplado com espectrômetro de massas (CG-EM) – THERMO, modelo, equipado com injetor automático, detector de espectro de massas com fonte de íons por impacto eletrônico, analisador do tipo quadrupolo e software XCalibur.

3.2 Métodos

3.2.1 Extração de lipídeos totais

A extração de lipídeos totais dos peixes foi realizada utilizando um método eficiente que não usa solventes organoclorados e que foi desenvolvido como parte inical deste estudo.

3.2.1.1 Desenvolvimento de metodologia de extração de lipídeos totais

Foi desenvolvida uma metodologia alternativa ao método convencional de Bligh e Dyer (1959), o qual é normalmente usado para extração de lipídeos totais de material biológico, avaliando-se solventes não-organoclorados em comparação com o clorofórmio. Testaram-se os éteres dietílico e metiltertbutílico em diferentes proporções numa mistura com metanol e água (tabela 3), usando como matriz para extração uma solução com 5 mg de cada padrão comercial: triestearina, ácido esteárico e DL-α-fosfatidilcolina dipalmitoil.

Tabela 3. Proporção de mistura de solventes para extração de lipídeos totais.

	Solvente	Metanol	Água	
Clorofórmio	4	4	2	_
Éter dietílico	4	2	2	
MTBE	4	2	2	

O experimento acima foi monitorado por cromatografia em camada delgada (CCD) (sistema clorofórmio:metanol:água 75:22:3 e revelador sulfato cúprico 10% em ácido fosfórico 8% aquoso) e seu rendimento foi medido. Os solventes utilizados neste experimento tiveram seus coeficientes de partição em mistura previamente testados.

Depois de definida a mistura de solventes para a extração de lipídeos totais foi analisada o procedimento de extração, utilizando uma matriz biológica, 200 g do músculo dorsal de um indivíduo de tucunaré-comum (*Cichla monoculus* Spix & Agassiz, 1831). Os lipídeos foram extraídos com cerca de 1 L de MTBE:metanol:água (4:2:2), usando multiprocessador de alimentos (Philips walita), sendo a mistura resultante filtrada em funil de Büchner, separadas suas fases em funil de separação, e a fase de MTBE centrifugada por 10 min à 25°C a 15500 rcf (relative centrifugal force), concentrada em rotaevaporador, e por fim seca sob nitrogênio gasoso.

3.2.1.2 Extração de lipídeos totais dos peixes em estudo

Os peixes foram limpos em água corrente e o músculo dorsal de cada um foi retirado com auxílio de uma faca. Os indivíduos de mesma espécie foram reunidos, pesados conforme mostra a **tabela 4** e extraídos seus lipídeos totais usando multiprocessador de alimentos conforme metodologia resultante do ítem acima, onde para cada 100 g de peixe uma mistura de 500 mL dos solventes MTBE:MeOH:água na proporção 4:2:2 e a adição de 32,0 mg do padrão interno éster metílico do ácido graxo C 19:0 (EMAG) foram realizadas. Depois de filtrado em funil de Buüchner as fases da mistura foram separadas em funil de separação e a fase etérea foi centrifugada por 10 min à 25°C a 15500 rcf e concentrada em rotaevaporador, seca sob nitrogênio gasoso e liofilizadas.

Tabela 4. Peso do músculo dorsal de cada espécie de peixe e de padrão interno EMAG C19:0 usado para extração.

Peixe	Músculo dorsal (g)	Padrão interno (mg)
curimatã	606,01	192,0
pescada	606,40	192,0
sardinha	298,82	95,8
jaraqui	608,06	191,6
surubim	600,93	191,7
pacu	305,86	96,0

3.2.1.3 Monitoramento da eficiência do método de extração de lipídeos totais

Cerca de 50 mg de lipídeos totais liofilizados de cada espécie de peixe em estudo, além do lipídeo total do peixe tucunaré, que foi usado como teste foram eluídas em cartucho de Extração em Fase Sólida (EFS) a fim de separar o EMAG dos demais constituintes do extrato para verificação de recuperação do padrão, durante o processo de extração de lipídeos totais.

Para o procedimento utilizando EFS, um cartucho de vidro de com diâmetro 0,9 cm, foi empacotado à seco com cerca de 2 cm de sílica flash, com auxílio de ar comprimido, e 1 cm de sulfato de sódio foi colocado no topo do cartucho. As amostras foram eluídas com 20 mL de uma mistura dos solventes hexano:acetato de etila na proporção 99,7:0,3 (solvente grau HPLC), coletando-se em balão de fundo redondo de 50 mL. Cada amostra foi concentrada em rotaevaporador, mantida sob vácuo em dessecador com secante sulfato de sódio e ainda seco sob nitrogênio para determinação de massa.

Cada amostra resultante obteve seu perfil cromatográfico realizado por CCD (sistema clorofórmio:metanol:água 75:22:3 e revelador sulfato cúprico 10% em ácido fosfórico 8% aquoso) e depois de preparadas, por diluição, solução na concentração de 1 mg/mL em hexano, foram analisados por CG-DIC. O método do CG-DIC usado, consistia de uso do gás de arraste hélio com fluxo de 1m L/min, modo de injeção split 2:1 à 250°C, com temperatura do forno começando em 200°C, mantendo nessa temperatura por 10 min, subindo numa rampa de 6°C/min até 260°C e mantendo-se nessa última temperatura por 5 min, a fase estacionária utilizada foi uma coluna HP 5, a temperatura do detector utilizada foi de 270°C.

Utilizando o mesmo método no CG-DIC uma curva analítica com o padrão comercial de EMAG C 19:0 foi feita com 7 concentrações diferentes em dois dias consecutivos, para o uso do método de quantificação por padrão interno, onde através da regressão linear da equação linear (y = ax + b; onde y é a área do pico, x é a concentração em mg/mL) gerada pela curva da média, calculou-se as concentrações reais das amostras, as quais deveriam ser na concentração de 1 mg/mL, já que as amostras foram preparadas nessa concentração e como houve uma filtração somente do analito este deve estar em sua totalidade inicial equivalente ao peso encontrado de lipídeos totais.

3.2.2 Separação em classes e de seus componentes

Procurando-se um método para separação dos lipídeos em classes, que reduzisse o tempo do processo, bem como a quantidade de solvente e de amostra utilizados, e seguindo ainda o conceito da metodologia descrita por Johnston e colaboradores (1983), em que se obtêm suas diferentes classes (lipídeos neutros, glicolipídeos e fosfolipídeos) através do fracionamento em coluna aberta dos extratos de lipídeos totais, por ordem de polaridade, desenvolveu-se uma metodologia de extração em fase sólida (EFS).

3.2.2.1 Desenvolvimento de metodologia para separação de classes de lipídeos

Inicialmente foi feita uma comparação entre o método descrito por Johnston e colaboradores (1983) e um sistema utilizando EFS, a partir de lipídeos totais extraídos de sardinha-comprida (*Triportheus elongatus* Gxunther, 1864). Separando os lipídeos totais em neutros e polares pelo método de Johnston (1983), cerca de 20 g de sílica gel (63-200 μm), previamente ativada por 2 h à 80°C em estufa de circulação de ar, foram empacotadas em suspensão com clorofórmio em uma coluna cromatográfica de vidro com 1,6 cm de diâmetro, correspondendo a altura de sílica contida na coluna de 22 cm. Uma fase de 1 cm de altura, da coluna, do sal secante sulfato de sódio foi colocada no topo da sílica empacotada e cerca de 1 g de amostra de lipídeos totais foi adicionada solubilizada em 1 mL de clorofórmio, com auxílio de uma pipeta de Pasteur. Logo depois de o sulfato de sódio ter adsorvido a amostra, 400 mL do solvente clorofórmio foi adicionado aos poucos, seguido de 400 mL de acetona, e este seguido de 400 mL de metanol; sendo cada solvente representante de uma fração, as quais foram concentradas em rotaevaporador, transferidas para frascos menores e secas sob nitrogênio gasoso, correspondendo a lipídeos neutros, glicolipídeos e fosfolipídeos respectivas à ordem de eluição dos solventes.

Para a extração por fase sólida (EFS) foi empacotado à seco 2 cm do cartucho de vidro, que mede 0,9 cm de diâmetro, com sílica flash, e adicionando no topo da sílica 1 cm de sulfato de sódio, adaptadou-se no EFS e cerca de 500 mg dos lipídeos totais de sardinha solubilizados em 0,5 mL de clorofórmio foram eluídos com 20 mL de cada solvente, clorofórmio, acetona e metanol, nessa sequência, coletando-se frações de 10 em 10 mL. Quando secas às frações, foram determinados seus pesos e feito o perfil cromatográfico por CCD (sistema clorofórmio:metanol:água 75:22:3 e revelador sulfato cúprico 10% em ácido fosfórico 8% aquoso). Ainda usando EFS, outros experimentos foram realizados, em um verificou-se a substituição do solvente clorofórmio por solventes não-organoclorados: o éter dietilico e o metiltertbutiléter, em outro foi feita uma comparação do uso do metanol e etanol com água como último sistema no processode eluição, e em um ultimo testou-se a modificação da estrutura do cartucho de EFS, usando um com 1,3 cm de diâmetro e empacotando a seco 1,20 cm de altura a sílica flash.

Tabela 5. Condições testadas para desenvolvimento do método de separação de classes de lipídeos.

Método	Johnston	EFS 1	EFS 2	EFS 3	EFS 4	EFS 5	EFS 6	EFS 7	EFS 8
peixe	Sardinha	sardinha	sardinha	sardinha	sardinha	tucunaré	Tucunaré	tucunaré	sardinha
L.T. (g)	1	0,4993	0,5006	0,4996	0,5015	0,503	0,5008	0,5000	0,5002
1°sistema	CHCl ₃	CHCl ₃	CHCl ₃	éter dietílico	MTBE	MTBE	MTBE	MTBE	MTBE
vol(ml)	400,0	20,0	20,0	20,0	20,0	40,0	40,0	40,0	40,0
2°sistema	Acetona	acetona	acetona	-	-	acetona	Acetona	acetona	acetona
vol(ml)	400,0	20,0	20,0	-	-	40,0	40,0	40,0	40,0
3°sistema	МеОН	МеОН	МеОН	-	-	MeOH:H ₂ O (8:2)	EtOH:H ₂ O (8:2)	EtOH:H ₂ O (8:2)	EtOH:H ₂ O (8:2)
vol(ml)	400,0	20,0	20,0	-	-	40,0	40,0	40,0	40,0
h sílica (cm)	2,0	2,0	2,0	2,0	2,0	2,0	2,0	1,2	1,2
di (cm)	0,9	0,9	0,9	0,9	0,9	0,9	0,9	1,3	1,3
padrão int (mg/100g)	-	-	-	-	-	32,0	32,0	32,0	-

3.2.2.2 Separação de classes de lipídeos dos peixes em estudo

De cada espécie de peixe cerca de 500 mg de lipídeos totais lifiolizados, conforme **tabela 6**, foram separados, por classe usando sistema de EFS sob vácuo seguindo a metodologia desenvolvida no item anterior. O método consistiu de usar um cartucho de 1,3 cm de diâmetro, com 1,2 cm de altura de sílica flash, adicionando no topo da sílica 1 cm de sulfato de sódio, aplicando-se cada amostra solubilizada em 1 mL de MTBE e eluir com 50 mL de cada sistema de eluição, MTBE 100%, acetona 100% e etanol:água 8:2, nessa sequência, coletando-se frações de 50 em 50 mL, e quando secas foram determinados seus pesos e perfil por CCD (sistema clorofórmio:metanol:água 75:22:3 e revelador sulfato cúprico 10% em ácido fosfórico 8% aquoso).

Tabela 6. Peso de lipídeos totais de cada peixe utilizado para a separação de classes de lipídeos.

Peixe	L.T. (mg)
curimatã	499,80
pescada	500,20
sardinha	472,60
jaraqui	499,30
surubim	480,50
pacu	500,30

3.2.3 Extração de lipídeos insaponificáveis

A fim de se separar uma fração rica em esteróides e tocoferóis (lipídeos insaponificáveis) e analisá-los qualitativamente e quantitativamente, os lipídeos neutros foram submetidos ao procedimento de saponificação segundo método de Azevedo-Meleiro e colaboradores (2004) em duplicata, extraindo os lipídeos insaponificáveis.

3.2.3.1 Verificação do método de extração de insaponificáveis

Com o objetivo de se testar inicialmente o procedimento de extração de insaponificáveis em óleo de peixe, cerca de 200 mg de lipídeos neutros de sardinha foram submetidas ao procedimento de saponificação.

À amostra de lipídeo neutro de sardinha foi adicionado 4 mL de solução de hexano com 0,1% butil hidróxi tolueno - BHT e 4 mL de solução de hidróxido de potássio 10 % (KOH) metanólico em balão de fundo redondo em agitação por 16 h no escuro à temperatura ambiente, e em ambiente de nitrogênio gasoso. Obtida uma fase hexânica e outra metanólica,

estas foram separadas e a fase hexânica foi lavada cerca de 3 vezes com água milli-Q na proporção 1:1 (v/v), até completa remoção do excesso de KOH, o que foi comprovado com o indicador fenolftaleína. A seguir, a fração hexânica foi concentrada em rotaevaporador a 40°C, sêca na presença de gás nitrogênio para determinação do peso e monitorada por CCD (hexano:acetato 80:20 e revelador anisaldeído) para verificação da presença de tocoferóis e esteróides por comparação com padrões comerciais (colesterol e α-tocoferol).

3.2.3.2 Extração de lipídeos insaponificáveis dos peixes em estudo

Durante esse procedimento foi feita a adição de 0,1 mg do padrão comercial do esteróide β-sitosterol em cada amostra de lipídeo neutro de peixe a fim de se determinar a eficiência da extração de insaponificáveis, procedimento discriminado no próximo item, o ítem 3,2,3,3.

O procedimento para extração dos lipídeos insaponificáveis a partir da fração dos lipídeos neutros dos peixes em estudo foi realizado conforme testado no ítem 3.2.3.1, onde a reação de saponificação considerou a relação 1 g de amostra para 20 mL de reagente e 20 mL de solvente, descriminado na **tabela 7**. Depois que a fase hexânica foi separada da metanólica e lavada com água milli-Q, até completa remoção do excesso de KOH, esta foi concentrada em rotaevaporador, seca na presença de gás nitrogênio para determinação do peso, monitorada por CCD (hexano:acetato 80:20 e revelador anisaldeído) e reservada para reação de sililação.

Tabela 7. Relação de reagentes, solvente e amostra de lipídeos neutros (L.N.) na reação de saponificação para os peixes em estudo.

	Saponificação	
L.N.(mg)	Reagente (mL)	Solvente (mL)
295,6	6,0	6,0
301,0	6,0	6,0
250,8	6,0	6,0
298,8	6,0	6,0
236,8	6,0	6,0
295,3	6,0	6,0
	295,6 301,0 250,8 298,8 236,8	L.N.(mg) Reagente (mL) 295,6 6,0 301,0 6,0 250,8 6,0 298,8 6,0 236,8 6,0

3.2.3.3 Monitoramento da eficiência do método de extração de lipídeos insaponificáveis

No experimento do ítem 3.2.3.2, usando uma pipeta automática, 100 μL de uma solução do padrão β-sitosterol em hexano na concentração de 1 mg/mL foi adicionado às amostras de peixes. Esse padrão foi quantificado para verificar a recuperação total do que foi adicionado inicialmente, ou seja, a concentração de 0,1 mg/mL, através da análise quantitativa das amostras sililadas na concentração de 1 mg/mL por CG-DIC (3.2.5.3) em método de análise desenvolvido no ítem 3.2.5.1. E calculando a eficiência do método em porcentagem da razão entre a concentração real e a esperada em uma amostra de 1 mg/mL, através da regressão linear da equação linear (y = ax + b; onde y é a área do pico, x é a concentração em mg/mL) resultante de uma curva analítica com o padrão esteróide β-sitosterol em solução.

3.2.4 Preparação de amostras para análise de esteróides

3.2.4.1 Verificação do método de reação de sililação

A fração hexânica extraída do tratamento resultante da reação de saponificação dos lipídeos neutros de sardinha, bem como padrões comerciais de colesterol (esteróide) e de α-tocoferol (tocol), foi reagido segundo metodologia descrita por Bowden *et al.* (2009), onde em um frasco de 2 mL cerca de 10 mg da fração hexânica foram adicionados 200 μL de reagente derivatizante, sendo 100 μL de BSTFA+TMCS (99:1) e 100 μL de piridina e mantido por 30 min na lavadora ultra-sônica à 80°C. Ao término depois de verificado a conversão por CCD (hexano:acetato 80:20 e revelador anisaldeído), uma solução de 1 mg/mL a partir da mistura resultante foi realizada para identificação dos esteróides através de análise no CG-EM.

3.2.4.2 Aplicação do método de reação de sililação nos peixes em estudo

Para todas as amostras de lipídeos insaponificáveis foi realizada a reação de sililação segundo metodologia descrita por Bowden *et al.* (2009), conforme descrito acima no ítem 3.2.4.1. E ao término comparou-se a conversão das amostras por CCD (hexano:acetato 80:20 e revelador anisaldeído) com padrões comerciais de esteróides.

3.2.5 Análise de esteróides por cromatografia gasosa

3.2.5.1 Otimização da metodologia de análise de lipídeos insaponificáveis por cromatografia gasosa (CG-DIC e CG-EM)

O processo de otimização foi feito usando tanto o CG-DIC quanto o CG-EM, sendo inicialmente utilizado o CG-DIC configurado com uma coluna cromatográfica apolar HP-5, gás de arraste hélio, injetor no modo split 10:1 à 250°C, volume de injeção de 1μL, detector na temperatura de 300°C com fluxo de H₂ 30 mL/min, de ar sintético 300 mL/min e de N₂ de 25 mL/min. Posteriormente, utilizou-se o CG-EM, a fim de confirmar a possibilidade de identificação de componentes em regiões mal resolvidas e assim buscar um aprimoramento do método, com coluna apolar ZB-5 e linha de transferência e fonte de íons na temperatura de 275°C e 250°C, respectivamente.

O desenvolvimento de um método de separação foi feito a partir de uma mistura de padrões comerciais disponíveis de esteróides e tocoferóis, alterando os parâmetros de temperatura do forno do aparelho, bem como o fluxo do gás de arraste (**tabela 8**), a fim se obter boa separação dos contituintes da mistura. Os padrões usados foram: colesterol, ergoesterol, estigmasterol, β-sitosterol e α-tocoferol.

A identificação inequívoca de cada esteróide e tocoferol, foi feita pela análise e comparação dos tempos de retenção dos padrões e dos espectros de massas com as bibliotecas disponíveis (Wiley e Adams).

Tabela 8. Otimização do método de análise de lipídeos insaponificáveis.

	Método	Coluna	Fluxo (mL/min)	Rampas do forno	Tempo total (min)	Detector
1	Hidalgo	Zb-5	0,6	120°C, mantendo por 2 min, subindo 15°C/min até 250°C, subindo 5°C/min até 300°C e mantendo por 10 min	30,66	EM
2	ColToc_1	Zb-5	1,0	120°C, mantendo por 2 min, subindo 15 °C/min até 250°C, subindo 3°C/min até 300°C e mantendo por 5 min	32,32	EM
3	ColToc_4	Zb-5	1,0	120°C, mantendo por 2 min, subindo 15°C/min até 250°C, subindo 5°C/min até 280°C, mantendo por 5 min, subindo 10°C/min até 300°C, mantendo por 5 min.	28,66	EM
4	ColToc_6	Zb-5	1,0	120°C, mantendo por 2 min, subindo 15°C/min até 250°C, subindo 3°C/min até 270°C, mantendo por 8 min, subindo 10°C/min até 300°C	28,32	EM
5	ColToc_11	Zb-5	1,0	120°C, mantendo por 2 min, subindo 15°C/min até 250°C, subindo 2°C/min até 260°C, mantendo por 5 min, subindo 10°C/min até 300°C	24,66	EM
6	ColToc_23	Zb-5	1,0	120°C, mantendo por 2 min, subindo 15°C/min até 250°C, mantendo por 30 min, subindo 5°C/min até 300°C.	50,66	EM
7	Silil_II	HP-5	2,1	120°C, mantendo por 2 min, subindo 15°C/min até 240°C, mantendo por 45 min, subindo 5°C/min até 300°C e mantendo por 3 min	70,00	DIC

3.2.5.2 Análise qualitativa de esteróides dos peixes em estudo por CG-EM

As amostras de esteróides sililados dos peixes em estudo foram analisadas qualitativamente por cromatografia gasosa acoplada à espectrometria de massas em método desenvolvido na seção 3.2.5.1. A identificação inequívoca dos esteróides das amostras de lipídeos insaponificáveis dos peixes foi feita pela comparação dos seus espectros de massas com as bibliotecas disponíveis (Wiley e Adams).

3.2.5.3 Análise quantitativa de esteróides dos peixes em estudo por CG-DIC

A quantificação dos esteróides presentes em cada amostra de lipídeos insaponificáveis de peixes foi realizada por meio da técnica de CG-DIC, empregando o método de normalização de área, utilizando o padrão interno β-sitosterol para as amostras (3.2.3.2). A quantificação por padrão interno consiste na construção de uma curva analítica, a partir de soluções-padrão com concentrações conhecidas de um analito que não contenha na matriz de análise; que no caso neste trabalho as curvas analíticas foram construídas baseadas em soluções-padrão de β-sitosterol, nas concentrações na faixa de 0,00625-0,05 mg/mL (4 pontos). E a equação linear (y = ax + b; onde y é a área do pico, x é a concentrações dos esteróides nas amostras.

3.2.6 Preparação de amostra para análise da cadeia graxa

Cada amostra obtida foi analisada na descrição dos ácidos graxos residuais pela conversão das diferentes amostras de lipídeos em seus respectivos ésteres metílicos e posterior análise por CG-DIC e CG-EM. Para tal foi necessário otimizar a metodologia de derivatização já desenvolvida por Barbosa e colaboradores (2009), onde se realizou uma reação de transesterificação/saponificação utilizando como catalisador o metilato de sódio (anidro) em metanol, em baixa concentração, seguido da esterificação com BF₃/MeOH.

3.2.6.1 Otimização da metodologia de derivatização de ácidos graxos em seus ésteres metílicos

Foi feito inicialmente dois experimentos, reproduzindo o método de Barbosa *et al*. (2009) e testando outro reagente como esterificante o cloreto de amônia em ácido sulfúrico ao invés de trifluoreto de boro, usando amostras de lipídeos neutros (fração MTBE), glicolipídeos (fração acetona) e fosfolipídeos (fração EtOH:água) de peixe. Onde o esterificante a base de cloreto de amônia foi preparado da seguinte forma: pesando-se cerca de

10 g de NH₄Cl e adicionando 300 mL de MeOH, seguida da adição em pequenas porções de 15 mL de ácido sulfúrico concentrado com eventual agitação.

E depois várias condições foram testadas, dispostas resumidamente na **tabela 9 e tabela 10**, partindo do experimento inicial descrito acima, avaliando-se diferentes concentrações do catalisador na etapa de transesterificação (experimento I-X), bem como a adição de álcool em etapas (experimento VII -X), a inversão das etapas normalmente usadas para primeiro a etapa de esterificação e posteriormente a de transesterificação (experimento XIII – XIV), e ainda a substituição do álcool por um solvente aprótico (experimento XVII – XVIII). Buscando o procedimento que fosse mais favorável para a conversão dos ácidos graxos contidos nas amostras em seus respectivos ésteres metílicos.

Uma observação importante deve ser feita em relação ao experimento IV, o catalisador básico foi neutralizo com 4 mL de ácido acético, controlando o pH da mistura ao valor de 2 com papel indicador universal de pH. E ainda, após cada reação foi empregado um tratamento para extração da fase orgânica, onde cerca de 3 mL de hexano foi colocado no tubo de ensaio e agitado vigorosamente, em seguida 3 mL de solução saturada (15%) aquosa de cloreto de sódio foi adicionado e também agitado. Depois a fase hexânica (orgânica) foi separada da hidroalcoólica e transferida para um frasco, seca sob nitrogênio gasoso, e monitorada por CCD (hexano:éter dietílico: ácido acético 80:15:4, revelador ácido fosfomolibdico 20% etílico) usando padrões comerciais de éster metílico do ácido nonandecanóico, triestearina, ácido esteárico, DL-α-fosfatidilcolina dipalmitoil, monopalmitolglicerídeo dipalmitolglicerídeo para verificação do sucesso ou não de conversão após reação, A fase orgânica foi solubilizada em 0,5 mL de hexano e tratada em extrator por fase sólida (EFS) usando cartucho de 0,9 cm de diâmetro contendo 2 cm de altura de sílica flash fase normal e 0,5 cm de altura de sulfato de sódio no topo, eluindo-se com 20 mL do sistema de eluição hexano: acetato de etila 98:2, coletando em balão de fundo redondo de 50 mL, concentrando em rotaevaporador, transferindo para frasco, seco sob nitrogênio e monitorado por CCD (hexano:éter dietílico: ácido acético 80:15:4, revelador ácido fosfomolibdico 20% etílico); a fim de se obter somente os ésteres metílicos para a análise no cromatógrafo gasoso e impedir problemas de impureza em contato com a fase estacionária do CG.

Tabela 9. As primeiras oito condições testadas para otimização do método de derivatização para análise de cadeia graxa por CG.

Método	Barbosa et al. 2009	Exp. I	Exp. II	Exp. III	Exp. IV	Exp. VI	Exp. VII	Exp. VIII	Exp. IX	Exp. X
amostra (classe)	L.N., Glico., Fosf.	L.N., Glico., Fosf.	L.N., Glico., Fosfo.	L.N.	L.N.	L.N., Glico., Fosf.	L.N.	L.N.	L.N.	L.N.
quantidade (mg)	50	50	50	50	50	50	50	50	50	50
1ª reação	transest.	transest.	transest.	transest.	transest.	transest.	transest.	transest.	transest.	transest.
catalisador	CH ₃ O-Na ⁺	CH ₃ O-Na+	CH ₃ O-Na+	$CH_3O^-Na^+$	CH ₃ O-Na ⁺	CH ₃ O-Na ⁺	CH ₃ O-Na ⁺	$CH_3O^-Na^+$	CH ₃ O-Na ⁺	$CH_3O^-Na^+$
concentração	0,24 M	0,24 M	5,38 M	0,35 M	0,35 M	0,35 M	0,35 M	0,23 M	0,35 M	0,69 M
via	metílica	metílica	metílica	metílica	metílica	metílica	metílica	metílica	metílica	metílica
volume	4 mL	4 mL	2 mL	2 mL	2 mL	2 mL	1mL +1mL	1mL + 2mL	1mL +1mL	1mL + 1mL
tempo (min)	15	15	30	30	30	30	30	30	30	15
agitação	ultrassom	ultrassom	ultrassom	ultrassom	ultrassom	ultrassom	ultrassom	ultrassom	ultrassom	ultrassom
temperatura (°C)	50	50	50	50	50	50	50	50	50	50
2ª reação	esterif.	esterif.	esterif.	esterif.	neutraliz.	esterif.	esterif.	esterif.	esterif.	esterif.
catalisador	BF_3	NH ₄ Cl- H ₂ SO ₄	BF_3	NH ₄ Cl- H ₂ SO ₄	ác. Acético	BF_3	BF_3	BF_3	NH ₄ Cl- H ₂ SO ₄	BF_3
concentração	1 M	0,63 M	1 M	0,63 M	-	1 M	1 M	1 M	0,63 M	1 M
via	metílica	metílica	metílica	metílica	-	metílica	metílica	metílica	metílica	metílica
volume	5 mL	5 mL	5 mL	5 mL	-	5 mL	5 mL	5 mL	5 mL	5 mL
tempo (min)	15	15	30	30	-	30	30	30	30	15
agitação	ultrassom	ultrassom	ultrassom	ultrassom	-	ultrassom	ultrassom	ultrassom	ultrassom	ultrassom
$temperatura~(^{\circ}C)$	50	50	50	50	-	50	50	50	50	50

Tabela 10. As demais condições testadas para otimização do método de derivatização para análise de cadeia graxa por CG.

Método	Exp. XI	Exp. XIII	exp. XIV	exp. XV	exp. XVI	exp. XVII	exp. XVIII	exp. XIX	exp. XX
amostra	L.N.	L.N.	L.N.	L.N.	L.N.	L.N.	L.N.	L.N.PI	L.N., Glico., Fosf.
quant. (mg)	50	50	50	50	50	50	50	50	50
1ª reação	transest.	esterif.	esterif.	transest.	transest.	transest.	transest.	transest.	transest.
catalisador	CH ₃ O ⁻ Na ⁺	$BF_{3\;novo}$	$BF_{3\;novo}$	$CH_3O^-Na^+$	$CH_3O^-Na^+$	$CH_3O^-Na^+$	CH ₃ O-Na+	CH ₃ O ⁻ Na ⁺	CH ₃ O ⁻ Na ⁺
concentração	0,46 M	1 M	1 M	1,19 M	1,04 M	1,04 M	0,69 M	0,69 M	0,69 M
via	metílica	metílica	metílica	metílica	Metílica	DMSO	DMSO+MeOH	metílica	metílica
volume	2mL+1mL	7mL	5mL	1mL+1mL	2mL	2mL	1mL+1mL	2mL	2mL
tempo (min)	25	45	30	40	30	30	30	30	30
agitação	ultrassom	ultrassom	ultrassom	ultrassom	Ultrassom	ultrassom	ultrassom	ultrassom	ultrassom
Temp. (°C)	40	40	50	50	50	50	50	80	50
2ª reação	esterif.	=	transest.	esterif.	esterif.	esterif.	esterif.	esterif.	esterif.
catalisador	BF_3	-	metoxido	BF_3	BF_3	BF_3	BF_3	BF_3	BF_3
concentração	1 M	-	0,69 M	1 M	1 M	1 M	1 M	1 M	1 M
via	metílica	-	metílica	metílica	Metílica	metílica	metílica	metílica	metílica
volume	5 mL	-	2mL	5 mL	5 mL	5 mL	5 mL	5 mL	5 mL
tempo (min)	15	-	30	30	30	30	30	30	30
agitação	ultrassom	-	ultrassom	ultrassom	Ultrassom	ultrassom	ultrassom	ultrassom	ultrassom
Temp.(°C)	50	-	50	50	50	50	50	80	50

3.2.6.2 Aplicação do método otimizado nos lipídeos dos peixes em estudo

Cerca de 50 mg de cada classe de lipídeo representada pelas frações obtidas de cada peixe na etapa de separação de lipídeos por polaridade foram colocadas em tubos de ensaio de capacidade de 15 mL, confome **tabela 11**, para realizar a derivatização para análise da cadeia graxa por cromatografia gasosa. À estas amostras foram adicionados 2 mL de solução de metóxido de sódio metanólica 0,69 M à 50°C no ultrassom por 30 min, depois adicionou-se ao tubo de ensaio 5 mL de solução de trifluoreto de boro metanólica 14% que equivale à 1 M e foram mantidas no ultrassom por mais 30 min à 50°C e ao término sofreram tratamento pósreacional.

Tabela 11. Quantidade de massa usada por cada amostra para a reação de derivatização para análise da cadeia graxa por cromatografia gasosa.

Peixe	m para de	rivatização	1 (mg)	m para derivatização 2 (mg)			
	Lip. Neutros	Glicolip.	Fosfolip.	Lip. Neutros	Glicolip.	Fosfolip.	
curimatã	55,1	4,0	10,8	49,5	40,4	17,3	
pescada	49,6	3,7	6,8	50,2	0,0	12,5	
sardinha	47,1	3,5	50,0	51,6	1,3	50,0	
jaraqui	54,5	3,3	13,7	49,9	0,0	21,3	
surubim	59,5	9,4	50,0	49,5	0,5	50,0	
pacu	53,0	6,1	4,8	50,0	0,0	3,3	

No tratamento pós-reacional houve a extração da fase orgânica, onde cerca de 4 mL de hexano foi colocado no tubo de ensaio e agitado vigorosamente, em seguida 4 mL de solução saturada (15%) aquosa de cloreto de sódio foi adicionado e também agitado. Depois a fase hexânica (orgânica) foi separada da hidroalcoólica e transferida para um frasco, seca sob nitrogênio gasoso, e ainda monitorada por CCD (hexano:éter dietílico: ácido acético 80:15:4, revelador ácido fosfomolibdico 20% etílico) usando padrões comerciais (éster metílico do ácido nonandecanóico, triestearina, ácido esteárico, DL-α-fosfatidilcolina dipalmitoil, monopalmitolglicerídeo e dipalmitolglicerídeo) para verificação do sucesso ou não de conversão após reação; e ainda esta fase orgânica tratada em EFS conforme ítem 3.2.6.1.

3.2.6.3 Monitoramento da eficiência das etapas envolvidas para análise dos lipídeos neutros

O padrão interno (EMAG C19:0) adicionado em todos os peixes durante o processo de extração de seus respectivos lipídeos totais, ítem 3.2.1.2, a fim de se verificar a recuperação total ao término de todas as etapas envolvidas na análise da cadeia graxa, sofreu análise quantitativa nos lipídeos neutros esterificados dos peixes, ítem 3.2.7.3, após análise por CG-DIC em método desenvolvido no ítem 3.2.7.1.

3.2.7 Análise da composição da cadeia graxa por cromatografia gasosa

A análise quantitativa e qualitativa da composição da cadeia graxa foi realizada pela separação dos constituintes de cada amostra e suas respectivas detecções por cromatografia gasosa e detectores de ionização de chamas e de espectro de massas. Para tal separação buscou-se fazer a otimização do método de Barbosa e colaboradores (2009).

3.2.7.1 Otimização da metodologia da análise de cadeia graxa por cromatografia gasosa (CG-DIC e CG-EM)

O processo de otimização foi feito usando tanto o CG-DIC quanto o CG-EM. Inicialmente utilizou-se o CG-DIC configurado no modo dual, isto é, com duas colunas cromatográficas em paralelo, uma polar (HP INNOWAX-20) e outra apolar (HP-5) de idênticas dimensões (30 m de comprimento, 0,32 mm de diâmetro interno e espessura do filme de 0,25 μm), que permite a análise simultânea de uma mistura em duas fases estacionária diferentes, permitindo a identificação com maior precisão dos ésteres metílicos. E posteriormente configurado com uma coluna cromatográfica polar específica para ácidos graxos (zebron ZB-FFAP), de 60 m de comprimento, 0,25 mm de diâmetro interno e espessura do filme de 0,25 μm. O gás de arraste usado foi o hélio, o injetor foi usado no modo split 10:1 e temperatura 250°C, o volume de injeção foi de 1 μL, detector DIC na temperatura de 270°C com fluxo de H₂ 30 mL/min, de ar sintético 300 mL/min e de N₂ de 25 mL/min. O CG-EM usado, com linha de transferência e fonte de íons na temperatura de 275°C e 250°C, respectivamente, foi configurado com coluna polar de 60 m (zebron ZB-FFAP), e seu uso se deve ao fato de confirmar a possibilidade de identificação dos componentes em regiões mal resolvidas e assim buscar um aprimoramento do método.

O desenvolvimento de um método de separação foi feita a partir de uma mistura de padrões comerciais disponíveis de ésteres metílicos de ácidos graxos (tabela 12), com uma quantidade maior dos dois últimos componentes da separação para marcação do término da

análise, alterando os parâmetros de temperatura do forno do aparelho, bem como o fluxo do gás de arraste e coluna (diferentes diâmetros, comprimentos e fase estacionária) usando modo dual ou simples (**tabela 13**).

Tabela 12. Padrões comerciais disponíveis de ésteres metílicos de ácidos graxos.

	Nome usual	Nome oficial (ácido)	Fórmula	Família
1	valérico	pentanóico	C 5:0	-
2	capróico	hexanóico	C 6:0	-
3	-	heptanóico	C 7:0	-
4	-	octanóico	C 8:0	-
5	-	nonanóico	C 9:0	-
6	cáprico	decanóico	C 10:0	-
7	-	undecanoico	C 11:0	-
8	-	cis-10 -undecenóico	C 11:1 cis 10	
9	laúrico	dodecanóico	C 12:0	-
10	-	tridecanóico	C 13:0	-
11	mirístico	tetradecanóico	C 14:0	-
12	miristoléico	cis-9- tetradecenóico	C 14:1 cis- 9	ω-5
13	-	pentadecanóico	C 15:0	-
14	palmítico	hexadecanóico	C 16:0	-
15	palmitoléico	cis-9 -hexadecenóico	C 16:1 cis -9	ω -7
16	palmitoléico	trans -9 -hexadecenóico	C 16:1 trans-9	ω -7
17	-	heptadecanóico	C 17:0	-
18	esteárico	octadecanóico	C 18:0	-
19	petroselínico	cis-6-octadecenóico	C 18:1 cis -6	ω -12
20	cis- vaccênico	cis-11- octadecenóico	C 18:1 cis -11	ω -7
21	oléico	cis- 9- octadecenóico	C 18:1 cis- 9	ω -9
22	trans - vaccênico	trans-11 -octadecenóico	C 18:1 trans-11	ω -7
23	elaídico	trans-9-octadecenóico	C 18: 1 trans-9	ω -9
24	-	cis – 12-octadecenóico	C 18: 1 cis-12	ω -6
25	-		C 18:2 conj.	
26	linolelaídico	trans- 9,12 -octadecadienóico	C 18:2 trans –9,12	ω -6
27	linoléico	cis- 9,12- octadecadienóico	C 18:2 cis- 9,12	ω -6
28	γ-linolênico	cis-9,12,15-octadecatrienóico	C 18:3 cis-9,12,15	ω -3
29	α-linolênico	cis-6,9,12- octadecatrienóico	C 18:3 cis- 6,9,12	ω -6
30	-	cis-6,9,12,15-octadecatetraenóico	C 18: 4 cis-6,9,12,15	ω -3
31	-	nonadecanóico	C 19:0	-
32	araquídico	eicosanóico	C 20:0	-
33	-	cis-5-eicosenóico	C 20:1 cis -5	ω - 15
34	-	cis-11-eicosenóico	C 20:1 cis -11	ω - 9
35	-	cis – 8- eicosenóico	C 20:1 cis -8	ω - 12
36	-	cis-13-eicosenóico	C 20:1 cis 13	ω - 7
37	-	cis –11,14 -eicosenóico	C 20:2 cis 11,14	ω - 6

Continuação da tabela 12

38	-	cis-8,11,14 -eicosatrienóico	C 20:3 cis- 8,11,14	ω - 6
39	-	cis-11,14,17- eicosatrienóico	C 20:3 cis- 11,14,17	ω - 3
40	araquidônico	cis-5,8,11,14-eicosatetraenóico	C 20:4 cis-5,8,11,14	ω - 6
41	EPA	cis -5,8,11,14,17-eicosapentaenóico	C 20:5 cis-5,8,11,14,17	ω - 3
42	-	uncosanóico	C 21:0	-
43	behênico	docosanóico	C 22:0	-
44	erúcico	cis-13-docosenóico	C 22:1 cis -13	ω - 9
45	-	cis-13,16 docosadienoico	C 22:2 cis –13,16	ω - 6
46	-	cis-13,16,19- docosatrienóico	C 22: 3 cis-13,16,19	ω - 3
47	-	cis-7,10,13,16 -docosatetraenóico	C 22:4 cis-7,10,13,16	ω - 6
48	DHA	cis-4,7,10,13,16,19docosahexaenóico	C 22: 6 cis- 4,7,10,13,16,19	ω - 3
49	-	tricosanóico	C 23:0	-
50	-	tetracosanóico	C 24:0	-
51	nervônico	cis -15-tetracoseinóico	C 24:1 cis-15	ω - 9

A identificação inequívoca dos ésteres metílicos de ácidos graxos da mistura foi feita pela comparação com os tempos de retenção da mitura de padrões e pela comparação dos espectros de massas com as bibliotecas disponíveis (Wiley e Adams) quando usado o CG-EM.

Tabela 13. Otimização do método de ánalise de ácidos graxos.

	Método	Coluna	Fluxo (mL/min)	Rampas do forno	Detector
1	Barbosa et al., 2009	dual	2,8	107°C, subindo 7°C/min até 149°C e mantendo-se nessa temperatura (isoterma) por 54 min , em seguida subindo 6 °C/min até 260°C, e mantendo-se nessa temperatura por 1,50 min	DIC
2	BB2	dual	2,8	102°C, subindo 7°C/min até 150°C, mantendo por 30 min, subindo 5°C/min até 260°C e mantendo por 15 min	DIC
2 3 4 5	BB3	dual	1,6	110°C subindo 7°C/min até 150°C mantendo por 20 min aumentando 3°C/min até 260°C e matendo por 10 min	DIC
4	BB4	dual	1,6	110°C subindo 7°C/min até 150°C mantendo por 8 min aumentando 2°C/min até 260°C e matendo por 5 min	DIC
	BB5	dual	2,8	110°C subindo 7°C/min até 150°C mantendo por 5 min aumentando 1°C/min até 260°C e matendo por 1 min	DIC
6	BB8	dual	2,8	110°C subindo 7°C/min até 150°C mantendo por 4,29 min aumentando 5°C/min até 200°C e matendo por 10 min, aumentando 5°C/ min até 250°C	DIC
7	BB9	dual	2,8	110°C subindo 7°C/min até 150°C aumentando 6°C/min até 185°C e matendo por 5 min, aumentando 5°C/min até 250°C	DIC
8	BB11	dual	1,4	110°C subindo 7°C/min até 150°C aumentando 6°C/min até 185°C e matendo por 10 min, aumentando 6°C/min até 250°C e mantendo por 5 min	EM
9	BB32	dual	1,4	50°C mantendo por 1,5 min, subindo 20 °C/min até 175°C, mantendo por 10 min, aumentando 20°C/min até 190°C, aumentando 5°C até 250°C e mantendo por 5 min	EM
10	MIX 3	ZBFFAP	2,2	200°C subindo 2°C/min até 260°C, mantendo por 10 min	DIC
11	MIX 16	ZBFFAP	2,2	150°C, subindo 7°C/min até 200°C, mantendo por 10 min, aumentando 4°C/min até 260°C, e mantendo por 5 min	DIC
12	MIX 18	ZBFFAP	2,2	150°C, subindo 8°C/min até 240°C, mantendo por 10 min, aumentando 4°C/min até 260°C, e mantendo por 2 min	DIC
13	MIX 20	ZBFFAP	2,2	150°C, subindo 20°C/min até 240°C, mantendo por 8 min, aumentando 4°C/min até 260°C	DIC
14	MIX 22	ZBFFAP	2,2	150°C, subindo 20°C/min até 230°C, mantendo por 10 min, aumentando 4°C/min até 260°C	DIC
15	MIX 24	ZBFFAP	2,2	150°C, subindo 10°C/min até 220°C, mantendo por 10 min, aumentando 4°C/min até 260°C	DIC
16	MIX 33	ZBFFAP	2,2	140°C, mantendo por 5 min, subindo 6°C/min até 260°C, mantendo por 5 min	DIC
17	MIX 39	ZBFFAP	2,2	140°C, subindo 6°C/min até 220°C, aumentando 1°C/min até 260°C, mantendo nessa temperatura por 5 min	DIC
18	MIX 40	ZBFFAP	2,2	160°C, subindo 8°C/min até 220°C, mantendo por 5 min, aumentando 2°C/min até 260°C	DIC

Continuação da Tabela 13

19	MIX 44	ZBFFAP	2,2	160°C, subindo 10°C/min até 240°C, mantendo por 10 min, aumentando 2°C/min até 260°C, mantendo nessa	DIC
				temperatura por 2 min	
20	MIX 47	ZBFFAP	2,3	160°C, subindo 8°C/min até 220°C, mantendo por 5 min, aumentando 2°C/min até 260°C	DIC
21	MIX 55	ZBFFAP	2,3	140°C, subindo 7 °C/min até 190°C, aumentando 2°C/min até 240°C, aumentando 4°C/min até 260°C e mantendo nessa temperatura por 5 min	DIC
22 23	MIX 64	ZBFFAP	2,3	140°C, subindo 0,5°C/min até 260°C, mantendo por 20 min	DIC
23	MIX 71	ZBFFAP	1,1	140°C, subindo 2 °C/min até 170°C, aumentando 1°C/min até 200°C, aumentando 4°C/min até 260°C e mantendo nessa temperatura por 5 min	DIC
24	MIX 82	ZBFFAP	1,1	140°C, subindo 2°C/min até 170°C, mantendo por 5 min, aumentando 1°C/min até 200°C, aumentando 4°C/min até 260°C e mantendo nessa temperatura por 5 min	DIC
25	MIX 19 - EM	ZBFFAP	1,5	140°C, subindo 6°C/min até 220°C, mantendo por 5 min, aumentando 5°C/min até 240, aumentando 5°C/min até 260°C e mantendo nessa temperatura por 5 min	EM
26	MIX 35 - EM	ZBFFAP	1,5	120°C, mantendo por 5 min, subindo 8°C/min até 200°C, mantendo por 20 min, aumentando 15°C/min até 260°C, e mantendo nessa temperatura por 10 min	EM
27	MIX 77 - EM	ZBFFAP	1,5	120°C, subindo 10°C/min até 155°C, mantendo por 15 min, aumentando 5°C/min até 160°C, mantendo por 50 min, aumentando 2°C/min até 260°C, e mantendo por 10 min nessa temperatura.	EM
28	MIX 14A	ZBFFAP	1,8	120°C, subindo 10°C/min até 165°C, mantendo por 10 min, aumentando 1°C/min até 165°C, mantendo por 40 min, aumentando 4°C/min até 210°C, mantendo por 4 min, aumentando 2°C/min até 260°C, mantendo por 5 min	DIC
29	MIX 27A	ZBFFAP	1,8	165 °C, mantendo por 60 min, subindo 10 °C/min até 230°C, mantendo por 10 min, aumentando 2°C/min até 260°C, mantendo por 5 min	DIC
30	MIX 30A	ZBFFAP	1,8	165 °C, mantendo por 60 min, subindo 8°C/min até 190°C, mantendo por 10 min, aumentando 2°C/min até 220°C, mantendo por 5 min, aumentando 4°C/min até 260°C	DIC
31	MIX 35A	ZBFFAP	1,8	160°C, mantendo por 60 min, subindo 10 °C/min até 200°C, aumentando 0,5°C/min até 260°C	DIC
32	MIX 39A	ZBFFAP	1,8	160°C, mantendo por 62 min, subindo 8°C/min até 200°C, mantendo por 10 min, aumentando 1°C/min até 260°C	DIC
33	MIX 41A	ZBFFAP	1,8	160°C, mantendo por 62 min, subindo 8°C/min até 200°C, mantendo por 10 min, aumentando 10°C/min até 210°C, mantendo por 42 min	DIC
34	MIX 43A	ZBFFAP	1,8	160°C, mantendo por 62 min, subindo 8°C/min até 200°C, mantendo por 10 min, aumentando 10°C/min até 230°C, mantendo por 30 min	DIC

3.2.7.2 Análise qualitativa da composição da cadeia graxa dos peixes por CG-EM

As amostras de ésteres metílicos de lipídeos neutros, glicolipídeos e fosfolipídeos de peixes foram preparadas na concentração de 1 mg/mL em hexano e analisadas qualitativamente pela separação dos constituintes de cada amostra por cromatografia gasosa e detectadas por espectrometria de massas em método desenvolvido na seção 3.2.5.1. A identificação inequívoca dos ésteres metílicos de ácidos graxos das amostras de lipídeos de peixes foi feita pela comparação dos seus espectros de massas com as bibliotecas disponíveis (Wiley e Adams).

3.2.7.3 Análise quantitativa da composição da cadeia graxa dos peixes por CG-DIC

A quantificação dos ácidos graxos presentes em cada amostra de lipídeos de peixes analisada foi realizada por meio da técnica de CG-DIC, empregando o método de normalização de área, utilizando padrão interno, que consiste na construção de uma curva analítica, a partir de soluções-padrão com concentrações conhecidas de um analito que não contenha na matriz de análise. As curvas analíticas foram construídas baseadas em soluções-padrão de FAME C19:0, nas concentrações na faixa de 0,0625-0,1 mg/mL (5 pontos), em análise intradays (tres dias consecutivos). E a equação linear (y = ax + b; onde y é a área do pico, x é a concentrações.

3.8 Determinação da qualidade nutricional dos lipídeos dos peixes

A qualidade nutricional de cada classe de lipídeos foi determinada através dos dados obtidos do perfil lipídico de cada amostra de peixe, considerando tanto a razão entre os ácidos graxos poliisaturados e saturados quanto os índices de aterogenicidade (IA) e trombogenicidade (IT) (Ulbricht e Southgate, 1991). E ainda a razão entre os ácidos graxos hipocolesterolêmicos e hipercolesterolêmicos-HH (Santos-Silva *et al.*, 2002).

As equações referentes aos índices de aterogenicidade (IA) e trombogenicidade (IT), e a razão entre os ácidos graxos hipocolesterolêmicos e hipercolesterolêmicos (HH) se encontram a seguir:

IA=
$$[(C 12:0 + (4 \times C 14:0) + C 16:0]/(\Sigma AGMI + \Sigma \omega 6 + \Sigma \omega 3)$$
 (1)

IT = (C 14:0 + C 16:0 + C 18:0)/[(0,5 x
$$\Sigma$$
AGMI) + (0,5 x Σ \omega6) + (3 x Σ \omega3) + (Σ \omega3/ Σ \omega6)]

$$HH = (C 18:1n9 + C 18:2n6 + C 20:4n6 + C 18:3n3 + C 20:5n3 + C 22:5n3 + C 22:6n3)/(C 14:0 + C 16:0)$$
 (3)

Onde:

ΣAGMI = somatório dos ácidos graxos monoinsaturados;

 $\Sigma \omega 6 = somatório dos ácidos graxos do tipo ômega 6;$

 $\Sigma \omega 3 =$ somatório dos ácidos graxos do tipo ômega 3.

4. Resultados e Discussão

4.1. Seleção das espécies e coleta do material biológico

A seguir se encontram as fotos referentes aos peixes coletados.

Figura 13. Peixe jaraqui.

Figura 14. Peixe sardinha.

Figura 15. Peixe pacu.

Figura 16. Peixe curimatã.

Figura 17. Peixe surubim.

Figura 18. Peixe pescada.

Os peixes foram identificados comparando-se com a literatura Soares e colaboradores (2007) e Santos e colaboradores (2009) como sendo jaraqui de escama grossa (*Semal*

prochilodus insignis Jardine & Schomburgk, 1841), curimatã (*Prochilodus nigricans* Agassiz, 1829), pacu-comum ou pacu manteiga (*Mylossoma duriventre* Cuvier, 1817), sardinha papuda (*Triportheus angulatuss* Spix & Agassiz, 1829), pescada branca (*Plagioscion squamosissimus* Heckel, 1840) e surubim (*Pseudoplatystoma fasciatum* Linnaeus, 1766).

4.2 Extração de lipídeos totais

4.2.1 Desenvolvimento de metodologia de extração de lipídeos totais

Observou-se semelhante eficiência para os solventes alternativos quando comparados com o clorofórmio ao se testar a mistura de padrões comerciais com rendimento de 100% de extração. Optou-se por definir a mistura de solventes para a extração de lipídeos totais como sendo MTBE:MeOH:água 4:2:2, pela baixa volatilidade do éter quando comparada com o éter dietílico e igual eficiência.

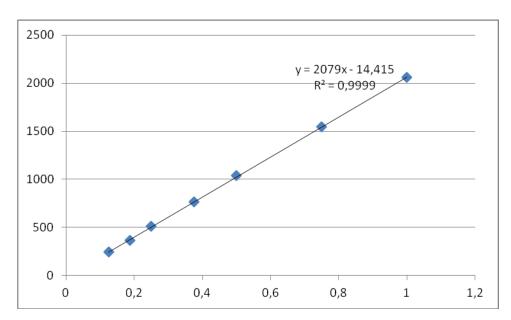
Quando analisada o procedimento de extração usando a matriz biológica, observou-se lipídeos totais de massa 2,3929 g, ou seja, um teor extrativo de 2% maior que o encontrado para esse peixe na literatura (Inhamuns *et al.*, 2009).

4.2.2 Extração de lipídeos totais dos peixes em estudo

Os valores de teor de lipídeos totais dos peixes em estudo se encontraram na faixa 0,4 – 3%, sendo os maiores valores apresentados para os peixes pacu e curimatã e valores comuns para os demais peixes quando comparado com a literatura (Arbeláez-Rojas *et al.*, 2002; Blanchet *et al.*, 2005; Almeida, *et al.*, 2007; Almeida *et al.*, 2008; Inhamuns *et al.*, 2009; Inhamuns e Franco, 2001).

Tabela 14. Rendimento percentual dos extratos de lipídeos totais (L.T.).

Extrato L.T.(g)	Teor (%)
11,062	1,8
3,370	0,6
2,059	0,7
3,848	0,6
2,417	0,4
8,364	2,7
	11,062 3,370 2,059 3,848 2,417


4.2.3 Monitoramento da eficiência do método de extração de lipídeos totais

A seguir se encontra a média das áreas resultantes das análises do padrão de éster metílico do ácido nonandecanóico disposta em forma de tabela, onde se observa baixo erro relativo para todas as concentrações.

Tabela 15. Áreas resultantes das análises do padrão de éster metílico do ácido nonandecanóico.

Concentração (mg/mL)	dia 1	dia 2	Media	Desvio padrao	Erro relativo (%)
0,125	241,5	244,5	243,0	2,16	0,89
0,1875	366,0	370,4	368,2	3,15	0,86
0,25	507,3	511,6	509,4	3,04	0,60
0,375	761,3	764,8	763,1	2,51	0,33
0,5	1035,4	1038	1037	1,94	0,19
0,75	1542,7	1550	1546	5,20	0,34
1	2051,4	2067	2059	10,82	0,52

A curva analítica do padrão interno obteve um bom coeficiente de linearidade, de 0,9999.

Gráfico 1. Curva analítica do fame C 19:0 em 7 concentrações.

Os padrões internos separados de seus respectivos lipídeos totais de peixes apresentaram concentrações baixas em relação ao esperado de 1 mg/mL, indicando baixa eficiência do método de extração de lipídeos totais. Porém como o processo de análise da

quantidade de padrão interno recuperado leva em consideração uma etapa de purificação, considerou-se que o erro pode estar não no procedimento de extração de lipídeos totais e sim no método em que se analisa esse padrão interno, ou seja, nesse processo de purificação, o que pode não estar levando a uma extração total do cartucho de EFS, gerando um resultado falso.

Tabela 16. Concentração e eficiência do método de extração de lipídeos totais.

Peixe	área	Conc (mg/mg)	% eficiência
curimatã	327,2	0,164	16,43
pescada	920,3	0,450	44,96
sardinha	541,2	0,267	26,73
jaraqui	554,4	0,273	27,27
surubim	817,6	0,430	42,97
pacu	288,9	0,146	14,59

4.3 Separação em classes e de seus componentes

4.3.1 Desenvolvimento de metodologia para separação de classes de lipídeos

Segundo os dados resultantes da comparação do método Johnston com EFS dispostos na **tabela 17** pode-se afirmar que é possível separar diferentes classes de lipídeos pelo método EFS com maior praticidade, pois a quantidade de amostra empregada é reduzida pela metade e o volume de solvente é 20 vezes menor, porém observou-se que era necessário ainda fazer modificações para resultar em máxima eficiência de extração e separação.

Tabela 17. Rendimento das frações obtidas para separação de lipídeos, comparando-se o método de Johnston e EFS.

Classe	Rendimento (%	(6)
	Coluna (Johnston)	EFS
Lipídeos neutros	76,62	77,57
Glicolípideos	8,830	1,960
Fosfolípideos	8,850	2,340

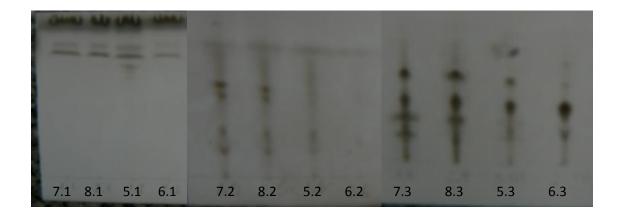
Analisando-se a substituição do solvente clorofórmio por um solvente não-halogenado para extração dos lipídeos neutros observou-se semelhante eficiência para os solventes alternativos quando comparado com o clorofórmio, com apresentação de substâncias a mais

quando feito o uso de MTBE, isso foi possível verificar pelo monitoramento realizado por CCD (**Figura 19**), que para tal foram testados vários sistemas de eluição e reveladores, definindo-se por usar o sistema clorofórmio:metanol:água (75:22:3) e o revelador 10% sulfato de cúprico em ácido fosfórico 8% aquoso.

Figura 19. Perfil cromatográfico por CCD dos lipídeos neutros de sardinha extraídos com diferentes solventes: clorofórmio, éter dietílico e MTBE.

E ainda o experimento com MTBE produziu valor de rendimento levemente superior que os demais solventes testados até mesmo quando comparado com clorofórmio, solvente usado no método de Johnston, conforme descriminado na **tabela 18**.

Tabela 18. Frações da EFS comparando-se solventes não-organoclorados e clorofórmio.


Fração	Rendimento (%)
Clorofórmio	97,20
Éter dietilico	95,24
MTBE	98,00

Quando comparadas a extração de fosfolípideos usando os solventes metanol ou etanol em mistura com água, métodos EFS 5 e 6 respectivamente, observou-se semelhantes resultados de rendimento e de perfil cromatográfico, conforme mostrado na **Tabela 19** e **Figura 20**.

Tabela 19. Rendimento em percentual das classes de lipídeos dos métodos diferentes testados.

Método	Rendimento (%)		
	Lip. Neutros	Glicolip.	Fosfolip.
EFS 5	86,04	0,340	4,630
EFS 6	87,00	9,200	3,750
EFS 7	74,31	-	12,03
EFS 8	95,62	0,300	-

Os resultados favoreceram a escolha do solvente etanol por conter toxicidade altamente reduzida quando comparado ao metanol. Já quando analisado o volume do cartucho de eluição foi apresentado valores distintos, sendo maior rendimento de fosfolípideos usando um cartucho com diâmetro maior, método EFS 7. E ainda verificando o uso deste método, com outros óleos de peixes observou-se boa separação das classes de lipídeos com lipídeos totais de sardinha, método EFS 8.

Figura 20. Perfil cromatográfico de EFS 7, 8, 5 e 6.1 representando a fração referente a MTBE, EFS 7, 8, 5 e 6.2 a fração de acetona e EFS 7, 8, 5 e 6.3 a última fração.

4.3.2 Separação de classes de lipídeos dos peixes em estudo

Conforme nos mostra a **Tabela 21** os lipídeos separados em suas classes apresentaram diferenças para os lipídeos neutros entre os peixes com variações em seus valores de teores, revelando a classe de lipídeos neutros como a classe marjoritária dos lipídeos totais, representando uma faixa 67 – 97%. Esses resultados também nos mostraram que o surubim quando comparado aos demais peixes em estudo obteve menor rendimento para os lipídeos neutros que os demais, indicando que outras classes de lipídeos possuem contribuição mais significativa para os lipídeos totais desse peixe que nos demais peixes.

Tabela 20. Rendimento em percentual de cada classe de lipídeos dos peixes em estudo.

Peixe	Lipídeos neutros	Glicolipídeos	Fosfolipídeos
curimatã	92,90	1,68	5,62
pescada	93,24	0,740	3,858
sardinha	76,77	1,016	21,16
jaraqui	93,07	0,661	7,010
surubim	67,03	2,060	25,66
pacu	97,30	1,219	1,619

Já os valores de rendimento que representam a classe dos glicolipídeos foram variáveis e em geral baixos, a ponto de não ser possível a pesagem para as amostras de dos peixes pesca, jaraqui e pacu, indicando que a contribuição desta classe para os lipídeos que compõem os peixes em estudo é pequena. Com relação aos fosfolipídeos também houve variação em seus teores, com valores baixos em geral, com exceção para o peixe surubim, que apresentou rendimento médio de 25,66% representando que os lipídeos deste peixe contêm uma significativa contribuição de fosfolipídeos ou lipídeos de alta polaridade para seus lipídeos totais.

4.4 Extração de lipídeos insaponificáveis

4.4.1 Verificação do método de extração de insaponificáveis

A fração hexânica extraída do tratamento resultante da reação de saponificação dos lipídeos neutros de sardinha obteve perfil cromatográfico bom, onde foi possível observar, comparando-se com o padrão comercial de colesterol (esteróide) e de α-tocoferol (tocol), a presença somente de esteróides. O teor resultante foi de 6,5% com massa proveitosa para se processar a reação de sililação (derivatização).

4.4.2 Extração de lipídeos insaponificáveis dos peixes em estudo

Os rendimentos das frações dos lipídeos insaponificaveis foram cerca de 4-9%, sendo o maior valor para o peixe surubim e o menor para o curimatã. Quando comparado com a literatura encontramos altos valores em relação aos peixes de água doce e valores próximos aos correspondentes de tubarão (Belitz *et al.*, 2004).

Tabela 21. Rendimentos percentuais dos lipídeos insaponificáveis dos peixes.

Peixe	Rendimento (%)
curimatã	3,89
pescada	8,94
sardinha	7,85
jaraqui	4,92
surubim	9,16
pacu	5,55

4.4.3 Monitoramento da eficiência do método de extração de lipídeos insaponificáveis

A seguir se encontra as áreas resultantes das análises do padrão de β -sitosterol disposta em forma de tabela.

Tabela 22. Áreas resultantes das análises do padrão de β-sitosterol.

Concentração (mg/m	L) Área
0,05	155,5
0,025	64,70
0,0125	25,90
0,00625	6,600

A curva analítica do padrão interno obteve um coeficiente de linearidade, de 0,9984.

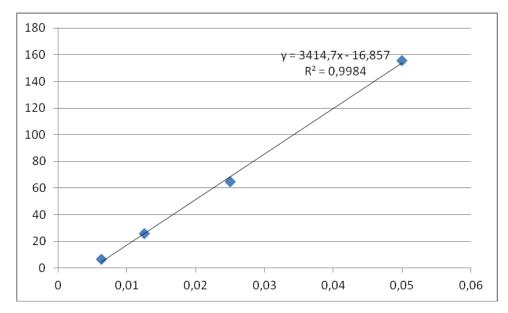


Gráfico 2. Curva analítica do esteróide sitosterol em 4 concentrações.

O padrão interno quantificado na análise de esteróides dos peixes em estudo apresentou uma variação de eficiência de 13 - 79 %.

Tabela 23. Quantidade em mg/mg de β-sitosterol nos lipídeos insaponificáveis dos peixes.

Peixe	Real	Esperado	% eficiência
curimatã	0,001	0,009	12,65
pescada	0,002	0,004	53,8
sardinha	0,004	0,005	78,8
jaraqui	0,009	0,007	100,0
surubim	0,002	0,005	43,4
pacu	0,003	0,006	49,2

4.5 Preparação de amostras para análise de esteróides

4.5.1 Verificação do método de reação de sililação

Conforme perfil cromatográfico usando padrão comercial de colesterol e tocoferol sililados (**Figura 21**) foi possível observar boa conversão tanto dos padrões quanto da amostra do peixe sardinha como matriz teste.

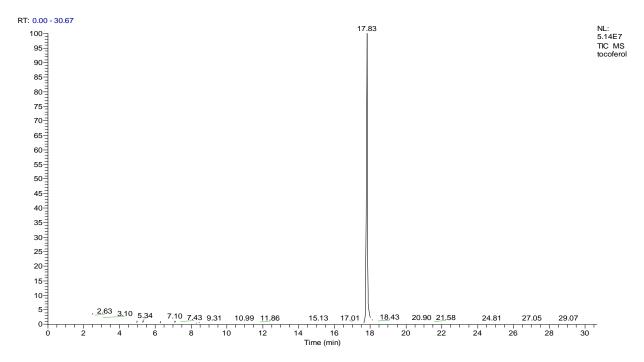
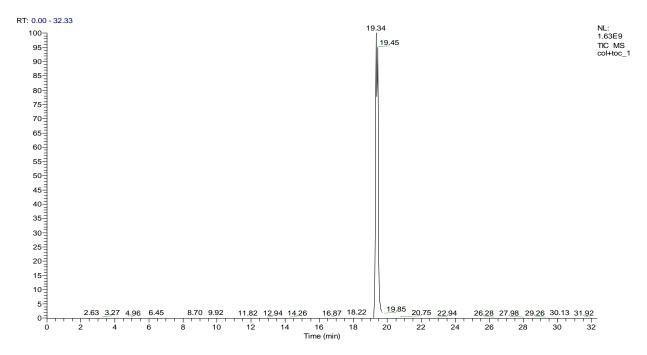
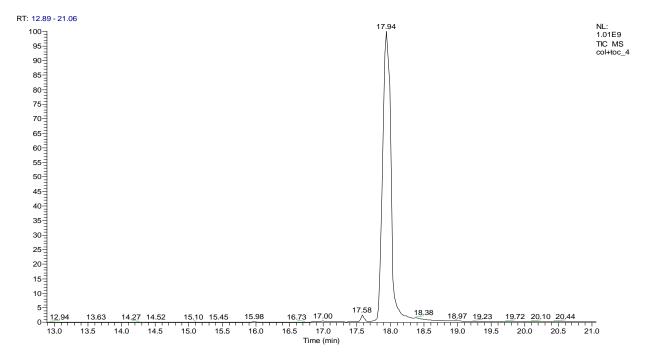


Figura 21. Perfil cromatográfico, onde 1= material insaponificável sililado, 2= padrão de colesterol e 3= tocoferol.

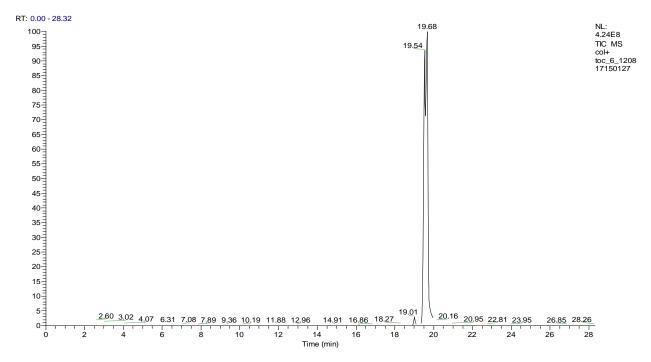
4.6 Análise de esteróides por cromatografia gasosa


4.6.1 Otimização da metodologia de análise de esteróides por cromatografia gasosa (CG-DIC e CG-EM)

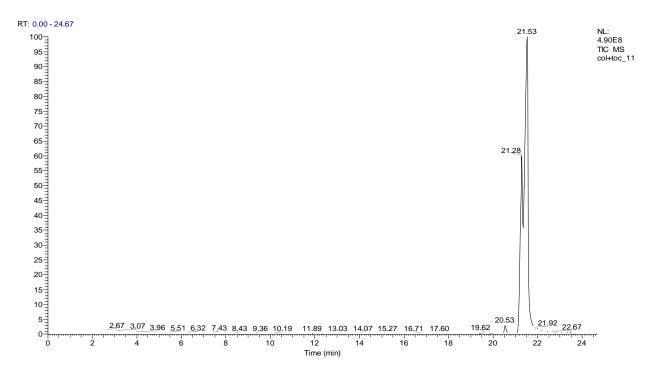
Os cromatogramas referentes ao desenvolvimento do método de análise de esteróides se encontram descriminados a seguir.


Cromatograma 1. Perfil cromatográfico do padrão de colesterol e tocoferol trimetilsililados na condição Hidalgo.

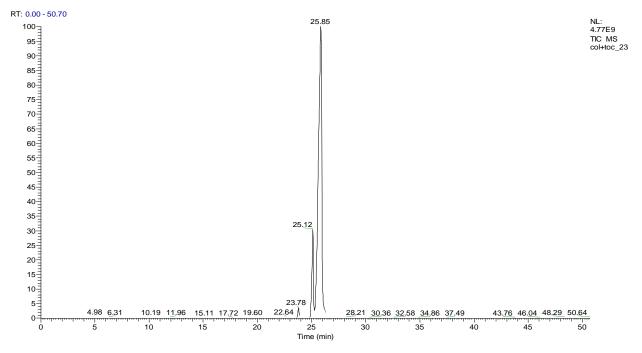
Partindo do primeiro método apresentado na tabela de otimização de métodos para análise de esteróides observou-se ao se analisar uma mistura de colesterol e alfa-tocoferol que tais padrões não se separavam entre si, o que poderia comprometer a quantificação de cada substância se as contivessem nas amostras de peixe em estudo. Optou-se então por fazer a última rampa de temperatura da programação de forno do equipamento mais lenta.


Cromatograma 2. Perfil cromatográfico do padrão de colesterol e tocoferol trimetilsililados na condição ColToc1.

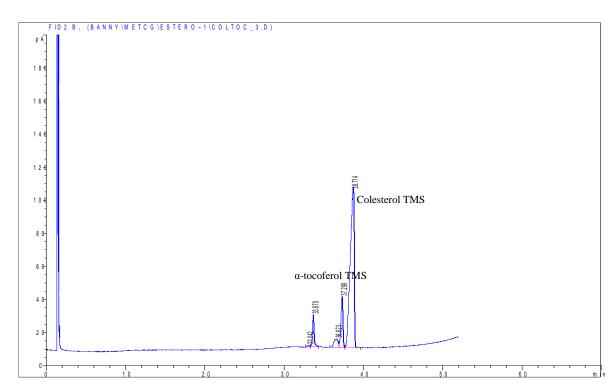
Foi possível observar uma leve separação nos constituintes da mistura, e buscando a melhor resolução decidiu-se adicionar uma rampa na temperatura de 280°C.


Cromatograma 3. Perfil cromatográfico do padrão de colesterol e tocoferol trimetilsililados na condição ColToc4.

Porém, houve uma piora na resolução dos componentes. Optando-se por diminuir a temperatura da rampa adicional em 10°C.


Cromatograma 4. Perfil cromatográfico do padrão de colesterol e tocoferol trimetilsililados na condição ColToc 6.

Observou-se novamente uma leve separação dos componentes. Então, uma menor temperatura na rampa adicional foi testada.


Cromatograma 5. Perfil cromatográfico do padrão de colesterol e tocoferol trimetilsililados na condição ColToc11.

Houve uma melhora na separação dos constituintes da mistura em teste, optando-se para melhor resolução o retorno das duas rampas iniciais, porém mantendo uma condição isoterma à 250 C.

Cromatograma 6. Perfil cromatográfico do padrão de colesterol e tocoferol trimetilsililados na condição ColToc23.

Com boa separação do esteróide colesterol e do tocol α-tocoferol o método col+toc 23 com programação do forno do equipamento 120 °C, mantendo por 2 min, subindo 15 °C/min até 250 °C, mantendo por 30 min, subindo 5 °C/min até 300°C, analisado em espectrômetro de massas foi escolhido como o melhor método para as análises de lipídeos insaponificáveis. Ao ser analisada a mesma mistura no cromatógrafo gasoso com detector de ionização de chamas observou-se que a reprodução do método não era possível, visto que as dimensões da coluna usada eram diferentes, então a otimização do método para o uso desse equipamento foi necessária.

Cromatograma 7. Perfil cromatográfico do padrão de colesterol e tocoferol trimetilsililados na condição Silil_II.

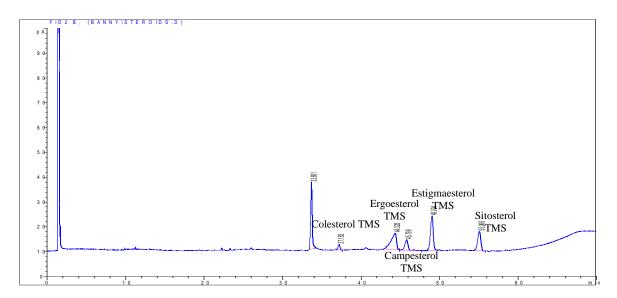
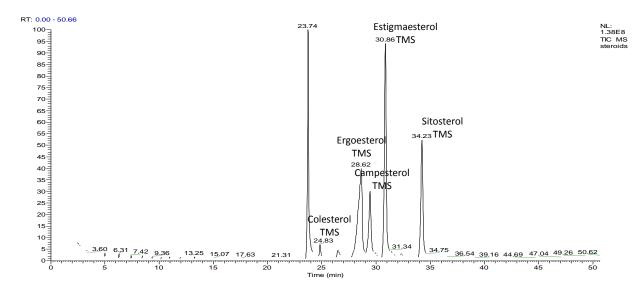

No geral as condições de métodos desenvolvidos revelaram que o melhor método desenvolvido, com boa resolução de cromatograma, foi o ColToc 23 para o CG-EM e para o CG-DIC foi o Silil_II.

Tabela 24. Observação da resolução dos cromatogramas obtidos durante o desenvolvimento do método para análise de lipídeos insaponificáveis.


Método	Tempo de retenção (min)		Observação
	TMS-colesterol	TMS-tocoferol	
Hidalgo	17,83	13,83	s/ resolução, 1 pico
col+toc 1	19,45	19,34	2 picos,não resolvidos
col+toc 4	17,94	17,94	s/ resolução, 1 pico
col+toc 6	19,68	19,54	2 picos,não resolvidos
col+toc 11	21,53	21,28	2 picos,não resolvidos
col+toc 23	25,85	25,12	2 picos, resolvidos
silil_ii	37,24	38,71	2 picos, resolvidos

O método escolhido para o CG-DIC consistiu do uso fluxo 2.1 mL/min, injeção no modo split 2:1 a 280°C, com temperatura do forno iniciando em 120°C e mantendo essa temperatura por 2 min, aumentando numa rampa de 15°C/min até 240°C, mantendo por 45 min, subindo 5°C/min até 300°C e mantendo por 3 min, usando coluna HP-5.

Foi possível verificar através da análise de uma mistura de padrões de esteróides a boa separação no método desenvolvido para CG-DIC.

Cromatograma 8. Perfil cromatográfico dos trimetilsililados padrões comerciais de esteróides analisado nas condições do método Silil_II.

E também para o método desenvolvido para CG-EM.

Cromatograma 9. Perfil cromatográfico dos trimetilsililados padrões comerciais de esteróides analisado nas condições do método ColToc 23.

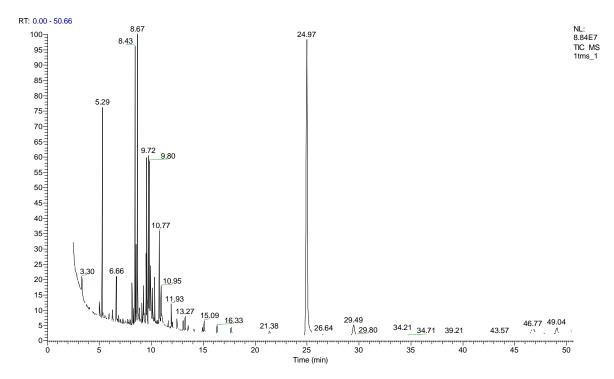
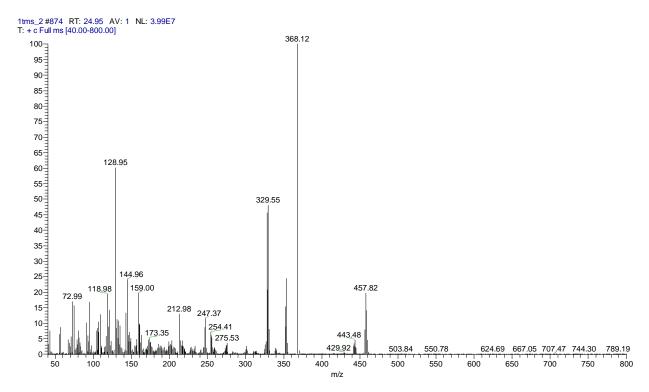

E pela análise individual dos esteróides contidos na mistura usada para otimização do método e através dos seus respectivos espectros de massas, o tempo de retenção desses esteróides tanto no método desenvolvido para o CG-DIC quanto para o CG-EM (Anexo 1) foram identificados.

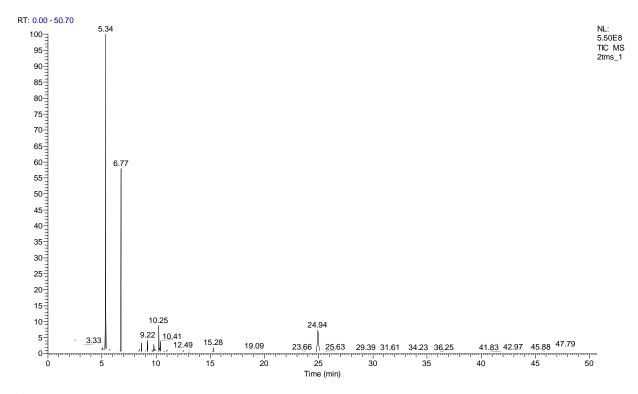
Tabela 25. Identificação do tempo de retenção (min) de cada componente na mistura usada para otimização do método de análise de esteróides.

Padrões	CG-DIC	CG-EM
colesterol TMS	37,183	24,83
ergoesterol TMS	44,328	28,62
campesterol tms	45,799	29,73
estigmasterol tms	49,066	30,86
sitosterolTMS	55,066	34,23

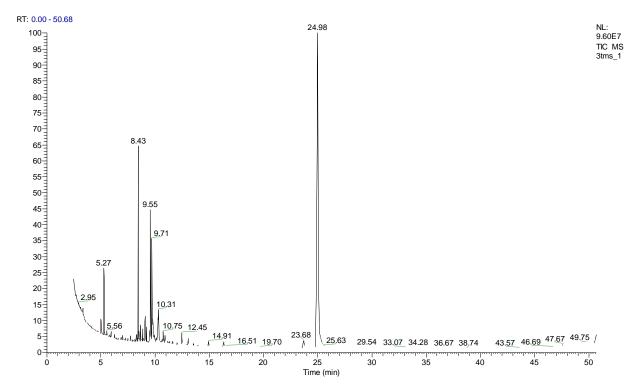

4.6.1 Análise qualitativa dos esteróides dos peixes em estudo por CG-EM

Observou-se a presença de colesterol, campesterol e do sitosterol, apresentando identificação por espectrometria de massas coerentes. Como exemplo de como foi possível obter tais resultados, temos o cromatograma de esteróides do peixe curimatã.

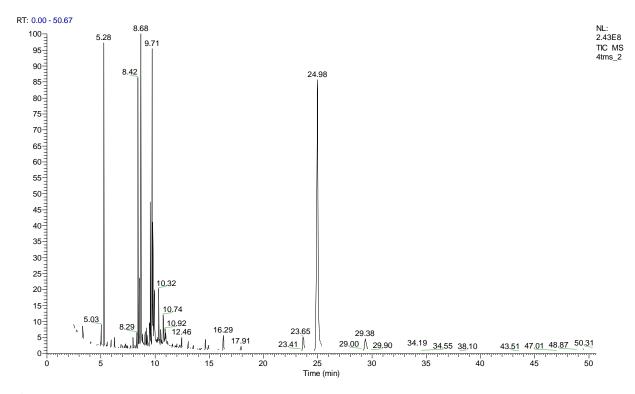
Cromatograma 10. Perfil cromatográfico dos esteróides trimetilsililados analisados no peixe curimatã por CG-EM.


Cada pico a partir de 23 min, corresponde a um esteróide (derivatizado) e seus respectivos tempos de retenção foram comparados com o tempo de retenção da mistura de padrões disponíveis de esteróides resultantes de análises por GC-EM. E também seus espectros de massas gerados para cada pico foram comparados com a biblioteca de espectros disponível, bem como a coerência dos fragmentos padrões de esteróides sililados foi analisada. Exemplicando, temos o pico no tempo de retenção do **cromatograma 10**, em 24,95 min.

Espectro 1. Espectro de massas do pico no tempo de retenção em 42 min da amostra de lipídeos neutros do peixe curimatã.


O seu espectro de massas, **espectro 1**, apresentou os sinais de fragmentos em m/z 368,12 e 129, bem como a presença do fragmento em sinal m/z 73, característico de esteróides sililados e o íon molecular em sinal de m/z 458, confirmando o tamanho da cadeia, sendo este referente ao espectro do colesterol.

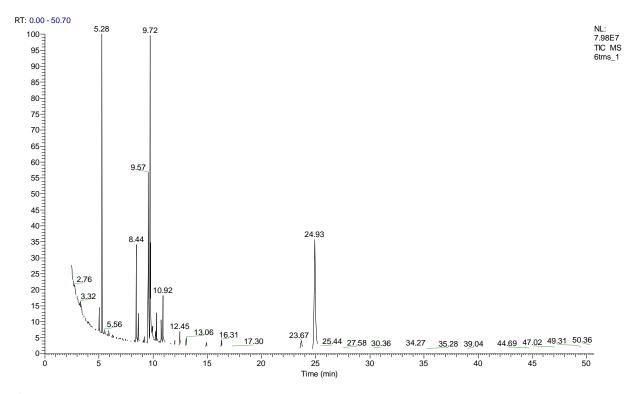
A seguir se encontram os cromatogramas referentes as amostras sililadas dos peixes em estudo.


Cromatograma 11. Perfil cromatográfico dos esteróides trimetilsililados analisados no peixe pescada.

Na amostra do peixe pescada (**cromatograma 11**) é visível a presença do pico em 24,94 min, referente ao colesterol, se sobresaindo na área do cromatograma relacionada aos esteróides.


Cromatograma 12. Perfil cromatográfico dos esteróides trimetilsililados analisados no peixe sardinha.

Na amostra do peixe sardinha (**cromatograma 12**) o pico em 24,98 min, referente ao colesterol, também se sobresai na área do cromatograma relacionada aos esteróides.


Cromatograma 13. Perfil cromatográfico dos esteróides trimetilsililados analisados no peixe jaraqui.

Já no peixe jaraqui (**cromatograma 13**), além do colesterol, outro pico se sobresai na região é 29,38 min, que refere ao campesterol.

Cromatograma 14. Perfil cromatográfico dos esteróides trimetilsililados analisados no peixe surubim.

O peixe surubim tem como destacado na região de esteróides a presença de colesterol, pico em 24,96 min (**cromatograma 14**).

Cromatograma 15. Perfil cromatográfico dos esteróides trimetilsililados analisados no peixe pacu.

Assim como o peixe pacu também (cromatograma 15).

O tempo de retenção obtido para os esteróides identificados nas amostras de peixes por espectrometria de massas foi similar ao disposto na mistura de padrões comerciais no desenvolvimento do método de análise, o que possibilitou usar o tempo de retenção como parâmetro de identificação de esteróides (**tabela 26**) além das análises dos espectros de massas.

Tabela 26. Identificação pelo tempo de retenção (min) de esteróides nos peixes estudado.

Padrões	Peixes					
	curimatã	pescada	sardinha	jaraqui	surubim	pacu
Colesterol TMS	24,95	24,94	24,98	24,87	24,91	24,88
Campesterol TMS	29,37	29,39	29,51	29,38	29,42	29,49
B-sitosterol TMS	34,21	34,23	34,28	34,16	34,25	34,27

4.6.2 Análise quantitativa dos esteróides dos peixes em estudo por CG-DIC

A curva analítica usada do padrão interno foi a mesma do ítem 4.4.3. E através dessa curva foi possível quantificar os esteróides nos peixes em estudo, onde foi observado a presença de colesterol e campesterol, sendo o colesterol, em quantidade de mg/g (tabela 27), o componente marjoritário em todos os peixes analisados, com a maior quantidade para a sardinha e o surubim e a menor para o curimatã.

Tabela 27. Quantidade em mg de esteróides/g de peixe.

Esteróides	Peixes					
	Curimatã	Pescada	Sardinha	Jaraqui	Surumbi	Pacu
colesterol	15,067	171,385	324,923	195,231	282,462	79,846
campesterol	2,133	2,000	2,923	21,231	4,462	2,000
β-sitosterol	1,067	2,154	3,692	8,769	1,846	2,615
total	18,267	175,538	331,538	225,231	288,769	84,462

Esse resultado é melhor observado quando analisamos o teor em percentual de cada esteróide em relação a massa inicial de peixe utilizada, onde os peixes sardinha e surubim apresentaram valores de 32 e 28%, respectivamente, e o curimatã de 1,5% (**tabela 28**).

Tabela 28. Percentual de esteróides por grama de peixe.

Esteróides	Peixes					
	Curimatã	Pescada	Sardinha	Jaraqui	Surumbi	Pacu
colesterol	1,507	17,138	32,492	19,523	28,246	7,985
campesterol	0,213	0,200	0,292	2,123	0,446	0,200
β-sitosterol	0,107	0,215	0,369	0,877	0,185	0,262
total	1,827	17,554	33,154	22,523	28,877	8,446

No geral a relação percentual total dos esteróides nos peixes foram na faixa de 2-33%, valores esses maiores que aqueles encontrados em plantas (Belitz *et al.*, 2004).

4.7 Preparação de amostra para análise da cadeia graxa

4.7.1 Otimização da metodologia de derivatização de ácidos graxos em seus ésteres metílicos

Para otimização do método de derivatização de ácidos graxos foram obtidos rendimentos diferenciados para as condições testadas, conforme **tabela 29**, onde se observaram valores acima de 85% para os experimentos Barbosa *et al.* (2009), Exp. II, Exp. III, Exp. VII, Exp. Exp. VIII, Exp. X e Exp. XIII; o que necessariamente não indicam que estes experimentos obtiveram melhores resultados, visto que não representam somente o produto desejado quando analisados por CCD.

Tabela 29. Rendimento em percentual para a reação de derivatização.

Método	Rendimento da reação (%)						
	Lip. Neutros	Glicolip.	Fosfolip.				
Barbosa et al. 2009	85,0	100,0	9,6				
exp. I	83,2	6,7	2,62				
exp. II	44,73	100,0	26,13				
exp. III	100,0	-	-				
exp. IV	-	-	-				
exp. VI	82,6	18,0	28,0				
exp. VII	100,0	-	-				
exp. VIII	93,03	-	-				
exp. IX	76,6	-	-				
exp. X	94,12	-	-				
exp. XI	72,2	-	-				
exp. XIII	85,4	-	-				
exp. XIV	79,2	-	-				
exp. XV	65,4	-	-				
exp. XVI	73,4	-	-				
exp. XVII	69,6	-	-				
exp. XVIII	76,6	-	-				
exp. XIX	76,2	-	-				
exp XX	77,8	0,0	0,0				

Analisando os produtos da reação de derivatização em cada condição testada por CCD, mostrados na **tabela 30**, foi possível identificar através de comparação com padrões comerciais de diferentes lipídeos quase todos os resíduos de classe que não estavam obtendo sucesso em conversão de ácidos graxos em seus respectivos ésteres metílicos, dentro de cada

experimento analisando assim qual a etapa da reação deveria ser modificada e qual a melhor condição de cada etapa.

Tabela 30. Rendimento real em percentual para a reação de derivatização depois de filtrados por fase sólida.

Método	Componentes por CCD						
	Lip. Neutros	Glicolip.	Fosfolip.				
Barbosa et al. 2009	EMAG+TAG	MP	EMAG				
exp. I	EMAG+TAG	MP	EMAG+AP				
exp. II	EMAG+TAG+DAG+colest.	MP	AP				
exp. III	-	-	-				
exp. IV	-	-	-				
exp. VI	EMAG+MAG+colest.	EMAG+AP	EMAG+AP				
exp. VII	EMAG+TAG+AP	-	-				
exp. VIII	EMAG+TAG+AP	-	-				
exp. IX	EMAG+TAG+colesterol	-	-				
exp. X	EMAG+TAG+colest+AP	-	-				
exp. XI	EMAG+TAG+colest+DAG+AP	-	-				
exp. XIII	EMAG+TAG+colest+DAG+AP	-	-				
exp. XIV	EMAG+colest+DAG+AP	-	-				
exp. XV	EMAG+FFA+TAG+colest+DAG+AP	-	-				
exp. XVI	EMAG+TAG+colest+DAG+AP	-	-				
exp. XVII	EMAG+TAG+colest+DAG+AP	-	-				
exp. XVIII	EMAG+TAG+colest+DAG+AP	-	-				
exp. XIX	EMAG+colest+AP	-	-				
exp. XX	EMAG+colest	EMAG+AP	EMAG+AP				

Quando analisamos a **tabela 30**, observamos que os experimentos onde se testava a concentração do catalisador na etapa de transesterificação na primeira etapa de reação, que são os métodos Barbosa *et al.* 2009 (0,2 M), Exp. VI (0,3 M), Exp. XI (0,5 M), Exp. X (0,7 M), Exp XVI (1 M), e Exp. II (5 M) apresentaram presença de ésteres metílicos de ácidos graxos, mas também a presença de triacilglicerídeo e diacilglicerídeo, estes dois últimos em menor concentração, em relação aos ésteres, a medida que se aumentava a concentração do catalisador até 0,7 M, sendo observado em concentração maior que essa o surgimento novamente de triacilglicerídeo e diacilglicerídeo. Em todos os experimentos observou-se a presença de esteróides e componentes de polaridade alta que podem ser componentes que assim como os esteróides não contenham cadeias graxas e, portanto não reagirão no processo de transesterificação e esterificação.

Comparando a eficiência do trifluoreto de boro com o cloreto de amônia como reagentes esterificantes nos experimentos Barbosa *et al.* 2009 (BF₃) e Exp. I (NH₄Cl), observou-se resultados semelhantes para todas as classes de lipídeos testadas, não apresentando ácido graxo livre nas análise por CCD (**tabela 30**), indicando a conversão destes em seus respectivos éster metilicos. Testando a via de reação com relação ao solvente durante os processos, observou-se melhor resultado para aquela com uso abundante do álcool metanol (exp. XIX), como já conhecido na literatura, onde para haver a reação de transesterificação ou a de esterificação é necessária a presença de um álcool de preferência de cadeia curta, pois este age como nucleófilo; as demais com uso de DMSO, um solvente aprótico a fim de favorecer a reação do tipo S_N1 não obteve reação favorável nem quando adicionado metanol no meio (Exp. XVIII) nem quando somente com o metanol do reagente de transesterificação (Exp. XVIII), que é 30% em metanol, apresentando estes dois últimos experimentos a presença marjoritária de TG, DG e pouca quantidade em relação a esses componentes de ésteres metílicos de ácidos graxos.

Concordando que a melhor via é a metílica para a reação de transesterificação testouse a adição desse álcool em etapas, distribuído com o catalisador no processo de reação. Quando feita em duas partes iguais a adição de metanol (Exp. VII) observou-se semelhante resultado comparando com a adição feita em uma única etapa (Exp. VI), mesmo quando aumentada a concentração do catalisador na reação (Exp.X e XIX). Quando a adição em duas partes de álcool com a segunda sendo de maior volume houve semelhança nos resultados também (Exp. VIII e Exp. I).

Analisando se o tipo de reação convencional, transesterificação seguida de esterificação, seria a mais apropriada, observou-se através da comparação do experimento IV com o exp. VI que apenas o uso de uma única reação, a transesterificação, seria inviável e que a reação de esterificação como primeira etapa poderia ser feita (Exp. XIII), mas esta não apresentou resultados satisfatórios (Exp. XIV) quando comparada com a reação convencional (Exp. VI).

Diante do perfil cromatográfico por CCD dos experimentos discutidos acima, obtevese melhores resultados para os experimentos XIX e XX, os quais foram oriundos dos experimentos anteriores à eles testados e entre si comparavam-se a temperatura envolvida nas etapas de transesterificação e esterificação, sendo o experimento com a temperatura de 50°C o melhor sucedido e escolhido para aplicação nas amostras de peixes.

Tabela 31. Rendimento real em percentual para a reação de derivatização depois de filtrados por fase sólida.

Método	Rend. Tratamento (%)					
	Lip. Neutros	Glicolip.	Fosfolip.			
Barbosa et al. 2009	64,0	sem massa	sem massa			
Exp. I	76,6	sem massa	sem massa			
Exp. II	-	sem massa	sem massa			
Exp. III	100,0	-	-			
Exp. IV	-	-	-			
Exp. VI	64,4	2,2	4,8			
Exp. VII	68,8	-	-			
Exp. VIII	73,8	-	-			
Exp. IX	51,8	-	-			
Exp. X	72,2	-	-			
Exp. XI	46,6	-	-			
Exp. XIII	2,63	-	-			
exp. XIV	-	-	-			
exp. XV	48,6	-	-			
exp. XVI	52,2	-	-			
exp. XVII	52,8	-	-			
exp. XVIII	57,4	-	-			
exp. XIX	69,4	-	-			
exp. XX	67,8	0,0	0,0			

Com relação aos rendimentos reais das reações testadas (**tabela 31**), isto é depois de filtrados em extrator por fase sólida obtendo somente os ésteres metílicos, produto da reação, apresentou valor de 68% para o experimento com melhor resultado verificado por CCD (exp. XX).

4.7.2 Aplicação do método otimizado nos lipídeos dos peixes em estudo

Os rendimentos (**tabela 32**) para a derivatização dos peixes em estudos foram satisfatórios para todas as classes com valores acima de 50%, com exceção para a amostra de fosfolipídeo de sardinha e surubim.

Tabela 32. Rendimento real em percentual para a reação de derivatização depois de filtrados por fase sólida.

Peixe	Rendimento (%) depois de EFS						
	Lip. Neutros	Glicolip.	Fosfolip.				
curimatã	64,00	100,00	85,18				
pescada	71,17	89,19	55,88				
sardinha	72,82	100,00	15,60				
jaraqui	71,19	100,00	74,45				
surubim	58,66	100,00	30,20				
pacu	64,53	60,66	97,22				

4.7.3 Monitoramento da eficiência das etapas envolvidas para análise dos lipídeos neutros

A seguir se encontram as áreas resultantes das análises do padrão de éster metílico do ácido nonandecanóico disposta na **tabela 33**.

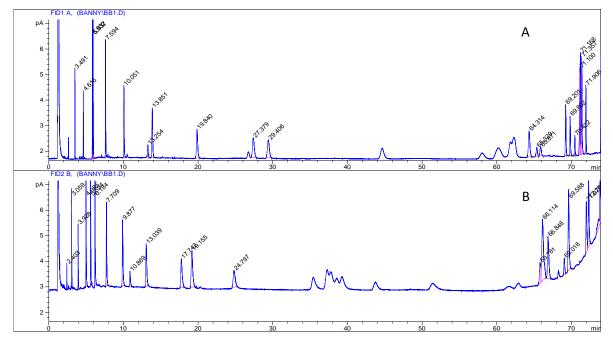
Tabela 33. Áreas resultantes das análises do padrão de EMAG C 19:0.

conc (mg/ml)	área					
	dia 1	dia 2	dia 3	media	desvio padrão	erro relativo (%)
0,00625	10,0	9,0	9,1	9,367	0,551	5,880
0,0125	20,4	19,9	18,0	19,433	1,266	6,516
0,025	41,0	41,1	38,1	40,067	1,704	4,253
0,05	83,2	87,6	78,9	83,233	4,350	5,226
0,1	170,0	179,0	166,7	171,900	6,366	3,704
1	1685,7	1807,3	1702,2	1731,733	65,961	3,809

A curva analítica do padrão interno obteve um bom coeficiente de linearidade, de 0,9998.

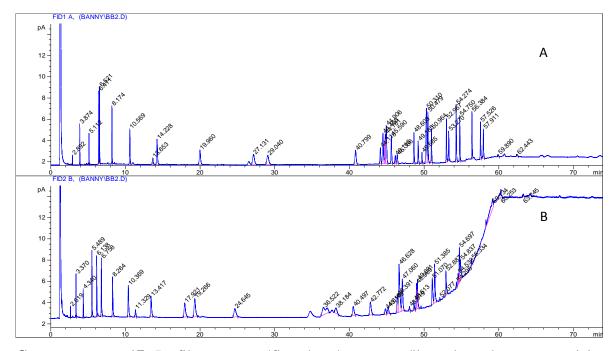
Gráfico 3. Curva analítica do EMAG C19:0 em 5 concentrações.

O padrão interno quantificado na análise de ácidos graxos dos lipídeos neutros dos peixes em estudo apresentou uma variação de eficiência de 38 - 89%.

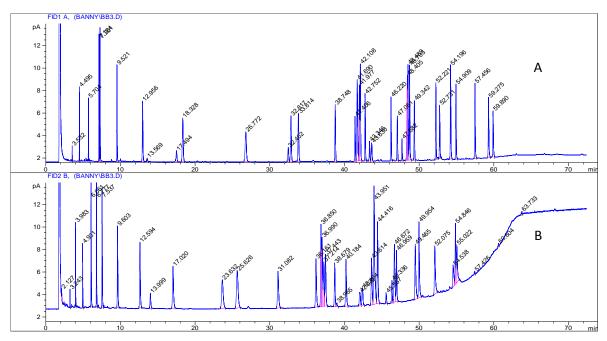

Tabela 34. Quantidade em mg/mg de EMAG C 19:0 nos lipídeos neutros dos peixes.

Peixe	área	conc	conc esperada	% eficiência
curimatã	14,7	0,0099	0,0174	57,126
pescada	45,1	0,0274	0,0570	48,115
sardinha	28,0	0,0176	0,0466	37,705
jaraqui	30,8	0,0192	0,0499	38,465
surubim	120,0	0,0705	0,0793	88,882
pacu	10,4	0,0074	0,0115	64,888

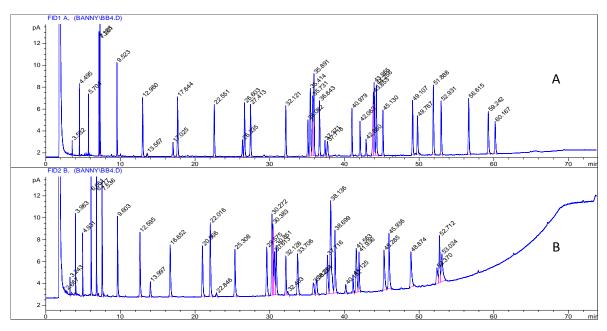
4.7 Análise da composição da cadeia graxa por cromatografia gasosa


4.8.1 Otimização da metodologia da análise da cadeia graxa por cromatografia gasosa (CG-DIC e CG- EM)

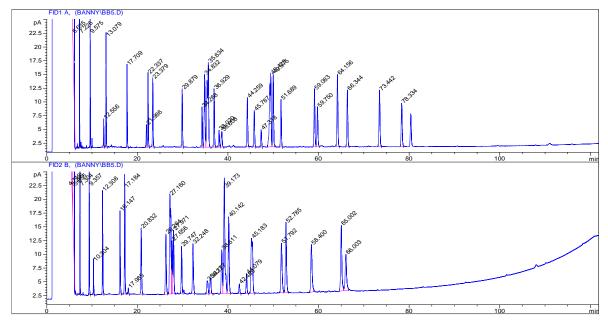
Na tentativa de se desenvolver um método o primeiro cromatograma como resultado apresentou algumas regiões não resolvidas.


Cromatograma 16. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos graxos analisado em coluna apolar (A) e polar (B) nas condições do método BB1.

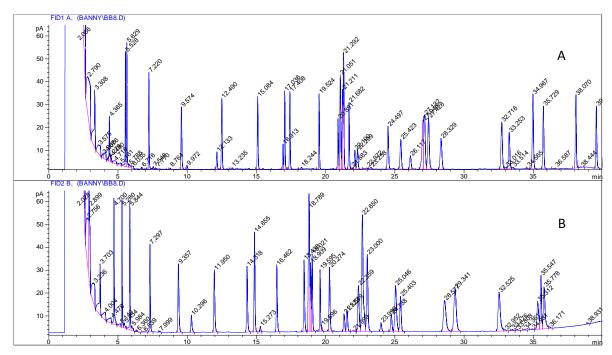
No decorrer da primeira análise na coluna apolar (cromatograma 16 A), obteve-se em geral boa separação de picos, com exceção dos picos depois de 60 min. Então na análise seguinte o objetivo foi aumentar o tempo em que sai os picos mal resolvidos, através da rampa de temperatura e reduzir o tempo entre 20 e 60 min aproveitando mais o espaço do cromatograma. O perfil cromatográfico no cromatograma B confirmou o cromatograma A, onde foi possível observar regiões do cromatograma semelhantes, diferenciando somente pela ordem de interações entre a amostra e a fase.


Cromatograma 17. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos graxos analisado em coluna apolar (A) e polar (B) nas condições do método BB2.

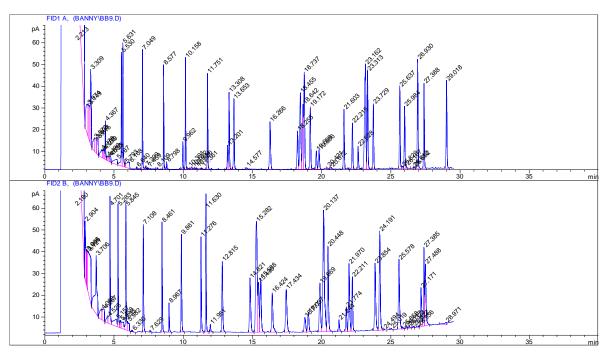
Os picos do perfil cromatográfico antes mal resolvidos, foram separados em mais regiões distintas, depois de 45 min e o espaço de tempo do cromatograma foi melhor aproveitado, ou seja, os picos foram mais distribuídos ao longo do cromatograma quando comparado com o cromatograma anterior. E apesar de ter melhorado em relação à primeira análise, a primeira região mal resolvida continuou demonstrando a necessidade de uma melhor resolução.


Cromatograma 18. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos graxos analisado em coluna apolar (A) e polar (B) nas condições do método BB3.

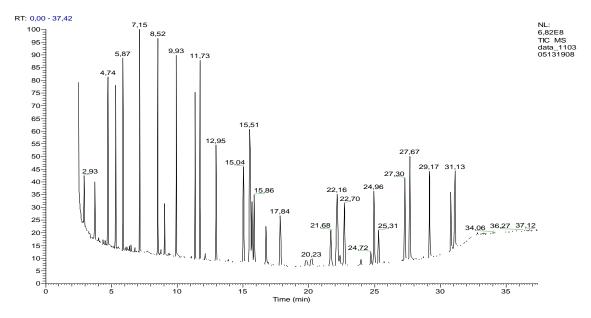
Nas condições do método BB3, os perfis cromatográficos, antes mal resolvidos, foram obtidos na região entre 40 e 60 min., na coluna apolar e entre 35 e 60 min. na coluna polar, com melhor resolução. Porém ainda insuficiente e foi verificada a necessidade de uma melhor resolução.


Cromatograma 19. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos graxos analisado em coluna apolar (A) e polar (B) nas condições do método BB4.

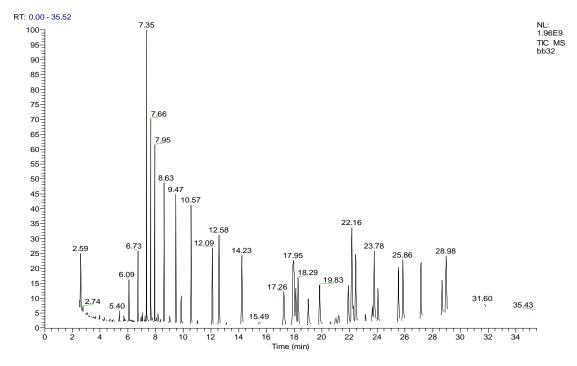
Nas condições do método BB4, os picos dos perfis cromatográficos antes mal resolvidos foram obtidos na região entre 35 e 45 min na coluna apolar e entre 30 e 40 min na coluna polar, com uma resolução melhorada. Entretanto ainda foi verificada a necessidade de aumentar a separação, aumentando o tempo de análise na rampa em que se encontra essa região do decorrer da análise posterior.


Cromatograma 20. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos graxos analisado em coluna apolar (A) e polar (B) nas condições do método BB5.

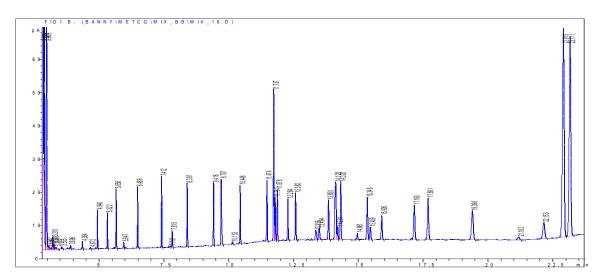
No método BB5, houve um aumento do tempo total de análise sem uma significante melhora na resolução mesmo com uma rampa final lenta. Então optou-se por diminuir a temperatura da ultima rampa seguida por outra rampa rápida final.


Cromatograma 21. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos graxos analisado em coluna apolar (A) e polar (B) nas condições do método BB8.

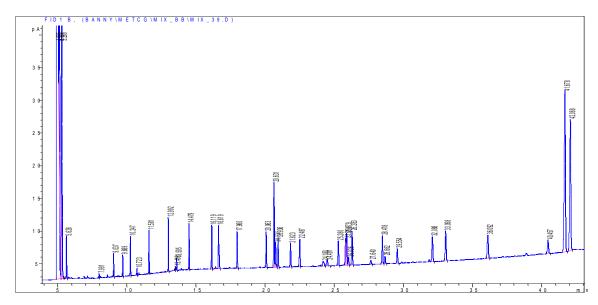
Ainda com uma rampa adicional não obteve-se boa resolução, então diminui-se a temperatura da rampa da região problemática (depois dos 16 min na coluna polar) e uma isoterma depois dessa rampa, mantendo uma rampa rápida no final, para ser trabalhada depois.


Cromatograma 22. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos graxos analisado em coluna apolar (A) e polar (B) nas condições do método BB9.

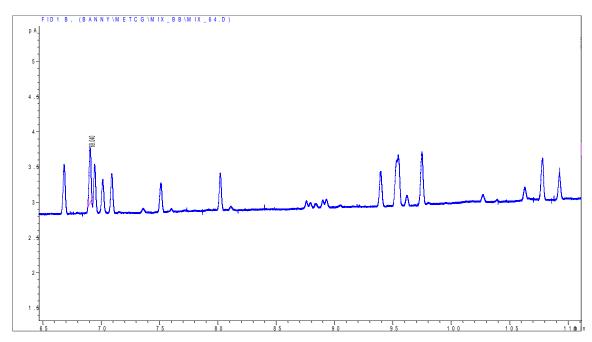
Várias tentativas modificando somente rampas de temperaturas foram realizadas e decidiu-se de a partir do método BB9 continuar a desenvolver o método no cromatográfo gasoso com espectrometria de massas a fim de se identificar por espectrometria de massas se todos os padrões da mistura estavam sendo separados, e todos os ácidos graxos da mistura foram identificados, com dificuldade somente na série de 18 carbonos e 20 carbonos, regiões problemas do método.


Cromatograma 23. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos graxos analisado em coluna polar nas condições do método BB11.

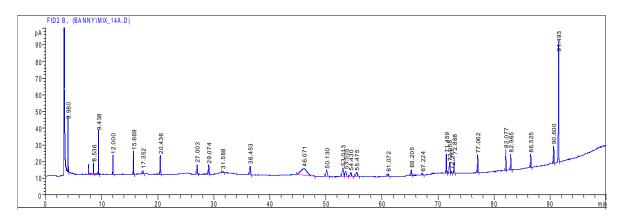
No método BB11 observaram-se poucas mudanças no cromatograma quando comparado com o método BB9, possuindo ainda regiões mal resolvidas, indicando que um aumento de 5 min na isoterma do método não é o sufiente. Por isso decidiu-se mudar brucamente o método iniciando com uma temperatura 60°C inferior, com uma rampa rápida até a temperatura que corresponderiam às regiões problemas e mantendo uma isoterma curta.


Cromatograma 24. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos graxos analisado em coluna polar nas condições do método BB32.

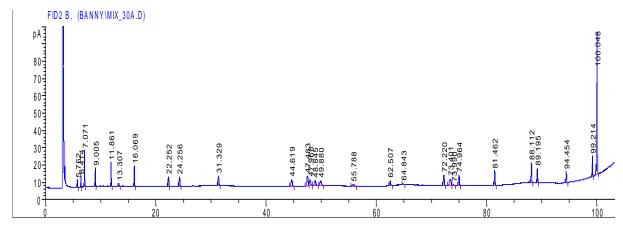
Ainda assim não observou-se significativa melhora na resolução das séries de ácidos graxos de 18 carbonos e 20. De volta ao CG-DIC continuou-se o desenvolvimento do método, com o uso de uma coluna de 60 m especifica para ácidos graxos, com rampas simples e isotermas de curto tempo no final da análise para garantir que compostos não ficariam retidos na coluna, prejudicando-a e comprometendo análises posteriores.


Cromatograma 25. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos graxos analisado em coluna polar nas condições do método MIX18.

Como não observou-se melhora significativa, decidiu-se por realizar rampas lentas a fim de se aumentar o tempo em que os componentes ficavam retidos na coluna, buscando melhor separação.

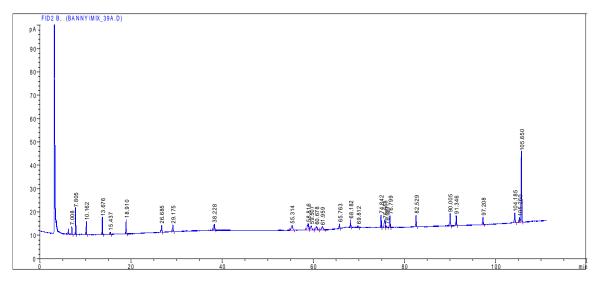

Cromatograma 26. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos graxos analisado em coluna polar nas condições do método MIX39.

Ainda não resolvidas as regiões problemas, optou-se por uma condição de uma única rampa lenta 0,5°C/min.

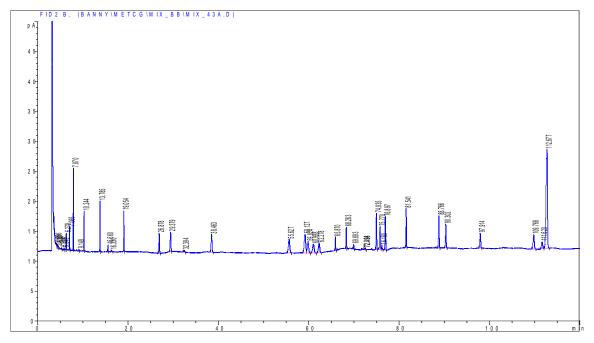


Cromatograma 27. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos graxos analisado em coluna polar nas condições do método MIX64.

Foi possível observar a separação dos ácidos graxos da série de 18 carbonos monoinsaturados em quatro picos (em torno de 70 min) e também o desdobramento do que era antes dos picos em quatro em torno de 80 min (referentes ao ácido conjugado linoléico, indicado pelo fabricante como uma mistura de dois). Porém, como demanda um tempo de análise grande e outras regioes precisavam ainda serem melhores resolvidas outras condiçoes foram testadas. Não obtendo resultados satisfatorios somados a dúvida a respeito da identidade dos picos maus resolvidos e se os mesmos eram isômeros que não poderiam ser separados na coluna usada na análise, utilizou-se o CG-EM para identificar os componentes em condições diferentes, observando a identificação com probabilidade maior a medida que os picos eram melhores separados.

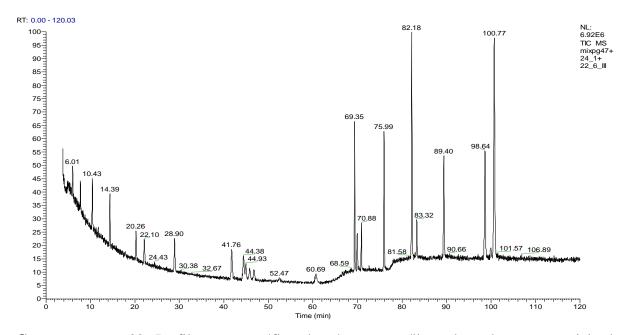


Cromatograma 28. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos graxos analisado em coluna polar nas condições do método MIX 14A.



Cromatograma 29. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos graxos analisado em coluna polar nas condições do método MIX 30A.

Pensando-se que as regioes que antes eram problemas poderiam melhorar optou-se por diminuir a temperatura inicial em 5°C.


Cromatograma 30. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos graxos analisado em coluna polar nas condições do método MIX 39A.

Cromatograma 31. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos graxos analisado em coluna polar nas condições do método MIX 43A.

O método escolhido foi o método MIX 43A que consistiu do uso de gás de arraste hélio, injector no modo split 10:1 a temperature de 250°C, volume de injeção de 1µL, fluxo

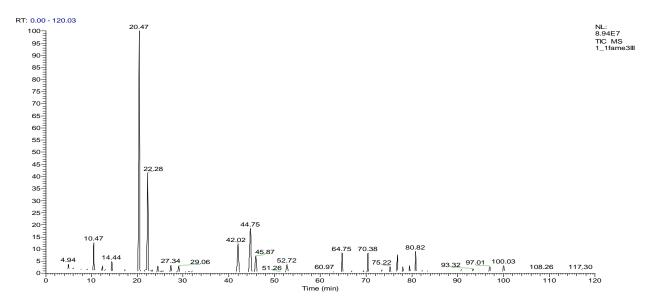
de 1,8 mL/min, com temperature do forno iniciando em 160°C, mantendo por 62 min, aumentando numa rampa de 8°C/min até 200°C, mantendo por 10 min, subindo 10°C/min até 210°C e finalmente mantendo por 42 min, coluna ZB-FFAP (zebron), de 60 m comprimento, 0,25 mm de diâmetro interno e espessura de filme de 0,25 μm.

Cromatograma 32. Perfil cromatográfico dos ésteres metílicos de padrões comerciais de ácidos graxos analisado em coluna polar nas condições do método MIX 43 A no espectrometro de massas.

E nessa condição os padrões de ésteres metílicos dos ácidos graxos na mistura foram identificados por espectrometria de massas (anexo 2) e os seus respectivos tempos de retenção das análises tanto no CG-DIC quanto no CG-EM estão dispostos na tabela a seguir.

Tabela 35. Tempos de retenção em min da mistura dos padrões comerciais de ésteres metílicos de ácidos graxos disponíveis no método MIX 43A.

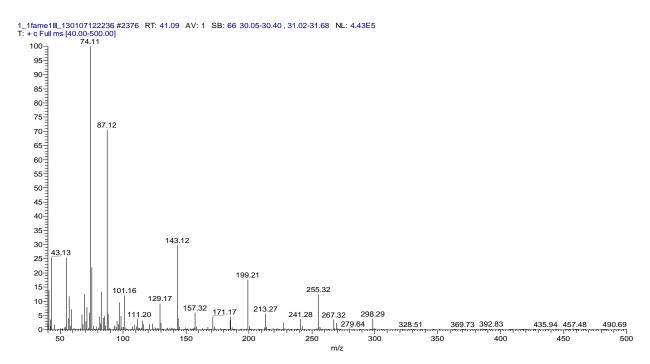
Cadeia	Tempo EM (min)	Tempo dic (min)
C 6:0	-	4,10
C 7:0	-	4,35
C 8:0	-	4,52
C 9:0	-	5,31
C 10:0	-	5,85
C 11:0	-	6,28
C 11:1	-	7,06
C 12:0	6,01	7,87
C 13:0	7,77	10,24
C 14:0	10,43	13,78
C 14:1	11,80	15,56
C 15:0	14,39	19,05
C 16:0	20,26	26,88
C 16:1 c	22,10	29,38
C 16:1 t	24,43	32,39
C 17:0	28,90	38,46
C 18:0	41,76	55,63
C 18:1 c9	44,38	59,13
C 18:1 c6	44,93	59,82
C 18:1 c11	45,78	60,10
C 18:1 c 12	46,81	62,28
C 18:2 c 9,12	52,47	65,87
C 19:0	60,69	68,26
C 18:3 c 6,9,12	63,70	68,82
C 18:3 c 9,12,15	64,72	69,89
C 18:4	66,85	-
C 18:2 conj 1	68,59	72,35
C 18:2 conj 2	68,61	72,50
C 20:0	69,35	74,94
C 20:1 c13	69,93	75,77
C 20:1 c11	70,28	76,18
C 20:1 c8	70,86	76,90
C 20:1 c 5	70,90	76,92
C 20:2 c12,14	73,38	78,04
C 20:3	75,25	78,62
C 21:0	75,99	81,54
C 20:4	76,81	85,28
C 20:5	80,80	86,96
C 22:0	82,18	88,77
C 22:1 c13	83,32	90,30
C 22:2 c13,16	85,00	92,00
C 22:2 c11,14	85,15	92,30


Continuação da Tabela 35

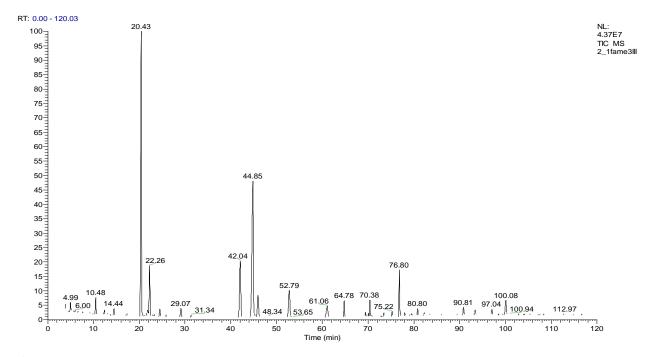
C 22:3	87,00	94,24
C 23:0	89,40	97,91
C 22:4	90,81	99,51
C 24:0	98,64	109,77
C 22:6	99,94	111,62
C 24:1	100,77	112,68

4.8.2 Análise da composição da cadeia graxa dos peixes em estudo

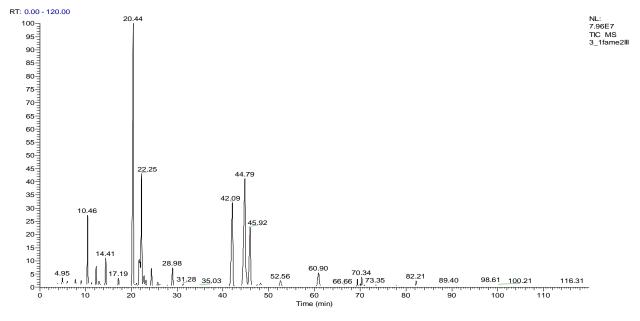
4.8.2.1 Lipídeos neutros


Foi possível identificar os ésteres metílicos de ácidos graxos dos lipídeos neutros por espectrometria de massas e quantificá-los pela relação com os cromatogramas gerados no CG-DIC. Seus cromatogramas mostraram uma boa aplicação do método desenvolvido para análise de ácidos graxos. Como exemplo de como foi possível obter tais resultados, temos o cromatograma de lipídeos neutros do peixe curimatã.

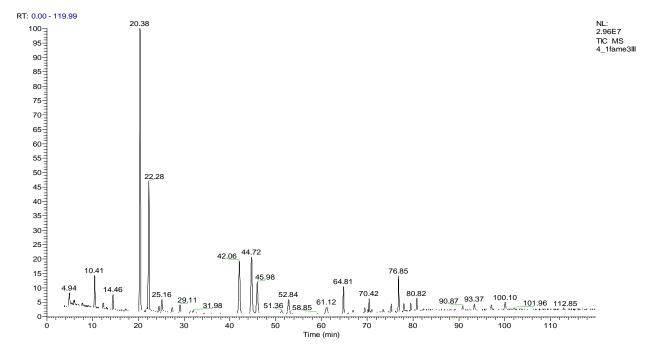
Cromatograma 33. Perfil cromatográfico dos ésteres metílicos dos lipídeos neutros de curimatã por CG-EM.


Cada pico corresponde a um ácido graxo (derivatizado) e seus respectivos tempos de retenção foram comaparados com o tempo de retenção da mistura de padrões disponíveis de ácidos graxos resultantes de análises tanto por GC-EM quanto por CG-DIC, bem como com a comparação dos espectros de massas gerados para cada pico com a biblioteca de espectros

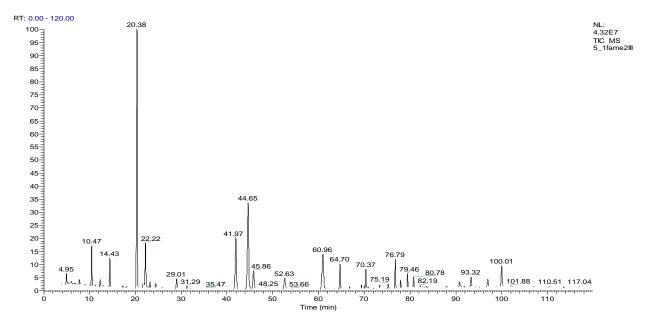
disponivel e análise da coerência dos fragmentos padrões de ácidos graxos (Vetter et~al., 2007). Exemplicando temos o pico no tempo de retenção da análise no CG-EM 42,02 min, que apresentou os sinais de fragmentos em m/z 74 e 87 altos (**espectro 2**), caracterização de ácido graxo saturado e o íon molecular em sinal de m/z 298, confirmando o tamanho da cadeia, sendo este referente ao espectro do éster metilico do ácido esteárico (C18:0), que nesse caso tem ionização desencadeada em um dos pares de eletrons do oxigenio carbonilico, e a partir desse ponto o rearranjo de fragmentação bem conhecido de McLafferty leva ao ion base em m/z 74. Esse íon é caracteristico para todos os ácidos graxos saturados e mono insaturados, assim como o fragmento em m/z 87, que se refere a quebra entre os carbono C3 e C4.


Espectro 2. Espectro de massas do pico no tempo de retenção em 42 min da amostra de lipídeos neutros do peixe curimatã.

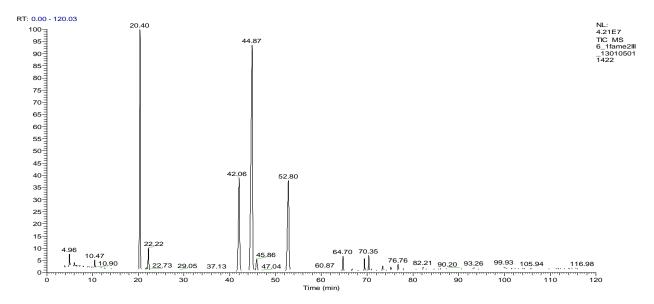
A seguir se encontram os cromatogramas dos lipídeos neutros dos demais peixes em estudo.


Cromatograma 34. Perfil cromatográfico dos ésteres metílicos dos lipídeos neutros de pescada.

Para o peixe pescada observou-se uma variedade grande de componentes, já que o espaço do cromatograma foi bem aproveitado dentro do método, com maior quantidade do pico em 20,43 min.


Cromatograma 35. Perfil cromatográfico dos ésteres metílicos dos lipídeos neutros de sardinha.

Para o peixe sardinha observou-se também uma variedade grande de componentes, sendo marjoritário o pico em 20,44 min.


Cromatograma 36. Perfil cromatográfico dos ésteres metílicos dos lipídeos neutros de jaraqui.

Da mesma forma se processo para o peixe jaraqui, sendo marjoritário o pico em 20,38 min.

Cromatograma 37. Perfil cromatográfico dos ésteres metílicos dos lipídeos neutros de surubim.

Igualmente para o peixe surubim e pacu, sendo encontrado neste último uma grande quantidade de outro componente, o referente ao pico em 44,87 min.

Cromatograma 38. Perfil cromatográfico dos ésteres metílicos dos lipídeos neutros de pacu.

Foi identificado e quantificado uma grande variedade de ácidos graxos para os lipídeos neutros nos peixes em estudo (**tabela 36**), sendo marjoritário para todos os peixes a presença de ácido palmítico (C16:0), o que referia ao pico em 20 min, seguido por ácidos da série de 18 carbonos (entre 42 e 45 min), os ácidos oléico (C 18:1 ω 9), esteárico (C 18:0) e cis-12-

octadecenóico (C 18:1 ω 6). E ainda foi observada a presence dos ácidos graxos EPA (eicosapentaenóico) e DHA (docosahexaenóico), importantes ácidos graxos do tipo ômega 3 que são considerados valiosos de um ponto de vista nutricional e fisiológico (Belitz *et al.*, 2004). Os ácidos graxos cis 6-octadecenóico (C 18:1 ω 12) e nervônico (C 24:1 ω 9) encontrados nas especies de peixe sardinha, jaraqui, surubim e pacu não foram encontrados nos lipídeos neutros de outros peixes amazônicos que já foram estudados, como o tucunaré e matrinxã (Inhamuns *et al.*, 2009; Arbeláz-Rojas *et al.*, 2002; Almeida *et al.*, 2007; Almeida *et al.*, 2008).

Tabela 36. Quantidade em mg de ácido graxo/g de peixe nos lipídeos neutros.

Cadeia	Peixe						
	curimatã	pescada	sardinha	jaraqui	surumbi	pacu	
C 12:0	1,987	2,148	2,493	3,932	2,435	2,896	
C 13:0	2,205	-	3,299	3,299	4,162	-	
C 14:0	20,909	11,586	25,571	23,614	23,557	6,522	
C 14:1 c 9 ω5	1,941	-	2,781	-	-	-	
C 15:0	9,860	6,752	12,046	13,658	19,988	-	
C 16:0	261,874	210,596	143,953	196,611	190,281	183,490	
C 16:1 c 11ω5	5,313	6,752	17,514	4,507	6,004	4,507	
C 16:1 c 9ω7	3,011	-	-	-	-	-	
C 16:1 t 11 ω5	3,702	9,111	10,895	8,018	7,385	-	
C 16:2 c 7,10 ω6	3,817	-	-	3,356	-	-	
C 16:2 t7,11 ω5	3,241	3,471	4,162	2,896	2,953	-	
C 17:0	11,644	11,126	12,219	10,780	13,600	3,126	
C 16:3 ω1	5,198	-	-	-	-	-	
C 17:1c10 ω7	5,255	4,910	4,047	4,910	6,234	1,457	
C 18:0	64,935	74,028	71,209	60,447	73,280	127,666	
C 18:1 c9 ω9	101,768	177,735	117,364	63,554	117,767	331,568	
C 18:1 c6 ω12	-	-	10,493	-	-	-	
C 18:1 c11 ω7	36,793	29,772	-	-	-	-	
C 18:1 c 12 ω6	-	-	51,181	38,520	29,081	17,399	
C 18:1 t11 ω7	2,608	3,644	8,018	-	4,220	-	
C 18:1 t9 ω9	4,392	-	3,874	9,975	-	-	
C 18:2 c 9,12 ω6	25,341	46,232	20,506	25,743	25,743	136,644	
C 18:2 t 9,13	9,226	-	-	-	-	3,471	
C 19:0	9,917	27,412	17,571	19,183	70,518	7,442	
C 18:3 c 6,9,12 ω6	7,442	-	-	2,551	2,551	-	
C 18:3 c 9,12,15 ω3	28,448	17,111	20,219	24,477	24,938	16,823	
C 18:2 conj 1 ω6	2,953	-	-	-	-	-	
C 18:2 conj 2 ω6	-	-	4,910	3,241	3,414	3,011	
C 20:0	3,874	5,140	4,795	4,910	5,198	10,953	

Total	740,140	713,088	642,986	595,813	737,178	885,439
C 24:1ω9	9,399	13,946	22,463	8,018	22,233	3,471
C 22:6 ω3	8,709	6,234	6,291	5,831	10,262	-
C 24:0	5,831	5,773	6,522	6,176	12,219	-
C 22:4 ω6	4,392	-	-	4,392	7,442	-
C 22:1 c13 ω9	2,781	7,903	-	2,608	-	-
C 22:0	2,378	3,759	3,932	3,069	3,414	-
C 20:5ω3	19,298	5,716	9,860	8,306	8,363	-
C 20:4 c5,8,11,14 ω6	7,442	2,666	7,327	5,946	10,723	3,759
C 21:0	2,090	-	-	-	-	-
C 20:3 c 11,14,17 ω3	6,349	4,738	2,953	3,989	5,371	6,004
C 20:3 5,11,14 ω6	3,184	-	2,723	2,608	-	-
C 20:2 c12,14 ω6	6,176	-	3,817	-	2,551	2,551
C 20:1 c8 ω12	2,205	-	-	3,644	2,493	-
C 20:1 c11 ω9	19,240	10,953	5,198	9,572	15,039	12,680
C 20:1 c13 ω7	3,011	3,874	2,781	3,471	3,759	-

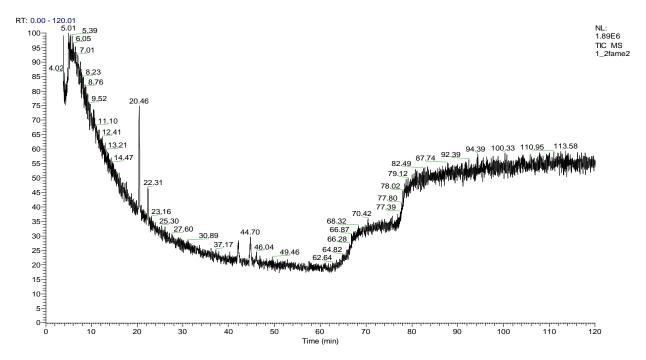
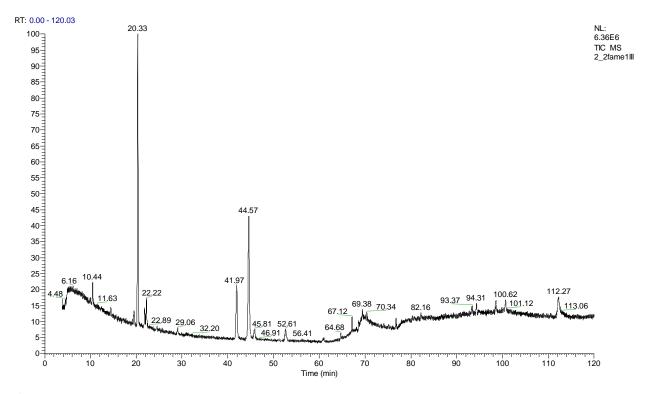
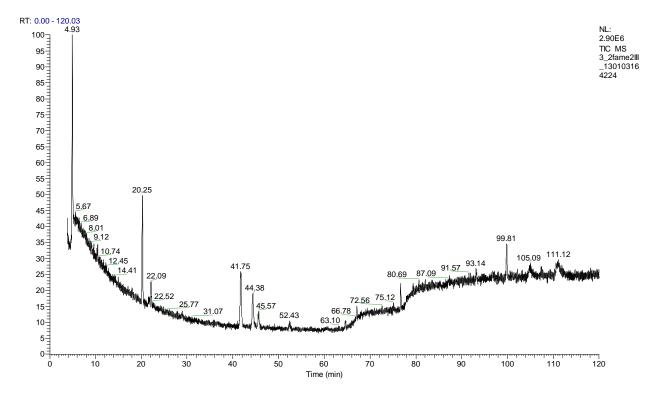

Foi observada uma maior quantidade de ácido graxo saturado para os lipídeos neutros que insaturados, com exceção dos peixes sardinha e pacu (tabela 37); resultado coerente, porque os lipídeos neutros sao formados principalmente por glicerideos, que tem função de armazenar energia na saúde humana, sendo necessário ácidos graxos saturados (Gurr *et al.*, 2002). Porém de qualquer forma os ácidos graxos insaturados mostraram participação significativa para os lipídeos neutros com uma variação para os peixes estudados entre 25-54%, observando valores percentuais altos, principalmente para o peixe pacu, tanto com monoinsaturados quanto de poliinsaturados, quando comparados à outros peixes amazônicos (Inhamuns *et al.*, 2009; Arbeláz-Rojas *et al.*, 2002; Almeida *et al.*, 2007; Almeida *et al.*, 2008).

Tabela 37. Relação percentual de tipos de ácidos graxos presents nos lipídeos neutros.

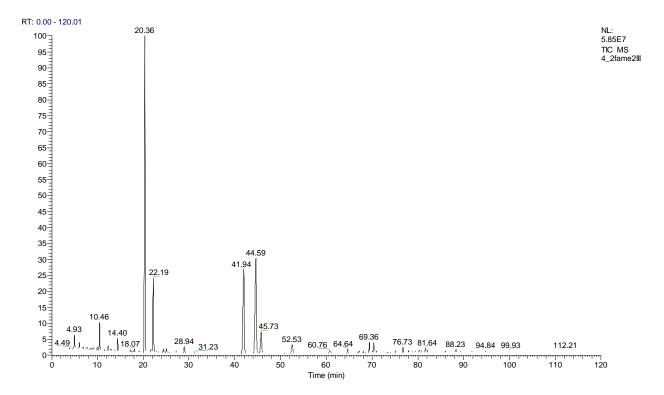
	Curimatã	Pescada	Sardinha	Jaraqui	Surumbi	Pacu
ΣAGS	39,750	35,832	30,361	34,568	41,865	34,209
ΣAGMI	20,142	26,860	25,661	15,680	21,421	37,108
ΣAGPI	14,122	8,617	8,277	9,334	10,431	17,226
Σω6	6,075	4,890	9,046	8,636	8,151	16,336
$\Sigma \omega 3$	6,280	3,380	3,932	4,260	4,893	2,283
ΣAGI	34,264	35,477	33,938	25,013	31,853	54,334


4.8.2.2 Glicolipídeos

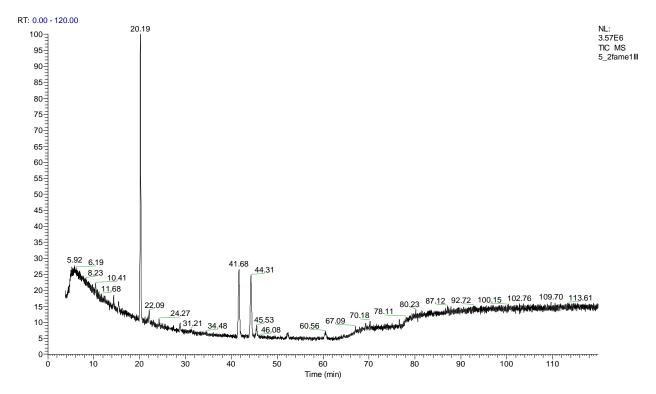
Foi possível identificar os ésteres metílicos de ácidos graxos dos glicolipídeos por espectrometria de massas.


Cromatograma 39. Perfil cromatográfico dos ésteres metílicos dos glicolipídeos de curimatã.

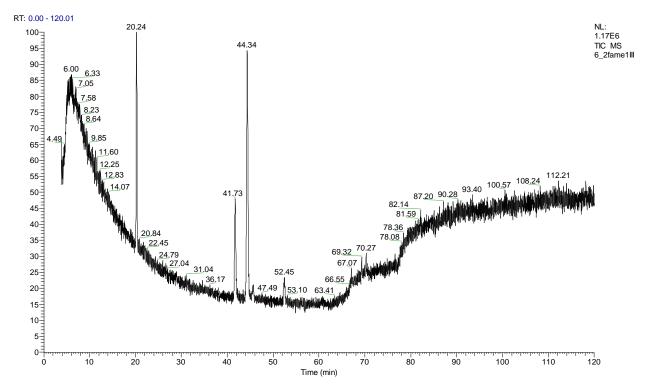
Para o peixe curimatã, apesar da baixíssima quantidade de componentes, foi possível observar assim como nos lipídeos neutros a predominância do pico em 20,46 min.


Cromatograma 40. Perfil cromatográfico dos ésteres metílicos dos glicolipídeos de pescada.

Para o peixe pescada, além do pico mais abundante em torno de 20 min, observou-se os picos com relativa quantidade em relação ao cromatograma total, em 42 e 44 min.


Cromatograma 41. Perfil cromatográfico dos ésteres metílicos dos glicolipídeos de sardinha.

Já para o peixe sardinha, observou-se a presença em quantidade abundante do pico em 100 min.


Cromatograma 42. Perfil cromatográfico dos ésteres metílicos dos glicolipídeos de jaraqui.

O jaraqui obteve uma boa quantidade de componentes para uma fração de glicolipídeos, quando comparado com os demais peixes em estudo.

Cromatograma 43. Perfil cromatográfico dos ésteres metílicos dos glicolipídeos de surubim.

Os peixes surubim e pacu, apesar da baixa concentração das amostras, também foi possivel observar maior quantidade do pico em torno de 20 min, com um diferencial para o ultimo peixe, que paresentou uma quantidade quase equivalente ao pico citado de picos em 42 e 44 min.

Cromatograma 44. Perfil cromatográfico dos ésteres metílicos dos glicolipídeos de pacu.

Também foi possivel identificar e quantificar uma variação grande de ácidos graxos para os glicolipídeos dos peixes em estudo (**tabela 38**), sendo marjoritária a presence do ácido palmitico (C16:0) para os peixes jaraqui e surubim e a presença do ácido 12-octadecenoico (C 18:1 ω 6) para os peixes pacu e pescada, e do ácido esteárico para os demais peixes. E ainda foi observada a presença do ácido DHA para o peixe sardinha.

Tabela 38. Quantidade em mg de ácidos graxos presentes /g de peixe nos glicolipídeos.

Cadeia	Peixe					
	Curimatã	Pescada	Sardinha	Jaraqui	Surumbi	Pacu
C 6:0	-	-	-	-	-	-
C 10:0	-	2,666	-	1,998	1,636	-
C 14:0	20,506	2,320	2,551	2,320	2,781	-
C 15:0	2,148	3,644	-	-	3,356	-
C 16:0	-	-	-	20,506	40,534	12,392
C 16:1 c 9 ω7	6,349	6,924	-	7,500	3,702	-
C 16:1 t 9 ω7	1,912	-	-	-	-	-
C 17:0	2,263	3,529	-	-	-	-
C 18:0	11,528	26,722	14,003	12,162	23,672	12,046
C 18:1 c9 ω 9	12,392	47,555	8,766	14,118	21,542	23,154
C 18:1 c11 ω 7	5,658	7,557	-	5,601	-	-
C 18:2 c 9,12 ω 6	3,644	10,147	3,299	3,644	4,450	5,198
C 18:2 t 9,13 ω 5	4,392	2,608	-	-	-	-
C 19:0	4,680	4,795	2,263	3,414	6,176	2,320
C 18:3 c 9,12,15	2,205	3,702	2,608	2,666	-	-
C 18:2 conj 1 ω6	4,565	5,255	2,838	4,507	-	-
C 20:0	1,797	5,601	-	-	-	-
C 20:1 c11	2,263	2,781	-	-	2,493	-
C 20:3 c 11,14,17 ω3	2,263	2,551	-	-	-	-
C 21:0	2,263	-	-	-	-	-
C 20:4 c5,8,11,14 ω6	2,148	2,781	-	-	-	-
C 22:0	2,148	2,896	-	-	-	-
C 22:3 c8,11,14 ω8	2,263	-	-	-	-	-
C 22:4 \omega6	-	3,069	-	-	-	-
C 24:0	2,435	4,680	-	-	-	-
C 22:6 w3	-	-	4,047	-	-	-
C 24:1ω9	-	4,277	-	-	-	-
Total	99,822	156,060	40,375	78,436	110,341	55,110

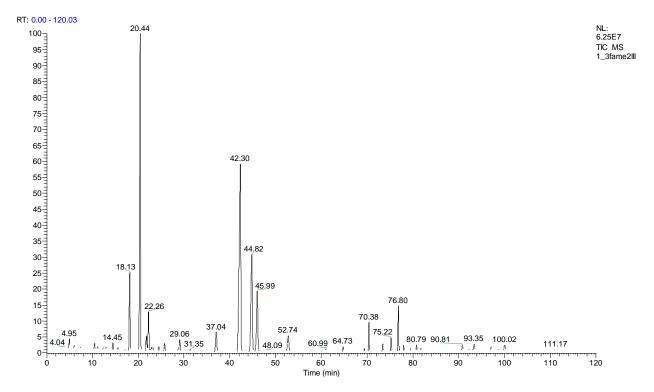
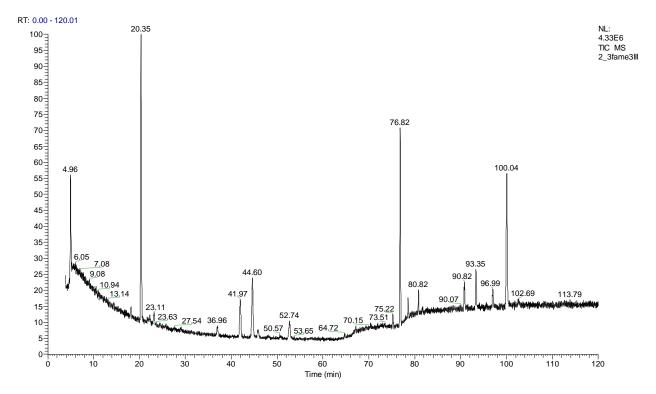
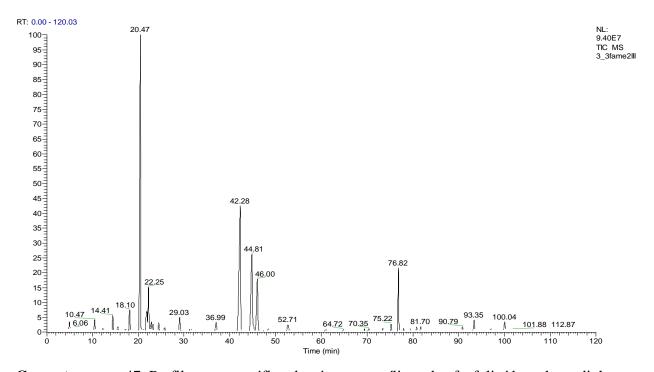

Foi observada uma maior quantidade de ácidos graxos insaturados do que saturados para os glicolipídeos dos peixes em estudo, com exceção para o surubim (**tabela 39**) e maior participação de ácidos graxos monoinsaturados que poliinsaturados, com exceção do peixe sardinha.

Tabela 39. Relação percentual dos tipos de ácidos graxos nos glicolipídeos.

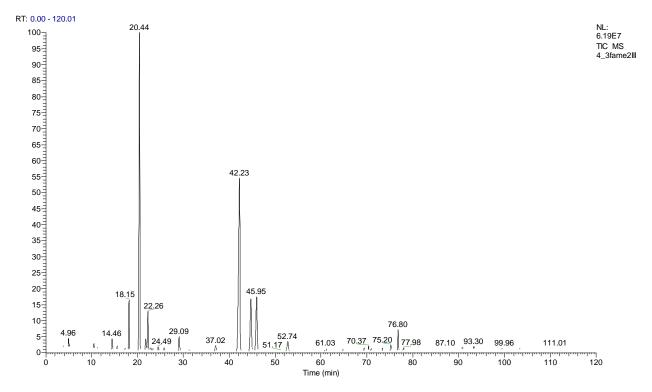
	Curimatã	Pescada	Sardinha	Jaraqui	Surumbi	Pacu
ΣAGS	8,212	9,375	6,297	6,644	13,006	8,749
ΣAGMI	4,715	11,394	2,934	4,476	4,616	7,570
ΣAGPI	3,544	4,966	4,281	1,779	0,740	1,699
Σω6	1,709	3,505	2,054	1,341	0,740	1,699
$\Sigma \omega 3$	0,373	0,001	0,002	0,000	0,000	0,000
ΣAGI	8,260	16,360	7,214	6,255	5,356	9,269


4.8.2.3 Fosfolipídeos

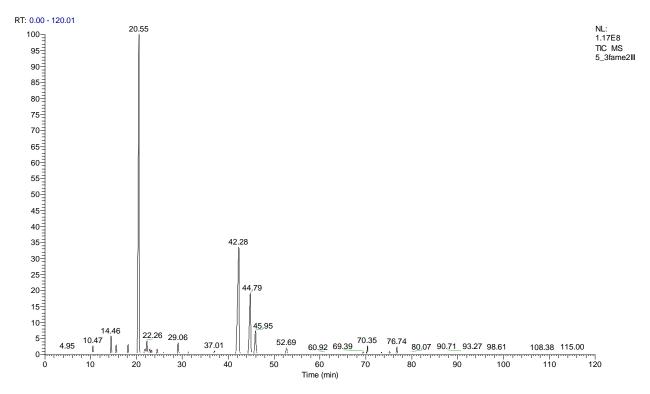
Foi possível identificar os ésteres metílicos de ácidos graxos dos fosfolipídeos por espectrometria de massas.


Cromatograma 45. Perfil cromatográfico dos ésteres metílicos dos fosfolipídeos de curimatã.

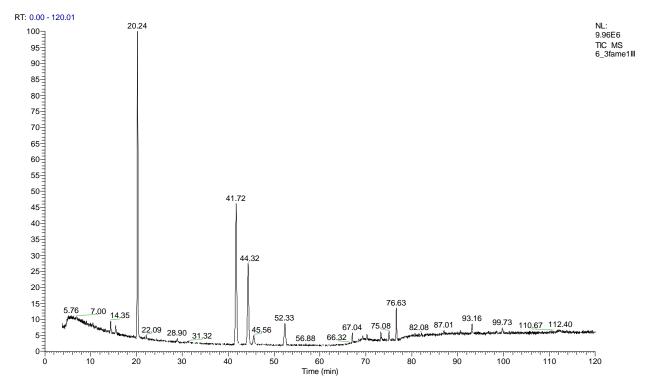
Para os fosfolipídeos do peixe curimatã observou-se uma varição de componentes, e assim como nas demais frações de seus lipídeos, a predominância do pico em 20 min.


Cromatograma 46. Perfil cromatográfico dos ésteres metílicos dos fosfolipídeos de pescada.

Para o peixe pescada observou-se uma quantidade relativamente alta dos picos em torno de 77 e outro em trono de 100 min.


Cromatograma 47. Perfil cromatográfico dos ésteres metílicos dos fosfolipídeos de sardinha.

Para o peixe sardinhaobservou-se como marjoritario o pico em torno de 20 min também.



Cromatograma 48. Perfil cromatográfico dos ésteres metílicos dos fosfolipídeos de jaraqui.

Bem como para os peixes jaraqui, surubim e pacu.

Cromatograma 49. Perfil cromatográfico dos ésteres metílicos dos fosfolipídeos de surubim.

Cromatograma 50. Perfil cromatográfico dos ésteres metílicos dos fosfolipídeos de pacu.

Foi identificado como marjoritária a presence do ácido palmitico (C16:0) seguido pelos ácidos graxos da série de 18 carbonos, os ácidos esteárico (C18:0) e 12-octadecenoico (C 18:1 ω 6), para a classe de fosfolipídeos dos peixes em estudo (**tabela 40**). Os ácidos EPA e DHA, entre outros ácidos graxos foram encontrados para os fosfolipídeos também. Os fosfolipídeos dos peixes também apresentaram muitos ácidos graxos insaturados da série ômega 6 (12-octadecenoico, 18:3 e 20:2) que nao foram encontrados em fosfolipídeos de outros peixes amazonicos já estudados (Inhamuns *et al.*, 2009; Arbeláz-Rojas *et al.*, 2002; Almeida *et al.*, 2007; Almeida *et al.*, 2008).

Tabela 40. Quantidade em mg de ácidos graxos/g de peixe nos fosfolipídeos.

Cadeia	Peixe					
	Curimatã	Pescada	Sardinha	Jaraqui	Surumbi	Pacu
C 9:0	-	-	-	-	-	1,820
C 10:0	-	-	-	-	-	2,608
C 12:0	2,551	-	1,992	-	-	-
C 14:0	6,637	-	12,449	4,162	10,205	16,478
C 14:1	9,284	-	4,738	-	-	-
C 15:0	8,421	-	17,974	7,845	24,650	9,802
C 16:0	321,381	47,613	385,320	190,684	650,283	179,461
C 16:1 c 9 ω7	15,557	-	18,262	8,651	7,212	-
C 16:1 t 9 ω7	7,442	-	12,737	5,083	10,723	-
C 17:0	16,535	-	22,463	13,773	24,823	6,809
C 18:0	327,251	17,744	269,183	192,238	342,848	162,311
C 18:1 c 9 ω 9	150,801	23,959	154,312	56,130	172,900	104,185
C 18:1 c 6 ω 12	-	-	9,744	-	-	-
C 18:1 c 11 ω 7	90,833	4,910	96,128	58,720	63,612	17,744
C 18:1 c 12 ω 6	-	-	6,349	-	-	-
C 18:2 c 9,12 ω 6	35,815	11,586	20,967	17,514	26,952	49,224
C 18:2 t 9,13 ω 5	3,529	-	5,658	-	2,896	-
C 19:0	11,644	-	11,874	9,860	10,493	4,335
C 18:3 c 6,9,12 ω6	3,586	-	2,953	2,608	5,198	-
C 18:3 c 9,12,15 ω3	8,824	2,608	6,119	4,335	4,507	2,263
C 18:2 conj 1 ω6	-	-	-	-	-	2,493
C 20:0	4,680	-	4,622	3,702	4,968	3,471
C 20:1 c13 ω7	-	-	-	-	3,471	-
C 20:1 c11 ω9	22,290	-	4,047	4,738	12,967	4,853
C 20:1 c8 ω 12	-	-	2,263	2,953	-	-
C 20:2 c12,14 ω6	2,378	-	3,299	-	-	-
C 22:3 c8,11,14 ω8	8,593	-	5,255	3,644	5,486	8,651
C 21:0	13,658	4,162	10,723	5,946	6,349	9,514
C 22:4 ω6	3,126	-	3,299	-	-	-

Total	1098,774	153,096	1123,535	592,584	1394,071	599,717
C 24:1ω9	7,730	28,736	13,658	-	-	7,442
C 22:6 ω3	7,327	6,579	6,809	-	3,529	3,586
C 22:0	2,953	-	5,313	-	-	-
C 20:5 ω3	5,946	5,198	5,025	-	-	2,666

Foi observado uma maior quantidade de ácido graxo saturado que insaturado para os fosfolipídeos, com execeção da pescada (**tabela 41**), porém mesmo sendo menor o somatorio dos acidos graxos insaturados, estes foram maiores nos peixes curimatã, sardinha e surubim que para seus respectivos lipídeos neutros, confirmando que em geral os fosfolipídeos possuem maior quantidade de insaturados que lipídeos neutros por serem componentes de membrana (Gurr *et al.*, 2002). Os valores encontrados foram na faixa dos encontrados para outros peixes amazônicos já estudados (Inhamuns *et al.*, 2009; Arbeláz-Rojas *et al.*, 2002; Almeida *et al.*, 2007; Almeida *et al.*, 2008).

Tabela 41. Relação percentual dos tipos ácidos graxos nos fosfolipídeos.

	Curimatã	Pescada	Sardinha	Jaraqui	Surumbi	Pacu
ΣAGS	118,102	11,464	248,281	70,422	178,826	129,670
ΣAGMI	50,154	9,500	107,836	22,411	45,078	43,884
ΣAGPI	13,057	4,283	19,873	4,621	8,082	22,521
$\Sigma \omega 6$	7,410	1,911	12,337	3,309	5,350	16,909
$\Sigma \omega 3$	3,646	2,372	6,008	0,713	1,337	2,784
ΣAGI	63,211	13,782	127,710	27,033	53,160	66,405

4.8 Qualidade Nutricional dos lipídeos em classe

4.9.1 Lipídeos neutros

Observou-se que os acidos graxos do tipo ômega 3 e 6 presentes, importantes mediadores farmacologicos, constitui em 8-18% dos ácidos graxos insaturados, sendo o somatorio dos ácidos graxos EPA e DHA até 5% para a fração de lipídeos neutros, resultado esse maior que aqueles encontrados no matrinxã (Almeida *et al.*, 2007). No entanto houve uma grande contribuição dos ácidos graxos do tipo ômega 6, através dos altos valores da razão entre eles (ω 6/ ω 3). E a razão entre os ácidos graxos poliinsaturados e saturados mostrou valor recomendado para consumo para o peixe pacu, maiores que 0,45 (Department of healthy, 1994). Porém, atualmente a qualidade nutricional é medida pelos indices de aterogenicidade e trombogenicidade e a razão entre os ácidos

hipocolesterolemico:hipercolesterolemico, que mostraram valores 1 - 2 para IA, 2-3 para IT e 0,1-0,8 para HH.

Table 42. Qualidade nutricional dos lipídeos neutros dos peixes.

	Curimatã	Pescada	Sardinha	Jaraqui	Surumbi	Pacu
AGPI/AGS	0,355	0,240	0,273	0,270	0,249	0,504
$\omega 6/\omega 3$	0,967	1,447	2,301	2,027	1,666	7,157
$\Sigma \omega 3 + \Sigma \omega 6$	12,355	8,270	12,979	12,896	13,044	18,619
EPA + DHA	4,621	1,971	5,405	2,325	3,099	0,000
IA	1,765	1,216	2,154	1,698	1,385	1,247
IT	1,740	1,829	2,723	1,815	1,589	3,081
HH	0,111	0,190	0,358	0,100	0,154	0,841

4.9.2 Glicolipídeos

Dos ácidos graxos insaturados, os ácidos do tipo ômega 3 e 6 constituintes da fração de glicolipídeos para os peixes em estudo foram cerca de 1-3% e a razão de entre eles (ω 6/ ω 3) indicou uma maior contribuição dos ácidos graxos ômega 6. A razão entre poliinsaturados e saturados apresentaram valores recomendados para consumo (Department of healthy, 1994). E os índices de aterogenicidade e trombogenicidade e a razão entre os ácidos hipocolesterolemico:hipercolesterolemico, mostraram valores 0,1–2 para IA, 0,6-4 para IT e 0,1-5 para HH.

Table 43. Qualidade nutricional dos glicolipídeos dos peixes.

	Curimatã	Pescada	Sardinha	Jaraqui	Surumbi	Pacu
AGPI/AGS	0,432	0,530	0,680	0,268	0,057	0,194
$\omega 6/\omega 3$	4,577	3399,142	922,171	0,000	0,000	0,000
$\Sigma \omega 3 + \Sigma \omega 6$	2,082	3,506	2,056	1,341	0,740	1,699
EPA + DHA	0,000	0,000	1,354	0,000	0,000	0,000
IA	1,991	0,103	0,684	0,842	1,605	0,437
IT	1,162	0,643	2,215	1,977	4,162	1,724
$\mathbf{H}\mathbf{H}$	0,164	4,562	2,456	0,147	0,100	0,748

4.9.3 Fosfolipídeos

Quando observamos os ácidos graxos do tipo ômega 3 e 6, que desenvolvem papel como importantes mediadores farmacológicos, podemos verificar que estes constituem 4-20% dos ácidos graxos insaturados e a relação entre eles (ω6/ω3) indicou uma maior contribuição

dos ácidos graxos ômega 6. A razão entre poliinsaturados e saturados da fração de fosfolipídeos apresentaram valores levemente menores que o recomendado para consumo (Department of healthy, 1994). Porém, atualmente a qualidade nutricional é feita pelos indices de aterogenicidade e trombogenicidade e a razão entre os ácidos hipocolesterolemico:hipercolesterolemico, que mostraram altos valores para a HH do peixe pescada e pacu, considerando-o bom para a saúde humana.

Table 44. Qualidade nutricional dos fosfolipídeos dos peixes.

	Curimatã	Pescada	Sardinha	Jaraqui	Surumbi	Pacu
AGPI/AGS	0,111	0,374	0,080	0,066	0,045	0,174
$\omega 6/\omega 3$	2,032	0,805	2,053	4,642	4,001	6,074
$\Sigma \omega 3 + \Sigma \omega 6$	11,056	4,283	18,345	4,022	6,687	19,693
EPA + DHA	2,190	1,942	3,960	0,000	0,587	2,044
IA	0,945	0,570	1,159	1,290	2,222	1,262
IT	2,689	0,766	2,840	4,184	5,664	3,010
HH	0,105	0,173	0,163	0,066	0,052	0,270

4.9.4 Lipídeos no total

Quando somamos os valores das classes de lipídeos, levando em consideração suas respectivas contribuições para os lipídeos totais, encontramos valores entre 1-2 para IA, 2–3 para IT e 0,1-1 para HH. Esses valores foram coerentes com os encontrados na literatura (Ulbricht *et al.*, 1991 e Bentes *et al.*, 2009). Os peixes sardinha e pacu apresentaram elevados valores para a razão HH, confirmando a razão entre ácidos graxos poliinsaturados e saturados e ainda uma boa quantidade de ácidos do tipo ômega 3 e 6 conferindo a estes uma qualidade nutricional destacada.

Tabela 45. Constituintes dos lipídeos totais dos peixes (% em g de peixe).

	Curimatã	Pescada	Sardinha	Jaraqui	Surumbi	Pacu
AGPI/AGS	0,343	0,243	0,233	0,258	0,180	0,495
$\omega 6/\omega 3$	1,090	26,534	11,570	2,212	2,143	7,062
$\Sigma \omega 3 + \Sigma \omega 6$	12,134	7,902	13,867	12,293	10,475	18,456
EPA + DHA	4,416	1,912	5,001	2,164	2,228	0,033
IA	1,726	1,157	1,906	1,676	1,532	1,239
IT	1,787	1,740	2,714	1,996	2,604	3,068
НН	0,112	0,217	0,335	0,099	0,119	0,832
colesterol	1,400	15,980	24,944	18,170	18,933	7.769

5. CONCLUSÃO

Esse trabalho resultou em metodologia desenvolvida para análise quanti- e qualitativa de ácidos graxos e de esteróides por cromatografia gasosa usando detector de ionização de chamas e espectrometria de massas; indicou que as espécies de peixes curimatã, pescada, sardinha, jaraqui, surubim e pacu possuem teores de lipídeos interessantes, sendo que as maiores quantidade de lipídeos totais estão nos peixes curimatã e pacu.

Verificou-se que os peixes estudados possuem ácidos graxos insaturados essenciais para a saúde humana (ômega 3 e 6), constituindo a maior quantidade para os peixes curimatã, pescada, jaraqui e surubim em suas frações de lipídeos neutros e para os peixes sardinha e pacu em suas frações de fosfolipídeos. E observou-se os melhores índices de aterogenecidade ácidos graxos de trombogenecidade, bem como elevada quantidade hipocolesterolêmicos, para os glicolipídeos dos peixes, com exceção para o peixe surubim que foi melhor contemplado nos lipídeos neutros. Quando levado em consideração a contribuição de cada classe de lipídeos para os lipídeos totais, e avaliados como parâmetros de qualidade nutricional lipidíca, a relação de ácidos graxos poliinsaturados e saturados, e ainda a soma de ácidos graxos do tipo ômega 3 e 6, destacou-se o peixe pacu, porém ao se avaliar os índices de aterogenecidade e trombogenecidade, o peixe em destaque foi a pescada.

6. REFERÊNCIAS BIBLIOGRÁFICAS

Alexander, W. Immunonutrition: The role of ù-3 fatty acids. *Nutrition*. **1998**, 14(7-8), 627-633.

Almeida, N. M.; Moura, J. M. L.; Moreira, R. C. N.; Franco, M. R. B. Tocoferois do músculo dorsal e cavidade ocular do matrinxã (*Brycon cephalus*) proveniente da Bacia Amazônica em diferentes épocas sazonais. *Ciência Rural.* **2006**, 36(2).

Almeida, N. M.; Batista, G. M.; Kodaira, M.; Lessi, E. Alterações post-mortem em tambaqui (*Colossoma macropomum*) conservados em gelo. *Ciência Rural.* **2006**, 36(4), 1288-1293.

Almeida, N. M. e Franco, M. R. B. Fatty acid composition of total lipids, neutral lipids and phospholipids in wild and farmed matrinxã (*Brycon cephalus*) in the Brazilian amazon area. *J Sci Food Agric*. **2007.** 87, 2596–2603.

Almeida, N. M.; Visentainer, J. V.; Franco, M. R. B. Composition of total, neutral and phospholipids in wild and farmed tambaqui (*Colossoma macropomum*) in the Brazilian amazon area. *J Sci Food Agric*. **2008.** 88, 1739–1747.

Andrade, G. Q.; Bispo, E. S.; Druzian, J. I.. Avaliação da qualidade nutricional em espécies de pescado maisproduzidas no Estado da Bahia. *Ciênc. Tecnol. Aliment.* **2009**. 29(4), 721-726.

Arbeláez-Rojas, G. A.; Fracalossi, D. M.; Fim, J. D. I. Composição corporal de tambaqui, *Colossoma macropomum*, e matrinxã, *Brycon cephalus*, em sistemas de cultivo Intensivo, em igarapé, e semi-intensivo, em viveiros. *R. Bras. Zootec.* **2002.** 31(3), 1059-1069.

Azevedo-Meleiro, C. H.; Rodriguez-Amaya, D.B. Confirmation of identity of the carotenoids of tropical fruits by HPLC-DAD and HPLC-MS. **2004**. *Journal of food composition and analysis*, 17, 385-396.

Barbosa, B. S.; Nunomura, S. M. e Figliuolo, R. Análise de ácidos graxos poliinsaturados por cromatografia gasosa de alta resolução. *Anais XVIII Jornada de Iniciação Científica do Pibic/CNPq/FAPEAM/INPA- resumos expandidos.* **2009**. 659-663.

Barreto, Andreza Cruz. Dissertação de mestrado: Óleo e biodiesel de uricuri (Scheelea phalerata Mart. Ex Spreng). Nov-2010. Ufam.

Barthem, R. B., Fabré, N. N. Biologia e diversidade dos recursos pesqueiros da Amazônia. Em: *A pesca e os recursos pesqueiros na Amazônia Brasileira*. Ruffino, M. L., ed.; Provarzea: Manaus, 2003, 11-52 p.

Batista, V.S.; Silva, A.J.I.; Freitas, C.E.C.; Freire-Brasil, D. Characterization of the fishery in riverine communities in the Low-Solimões/High-Amazon region. *Fisheries Management and Ecology*. **1998**. 5, 419-435.

Becker, Raquel Wielens. Dissertação de mestrado: Determinação de anti-inflamatórios em efluente urbano na região de porto alegre-RS por SPE, derivatização e CG-MS.UFRGS 2012.

Belitz, H-D.; Grosch, W.; Schieberle, P. 2004. Food Chemistry, 3rd ed., Springer:EUA, 2004.

Bentes, A. S.; Souza, A. L.; Mendonça, X. M. F. D.; Simões, M. G. Caracterização física e química e perfil lipídico de três espécies de peixes amazônicos. *Revista Brasileira de tecnologia Agroindustrial*, **2009**, 03, 97-108 p.

Blanchet, C.; Lucas, M.; Julien, P.; Morin, R.; Gingras, S.; Dewailly, E. Fatty acid composition of wild and farmed atlantic salmon (*salmo salar*) and rainbow trout (*oncorhynchus mykiss*). *Lipids*, **2005**, 40(5).

Bligh, E. G.; Dyer, W. J. A rapid method of total lipid extraction and purification. *Canadian Journal of Biochemistry and Physiology*, **1959**, 37(8), 911-917.

Bowden, J. A.; Colosi, D. M.; Mora-Montero, D. C.; Garrett, T. J; Yost, R. A. Enhancement of chemical derivatization of steroids by gas chromatography/mass spectrometry (GC/MS). *Journal of chromatography B*, **2009**, (877) 3237-3242.

Christie, W. W. Triacylglycerols. Part 1. Structure and composition. *Lipidlibrary.aocs.org*, **2011.**

Cozza, K. L.; Costa, J. A. V. Lipídios em Spirulina. Vetor, 2000, 10, 69-80.

Curi, R.; Pompéia, C.; Miyasaka, C. K.; Procopio, J. *Entendendo a gordura - ácidos graxos*, 1° ed., Manole: São Paulo, 2002.

Delgado-Vargas, F.; Jiménez, A. R.; Paredes-Lópes, O. Crit. Rev. Food Sci. Nutr. 2000, 40, 173.

Department of health. *Nutritional Aspects of cardiovascular Disease. Report on health and Social Subjects*. HMSO: London, 1994, n°46.

Dewich, Paul M. Medicional natural products-a biosynthetic approach, 2° ed., John wiley & Sons, 2002.

Fuchs, B.; Süß, R.; Teuber, K.; Eibisch, M.; Schiller, J. Lipid analysis by thinlayer chromatography—A review of the current state. *Journal of chromatography A*, **2001**, 1218, 2754-2774.

Gunstone, F. D. Oils and fats in the food industry, 1° ed., Blackwell Publishing: EUA, 2008.

Gunstone, F. D. 2004. *The Chemistry of Oils and Fats- Sources, Composition, Properties and Uses*. Blackwell Publishing.

Gurr, Michael I. 1999. Lipids in nutrition and health: a reappraisal. The oil press

Gurr, M. I.; Harwood, J. L.; Frayn, K. N. *Lipid Biochemistry-An Introduction*, 5 ^a ed., Blackwell publishing:UEA, 2002.

Hanahan, D.J. *A guide to phospholipids chemistry*, 1997, New York, Oxford University Press, 214 pp.

http://www.portodemanaus.com.br/?pg=nivelhj.php, acessado em 20 de agosto de 2012.

Inhamuns, A. J.; Franco, M. R. B. Composition of Total, Neutral, and Phospholipids in Mapará (*Hypophthalmus* sp.) from the Brazilian Amazonian Area. *J. Agric. Food Chem.* **2001**, *49*, 4859-4863.

Inhamuns, A.; Franco, M. R. B.; Batista, W. S. Seasonal variations in total fatty acid composition of muscles and eye sockets of tucunaré (*Cichla sp.*) from the Brazilian Amazon area. *Food Chemistry*, **2009**, 117, 272–275.

Johnston, J. J.; Ghanbari, H. A.; Wheeler, W. B.; Kirk, J. R. Characterization of shrimp lipids. *Journal of food science*, **1983**, 48, 33-35.

Kasim-Karakas, S.E. Omega-3 fish oils and lipoprotein metabolism. Em: *Handbook of Nutraceuticals and Functional Foods*. Wildman, R.E.C., ed.; CRC Press: Boca Raton, 2001, 295-305 p.

Lima, F. C. T. *Peixe e gente no alto rio tiquié. Conhecimento tukano e tuyuka, ictiologia, etnologia.* São Paulo. Intituto socioambiental, 2005.

Moreira, A. B.; Souza, N. E.; Visentainer, J. V.; Matsushita, M. Composição de ácidos graxos e teor de lipídeos em cabeças de peixes: matrinxã (*B. Cephalus*), piraputanga (*B. Microlepis*) e piracanjuba (*B. Orbignyanus*), criados em diferentes ambientes. *Cienc. Tecnol. Aliment.*, **2003**, 23(2), 179-183.

Motta, V.T. Bioquímica. Caxias do Sul: Educs, 2005. 332p.

Moura, J. M. L. N.; Gonçalves, L. A. G.; Grimaldi, R.; Soares, M. S.; Ribeiro, A. P. B. Otimização das condições de produção de ésteres etílicos a partir de óleo de peixes cm elevado teor de ácidos graxos ω-3 *Quim. Nova*, **2006**, 29(5), 956-959.

Nelson, D. L.; Cox, M. M. **Lehninger – Principles of biochemistry,** 4th edition, W. H. Freeman and Company/New York. p. 348-354. 2005.

Netleton, J. A. Omega-3 fatty acids and health. 1995. Editor Chapman and Hall.

Orban, E.; Di Lena, G.; Nevigato, T.; Masci, Casini, I.; Caproni, R. Proximate, unsaponifiable lipid and fatty acid composition of bogue (Boops boops) and horse mackerel (Trachurus trachurus) from the Italian trawl fishery. *Journal of food composition and analysis*, **2011**, 24, 1110-1116.

Orban, E.; Di Lena, G.; Ricelli, A.; Paoletti, F.; Casini, I.; Gambelli, L.; Caproni, R. Quality characteristics of sharpsnout sea bream (Diplodus puntazzo) from different intensive rearing systems. *Food chemistry*, **2000**, 70, 27-32.

Prego, R.; Pazos, M.; Medina, I.; Aubourg, S. P. Compartive chemical composition of different muscle zones in angler (Lophius piscatourius). *Journal of food composition and analysis*, **2012**, 28, 81-87.

Rodrigues-Amaya, D.; *A Guide to Carotenoid Analysis in Foods*, OMNI Research: ILSI Press: Washington D. C. 1999.

Roubach, R.; Correia, E. S.; Zaiden, S.; Martino, R. C.; Cavalli, R. O. Aquaculture in brazil. **2003**. World aquaculture.

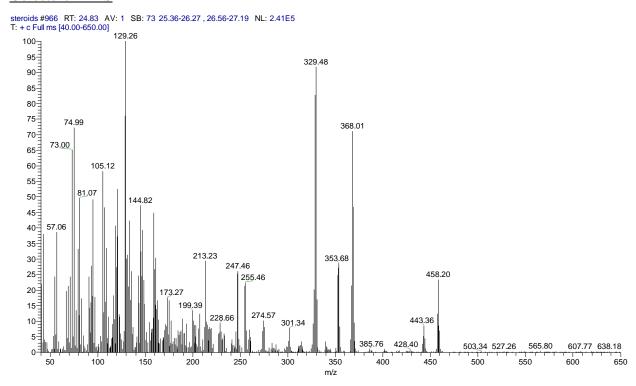
Santos, G. M, Ferreira, E. J. G., Zuanon, J. A. S. *Peixes comerciais de Manaus*, 2ª ed., INPA: Manaus, 2009.

Simão, A. N. C., Barbosa, D. S., Nunes, L. B., Godeny, P., Lozovoy, M.A B., Dichi, I. Efeitos e mecanismos de ação dos ácidos graxos poiinsaturados N-3 na prevenção de doenças cardiovasculares. *Arg. Ciênc. Saúde Unipar*, **2007**, 11(3), 225-233.

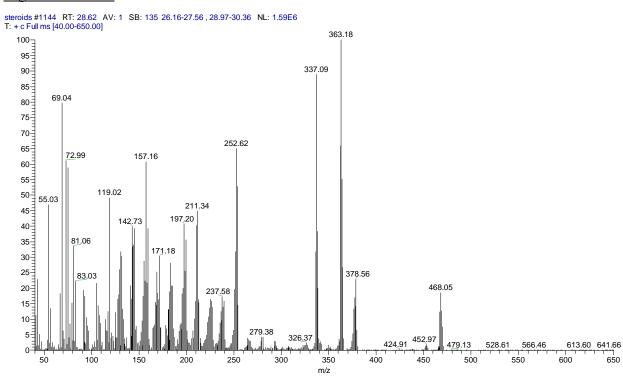
Soares, M. G. M. *Peixes de lagos do Médio Rio Solimões*, 2ª ed., Instituto I-piatam: Manaus, 2008, 160 p.

Ulbricht, T. L. V.; Southgate, D. A. T. Coronary heart Disease: seven dietary factors. *Lancet*, **1991**, 338(8773), 985-992 p.

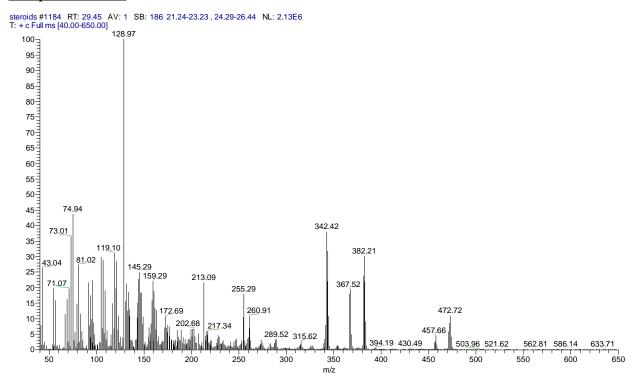
Val, A. L.; Almeida-Val, V. M. F. de. *Fishes of the amazon and their environment-physiological and biochemical aspects*. 1995. Springer-Verlag Berlin Heidelberg New york-Zoophysiology volume 32- INPA.

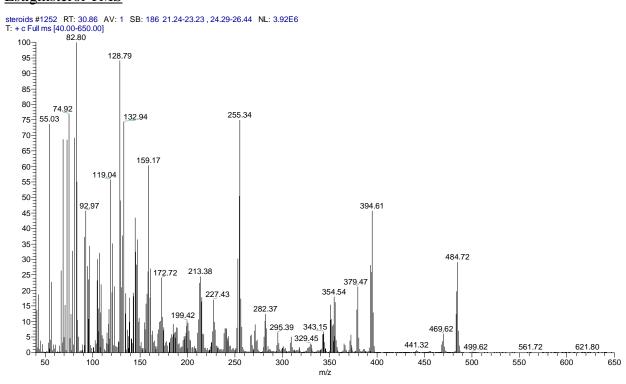

Vetter, W.; Thurnhofer, S. Analysis of fatty acids by mass spectrometry in the selected ion monitoring mode. *Lipid technology*, **2007**, 19(8).

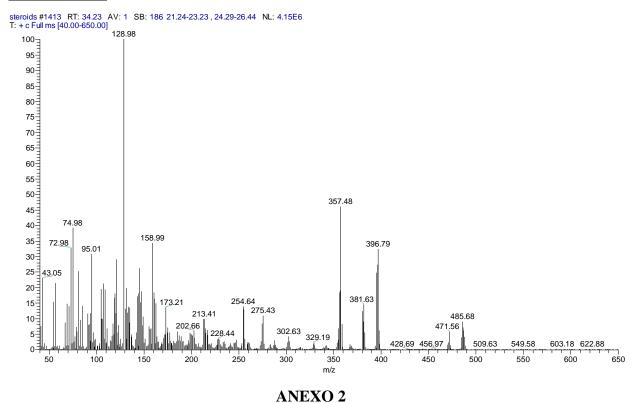
Voet, D.; Voet, J. G. Biochemistry. 4th edition, John Wiley & Sons/EUA . p. 386-393. 2011.


ANEXO 1

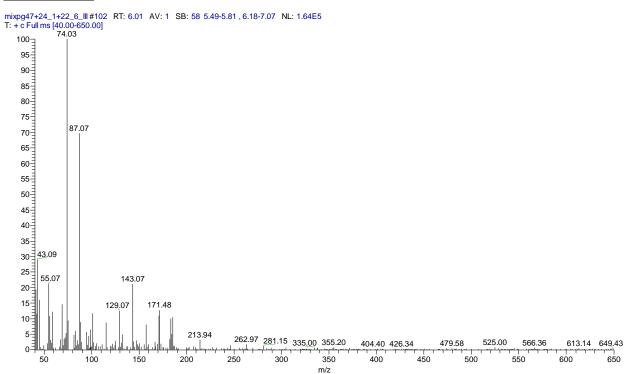
Espectros de massas dos tempos de retenção do cromatograma obtido da análise da mistura de padrões comerciais esteróides disponíveis.


Colesterol TMS

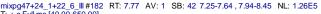

Ergoesterol TMS

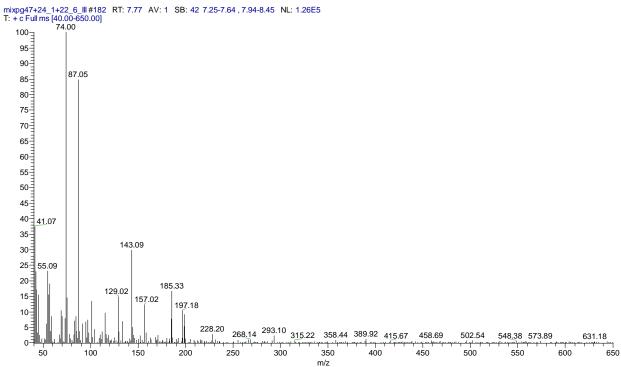

Campesterol TMS

Estigmsterol TMS

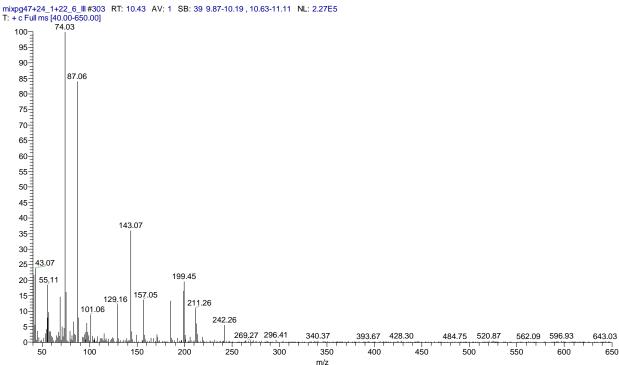


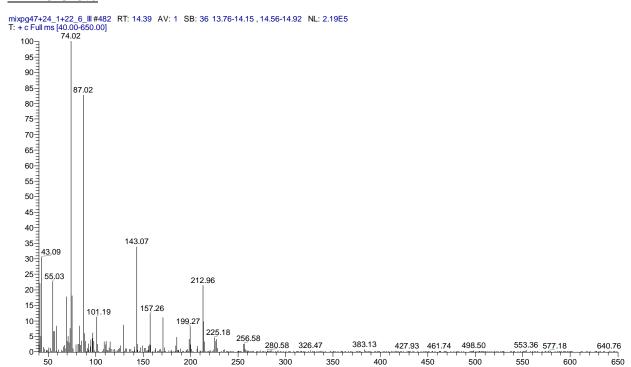
Sitosterol TMS



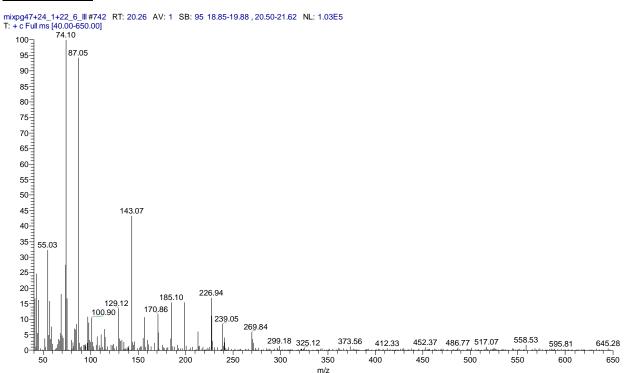

Espectros de massas dos tempos de retenção do cromatograma obtido da análise da mistura de padrões de ésteres metílicos de ácidos graxos.

EMAG C12:0

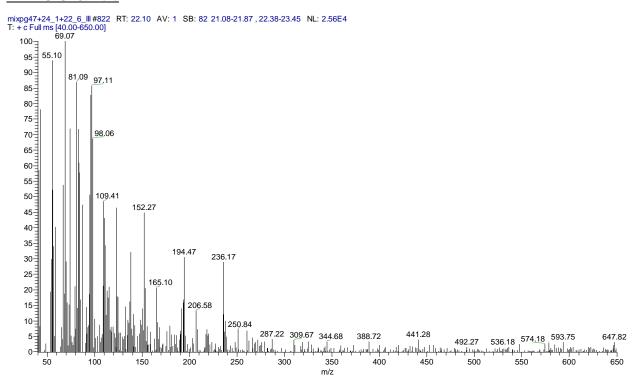

EMAG C13:0



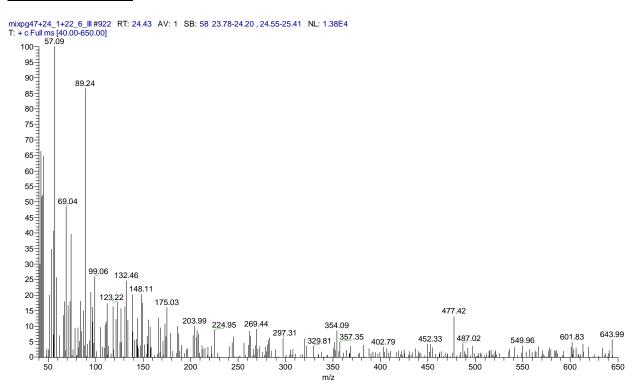
EMAG C14:0



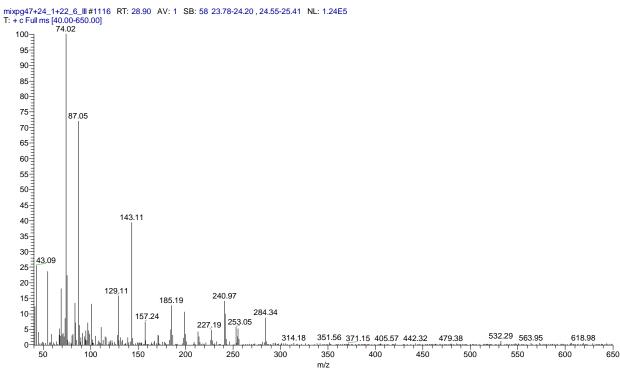
EMAG C15:0



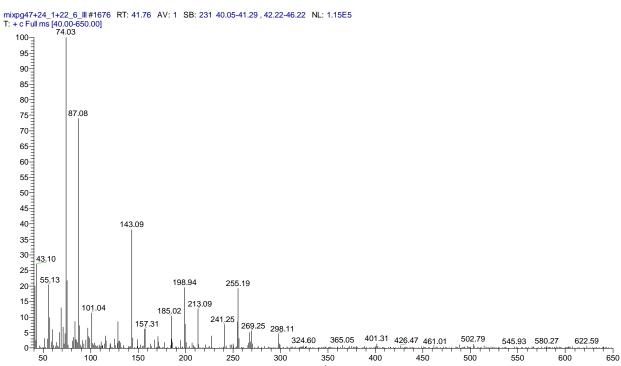
m/z

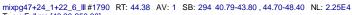

EMAG C16:0

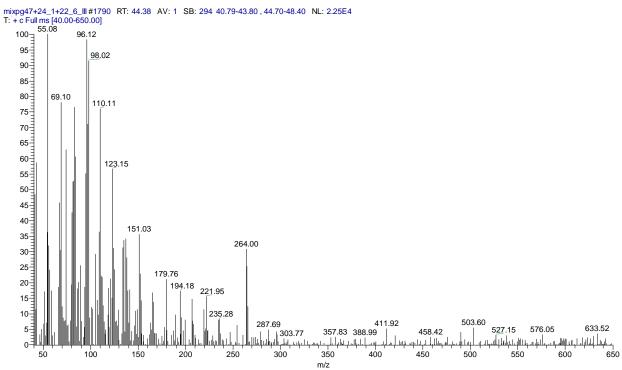
EMAG C16:1 cis

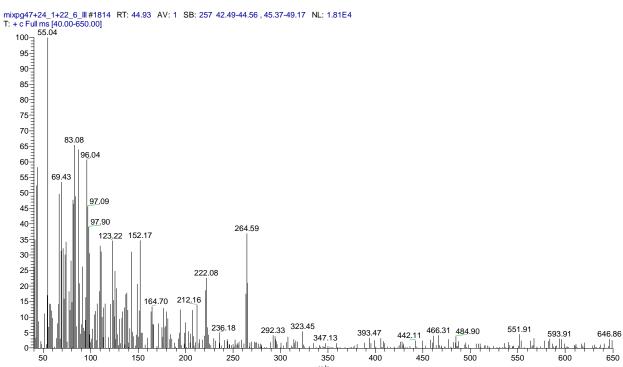


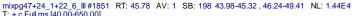
EMAG C16:1 trans

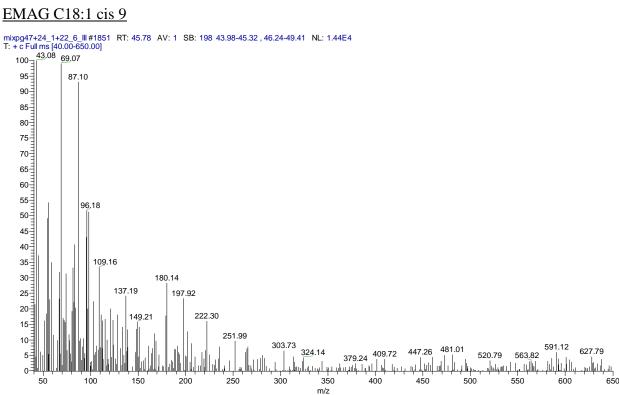

EMAG C17:0



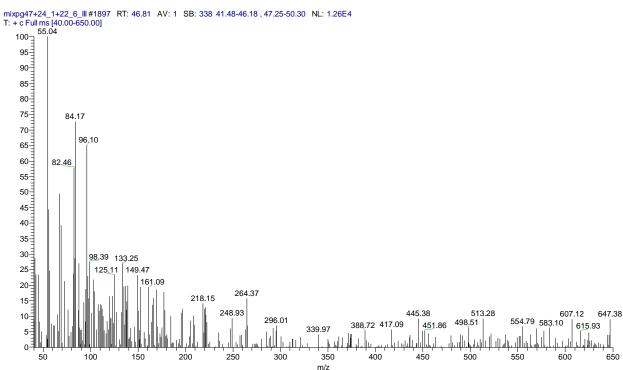

EMAG C18:0

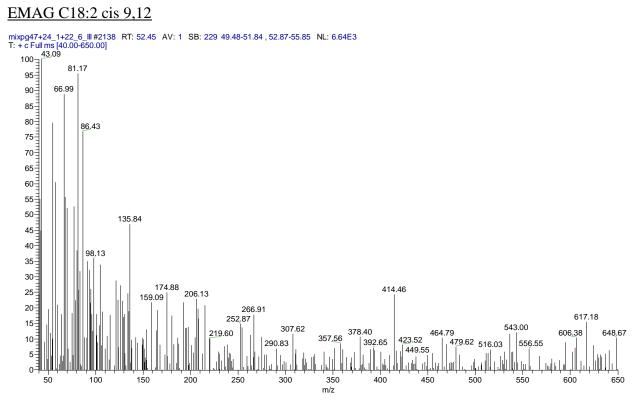

EMAG C18:1 cis 12

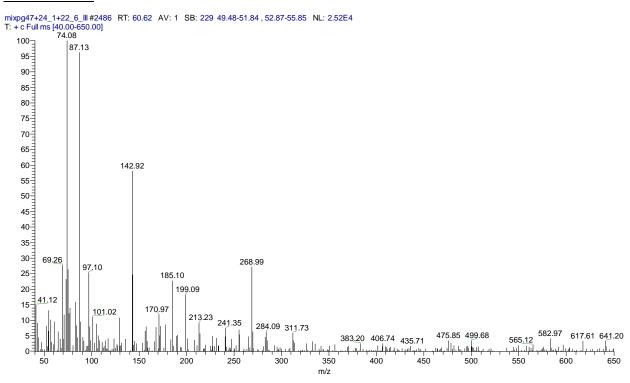


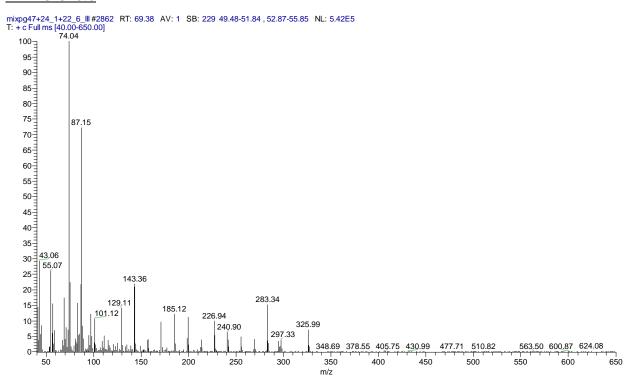


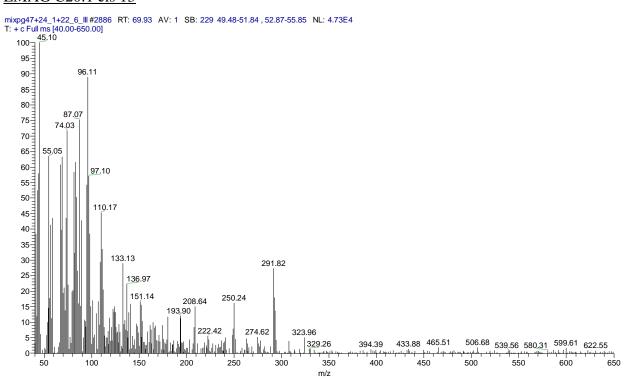
EMAG C18:1 cis 11

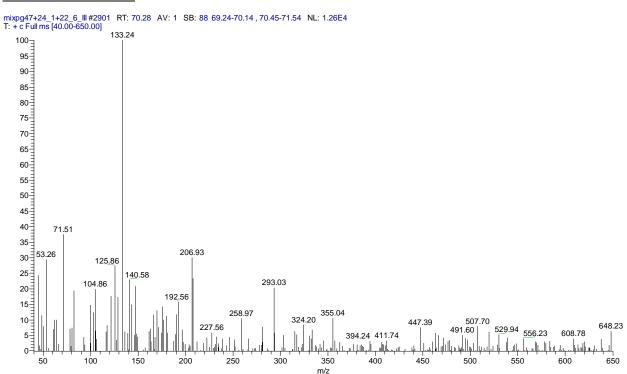


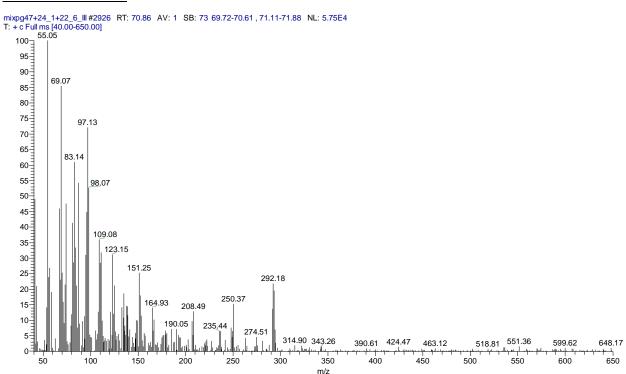



EMAG C18:1 cis 6

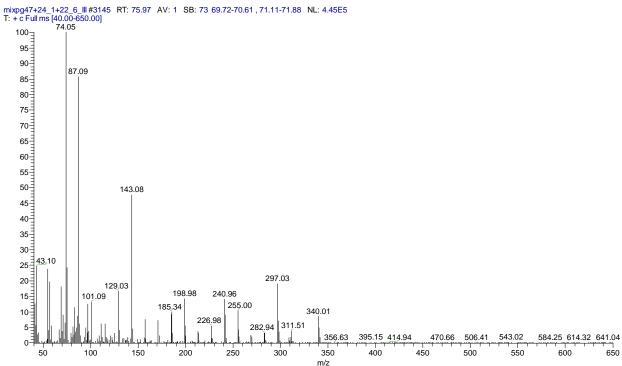



EMAG C19:0

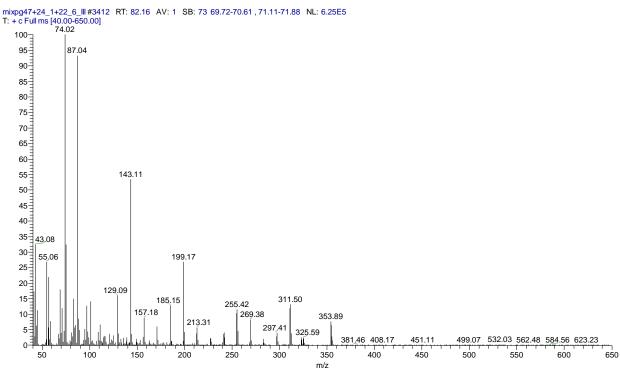

EMAG C20:0

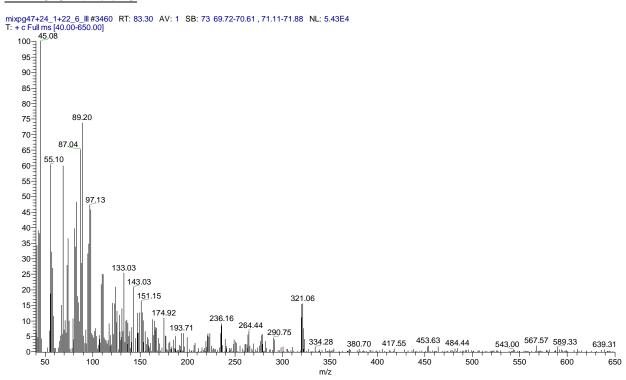

EMAG C20:1 cis 13

EMAG C20:1 cis 11

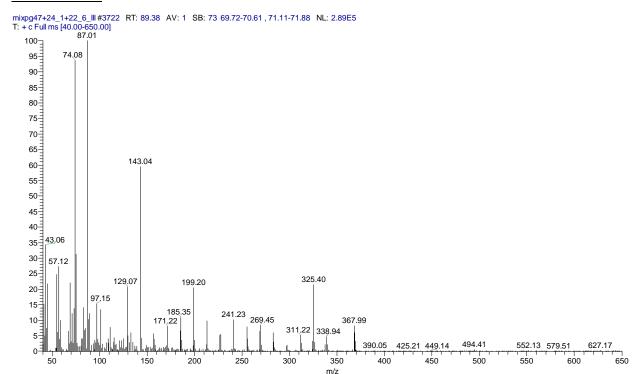


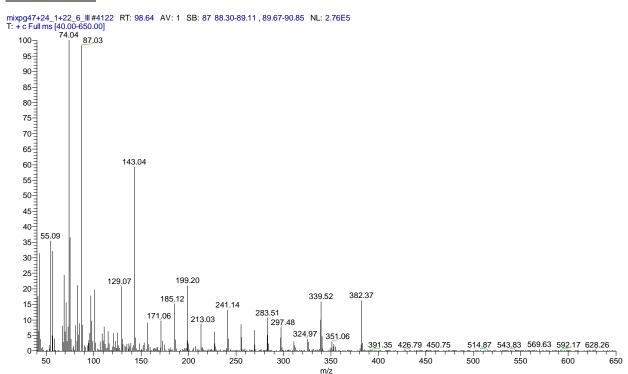
EMAG C20:1 cis 8

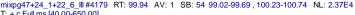

EMAG C21:0

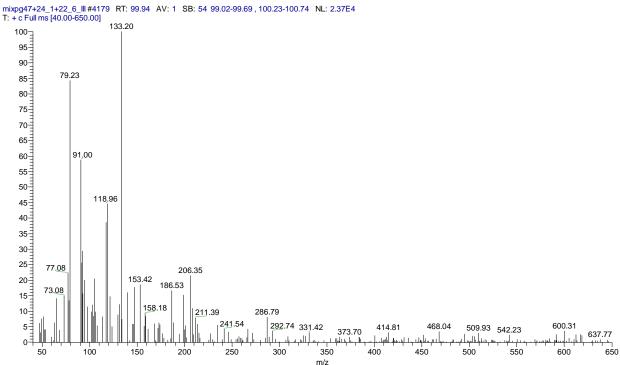


EMAG C22:0

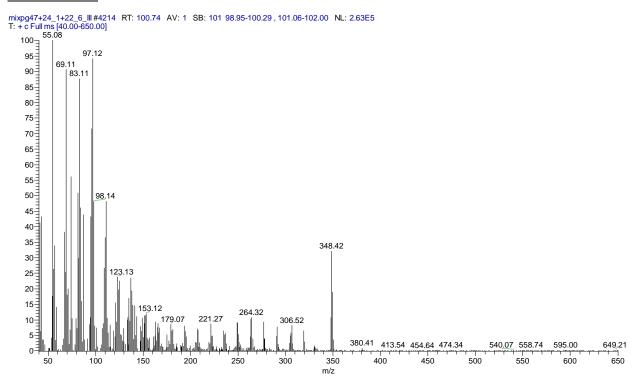



EMAG C22:1 cis 13


EMAG C23:0



EMAG C24:0



EMAG C22:6

EMAG C24:1

