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O cientista não é o homem que fornece as verdadeiras respostas;

é quem faz as verdadeiras perguntas.

Claude Levi Strauss.



Resumo

Máquinas de busca estão entre as principais formas de se obter informações na internet, recebendo
milhões de consultas diárias. Este volume avantajado de consultas gera uma considerável carga
nos processadores de consultas das máquinas de busca, que devem não apenas se preocupar
com a qualidade da resposta final recebida pelos usuários, mas também com a latência desta
consulta, já que uma demora excessiva no tempo de resposta pode prejudicar a experiência de
seus usuários.

Nos últimos anos tem havido um considerável esforço de pesquisa na aplicação de técnicas
de aprendizado de máquina durante o processamento de consultas, objetivando-se principalmente
um aumento na qualidade final de suas respostas. Nesta tese estudamos a aplicação de técnicas de
aprendizagem de máquina durante a geração de ı́ndices, ao invés de aplicá-las ao processamento
de consultas, abrindo portanto uma nova frente para a aplicação de técnicas de aprendizagem de
máquina em sistemas de busca. Dentro do estudo, propomos duas técnicas para a aplicação de
aprendizado de máquina na indexação de documentos em máquinas de busca, mostrando com
isso que há espaço para melhorar a indexação com o uso dessas técnicas.

A vantagem de tal abordagem é que, como esse processamento é feito antes das consultas
serem feitas à maquina de busca, independente de quão custoso computacionalmente seja este
processo, isto não refletirá diretamente no tempo de processamento de consultas. Propomos aqui
duas técnicas: LePrEF, uma técnica de fusão de evidências em tempo de indexação que tem
como objetivo a melhoria do desempenho de máquinas de busca durante o processamento de
consultas, por meio da geração de ı́ndices que codificam melhor a importância de cada termo em
cada documento, e uma técnica de detecção de termos frasais (os sintagmas), com o objetivo de
melhorar a qualidade das respostas obtidas por elas.

A técnica LePrEF realiza a fusão de fontes de evidência de relevância em tempo de indexação
utilizando para tanto aprendizagem de máquina. A necessidade da fusão de evidências no
processamento de consultas deriva do fato de que sistemas de busca em geral utilizam diversas
fontes de evidência para computar suas respostas, tais como o texto das páginas web, o texto dos
apontadores recebidos por cada página, métodos de análise de apontadores como o PageRank,
dentre muitos outros. Porém, o acréscimo de novas fontes de evidência leva também a novos
custos de processamento. Isto, aliado ao constante crescimento na quantidade de conteúdo



presente na Web, leva a um sempre crescente aumento na carga de processamento feita pelos
processadores de consultas. Desta forma, qualquer abordagem que leve à uma melhoria na
eficiência no processamento de consultas pode ser considerada essencial, bem como estratégias
que levem a um aumento na qualidade sem contudo levar a aumento nos custos de processamento.

Uma das principais desvantagens do uso de múltiplas fontes de evidência é que, nas aborda-
gens tradicionais, cada uma delas é processada individualmente, para depois suas informações
serem fundidas em um único valor durante o processamento das consultas. Apesar da abor-
dagem levar a uma qualidade satisfatória, ela também leva a um grande aumento no tempo de
processamento. Nesta tese propomos uma abordagem para fazer a fusão de evidências durante a
indexação, diminuindo a carga extra adicionada pelas múltiplas evidências no processamento de
consultas.

Nesta tese também é proposto um novo método para adicionar bigramas selecionados ao
ı́ndice com objetivo de melhorar a qualidade das respostas às consultas, sem contudo levar
a um aumento no custo de processamento. Para tanto, propusemos um método que utiliza
aprendizagem de máquina para a detecção automática de termos frasais, que são pares de termos
que, quando co-ocorrendo, possuem um significado especı́fico diverso dos termos que o formam.

Avaliamos também o impacto que o uso em conjunto das duas técnicas propostas teria sobre
um sistema de busca, avaliando o impacto que estas duas abordagens podem ter não somente
na eficiência do processamento de consultas, mas também na sua qualidade de resposta. Os
resultamos obtidos indicam que a nova frente para o uso de técnicas de aprendizagem de máquina
em sistemas de busca é bastante promissora.
Palavras Chaves: Aprendizado de Máquina, Maquina de Busca, Indexação
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na Geração de Índices para Sistemas de Busca

December 20, 2012

Abstract

Search Engines are among the main methods of obtaining information on the Web,

receiving millions of queries per day. Not only is this volume large, but also the number

of documents present in their datasets is of a very large order of magnitude, in the order of

billions of documents. These search engines often use a number of data indexing techniques

in order to not only achieve high quality answers, but also achieve them with as little a

computational cost as possible.

Recently, there has been an ongoing effort in applying machine learning techniques in

query processing, usually aiming at enhancing the quality of the results. In this thesis, we

study two applications of machine learning techniques not at the query processing stages,

but at indexing time.

In particular, we propose two techniques to introduce machine learning in the indexing

stages of search engines: LePrEF, a learning to rank technique that fuses sources of relevance

evidence during indexing time, aiming at reducing the query processing load by performing

evidence fusion during indexing time; and a technique to detect pairs of terms that, when

present side-by-side, compound an specific meaning, which we call in this thesis phrasal

terms. We then use these phrasal terms to enhance the document representation present in

the index of search engines, with the objective of improving the final result answer.

1
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We also evaluated the impact of applying both techniques to a search system. Experi-

mental results indicate that there is a synergy with them, leading to the best overall results

present in our experiments. These results are a strong indication that the use of machine

learning to enhance the indexing of search engine datasets is indeed very promising, and a

possible strong research venue.



Chapter 1

Introduction

Nowadays, search engines represent the main tool to locate information on the Web, receiving

millions of daily queries. For instance, comScore1 measured that, when considering only U.S.

users, Google Search received 11.3 billion queries in August of 2012, an average of about 364

million daily queries.

Two factors stand out prominently regarding the satisfaction of search engine users (Al-

Maskari and Sanderson, 2010): the quality of search results and the time needed to fulfill it.

While initially it could be arguable that all that matters is the final quality of the results, users

would probably replace a search engine that yields good answers but with an elevated latency for

one that has slightly worse results but remarkably faster. Further, more efficient systems may

also reduce the costs for processing queries, which is also an important factor for a search engine

company.

Besides the large volume of received queries, another important factor in search tasks is the

growing size of their datasets. The Web Site www.worldwidewebsize.com has estimated
1www.comscore.com
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1. INTRODUCTION 4

that in October 2012 Google2 had about 40 billion pages present in its index. Due to this

extremely large number of pages, even the most simple tasks, when applied to the whole dataset,

can lead to potentially large computational costs if not properly optimized. Not only that, but

this abundance of information may also introduce new challenges when trying to differentiate

documents that satisfy users needs from the ones that do not.

This massive growth of the dataset size, added to the large number of queries daily submitted

to modern search engines, constitute a strong evidence that efficiency is one of the major concerns

when designing search engines, besides the quality of the answer provided to its users.

Regarding quality issues, a very popular approach for processing queries on search engines

is to adopt Machine Learning methods. These methods can be defined as a body of techniques

whose main objective is to learn patterns present in data provided as input (Baeza-Yates and

Ribeiro-Neto, 1999). In case of search engines, machine learning techniques are usually adopted

as techniques for learning to rank documents given a query. This learning process consists in

taking examples showing how the documents should be ranked given a query, which is known as

training data, and then derive ranking methods that can be applied to new queries.

One of the main advantages of using Machine Learning methods is that you can, to some

extent, affirm that those methods are data collection agnostic, i.e., since the method is reliant on

patterns present in the training data, it will, a priori, be adapted to particularities of the scenario

where it is being applied.

In this thesis, we are interested in applying learning techniques at the indexing stage of search

engine database construction. We present two machine learning applications to enhance the

indexing phase of search engines, expecting to enhance the computational efficiency and final

quality of the results obtained. One approach is based on using Machine Learning to perform
2www.google.com
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evidence fusion at indexing time, and the other is to use machine learning to detect, among all

the bigrams that co-occur in text documents, those which have a specific meaning, in order to

use them to enhance search quality. We also present how both methods synergize with each

other, leading to a broader vision on how the contributions present in this thesis can push forward

search technology.

Our technique to perform evidence fusion at indexing time can be seen as a new indexing

paradigm. Search systems usually adopt several distinct sources of relevance evidence to compute

their final ranking. Examples of these sources of evidence are: Web link graph analysis, the use

of the anchor text of the received links of a Web page, their HTML structure, such as titles and

headings, URL tokenization, among many others.

The use of these sources and new ones that are continually proposed in literature leads to

a problem: how to leverage the use of these different sources in harmony, in such a way that

the best possible answer ranking is obtained for each query. Learning to rank techniques are

among the most successful approaches to solve this problem. Examples of such techniques are

SVM Rank (Joachims, 2002), RankBoost (Freund et al., 2003) and Genetic Programming based

methods (de Almeida et al., 2007, Silva et al., 2009).

Learning to rank techniques are adopted in literature to fuse evidences at query processing

time. However, the addition of new sources of relevance evidence to search engines leads to

an unwanted collateral effect: several new processing costs are added to query processing due

to this new information added in the process. Considering the steady growth of the Web, both

in content and in number of users, it is clear that not only the quality of the answers, but also

computational efficiency, are crucial aspects in search engine design.

We propose and study a new method to deal with this multiple source of relevance evidence,

that raises the overall system computational efficiency while keeping a similar final quality of
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results, called LePrEF (Learning to Pre-compute Evidence Fusion). It aims at combining several

distinct sources of relevance evidence in a unique, unified term impact (UTI) at indexing time.

This, as shown in our experiments, leads to a significant decrease in the overhead caused by

these new sources, effectively reducing query processing times.

In order to compute those UTIs, we proposed to use a Genetic Programming (GP) approach.

As experiments show, GP (when using a special individual selection method also proposed in

this work) can achieve results better than the current state-of-the-art Learn to Rank methods in

Web search. The use of LePrEF with GP, besides achieving a strong final result quality also as

shown in empirical experiments, lead to a significant diminishing in query response times and an

increase in throughput. The discussion about LePrEF, including all experiments performed thus

far, are presented in chapter 3.

This new proposed fusion technique has a disadvantage: since each submitted query can not

be known beforehand, the unified impact is computed for each term independently and at query

time possible relationships between the query terms are disregarded. However, there has been an

effort in the past few years to find ways to introduce term relationships in the document as a new

source of relevance evidence, which led to significant results. Due to this deficiency of LePrEF,

we also proposed a new learning to index technique to add co-occurrence information in search

systems at indexing time.

This machine learning technique aims at automatically detecting pairs of terms that have

sentence function of phrasal terms in text documents. Phrasal terms are sequences of words

that function as a single concept, such as phrasal nouns, verbs, adjectives and adverbs. Thus,

phrasal terms are ordered sequences of terms with specific meanings, which might be totally

distinct to the meaning of its individual compounding words. Examples of phrasal terms are “hot

dog”,“look after”, “artificial intelligence”, etc.
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The task of finding phrasal terms can lead to advantages in various applications related to

natural text processing, such as classification, text search and keyword selection (tau Yih et al.,

2006). The main objective of identifying phrasal terms and indexing them is to better represent

documents indexed by the search systems, taking into consideration the relationships between the

words. Terms can be part of compositions, creating new expressions with completely different

meanings from those of the individual words, leading to possible losses of information if these

compositions are disregarded. A previous knowledge of which sets of words have a specific

meaning when placed together in order can be used in various practical text-based application

scenarios, possibly enriching the overall quality of such tasks.

The enrichment of traditional IR methods is an good example of the application of phrasal

term detection methods. Most traditional IR models represent textual information as a “bag-

of-words”, i.e., a set of completely independent terms (Baeza-Yates and Ribeiro-Neto, 1999),

disregarding the order which the words appear in the documents. While that approach achieved

somewhat good results, it is clear that considering the words present in a text document as

completely independent of each other is not a faithful representation of their relationships. Sets

of words can be part of larger compositions, giving birth to different expressions with their own

meanings, and ignoring this can lead to errors due to possible ambiguities.

Thus, in this thesis, we also proposed a method to automatically detect such phrasal terms in

text collections, and measure their impact on search with the Vector Space Model(VSM) (Baeza-

Yates and Ribeiro-Neto, 1999). To do so, we deployed a supervised machine learning method,

Support Vector Machines (Joachims, 2002) in order to automatically detect the meaningful

phrasal terms. Experiments presented in this work show that the precision achieved by our

method is up to 94%, and up to 36% of improvement in search quality, when measured by

MAP. These results and the overall discussion about our method and its results are presented in
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Chapter 4.

Finally, we study the impact of applying the two applications of machine learning together in

search systems, thus creating an index that contains phrasal terms and adopts the evidence fusion

strategy proposed by us. The results of experiments combining the two techniques indicate that

we can reach high quality results while keeping the computational costs fair smaller than the ones

obtained by previous efforts of applying machine learning to search systems at query processing

times. These results also indicate that the new alternative of applying machine learning methods

at indexing times is a promising approach, opening opportunities for future research in this area.

1.1 Contributions

Most of the research done using Machine Learning to enhance search tasks is focused on

enhancing Query Processing directly, for instance (Pôssas et al., 2005) by applying Learning to

Rank at query processing times or learning meaningful bigrams and using them to modify queries

and the ranking also at query processing times. In this thesis we propose two new techniques

aiming at enhancing search engines that are deployed and affect the indexing process, which is

mostly unheard of in the literature.

One of the proposed Machine Learning methods is LePrEF, a method to create Unified Term

Impacts (UTIs) during indexing time and use these UTIs to compute the ranking on search

engines. This is done by applying a Learning to Rank algorithm (Genetic Programming) to learn

the best function to fuse all different sources of relevance evidence available at indexing time in

a fashion that, when used in query processing, yields a top quality ranking.

While the concept of indexing the impact of a term instead of its raw frequency is not new,

the notion of using a single importance value to represents a large body of sources of relevance
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evidence was not previously proposed in the literature, being in itself a new concept proposed in

this thesis.

We also take this approach one step further in our method, not only condensing several

sources of evidence into a single unified term impact, which leads to smaller indexes, but

in practice performing most of the Learning to Rank method during the indexing of the text

collection, instead of during query processing, leading to further performance gains. Further,

the achieved quality results of this evidence fusion was also competitive when applied to the

LETOR dataset, and even outperformed traditional Learning to Rank approaches when applied

to a training set with a larger number of evaluated documents.

We also proposed a modification in the traditional approach to use Genetic Programming for

Learning to Rank: we modified the best candidate selection stage present in GP by performing

many runs on the same training data with different random seeds, instead of single runs as usual.

We then chose the candidate with the best results in the training and validation sets as our best

individual. This led to visible gains in quality of results when using learning to rank with GP,

since the variation of results observed due to different random seeds was not negligible. This

GP variation outperformed all other learning to rank methods considered as state-of-the-art. We

submitted these results to the LETOR dataset managers Liu et al. (2007), and they stated that

these results will be made available to other researchers as one of the baseline methods available

in LETOR to compare learning to rank techniques.

The LePrEF method and its experimental results were published in the Journal of the Ameri-

can Society for Information Science and Technology (JASIST), in the paper entitled: ”LePrEF:

Learn to Pre-Compute Evidence Fusion for Efficient Query Evaluation” (da Costa Carvalho

et al., 2012).

Besides LePrEF, we also proposed a machine learning method to detect meaningful phrasal
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terms in the text collection. The proposed method uses co-occurrence information to infer which

of the bigrams present in a text collection are phrasal terms, i. e., have actual meaning when in a

composition.

One of the main advantages of our detection method is that it is grammar independent, since

it uses only co-occurrence information. Our experiments showed that it achieved precision in the

detection in varied domains of documents up to 94%, such as Web pages and newspaper articles,

and it is not unfathomable that such performance could repeat itself when applying it to datasets

in different languages.

Not only we presented experiments showing that the precision and recall of this detection

is remarkable, but we also presented experiments showing how the inclusion of phrasal term

information in search indexes led to better search results. Gains in MAP were up to 23% when

considering only the queries that have phrasal terms. The method and its experimental evaluation

results were published by the Journal of Information and Data Management (JIDM), in the paper

entitled ”Using Statistical Features to Find Phrasal Terms in Text Collections”.

We also performed experiments showing the overall impact of our two machine learning

methods when deployed together. We believe that such experiments are important to show the

overall impact of both techniques proposed in this doctorate may have when deployed together

in a single search system, to give a better understanding of the extent that the contributions of

this work might have in real systems.

The remainder of this thesis is structured as follows: In chapter 2, we present basic concepts

and related works to the subject of this thesis. In chapter 3, we present LePrEF, our proposed

method to perform evidence fusion during indexing time. In chapter 4, we present a method

to automatically detect meaningful bigrams in text corporas, and evaluated its impact on text

search. In chapter 5, we further expand our investigation to evaluate the impact of phrasal terms
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in multiple evidence scenarios, and its possible improvements in the results obtained by LePrEF.

In chapter 6, we present our conclusions and future research directions.



Chapter 2

Basic Concepts and Related Work

In this Chapter, we present some basic concepts and previous work that are related to research

presented in this thesis, in order to facilitate the understanding of readers that are less well

versed in the scientific literature pertaining the subjects presented. For a clearer presentation, we

divide this Chapter into the following topics: In Section 2.1, we present an overview of machine

learning methods. In Section 2.2, we present the literature revision related to pre-computed

impacts for evidence fusion in search engine indexes. In Section 2.3 we present the most recent

and important previous work pertaining the detection and application of the use of meaningful

phrasal terms in information retrieval tasks.

2.1 Machine Learning

Machine learning is the name given to a collection of computational techniques that intend to

infer information based on patterns found in data. Basically, a machine learning (ML) algorithm

receives data as input and can yield patterns and predictions based on the features of underlying

mechanisms that generated this data, being, in a more rough sense, an algorithm that learns.

12
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In a broader view, ML algorithms aim at creating a generic model from samples, i.e., to apply

the patterns that were learned in data in new examples, not different from how a human being

learns from experience.

In regard to its learning phase, machine learning techniques can be divided into three

types (Baeza-Yates and Ribeiro-Neto, 1999): (1) Supervised learning, where the learning

function requires training data as input, which is usually labelled by human specialists, (2)

Unsupervised learning, which are a set of algorithms that do not need human labelled data, but

are not plausible in all learning situation, and (3) Semi-supervised learning, which combines

a small amount of labeled data with a larger amount of unlabeled data to improve predictions.

In this Thesis, we deployed supervised techniques, which we believe are more suitable to the

problems at hand (Further discussion is present in Chapters 3 and 4).

In this thesis we are interested in two specific applications of machine learning: classification

tasks and learning to rank tasks (Baeza-Yates and Ribeiro-Neto, 1999, Witten and Frank, 2000).

In classification tasks, the main objective is to, given a set of user defined classes, to use a

number of features of the objects being classified to distinguish which class each probably

belongs to. Roughly speaking, the most important tasks when designing supervised machine

learning techniques is obtaining the manually labeled training data and proposing which features

are more likely to distinguish which class does an element belong to.

In learning to rank tasks, the main objective is not to classify the elements into previously

defined classes, but to provide an ordering for them. There are two main approaches to this

problem: (1) using pairwise comparisons between the ranked elements in order to assess the

ranking quality, as is done by methods such as RankSVM and RankBoost and (2) generating

scores for each element and then ordering them by it, as is done with Genetic Programming.

In this thesis we deployed two machine learning approaches, according to the problem that
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we were interested to solve: Support Vector Machines for the problem of classifying bigrams

as phrasal terms or not, and Genetic Programming to create the unified term impact (UTI),

which is then used to rank search results. While it might seem questionable why we used those

methods instead of others present in the literature, the experimental results obtained and our own

preliminary experiments showed that, among the best Machine Learning techniques, it made

little difference if one was chosen instead of another, achieving similar final results.

2.2 Pre-Computed impacts

In our work we use genetic programming (GP) as a tool for learning unified pre-computed

impacts from several distinct sources of relevance evidence. Several previous work in litera-

ture (de Almeida et al., 2007, Fan et al., 2004a,b, Silva et al., 2009, Trotman, 2005, yuan Yeh

et al., 2007) apply GP to discover ranking functions. For instance, success has been reported in

applying GP to find ranking functions optimized to specific queries in the information routing

task (Fan et al., 2004c).

In this work we also use GP as the learning method, but instead of applying the learning to

rank method at query processing time, we apply it at indexing time to combine indexes related

to several sources of evidence into a single index. To achieve such a goal, we use GP to learn

weights for each occurrence of a term in a document, as is done by Fan et al (Fan et al., 2004b),

but using the learning process to compute a unified impact and store it in inverted lists at indexing

time, instead of using it when processing queries. We investigate the impact of our approach

both in effectiveness and efficiency of a search engine, presenting also a discussion about future

research related to this topic.

We have chosen to adopt GP instead of other machine learning methods to pre-compute
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term impacts because: (i) GP has proven to be a quite competitive machine learning approach

for ranking results in search systems for textual databases (de Almeida et al., 2007, Silva et al.,

2009). (ii) It produces as a result functions that compute a numeric value. Such functions can

thus be directly applied to compute the term entry impacts. Further, we also show how to easily

adapt such functions produced by GP to scale the pre-computed scores to integer values. Notice

however that other machine learning approaches, such as the method applied in Adarank (Xu

and Li, 2007), could be adopted as the basis for learn to pre-compute impact methods.

Besides GP, other learning techniques have been applied successfully to information retrieval

problems. Several previous research articles aiming at learning how to rank in search engines

have been deployed in the last decade (de Almeida et al., 2007, Fan et al., 2004a, Freund et al.,

2003, Joachims, 2002, Silva et al., 2009, Trotman, 2005, yuan Yeh et al., 2007). The common

feature in these works is that they try to learn how to generate an optimum ranking for any

possible new query, given a set of features and training data composed by labels representing the

importance of a document with respect to a query.

The work presented by Joachims (Joachims, 2002) shows how to learn good ranking functions

by using click-through information from the results that have been returned to the user. This

paper presents a SVM algorithm to perform the ranking task instead of the classical classification

problem, where it is applied. Boost strategies, like RankBoost (Freund et al., 2003) have

presented good results and shown that the combination of multiple weak ranks can lead to

a highly accurate ranking. In all mentioned cases, the learning function is applied at query

processing time.

A benchmark dataset to facilitate a fair comparison between different learn to rank algorithms

was proposed in (Liu et al., 2007). This dataset is referred as LETOR. This benchmark also

describes a set of features to be used for learning to rank and the quality results obtained by some
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algorithms. The list of the results obtained by the best methods over the same set of collections

and features, expressed through different performance measures, is made available, making it

easier to compare a new approach with the state-of-the-art rank approaches. Experiments were

made with two of the most well-known learn to rank methods at the time, RankBoost (Freund

et al., 2003) and RankSVM (Joachims, 2002). Since them, many new versions of the database

and baselines were made available, and more recent versions added experiments with Listnet (Xia

et al., 2008) and Adarank (Xu and Li, 2007). All those methods results are publicly available

and are normally used as baselines when using LETOR.

Previous learn to rank methods almost always focus solely on the effectiveness (quality)

issues, ignoring the efficiency (computational cost) implications of their uses in actual search

engines (Wang et al., 2010). Thus, Wang et al. (Wang et al., 2010) proposed a modification in

WSD (Bendersky et al., 2010), a previously proposed learn to rank method, to add a feature

pruning threshold. This is achieved through the MEET metric, which is a trade-off between

computational cost and quality. LePrEF, on the other hand, proposes a completely distinct

optimization strategy, since it pre-processes all features at indexing time, obtaining a single

feature index. The results on (Wang et al., 2010) reinforce our intuition that a large number of

processed features (sources of relevance evidence) has a significant efficiency impact in search

engines.

In a recent work, Cambazoglu et al. (Cambazoglu et al., 2010) proposed optimization

strategies based on additive ensembles that are specific to process queries when using learning to

rank methods. The authors present a case study using RankBoost. Their proposal is to perform

short-circuiting score computations in additive learning systems. The strategies are evaluated

over a state-of-the-art machine learning system and a large, real-life query log, obtained from

Yahoo!. The method we propose here can take advantage of their proposal to produce fast early
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termination ranking strategies.

The use of simpler, pre-computed impacts of terms in documents in order to reduce computa-

tional costs was proposed by Anh et al. (Anh and Moffat, 2002), where instead of storing term

frequency and other data necessary to the vector-space model (VSM) computation, the authors

proposed to store the pre-computed VSM impact (quantized and scaled to integer values between

1 and 32) in order to reduce the number of arithmetic computations during query processing.

Later, Anh et al. proposed a new pre-computed impact (Anh and Moffat, 2005), defining this

impact qualitatively rather than quantitatively, in a document-centric approach, achieving better

retrieval effectiveness levels and more pronunciated computational gains, due to the use of a

smaller (between 1 and 8) scale for their impacts. In a third research effort, Anh et al (Anh et al.,

2008) also investigated the possibility of pre-computing scores when using BM25 as the ranking

method.

Our proposed method of learning to index, LePrEF, can be considered as taking this approach

to the next level. It uses machine learning to pre-compute impacts, providing a framework to

pre-compute impact with any set of evidences available at indexing time. Further, it calculates

an impact not only for the document text and its fields, but for all possible sources of relevance

evidence available at indexing time.

2.3 Phrasal Terms

Zhang et al. (Zhang et al., 2007) tackled the problem of noun phrase detection and its possible

application to enhancing search engine queries. Noun phrases can be considered a subset of

phrasal terms, since phrasal terms do not necessarily have to be nouns. The method proposed by
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Zhang uses a number of different datasets, such as Wikipedia1 and WordNet (Miller et al., 1990),

natural language parsers and Google search2 as sources of evidence, combined in order to detect

noun phrases. This work provides good evidence that a subset of phrasal terms (noun phrases),

can lead to improvements in text search. However, while the objective of this work is similar

to ours (besides the broader spectrum of phrasal terms in comparison to noun phrases), the use

of external databases and natural language processing techniques make the method unsuitable

for many information retrieval scenarios, due to its high computational cost and dependency

from external sources. In contrast, the method we propose in this chapter relies only on the text

collection itself to find phrasal terms, and this processing can be done offline at indexing time,

i.e., prior to the actual use of the text collection.

Mladenik et al. (Mladenic and Grobelnik, 1998) made experiments using n-grams (up to

5-grams) to improve the performance of a Naive Bayes classifier. The authors found out that

the highest improvement was achieved when adding 2-grams to the classification, and also that

n-grams with n larger than 3 actually had no positive influence in the classification.

Tesar et al. (Tesar et al., 2006) proposed the use of 2-itemsets (selected sets of two words co-

occurring in documents) instead of bigrams (sequences of two words) to enhance classification,

and made experiments comparing the use of both with a number of feature selection techniques.

While the results achieved for both bigrams and 2-itemsets were superior to the ones achieved

when considering only unigrams, the results obtained by adding bigrams were consistently

superior to those with 2-itemsets, indicating that bigrams are a better option for classification

purposes since computing 2-itemsets is also more expensive.

Based on the assumption that the use of all the bigrams present in the pages would add noise
1www.wikipedia.com
2www.google.com



2. BASIC CONCEPTS AND RELATED WORK 19

to the categorization, Tan et al. (Tan et al., 2002) applied a feature selection method to select

only bigrams that are likely to be useful for the classification. The authors proposed an algorithm

based on the information gain metric, combined with some frequency thresholds to select these

bigrams, achieving significant gains in classification. This approach, however, is focused on

classification and can not be trivially adapted to be used in other information retrieval tasks, in

contrast with our method. Also, it is orthogonal to our method, since it is not interested in finding

meaningful bigrams , but simply bigrams that are good class discriminators.

Finally, it is interesting to mention that in (Ekkerman and Allan, 2003), Ekkerman et al.

claim that, up to that point, many efforts have been made to improve text categorization by the

use of bigrams, with little or no observable improvement in the classification results. He also

proposed a method to include bigrams information in the classification, based on distributional

clusters, but this method yielded statistically insignificant improvements in the quality of results.

As discussed above, subsequent works have had more success in this task.

Wang et al. (Wang et al., 2012) revisited the problem of detecting n-grams to enhance search

tasks with a different approach: Instead of first detecting the n-grams that have sense together, as

we did, and then evaluate their uses in search tasks, they have skipped this detection on simply

finding the n-grams that most probably would lead to gains in search, irregardless of its inherent

meaning. However, while our proposed phrasal term detection method was already published

over a year before the publication of the paper, even though they cite our method, no comparison

was done with it.



Chapter 3

Learn to Pre-Compute Evidence Fusion

In the last two decades, numerous research articles have been published proposing new sources

of relevance evidence to enhance search in large textual databases, such as those used by Web

search engines. Examples of these sources are the link structure of the web, the anchor text found

in web links, the text extracted from URLs, click-through data and personalized user information,

among several others. The use of these more sophisticated sources of relevance evidence, in

contrast with just using the text content of the web pages, yielded expressive quality gains in

search engine results.

A closely related research problem that has also been under intensive investigation recently

is how to best use these several sources of evidence together to enhance the search results. First

steps in this direction were to simply combine them linearly or using probabilistic models (Calado

et al., 2003). While these attempts yielded good results, soon more sophisticated approaches

arose. One of the most successful of those approaches is to adopt machine learning techniques

to automatically construct a suitable ranking model by properly combining several distinct

sources of evidence. Examples of methods that follow this learn to rank approach are SVM

Rank (Joachims, 2002), RankBoost (Freund et al., 2003) and the methods based on Genetic

20
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Programming (de Almeida et al., 2007, Silva et al., 2009).

A problem that derived from combining a large number of sources of relevance evidence to

produce a single ranking is the increase in computational costs at query processing time. This

problem gets even worse with the continuous growth in the size of the search engine document

database and its indexes, as well as the growth of the number of its users and queries posed to

it. This problem has a direct impact in the response time perceived by users, which is always a

matter of high priority.

In this work, we propose a new method for combining several distinct sources of evidence

which produces high quality ranking results while being efficient computation-wise. Our method,

called LePrEF (Learn to Pre-computed Evidence Fusion), computes a unified pre-computed

impact value for each term found in each document prior to query processing, at indexing time.

These values are indexed and later used for computing document ranking at query processing

time. By doing so, our method effectively reduces the query processing to simple additions of

such unified impact values.

The idea of adopting pre-computed impacts when indexing large textual databases has been

studied before in previous work (Anh and Moffat, 2006, Anh et al., 2008). However, as far as we

know, in this work we present the first attempt to combine learning to rank methods with the

idea of using pre-computed scores. As shown through experiments, this combination results

in a flexible pre-computed score scheme. Although we only evaluated it in this thesis with an

specific set of sources of relevance evidence available in a benchmark Web page collection,

it can easily be applied to other sets of relevance evidence available at indexing time, and to

other textual database collections. One of the drawbacks of our method is that features not

available at indexing time should be combined separately. However, its achieved quality results

are comparable to what is achieved by other learning to rank approaches, with the advantage of
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the efficiency gains that arise from the use of pre-computed impacts.

To compute unified pre-computed impacts, we deployed a Genetic Programming technique,

which has been shown to achieve very satisfactory results in traditional learn to rank tasks.

Further, using it to pre-compute impacts leads to, besides a strong rank quality, visible efficiency

advantages at query processing time even compared with simple evidence combination methods,

since it fuses all sources of evidence at indexing time.

We also present a simple alternative to transform the unified pre-computed impacts to integer

values, thus avoiding floating point operations at query processing time and the overhead in

compressing floating point numbers, in comparison to integers. We show through experiments

that when converting pre-computed impacts to integer values we can further reduce the size

of the pre-computed index by using simple and low cost compression techniques previously

proposed in literature. In order to diminish the possible negative impacts of such transformation,

we incorporate it in the training stage of our genetic programming framework, obtaining final

pre-computed impact integer values with a low loss in quality of ranking.

Our motivation to develop LePrEF comes from the observation that combining several

sources of evidence at query processing time is always an expensive task, regardless if the

combination is performed by using a simple combination method or state-of-the-art methods,

such as learn to rank. For instance, the learn to rank benchmark collection LETOR, as proposed

in (Liu et al., 2007), uses 46 features. Each feature must be fetched and in some case computed

individually to only then apply a learn to rank method. Further, each specific learn to rank

method may also incur in new computational costs. LePrEF avoids these costs by pre-computing

the fusion of evidences at indexing time.
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3.1 Pre-Computed Evidence Fusion

The LePrEF method adopts the concept of Unified Term Impact (UTI). A UTI is a single value

that represents the importance of a query term to a given document in the search engine database.

This value is produced through a fusion of all sources of relevance evidence regarding that

term-document pair at indexing time. More precisely, the set of indexes for all sources of

evidence are fused into a single inverted index containing the UTI entries.

In Figure 3.1 we contrast the traditional indexing approach (a), in which the outcome consists

of several indexes, one for each source of evidence, with the approach adopted by our method

(b), in which a single inverted index containing the UTI entries is produced as the result of fusing

all sources of evidence. Notice that, for didactic purposes, we illustrate the traditional indexing

as producing a separate index for each source of evidence in Figure3.1(a). In practice, all the

evidence information may be stored in a single global index. In any case, still the traditional

indexing process stores a separate piece of information about each individual source of evidence

in this index. Further, storing all information in a global index requires an overhead to indicate

which features are present on each index entry. In our experiments using compressed indexes,

such overhead resulted in losses both in performance and storage space.

The LePrEF method has a considerable positive impact on the processing of queries submitted

by users, since it avoids the fusion of several sources of evidence at query processing time. The

advantages of using LePrEF are even more appealing if we consider how previously proposed

learning to rank methods work: the query processing in Web search engines that use learning to

rank is usually performed in a two-phase scoring scheme (Cambazoglu et al., 2010), as illustrated

in Figure 3.2(a).

In the first phase, a candidate selector module uses a simple scoring technique for selecting a
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Figure 3.1: (a) Traditional search engine indexing processing and (b) the indexing processing
using LePrEF.

small subset of potentially relevant documents from the entire collection. The candidate selector

can, for instance, apply the BM25 algorithm to one or more sources of relevance evidence, taking

the top answers obtained to compose the candidate documents. The query processor must then

fetch information corresponding to all sources of evidence related to the candidate documents in

order to re-score these documents by using a more sophisticated learn to rank strategy. The final

ranking is determined by the document scores computed in the second phase.

As illustrated in Figure 3.2(b) our method not only can avoid this two-phase query processing,

but also can lead to an increase in query throughput by fusing the sources of evidence at indexing

time. Indeed, in our case, the final score computation is reduced to a very simple sum of the UTI

values available on the index entries for each term found in the query.
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Our experiments show that using LePrEF in a single phase results in a quite slightly smaller

quality of ranking results when compared to state-of-art machine learning approaches. However,

as also shown in the experiments, this slight diminish in quality translates into a significant

reduction in the overall computational costs of query processing.

It is important to notice that LePrEF cannot be used to fuse sources of evidence that are only

available at query processing time. This is the case, for instance, of personal information about

the preferences of each search engine user. These type of sources of evidence must be fused

by another method at query processing time, thus by the use of LePrEF in addition to a second

phase to process these evidences. However, LePrEF still yields a reduction in query processing

costs by fusing all the evidences that can be computed at indexing time, and by reducing the

costs for the first phase of query processing.

Figure 3.2: (a) Traditional query processing when using learn to rank methods, and (b) query
processing when using LePrEF.
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When using the traditional methods that fuse evidence at query processing, the computational

efforts for the ranking computation at query processing time may grow as more sources of

relevance evidence are considered, specially when these added features are also taken into

account in the selection of candidate documents. For instance, when adding any new textual

source of relevance evidence, the first phase of query processing should take such information

into account to select the set of potentially relevant documents. As a further detailed example,

suppose a fairly common scenario in which, besides the text of the body of a Web page, the text

extracted from URLs, the text of the title and the anchor text information are also used as sources

of relevance evidence. In this case, a simple score technique should also be applied to each of

these new sources of relevance evidence at the first phase of query processing, adding more

costs to query processing. Of course there are many methods to reduce the computational cost

of query processing, such as pruning (Anh and Moffat, 2006, de Moura et al., 2008) and cache

techniques (Blanco et al., 2010, Saraiva et al., 2001). However, the query processing time will

ultimately still be affected by the computation of scores provided by various sources of evidence

in both phases.

Conversely, when LePrEF is deployed, the use of pre-computed, unified term impacts (UTIs)

leads to a much simpler query processing, since it is no longer necessary to process each source of

evidence separately. This advantage results in a reduction in the number of operations performed

by the query processor since it is, in practice, dealing with a single and unified representation of

the sources of relevance evidence adopted.

The usage of UTI indexes presents two additional advantages that are worth mentioning: (1)

Most dynamic pruning techniques are developed to prune entries of a single inverted index of

term impacts (Anh and Moffat, 2006, de Moura et al., 2008, Persin et al., 1996), which would

allow the direct application of such methods to the index generated by LePrEF. When using
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multiple indexes, the pruning strategies may be less effective, since, as pointed in previous

work (de Moura et al., 2008), the set of documents with greater impact according to each

source of evidence are expected to be distinct, while most of the relevant documents are in

the intersection of these sets. When using the UTI index, we already have access to the final

impact of each term for each document regarding all sources, thus providing more accurate

information to improve the performance of pruning methods. We plan to quantify and investigate

such advantage in a future work. (2) The UTI index entries, storing a single value instead of

multiple values, lead to a smaller search index, which results in smaller seeks and overall smaller

reading times, affecting also the cache policies in cases where the index is stored in disks.

On the other hand, the usage of LePrEF has a disadvantage. The method requires a complete

new index generation to be carried out whenever a new fusion formula is generated. As the

learning to rank processes are adjusted to the collections over which they run, and considering

that the web search engine databases continuously change, there is a necessity of adjusting the

learned functions from time to time. It is important to consider, however, that this restriction

does not hinder the use of the UTI indexing strategy in practice, since the reasons for considering

a term occurrence important do not change as fast as the database changes. We consider that this

issue also requires a specific study in our future works.

As described above, the fusion of the sources of evidence for generating the UTI index ideally

requires the use of a learn to rank method. The main requirement regarding such a method is

that it should be capable of generating as output a function f that takes a set of values e1, . . . , en,

each one corresponding to a distinct source of evidence, and gives a single value u that will be

used as the UTI value.

In our work we decided to deploy a Genetic Programming (GP) learn to rank approach.

GP was adopted in our study because it is known to have a solid performance as a learn to
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rank method. Indeed, previous work using Genetic Programming for learn to rank (de Almeida

et al., 2007, Fan et al., 2004a, Silva et al., 2009) have shown that it achieves good precision and

recall levels in comparison with the state-of-the-art learn to rank methods. We provide more

insight about the quality of GP as a learn to rank method by applying it to a benchmark learn to

rank collection. In this benchmark, GP produced the best performance when compared to the

state-of-art learn to rank methods.

Additionally, the functions generated by GP can be directly applied to compute UTI values.

The application of the UTI strategy using other learning to rank methods would not be direct,

requiring an adaptation of those learning methods to produce UTI impact values as output. We

anyway plan to investigate this possibility in future works.

3.2 Computing UTI Values With GP

The Genetic Programing (GP) process adopted in LePrEF to produce the UTI index follows the

same general steps adopted by the GP process used by traditional learning to rank methods. The

main differences are in the type of function generated in each process, that is, the individuals

evolved, and in the way these individuals are evaluated. For sake of completeness, in this section

we explain how the GP process works in both methods, highlighting the differences in each case.

The general GP process is described in Listing 3.1. GP is basically an iterative process with

two phases: training (Lines 5–13) and validation (Lines 14–16). For each phase, a set of queries

and documents is selected from a distinct collection, which we call the training set and the

validation set (de Almeida et al., 2007), respectively.

The process starts with the creation of an initial random population of individuals (Line 5)

that evolves generation by generation using genetic operations (reproduction, crossover, and
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Listing 3.1: General GP process used both in learn to rank and in LePrEF
1 Let T be a training set of queries ;
2 Let V be a validation set of queries ;
3 Let Ng be the number of generations ;
4 Let Nb be the number of best individuals ;
5 P ← I n i t i a l random population of individuals ;
6 Bt ← ∅ ;
7 For each generation g of Ng generations do {
8 Ft ← ∅ ;
9 For each individual i ∈ P do

10 Ft ← Ft ∪ {g, i,fitness(i, T )} ;
11 Bt ← Bt ∪ getBestIndividuals(Nb,Ft) ;
12 P ← applyGeneticOperations(P,Ft,Bt, g) ;
13 }
14 Bv ← ∅ ;
15 For each individual i ∈ Bt do
16 Bv ← Bv ∪ {i,fitness(i,V)} ;
17 BestIndividual ← applySelectionMethod (Bt ,Bv ) ;

mutation) (Line 12). The process continues until a stopping criterion is met. In the case of

Listing 3.1, the criterion is the maximum number of generations of the evolutionary process.

In the training phase a fitness function is applied to evaluate all individuals of each generation

(Lines 9–10), so that only the fittest individuals are selected to continue evolving (Line 11).

In the case of learning to rank, each individual represents a weighting function to assign a

score to each document given a query. The fitness of an individual corresponds to the quality of

the ranking generated by the individual for each training query.

In the case of LePrEF, each individual is an evidence fusion function which is adopted to

produce a UTI value for each entry in the inverted index. The training queries are processed

using this UTI index to produce a ranking of the set of training documents. To evaluate the

fitness of each individual, in LePrEF we sum, for each term t found in the collection, the UTI

impacts of this term for each document in the collection. The scores obtained are then used to

rank the documents, and this final ranking is used to compute the fitness of each individual.

After the last generation is created, to avoid selecting individuals that work well in the training

set but do not generalize for different queries/documents (a problem known as over-fitting), the

validation phase is applied. In this phase, the fitness function is also used, but this time over the
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validation set of queries and documents (Lines 15–16). Individuals that perform the best in this

phase are selected as the final solutions (Line 17).

Individuals

An individual is represented by terminals and functions, organized in a tree structure, as shown

in Figure 3.3. Terminals, or leafs, contain information obtained from the sources of relevance

Figure 3.3: An individual from the GP process.

evidence. For this, main ranking formulas published on IR literature can be used. In our

experiments we adopted as terminals the values of the features presented in Section 3.4.1.

In addition to these, we also use constant values in the range [0..100]. As functions in the

inner nodes, we use addition (+), multiplication (∗), division (/) and logarithm (log). We

use the genetic operators of reproduction, crossover and mutation as proposed by Almeida et

al. (de Almeida et al., 2007).

Fitness Function

The fitness function must measure the quality of the ranking generated when using a given

individual. In preliminary experiments, we evaluated our method with two different fitness

functions: MAP and mean NDCG. When using mean NDCG as the fitness function, LePrEF

yielded better overall results both in terms of mean NDCG and MAP, thus we ultimately adopted

mean NDCG as the fitness function in the experiments.



3. LEARN TO PRE-COMPUTE EVIDENCE FUSION 31

Selection of the Best Individuals

The validation step in our experiments was performed as proposed in (de Almeida et al., 2007).

According to this approach, the choice of the best individuals is accomplished by considering the

average performance of an individual in both the training and validation sets, minus the standard

deviation value of such performance. This method is called AVGσ. The individual with the

highest value of AVGσ will be selected as the best.

More formally, let ti be the training performance of an individual i, let vi be the validation

performance of this individual, and let σi be the corresponding standard deviation value of

(ti + vi). The best individual is selected by:

argmax
i

((ti + vi)− σi) (3.1)

Notice that a smaller value of σi has a larger contribution to the selection, thus giving

preference to individuals that have a more regular performance in the queries adopted in the

training and validation sets, while (ti + vi) also gives preference to the ones that achieve high

performance in both sets.

Due to the inherently randomness present in the GP process, and in order minimize the

chances of finding an underperforming best individual, we take the GP one step further: Instead

of a single process, we run N processes with distinct random seeds, and pick the the best

individual (according to AVGσ) among the ones generated by these N runs. By doing so, we

diminish the chances of a single seed leading to a below average performance. As shown in

Section 3.4, this strategy resulted in selecting individuals that perform above the average of all

runs.
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3.3 Integer UTIs

In our initial formulation of LePrEF, the UTI entries are by definition real numbers. While this

implicates that the range and the precision of UTI values are very large, the usage of real numbers

can lead to two disadvantages: first, a sum of real numbers is computationally more expensive

than a sum of integers, requiring more processor cycles at query processing time. Second, the

usage of real numbers may result in worse compression rates to the UTI indexes in comparison to

the usage of integer numbers, which may be an important property, since compression methods

are usually applied in search systems (Baeza-Yates and Ribeiro-Neto, 1999).

Due to these two factors, and in order to be able to capitalize on most previously proposed

performance enhancing methods, we also propose a modification in the UTI index computation,

in order to represent its entries as integer numbers, instead of real numbers.

To implement the discretization procedure we considered two alternative strategies: (1)

Perform the training with GP as usual, in the same way done with UTI as a real number,

and then perform the discretization process over the final result. (2) Train the GP using as

the fitness function the results obtained after transforming the values to integer. To do so,

we modified the fitness function in the GP framework to truncate all the UTI index entries

generated (UTIinteger(t, d)) = dUTI(t, d)e). With this change, the fitness function selects the

best individuals that generate integer UTI indexes. The intuition behind this later option is that

instead of trying to find the best UTI value and then transform it to integer, we train to find the

best integer UTI values as part of the learning process. In our experiments, we saw that the

results obtained by (1) were extremely erratic, with a very large variation in quality depending

on the learned function. Conversely, (2) had a much more solid and overall superior results, due

to the fact that the GP process took this discretization into consideration when selecting the best
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functions.

3.4 Effectiveness Experiments

In this section, we present experiments done to show how LePrEF behaves in comparison to

other previously proposed methods regarding the quality of query results.

3.4.1 Experimental Setup

We chose to use LETOR (Liu et al., 2007), a benchmark dataset designed to evaluate ranking

methods, to evaluate the quality of ranking results produced by LePrEF. Specifically, we chose to

use the MQ2007 subset of LETOR 4.0, since it contains a large number of queries as examples

(1692).

MQ2007 subset contains 46 features for documents sampled from the top 1000 retrieved

documents by using BM25 on the GOV2 corpus for each query. Some of its textual features can

only be obtained at query processing time, being not available to LePrEF. These features are

the similarity scores assigned by ranking function BM25, and by three variations of Language

Models based functions. Each function was applied to five areas of the documents: the body of

the text, the anchor text, the title, the URL, and the whole document. Thus, obtaining 20 features

based on ranking score functions that we cannot adopt in LePrEF.

The remaining 26 features of MQ2007 are all available at indexing time. They include TF,

IDF, TF × IDF and length in number of words, each of them applied to the same five parts

of the documents mentioned above, thus obtaining 20 features. Besides these features, we also

adopted the features PageRank, InLink Count, OutLink Count, Number of Slashes on URL,

Length of URL and Number of Children. Further detailed information about these features can
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be found in LETOR documentation (Liu et al., 2007). We used the metadata present in LETOR

database to generate the values for each feature when indexing the GOV2 collection with LePrEF.

In LETOR, each feature TF represents a sum of TF values obtained with each query term. In

LePrEF we did not perform such sum, using the individual values of frequency of each query

term in each document as features. The same happens for IDF and for TF × IDF.

It is important to notice that most of the information necessary to compute the features that

are not adopted in LePrEF, such as BM25, is also available in the 26 features adopted, including

information about TF and IDF of terms, and their document length. Thus, the final expected

impact in the ranking of the lack of these features is expected to be low. In fact, our experimental

results show that the results achieved by LePrEF are quite close in effectiveness to the results

achieved when using GP and other learning methods with all the 46 features.

As baseline methods, we use four of the best methods with available results for LETOR4:

Adarank (Xu and Li, 2007) (using only NDCG as metric, since their results were superior to MAP

in every metric), Listnet (Xia et al., 2008), RankSVM (Joachims, 2002), and RankBoost (Freund

et al., 2003). Besides these methods, we use GP as proposed in (de Almeida et al., 2007), with

the improvement of taking the best individual from several runs, as done with LePrEF. This

baseline was included in order to compare LePrEF to a learning to rank method that also uses

GP. In this case we used our own implementation of the method, since there is no public data

regarding its performance in the LETOR4 Dataset.

The LETOR4 collection, is by default, split into 5 Folds, allowing for a 5 Fold cross validation

scheme for results evaluation, using 3 folds as training queries, 1 as validation queries, and one

for testing. Thus in this work (and in all baselines shown), unless stated otherwise, the results

presented are the average of the results obtained at each testing fold.

We adopted as evaluation metrics NDCG@N, P@N, mean NDCG and MAP, the same metrics
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used by LETOR (Liu et al., 2007), in order to readily compare LePrEF to several previously

proposed learn to rank methods. For details about how to compute such metrics, the reader can

address the LETOR documentation (Liu et al., 2007).

Genetic Programming Setting

The experiments presented were conducted with the lilGP genetic programming distribu-

tion (Zongker and Punch, 2006). The methodology and parameter settings adopted follow

the ones proposed in a previous article that studied the use of GP for learn to rank (de Almeida

et al., 2007).

Table 3.1 presents the values used for all parameters adopted for purposes of comparison

with future work.

Table 3.1: Genetic Programming Parameters

Parameter Value
# of generations (G) 40
Population size (PSize) 1000
Tree depth 17
Tournament size 6
Crossover rate (Rc) 0.85
Mutation rate (Rm) 0.05
Reproduction Rate (Rr) 0.10

Since Genetic Programming uses random seeds to create its initial population, its results can

be affected by the initialization of the first population. Thus, we performed 10 runs with distinct

random seeds. We performed a five fold cross-validation with each run (as split in the LETOR

Collection), and chose, for each fold, the individual (UTI function) the best individual among all

runs according to the AVGσ selection method. It is important to stress that this same approach

can also be applied in a real scenario. While it could be argued that training with different seeds

can be expensive, these costs occur prior to indexing time and are not prohibitive, leading (as
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shown in Section 3.4.2) to visible gains in the quality of search results.

3.4.2 Results

Since in our proposed GP framework we decided to run the process several times with different

random seeds, selecting the one that achieved the best results regarding our training and validation

sets as the best individual, it is important to assess whether this strategy can indeed lead to better

results or not. Figure 3.4 shows, for each fold, the average mean NDCG obtained in the test for

each individual chosen by our approach and also the average value obtained by running the GP

process 10 times. As can be seen, taking the best training and validation individual among 10

runs consistently produced results above the average, which indicates our proposed strategy of

running GP with several distinct seeds may result in slight, but consistent, improvements in the

final quality of a learn to rank with GP.

Figure 3.4: Mean NDCG values for the average of the 10 runs and for the run chosen by our
validation metric.

Regarding the comparison with the baselines, Figure 3.5 shows NDCG5 and NDCG10 scores

achieved by all the methods in the experiments with the LETOR queries. As can be seen, the

best overall method was using Genetic Programming (GP), 0.426 in NDCG@5, and 0.443 in
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NDCG@10. The second best result was obtained by LePrEF with real UTIs, 0.419 in NDCG@5

and 0.443 in NDCG@10. As can be seen, while there is a visible (and statistically significant)

loss in both NDCG@5 and NDCG@10 results when comparing LePrEF against GP, the results

obtained by LePrEF in this configuration still stand at top when compared to other state-of-the-art

methods proposed in the literature. RankBoost stand above the rest, with NDCG@5 0.418 and

NDCG@10 0.446, results that were practically equal in comparison with LePrEF.

When using LePrEF with integer UTIs, as proposed in Section 3.3, the final results were

below the ones obtained by real UTIs, as expected due to the loss of information when converting

UTIs values from real to integer numbers. However, this diminishing still lead to competitive

results when compared with many other proposed learn to rank methods: For instance, while

integer UTIs led to NDCG@5 0.409 and NDCG@10 0.436, RankSVM obtained NDCG@5

0.414 and NDCG@10 0.440 and ADARANK NDCG@5 0.410 and NDCG@10 0.437, results

that were very near LePrEF with integer UTIs, even though these methods used a richer source

of features. It is important to stress that the use of LePrEF with integer UTIS, as shown in

Section 3.5, lead to expressive gains in efficiency and competitive results.
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Figure 3.5: NDCG@N results obtained by LePrEF storing real number UTI values in the index
(LePrEF Real), LePrEF using integers (LePrEF Integer), the GP learn to rank method, and the
four best learn to rank method presented in LETOR benchmark.
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Figure 3.6 shows the P@5 and P@10 results obtained by all compared methods. Our GP

implementation yielded the best P@5 results, while RankBoost yielded the best P@10 results.

As can be seen, LePrEF with real UTIs was again very competitive, yielding P@5 values of

0.417 against 0.422 from GP and 0.418 of RankBoost and 0.413 of SVMRank, In terms of

P@10, similar results were obtained, with the difference being that the best performing method

was RankBoost (0.386), followed by RankSVM (0.383), GP (0.381), LePrEF with real numbers

(0.38) and ADARANK (0.3756). When using our approach to use integer UTIs, we obtained

P@5 of 0.411 and P@10 of 0.378, which shows that, while using this approach lead to losses

in performance when compared to the best methods in the literature, it still lead to competitive

performances overall when compared to most proposed methods. It is very important to stress

that these very competitive results were obtained when the methods (GP, LePrEF with Real UTIs

and with integer UTIs) were trained with NDCG as objective function.
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Figure 3.6: P@5 and P@10 results obtained by LePrEF storing real number UTI values in the
index (LePrEF Real), LePrEF using integers (LePrEF Integer), the GP learn to rank method, and
the four best learn to rank method presented in LETOR benchmark.

Figure 3.7 shows the Mean NDCG and MAP values obtained by the methods, as computed

by the LETOR benchmark. As can be seen, the results followed the trends shown by P@N and

NDCG@N. The overall best method was GP with our selection method, obtaining Mean NDCG
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of 0.504 and MAP of 0.469, followed by RankBoost, with Mean NDCG 0.500 and MAP 0.466.

LePrEF with real UTIs obtained NDCG 0.497 and MAP 0.461, being indeed very competitive

in light of its lack of features in comparison. When using integer UTIs, the results were, as

expected from previous results, slightly smaller: Mean NDCG of 0.491 and MAP of 0.455,

results on par with those obtained by ADARANK (0.491 of Mean NDCG and 0.46 of MAP) and

slightly below RankSVM (Mean NDCG of 0.497 and MAP of 0.464). However, as shown in

the next Section, this quality performance is more than compensated by the expressive gains in

performance LePrEF in this scenario obtains.
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Figure 3.7: Mean NDCG and MAP results using real numbers for UTIs.

3.4.3 Integer UTI

When designing real world applications, there are other important aspects to take into con-

sideration besides the final quality of results. For instance, when designing search engines,

the size of the final index is of the utmost importance, with a potentially large impact on the

final performance of such systems. In case of LePrEF, when using integer UTIs, the final

distribution and range of values can impact in compression rates, as when using variable size
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encoding schemes such as Elias-δ (Elias, 1975, Zobel and Moffat, 2006), a simple and effective

compression method adopted to compress inverted lists.

In order to deliver an insight into this matter, in Table 3.2, we present, for each UTI formula

chosen for each fold, the number of bits per entry in the inverted list of the dataset compromised

only of the pages present in the LETOR dataset, disregarding the bits used to represent the

document id. We use this dataset in order to decide which function we would deploy in

Section 3.5, for the efficiency evaluation. While being a summarized dataset, it represents a

good sample of the GOV2 collection, thus the relative behavior of the UTI formulas in regard to

compression ratios would probably be kept when applying them to larger datasets.

Table 3.2: Average number of bits per entry when indexing the LETOR dataset with the best
individual formula of each fold

# of bits
Fold 1 23,74
Fold 2 51,30
Fold 3 22,83
Fold 4 42,52
Fold 5 13,55

As can be seen in Table 3.2, different formulas can lead to very different compression ratios.

While the best performing, the chosen formula from fold 5, used only 13,5 bits per entry, the

worst, from fold 2, used 51,30. This difference is mostly due to the fact that the formula from

fold 5 can lead to much larger values, which indicates that it is unsuitable for variable-size

encoding schemes. It is an interesting fact that there is no direct visible correlation between the

number of bits with the final quality results for each fold, being most probably an artifact of the

randomness of the GP process.

It is important to notice that, while the average number of bits is much higher than the usual

averages shown in the literature, this behavior is expected. The LETOR database is a highly

selected database, containing only the top results for each query, basically pruning most less
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relevant values, which would have a higher chance of achieving smaller UTI values and, thus,

using less bits. However, the results displayed in Table 3.2 are important nevertheless to show

that different, high quality formulas can lead to very distinct compression ratios.

A in-depth study of the selection of the best individuals regarding both the quality of its final

results and its impact in the compression ratio can lead to further improvements in both quality

and performance, and we intend to pursue this aspect in future work.

3.5 Efficiency Experiments

We also performed experiments to demonstrate the impact of LePrEF in the computational costs

of query processing, comparing our method to baseline methods based on two-phase query

processing strategy, based on possible different implementations of multi-feature indexes.

3.5.1 Experimental Setup

In our efficiency experiments we are interested in two aspects: (1) Impact of using LePrEF in the

size and compression rates of search engine indexes (2) Its impact in query processing times. For

the former, we show both the impacts of the different approaches in the final size and number of

bits per entry of the two datasets adopted. For the latter, we show the results of processing sets

of 5000 conjunctive queries. Conjunctive queries were chosen for being the most common type

of queries submitted for search engines (de Moura et al., 2008, Saraiva et al., 2001).

The datasets adopted are GOV2 and WBR10. GOV2 is a Web collection comprised of

25,205,179 documents selected from a crawl of the .gov domain. We chose to use GOV2 in

our experiments because the LETOR MQ2007 dataset, in which we performed our quality

experiments, is a subset of GOV2, and thus it is important to include it also in the performance
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experiments. We used 5000 from the million query track (topics 1-5000) to measure the

performance of LePrEF and the baselines in the GOV2 collection.

In order to evaluate the impact of LePrEF in a larger dataset, we also present its performance

results when using the WBR10 collection. The WBR10 collection is a crawl of the Brazilian web

that contains 127 million HTML documents, with about 3.6 terabytes, 6.8 billion links between

its pages,7 gigabytes of text in the title, 100 gigabytes of anchor text and 510 gigabytes of body

text. We also have access to a log of 1,203,024 distinct queries submitted to a Brazilian web

search engine, from which we randomly selected a set of 5,000 queries.

WBR10 collection was created in our research group and will be publicly available for other

research groups. Besides the difference in size in comparison to GOV2, WBR10 also provides a

quite comprehensive crawling of the Brazilian web. It presents an abundance of links and anchor

text information between its pages, thus providing a scenario that is closer to the one expected in

a large scale search engine.

The query processor adopted in the experiments uses a document-at-a-time strategy, with the

deployment of skip-lists in order to reduce the cost for processing queries, and uses compression

methods to reduce the index size. More details about such techniques can be found in (Zobel

and Moffat, 2006). The index is compressed using Elias-δ (Elias, 1975) for compressing the

frequencies and UTI values in the index.

Skip-lists are structures that accelerate the query processing in document at a time query

processing systems. They consist of indexes pointing to blocks of the inverted list and allow fast

access to information about the block where each document can be found. In our experiments, we

create an entry in the skip-lists for each 1000 documents of each inverted list. This number was

chosen through experiments. In the case of the frequencies, the values stored were the 1 + log2

of the frequency, a common option representation adopted in search systems (Baeza-Yates and
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Ribeiro-Neto, 1999).

As the learn to rank baseline for the performance experiments, we chose to use Genetic

Programming (GP). Besides yielding very strong retrieval quality results, its simple and straight-

forward implementation leads to low computational costs in comparison to the other Learn to

Rank approaches. Furthermore, we decided to use as baselines two possible implementations,

which differ according to the way they store the multiple features in the index:

a) GP with Feature Vector. Every entry in the inverted list contains, for a term-document

pair, its frequencies for all text based features. This method has the advantage of increasing

the locality of the data, since no further seeks in the dataset are necessary to fetch values

for all the features, but has the disadvantage of increasing the index size, since it becomes

necessary to indicate when an entry has frequency zero for any feature.

b) GP over Top Results + Fetch. The top 1000 results for each feature are fetched, and

their results are joined into a single resulting list. As some documents in this resulting list

may not have all their feature information fetched in the first phase, their complementary

feature values are fetched in a second phase, so that all the results in this joined list have

all their feature values retrieved.

Since our goal is to illustrate the possible differences in costs that arise when using LePrEF,

we evaluated the performance of LePrEF in comparison with the baseline by submitting the

selected queries to our previously described search engine, using a simplified query processing.

This procedure allowed us to have a better control of the experiments.

The experiments were run in a machine with 16 GB of RAM, CPU AMD Opteron series

2376, 2.3 GHz, 512 KB L1 cache, quad-core and using a single SATA II disk with 2TB. To

evaluate the performance of the systems, we adopted the software Httperf (Mosberger and Jin,
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1998) to generate the workload to all query processors evaluated. It is a software that is intended

to measure the performance of a web server from the client perspective, by evaluating, among

other metrics, average response time for the client to receive its answer and query throughput,

which are the results that we will present.

3.5.2 Efficiency Results

In Section 3.4.2, we presented the average number of bits per compressed entry in the inverted

list of the LETOR dataset, and concluded that the chosen formula for Fold 5 leads to the best

results in that scenario. In order to show if that conclusion holds true when considering the

whole GOV2 and the WBR10 collection, we present the overall size of the inverted index and

the average number of bits per entry (only the frequency/UTI value is considered in this average;

document IDs are not considered) after the indexing for both collections. These results are

presented in Table 3.3

Table 3.3: Size of indexed datasets, both in overall size and average number of bits per frequen-
cy/UTI entry

Source WBR10 GOV2
Index Size(Gb) Bits Size(Gb) Bits

/Entry /Entry
Text 44 1.98 7.4 1.78
Title 1.5 4.8 0.2 3.97
Anchor 0.8 6.99 0.21 6.95
URL 0.4 5.26 0.017 2.61
Feature Vec. 63 7.24 12 7.20
Fold 1 58 5.72 10.5 6.36
Fold 2 59 5.99 12 7.63
Fold 3 52 4.25 9.7 5.14
Fold 4 67 8.26 12 8.51
Fold 5 42 1.32 7.4 1.79

At first glance, it can be seen that the best formula when considering the number of bits per

entry in the LETOR Dataset was also the best of the five folds, fold 5. It is also interesting to
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notice that, while in GOV2 the final size of the UTI index has about the same size of text index,

in WBR10 the UTI index was even smaller than the text index. This property in WBR10 is due

mainly to the fact that many entries that have frequency values higher than 1 in the text index,

have respective UTI values set to 1 by LePrEF, thus requiring less bits to be represented.

Another interesting result to contemplate is the fact that, while fold 2 was the worst perform-

ing UTI formula bits per entry-wise in LETOR, in GOV2 and WBR10 it was the second worst

performer, behind fold 4. This behavior was mainly caused by differences in the distribution of

values between functions of fold 2 and fold 4. The function for fold 4 assigned higher values to

the entries at the bottom of the distribution, thus assigning higher values to entries considered

less important. While the LETOR collection is composed of the top selected entries associated

with each query, being thus a selected set of more relevant entries, the other two collections are

complete, which explains such differences.

We can also see that the option of a single index containing the values for all features in each

entry in the inverted list lead to a much larger dataset. This result was somewhat expected, since

there is a need for an extra number of bits to identify whether the value of a feature is present or

not in each entry.

These results show that it is important to take into consideration not only the quality of

results, but also the distribution of UTI values generated by the function chosen by LePrEF to

generate the final index. The choice of the function has a direct impact on compression rates and

we pretend to further study this topic in future works.

Figure 3.8(a) presents the average response time in each query processor, as the number of

requests per second increases for the GOV2 collection. At request rates up to 25 per second,

only a slight difference can be verified between using LePrEF or more traditional approaches,

with GP using feature vectors achieving the worst performance (250 milliseconds, against 108
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from LePrEF and 129 from GP+Fetch) in these smaller rates. However, when the number of

submitted queries is above 30, GP with fetching performance has a huge increase in response

time, with average time raising to 4972 milliseconds, probably associated with the much larger

number of disk seeks performed in this approach. Using GP with feature vectors also started to

show signs of saturation, but still with a much smaller response time of 308 milliseconds, and

keeps competitive response times until 32 requests per second, where its response time raised to

3433 milliseconds.

On the other hand, when using LePrEF, the response times keep a steady response time until

the request rate is at 46 requests per second, where the response time was 131 milliseconds,

and increasing to 3900 milliseconds with a rate of 47 queries per second. These results are a

strong indication that, performance-wise, indeed the deployment of LePrEF can lead to massive

efficiency gains in terms of response time.

As expected from the method with the best response times, when considering the query

throughput with GOV2, once again LePrEF had an outstanding performance in comparison to the

baselines. Figure 3.8(b) presents their results in this scenario. As can be seen, up to 29 requests

per second, the query throughput matches closely the number of requests made by second. The

worse performer, once again, was GP+fetching new evidences, with a maximum throughput of

29 queries per second. GP+feature vector had a better result, with a throughput of 31 queries per

second. LePrEF, on the other hand, had a much superior performance, with throughput up to 46

queries per second.

In order to evaluate how the proposed method fares in relation to the baselines in a larger

dataset, we also present experiments done with the WBR10 collection. In Figure 3.8(c), we

present the average response times of the three approaches in WBR10. As can be seen at first

glance, the overall response times when processing queries in WBR10 were much higher than in
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Figure 3.8: Response times and saturation levels for LePrEF and the two GP variations for GOV2
and WBR10

GOV2, which was expected due to its much larger size. An aspect of these results that differs

from the results obtained with GOV2 is the response times of GP+Fetching and GP+Feature

Vector, with GP+Fetching achieving overall smaller response times in comparison to GP+Feature.

GP+Feature vector holds well until a rate of 3 queries per second, with an average response time

of 1.08 seconds, while with GP+Fetching the best rate/time ratio was with 6 queries per second,

achieving an average response time of 1.60 seconds, while LePrEF once again obtained the best

results, with its best results at 9 queries per second, and average time 1.2 seconds.

In Figure 3.8(d), the query throughput of the three approaches is presented. Once again,

LePrEF was visibly superior to the baselines. GP+Feature Vector obtained the worst result,

with a maximum query throughput of only 5 queries per second, while GP+Fetch was slightly

better, with 7 queries per second of maximum query throughput. On the other hand, LePrEF
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outperformed both baselines, with a maximum query throughput of 11 queries per second, 57%

better than the next best alternative.

It is important to stress that these results were achieved in a simulated setting. In real search

engines, the query processing is a much more convoluted process, and in the other hand, various

approaches are used in order to further minimize the computational costs of this process, many

times with a quality trade-off. Nevertheless, the results presented represent an evidence that

deploying LePrEF and the concept of UTIs in a search engine architecture can lead to significant

efficiency gains, and must be further investigated regarding other aspects, such as possible impact

in pruning techniques and how to use it with sources of relevance evidence that are not available

at query indexing time.



Chapter 4

Finding Phrasal Terms in Text Datasets

Since LePrEF is essentially a bag-of-words based approach, we also investigated techniques to

add word relationships in IR models, in order to possibly achieve higher precision levels. In

this chapter, we show our efforts in automatically detecting phrasal terms and using them to

improve information retrieval tasks. We consider a phrasal term as a sequence of words that

has a function of phrasal verb, phrasal noun, phrasal adjective or phrasal adverb in a text. Such

phrasal terms are sequences of words that have a specific meaning, which can even be different

from that of the individual words that compose the phrasal term. Examples of phrasal terms are

“artificial intelligence”, “comic book”, “tax free”, “legal issues”, “formula one”, “New York”,

and so on.

The task of finding phrasal terms may be associated with several applications related to text

processing, such as text classification, search and keyword finding (tau Yih et al., 2006). The

objective of identifying and modeling phrasal terms is to produce a better representation of text

documents when compared to the processing of only individual words as units. Individual words

can, for instance, be composed together to build expressions with completely different meanings

and such information may be missed when not modeling compositions. A prior knowledge of

49
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which word sequences have a specific meaning can be used for many practical purposes when

processing textual sources of information, enriching the representation of the content found on

those sources.

As a sample of application of phrasal term detection methods, we can mention the enrich-

ment of traditional information retrieval models. Most popular textual information retrieval

models represent documents as “bags of words”, i.e., sets of completely independent distinct

terms (Baeza-Yates and Ribeiro-Neto, 1999), disregarding the order in which the words appear in

the document. The extraction of these independent words is done by the use of text parsers, which

usually separate these terms in strings of alphanumeric characters separated by non-alphanumeric

characters. After the parsing, each term is considered as an independent piece of information

present in the document, with total disregard to its placing and the terms around it.

While this approach has yielded satisfactory results, it is clear that considering the words

in a document as independent is not a faithful representation of the actual relationship between

them. Words can be composed together to build expressions with completely different meanings

(e.g., “artificial intelligence”, or “comic book”). Considering only individual words as terms can

lead to loss of information, which can mislead the system and lead to erroneous results due to

ambiguity. For instance, the word “gore” in a query might mean that the user is interested in

horror movies; however if in the query the word “gore” is preceded by the word “al”, it probably

means that the user is interested in the politician Al Gore.

Here we argue that a prior knowledge of which word sequences have a specific meaning is

important and can be used for many practical purposes in Information Retrieval, enriching the

information available about documents. This is particularly important in web search applications,

where the precision of results is more important than the recall; and where the most common

type of queries, the informational queries, usually have larger numbers of words (Baeza-Yates
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et al., 2006). This property raises the chance of informational queries containing phrasal terms.

Further, informational queries rely mostly on the textual content as a source of information to

improve the quality of search results, thus a better representation of texts in the information

retrieval model may have higher impact in these web search engine queries.

Word sequences and word co-occurrence statistics have been shown useful in many different

information retrieval tasks (Tan et al., 2002, tau Yih et al., 2006, Tesar et al., 2006, Zhang

et al., 2007). These examples of previous efforts to deal with word sequences in different

information retrieval tasks represent a strong indication that indeed the detection and employment

of meaningful word sequences can lead to improvements in the quality of various information

retrieval tasks.

Our solution to detect phrasal terms uses statistical features of the word n-grams (sequences

of n words) found in the documents and a classifier to determine which are valid phrasal terms.

We present empirical evidence showing that this is an effective solution to this problem. The

intuition behind this approach is that phrasal terms share similar statistical features that might

be useful to distinguish them from non-phrasal sequences. It provides an effective mean of

discovering meaningful word sequences that is grammar independent, since it is not explicitly

dependent on grammatical rules, and time and space efficient, since it does not require the use

of complex Natural Language Processing methods. Experiments indicate that, as the database

grows larger, the effectiveness of the proposed method also increases, achieving precision values

up to 94,45%.

We also show that using these phrasal terms can indeed lead to better results in information

retrieval tasks. To this effect, we propose two different approaches that are able to use this

information to enhance results in document search tasks, and perform experiments demonstrating

the usefulness of our approach. Experiments in four different collections show gains of up to
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36% in Mean Average Precision, when compared to a traditional single-word search.

4.1 Detecting Phrasal Terms

We define a phrasal term as a sequence of words that has a function of a phrasal verb, phrasal

noun, phrasal adjective or phrasal adverb in a text. It is important to notice that, in our definition

of phrasal term, it is crucial that the set of words has a specific, understandable, meaning. For

instance, while “Carnegie Mellon University” is a phrasal term, “Mellon University” is not since

it loses its meaning without the term “Carnegie”.

Our detection method, based on machine learning, uses statistical features of the word

bigrams found in the documents to classify each of them as phrasal terms or not, since we believe

that phrasal terms share similar statistical features that might distinguish them from non-phrasal

sequences. We believe that this happens because the co-occurrence of words in a language

is governed by a fixed set of rules—the grammar. However, it is important to stress that the

proposed approach is not based on the grammar itself, but in examples of phrasal terms and

non-phrasal sequences.

In the experiments presented, we focus on the detection of two-word phrasal terms. It

can, nevertheless, be easily expandable to n-word sequences. Also, we ignored n-grams that

contained numerical characters and stop-words, in order to prune the number of n-grams

considered. Preliminary experiments done without the exclusion of these bigrams showed

that they introduce noise into the classification, with no distinguishable advantage over their

exclusion.

The proposed method can be divided into three main stages, as illustrated in Figure 4.1. In

the first stage, we extract all existing bigrams from the document collection and compute their
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Figure 4.1: The phrasal term (PT) detection process.

features. To do so, the method parses all documents in the collection, collecting statistics about

the individual terms and about the bigrams. This stage has a computational cost linear to the

number of documents, and it is important to note that this stage can be trivially implemented

during the indexing of the collection.

In the second stage, we manually label a small selected subset of bigrams as phrasal terms

or non-phrasal sequences. This subset can then be used as training data for a Support Vector

Machine (SVM) classifier.

Finally, in the third stage, we use the SVM classifier to process all bigrams and determine

which are proper phrasal terms. It is important to stress that this classification is fairly inexpensive,

especially because the method uses a reduced number of features.

4.1.1 Identifying Phrasal Term Candidates

As we mentioned, we have worked in this thesis with only phrasal terms composed of two

individual words. At first glance, identifying all phrasal terms existing within all possible

bigrams of text in a text collection can be seen as a very complex operation. In fact, if we
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consider all possible two-word sequences, the maximum number of candidates is |V |2, where

|V | is the size of the vocabulary. However, in real scenarios, the majority of possible sequences

never actually occur, largely reducing this number. A simple algorithm, linear in the size of the

collection, to find all bigrams present in a collection is:

a) For each document in the collection.

1. Parse the document and extract every sequence of two words and its statistics.

2. Whenever main memory is full, dump all collected sequences to secondary storage.

b) Join all runs of sequences produced into a single list of candidates.

As stated before, in this step the method ignores bigrams with stop-words and with numeric

characters, which reduces the number of bigrams to be processed.

4.1.2 Statistical Features

We argue that only a basic set of word occurrence and co-occurrence statistics is needed to

determine whether a bigram is a meaningful phrasal term or not. Even though no language-

dependent grammar or syntactic information is used, we believe such statistics carry enough

information to provide an accurate description of what is and what is not a phrasal term.

The features we adopt here are mostly based on frequency counting, and have a straightfor-

ward calculation, adding little computational cost to the feature extraction. Given an ordered

pair of words (t1, t2), we propose the following set of features:

a) Pair probability (P (t1, t2)): The number of times pair (t1, t2) occurs in the collection,

over the number of pairs in the collection. A large frequency may indicate that a bigram
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is a possible phrasal term. On the other hand, a small frequency is not necessarily an

indication that the bigram is not a phrasal term.

b) Pair Probability given t1 (P ((t1, t2)|t1)): The number of times pair (t1, t2) occurs, over

the number of times that t1 occurred. This feature indicates how likely it is that the

presence of t1 is an indication that the next word is t2. We argue that t1 being often

followed by t2 is an indication that the pair is a phrasal term.

c) Pair Probability given t2 (P ((t1, t2)|t2)): The number of times pair (t1, t2) occurs, over

the number of pairs that end with t2. Similar to the Pair Probability given t1 feature.

d) Document Probability of (t1, t2) (PD((t1, t2))) : The number of documents where pair

(t1, t2) occurs, over the total number of documents. Notice that this is different from Pair

Probability, since it relates to the number of documents where the pair appears, instead of

its absolute number of occurrences.

e) Document Probability of t1 (PD(t1)): The number of documents where word t1 occurs,

over the total number of documents. This feature should reflect the relative rarity im-

portance of word t1, in a role similar to that of the inverse document frequency (IDF),

traditionally used in the Vector Space Model (Baeza-Yates and Ribeiro-Neto, 1999).

f) Document Probability of t2 (PD(t2)): The number of documents where word t2 occurs,

over the total number of documents.

g) Raw Pair Probability given t1 (PR(t1)): The number of distinct pairs starting with t1,

over the number of distinct pairs.

h) Raw Pair Probability given t2 (PR(t2)): The number of distinct pairs ending with t2,

over the number distinct of pairs.
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It is important to notice that, while the proposed set of features is fairly simple, the ex-

periments presented in Section 4.3 show that these features are good enough to allow for a

satisfactory precision in the phrasal terms detection task. The importance of each feature is

studied in Section 4.3.2.

After all the bigrams and their statistics are extracted, examples of phrasal terms and non-

phrasal sequences are manually extracted from a random sample of bigrams, and used to train

an SVM classifier model. The remaining feature vectors for all the bigrams are applied to this

classifier model, which will determine whether each bigram is a meaningful phrasal term or not.

As a result of these steps, a list of detected phrasal terms is created.

We note that, while in this work we use an SVM classifier to select phrasal terms, other

classification techniques could be used.

In the following section, we describe how these discovered phrasal terms can be used for

enhancing search in text collections.

4.2 Using Phrasal Terms

After the detection of phrasal terms, it is important to study how this information can be used

in Information Retrieval tasks. In this thesis, we study the particular case of text document

searching. We chose to evaluate the impact of phrasal terms using the traditional Vector Space

Model (VSM) with TF-IDF term weighting (Baeza-Yates and Ribeiro-Neto, 1999) and propose

two different approaches to apply phrasal terms in a search task:

a) Phrasing: Phrasing consists in parsing the user query in order to find phrasal terms.

Whenever one is found, it is treated by the search engine as a phrasal query. Phrasal

queries are queries in which, for a document to be considered relevant, it is mandatory
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that it possesses the designated phrase. The phrases are usually represented by the use of

quotes. For instance, if our method detected “Los Angeles” as a phrasal term, the query

‘Los Angeles Hotel’ would be processed by the search engine as the query ‘“Los Angeles”

Hotel’, with the search engine considering “Los Angeles” as a phrase.

b) Expansion with Phrasal Terms: In this case, all the detected phrasal terms in the col-

lection are treated as single-word terms, and indexed by the search engine as such. All

individual words are still indexed. In practice, we are expanding the documents in the col-

lection to contain, besides all its individual words, also all its phrasal terms. All document

norms are recomputed taking this into account. The same process is applied to the query.

For instance, in a scenario where the proposed approach detected “Los Angeles” as being

a phrasal term, the query ‘Los Angeles Hotel’ would be expanded into a query with four

distinct terms: “Los”, “Angeles”, “Hotel”, and “Los Angeles”. The same would apply to

all documents.

4.3 Experiments

The experiments are divided into two main parts: phrasal term detection and search impact

evaluation. Before presenting them, we detail the experimental setup.

4.3.1 Experimental Setup

In the experiments performed, we use four datasets: FBIS, Wt10G, L.A. Times and OHSUMED.

We chose these four datasets since they contain documents of different natures, topics and sizes,

which allowed us to examine the behavior of our method in distinct scenarios. Furthermore, all
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these datasets have a previously evaluated set of queries readily available, which allowed us to

use them in the search experiments.

The Wt10G collection (Soboroff, 2002) is comprised of 1,692,097 documents selected from

a crawl of the World Wide Web. This dataset is useful to show how the methods behave in a

free-publication environment, such as the Web. While Wt10G may be considered small when

compared to true web search scenarios, previous studies have shown that this dataset, despite

being only a sample, retains many of the properties of larger web crawls (Soboroff, 2002).

The OHSUMED document collection (Hersh et al., 1994) is a subset of MEDLINE, con-

taining 348,566 medical articles. For this work, we indexed only the title and abstract of the

documents.

The FBIS dataset is part of the TREC document collection (disk 5) (Voorhees, 1999). It

contains 130,471 randomly selected newspaper articles. This collection, while having fewer

documents than OHSUMED, actually contains more text, since it contains full newspaper articles,

regarding news from all around the world.

Finally, the L.A. Times collection is also a part of the TREC document collection (disk

5) (Voorhees, 1999). It contains about 131,896 randomly selected newspaper articles, published

between 1989 and 1990 in the Los Angeles Times newspaper. Unlike FBIS, all articles are taken

from a single newspaper, hence the collection has a more limited vocabulary and set of topics.

Table 4.1 shows some statistics about the databases. We can clearly see that, while containing

more documents than L.A.Times and FBIS, OHSUMED has a smaller vocabulary and a smaller

number of bigrams. It is also important to notice that the removal of bigrams with numbers

and with stop-words had a huge impact in the number of bigrams, removing about 50% of the

bigrams present in Wt10G.
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Voc. Size Total Bigrams Considered
OHSUMED 164407 5590058 2971596
FBIS 400073 7595417 3842587
L.A.Times 248660 9440633 5518509
Wt10G 5646913 91143120 47885424

Table 4.1: Statistics about the text collections utilized in the experiments. Total Bigrams is
the absolute number of bigrams in the database. Considered is the number of bigrams without
stop-words and numeric characters.

Classification Setup

As described in Section 4.1, in this work we used an SVM classifier to discover sets of phrasal

terms from a set of bigrams. The SVM implementation used was libsvm (Chang and Lin,

2001). The kernel adopted was the RBF kernel, since in preliminary experiments it consistently

outperformed other kernels such as polynomial and sigmoid, albeit not by a large margin.The

training parameters were optimized using scripts included in libsvm.

Bigrams with frequency values smaller than 10 were discarded as phrasal term candidates,

since they contain too little co-occurrence information. Also, since these bigrams are so in-

frequent, the possible gain yielded by detecting phrasal terms among them may be small, in

comparison with the overhead necessary to classify them all.

For each database used in this experiment, 500 phrasal terms and 500 non-phrasal sequences

were randomly sampled from the bigrams found in the databases, to be used as training and

testing sets. The training set was stratified (Witten and Frank, 2000) in this manner because the

set of bigrams that is not a phrasal term is much larger than the set of phrasal term bigrams, and

thus a purely random sample would also have a disproportional number of non-phrasal terms,

which could bias the classifier, and preliminary experiments done with an unstratified set of

examples led to a classifier with overall much worse results. All tests were performed using

10-fold cross validation. The precision and recall values obtained represent the average of the
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10 runs. While in the experiments presented we used 1000 examples in the construction of our

classification model, in all databases when using as few as 100 examples to construct the model

our method yielded similar precision and recall values as using all the 1000 examples, as shown

in Figure 4.3 in section 4.3.2.

In the case of OHSUMED, which is comprised mostly of medical terms, technical expertise

was needed in order to identify the phrasal and non-phrasal terms. Thus, to do so we asked for a

Pharmacist with a Masters degree in Tropical Pathologies to do this identification.

To evaluate the phrasal term detection, we used the traditional classification metrics of

micro-averaged precision, macro-averaged precision, macro-averaged recall and macro-averaged

F1 (Witten and Frank, 2000). We also present the total precision and recall for the phrasal terms

class and non-phrasal sequences class. These measures are defined as follows:

Let C be the set of bigrams used for testing. We define Cphrasal ⊆ C as the set of phrasal

terms within C and Cnot ⊆ C as the set of non-phrasal sequences within C. Let C ′phrasal be

the set of bigrams classified as phrasal terms by the SVM classifier, and let C ′not be the set of

bigrams classified as non-phrasal sequences by the SVM classifier.

The precision of the SVM classifier for a given class c ∈ {phrasal, not} is the percentage of

bigrams correctly classified as being of class c, over all bigrams classified as being of class c:

Prc =
|C ′c ∩ Cc|
|C ′c|

(4.1)

Recall is defined as the percentage of bigrams correctly classified as being of class c, over all

bigrams that actually belong to class c:

Rcc =
|C ′c ∩ Cc|
|Cc|

(4.2)
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Micro-averaged precision is defined as the percentage of correctly classified candidates

within the set of all classified candidates:

µPr =
|C ′phrasal ∩ Cphrasal|+ |C ′not ∩ Cnot|

|C|
(4.3)

Macro-averaged precision is defined as the average precision for all classes:

Pr =
Prphrasal + Prnot

2
(4.4)

Macro-averaged recall is defined as the average recall for all classes:

Rc =
Rcphrasal +Rcnot

2
(4.5)

Macro-averaged F1 is the harmonic mean between macro-averaged recall and macro-

averaged precision:

F1 =
2PrRc

Pr +Rc
(4.6)

Document Searching Setup

Search results for both the original datasets and after the inclusion of the detected phrasal terms

were evaluated in terms of Mean Average Precision (MAP) and precision at the top 10 results

provided for each query (Pg@10) (Baeza-Yates and Ribeiro-Neto, 1999). Topic queries used in

our experiments are from 1 to 106 of OHSUMED, from 351 to 400 of FBIS, from 401 to 450

of L.A. Times, from 451 to 500 of Wt10G, where only the titles portion of the queries were

considered.
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4.3.2 Phrasal term detection

Table 4.2 shows the phrasal term detection results achieved by our method in the four databases.

In general, results show that our method is a robust solution to the phrasal term detection problem.

In terms of precision, in all collections, satisfactory results were obtained.

OHSUMED FBIS L.A.Times Wt10G
µPr 70,80% 76,10% 81,90% 94,40%
Prphrasal 70,72% 77,94% 85,05% 95,87%
PrNot 70,88% 74,48% 79,27% 93,02%
RcComp 71,00% 72,80% 77,40% 92,80%
RcNot 70,60% 79,40% 86,40% 96,00%
MacPrec 70,80% 76,21% 82,16% 94,45%
MacRec 70,80% 76,10% 81,90% 94,40%
MacF1 70,80% 76,16% 82,03% 94,42%

Table 4.2: Results of phrasal term detection in the Wt10G, FBIS, L.A.Times, and OHSUMED
datasets.

The lowest values obtained were for the OHSUMED collection. Results, in all the metrics,

were around 71%. By analyzing the data, we can conclude that the size of the documents had

an important role in this behavior. Documents in the OHSUMED database are fairly small,

containing only titles and abstracts, which reduces co-occurrence information available for the

bigrams. However, as can be seen on Section 4.3.3, even with relatively small precision values

for OHSUMED, gains were still achieved when using the detected phrasal terms to search

documents.

In the remaining databases, we observed that precision for class “phrasal terms” is higher

than for class “non-phrasal sequences”. The SVM classifier appears, therefore, to be conservative

when choosing phrasal terms. This could, of course, be changed by further tuning the classifier.

However, this is not the focus of our work. Precision values were around 71%, 78%, 85%, and

95% for the OHSUMED, FBIS, L.A. Times, and Wt10G collections, respectively.

These results, even with a difference of about 24% when comparing different databases,
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Figure 4.2: F1 scores obtained when applying the phrasal term detection method to portions of
different sizes of the Wt10G Collection.

show that the method is a simple and good alternative to phrasal term detection. However, it

is important to verify why the results in the different databases had that much difference. The

F1 values obtained in WT10G are on par with the results shown in (Zhang et al., 2007), that

were around 90% of F1. However, a direct comparison is not possible since they used a different

dataset.

These results may indicate that the size of the database might have a strong influence in the

overall quality of the classifier, since as the size of the database grew, so did the quality metrics

values. In order to investigate whether the assumption that the size of the database effects the

phrasal term detection holds true, we repeated the experiments using the Wt10G collection and

splitting it into portions of different sizes: 1/2 of the Wt10G database, 1/5 of the Wt10G and

1/10 of the Wt10G database. The examples used in these experiments were mostly the same as

in the previous experiment, with the exception of the examples that had a frequency smaller than

10 in that slice of the database, which were replaced by new randomly sampled examples. The

results are presented in Figure 4.2.

These results confirm that the size of the database indeed influences the phrasal term detection.
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It is also important to notice that as the database grows, the impacted caused by the addition of

new pages diminishes, which is an indication that after a certain number of pages, using more

pages for the phrasal term detection will probably have almost no effect in the precision of the

detection procedure.

At first glance this does not hold true when considering the results for the FBIS collection and

the L.A. Times collection, since they have about the same number of documents and similar sizes,

yet different detection performance. However, the FBIS database is comprised of articles with a

much broader spectrum of topics in comparison to L.A. Times, since FBIS is a translation of

foreign texts regarding many different countries while L.A. Times is composed of news articles

that are pertinent to the Los Angeles area citizens, having, thus, a much more tight domain. This

broader spectrum of FBIS leads to a larger vocabulary size, as shown in Table 4.1.

# of bigrams # of Phrasal Terms
OHSUMED 141724 38687
FBIS 163143 62451
L.A.Times 160370 34013
Wt10G 3038832 69180

Table 4.3: Total of bigrams considered (Frequency larger than 10 and no stop words) and total
detected as phrasal terms by our method.

Table 4.3 shows the number of bigrams found and considered in each dataset (i.e. bigrams

with frequency higher than 10 and without stop words), and the number of bigrams classified as

phrasal terms by our method. However it is important to notice that these are the bigrams that

our method decided are phrasal terms, and not necessarily actual phrasal terms.

By examining these results, it is interesting to notice that, as expected for being the largest,

Wt10G yielded the largest number of bigrams. However, this large number of bigrams did not

translate into a much larger number of phrasal terms in comparison with the other databases,

specially FBIS. Notice also that there is no obvious correlation between the number of bigrams
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and the number of phrasal terms detected.

Feature Impact study

In this section, we study the impact that each feature has on the phrasal term detection task. To

do so, we first calculate the information gain of each feature, in order to verify which features are

the best class discriminators in each database. Afterwards, we studied the impact of each feature

in the final classification result, and analyzed the impact of removing several combinations of the

less discriminative features from the classification in each database. For a better visualization,

the names of the features in this section will be replaced by numbers, given by Table 4.4.

Id Feature Id Feature
1 P (t1, t2) 5 PD((t1))

2 P ((t1, t2)|t1) 6 PD((t2))

3 P ((t1, t2)|t2) 7 PR(t1)

4 PD((t1, t2)) 8 PR(t2)

Table 4.4: Identifiers for each feature in the following tables.

Wt10G L.A.Times FBIS Ohsumed
Id InfGain Id InfGain Id InfGain Id InfGain
1 0.6945 1 0.4066 2 0.2138 2 0.0824
4 0.6372 4 0.3665 1 0.2012 5 0.0707
2 0.4864 2 0.2509 4 0.1636 7 0.0564
3 0.4609 3 0.2281 3 0.112 3 0.0461
6 0.0178 8 0.0691 7 0.0481 6 0.0439
8 0 6 0.041 8 0.0443 8 0.0393
5 0 7 0.0227 5 0.0439 4 0.0243
7 0 5 0 6 0 1 0.0147

Table 4.5: Information gain of each feature in all databases. The features are identified according
to the Ids in Table 4.4

Table 4.5 shows the information gain of each feature for each database. A first observation is

that feature 1(pair frequency) is among the best features in most cases, except for OHSUMED

collection. As it can be seen, in OHSUMED all features had small information gain values,

which explains the worse classification results in this collection.



4. FINDING PHRASAL TERMS IN TEXT DATASETS 66

Table 4.5 also shows that, in Wt10G, L.A. Times and FBIS, features 5, 6, 7 and 8 (Document

probability of t1 and t2 and Raw probability of t1 and t2, respectively) yielded the smaller

information gain values. This is an interesting and somewhat expected result, since these features

regard information from single word occurrences (document probability of the words and number

of bigrams the word is on) and not from the bigrams. Nonetheless, we believe that, even though

these features are not good individual discriminators, their use in addition to other features may

indeed lead to a positive impact in the results, especially in smaller databases where the bigram

informations have a smaller information gain value.

To assert whether this belief is accurate, we performed the same experiments of Section 4.3.2,

but removing all the combinations of the features 5,6,7 and 8. Table 4.6 shows the results for

some of these combinations in terms of F1 when removing the feature sets {5,6,7,8}, {5,6} and

{7,8}. Other combinations were omitted because they lead to similar conclusions. As it can

be seen, while in L.A. Times and FBIS databases the use of these features indeed translated

into a higher F1 value, this does not hold true for Wt10G, where removing these features had

little impact on the final F1 result. This may be an indication that, since Wt10G is much larger

than the other databases, the bigram statistics are enough to allow for a precise classification in

Wt10G.

- 5,6,7,8 - 5,6 - 7,8
OHSUMED 0.6947 0.7096 0.6953
FBIS 0.7536 0.7506 0.7576
L.A.Times 0.7982 0.8231 0.8202
Wt10G 0.9452 0.9462 0.9451

Table 4.6: F1 values for the classification task without feature sets {5,6,7,8}; {5,6}; {7,8}.
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Figure 4.3: F1 scores obtained when varying the size of the training set to 250, 500, 750 and
1000 examples (divided half-to-half). Except for OHSUMD between 250 and 750 examples, the
differences were not statistically significant (p-value¿ 0.05)

Training Set Size

In Figure 4.3, we present the F1 performance using different training set sizes (while still

maintaining a 50% ratio for phrasal/non-phrasal terms) in all four datasets evaluated.

As can be seen 250 examples (125 phrasal and 125 non-phrasal) in all datasets but wt10g

yielded worst results than using 500, which could be an indication that as the datasets grow

larger, less examples might be needed. When comparing 500 to 750 examples, in both FBIS

and L.A. Times there was a slight decrease in F1 while OHSUMED showed a small increase.

However, when analyzing the big picture, for all datasets increasing the number of examples

did not lead to a corresponding increase in quality of detection (while it could be argued that

in OHSUMED until 750 examples there was a visible increase in quality, it can be stated that

the onset of its best classification quality needed more examples due to its sparse quantity of

information per document)
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4.3.3 Application to Search

In the above experiments, we have presented results that show our approach can achieve high

precision levels when detecting phrasal terms, specially in larger collections. However, it is also

important to show that these phrasal terms can indeed have a positive influence in the quality of

information retrieval systems. In this section we present results obtained by the application of

phrasal terms in document searching.

We start by applying our method to each complete document collection. We used 1000

example bigrams to train the SVM classifier. Table 4.3 shows the number of bigrams in each

dataset (bigrams with frequency higher than 10 and without stop words), and the number of

bigrams classified as phrasal terms by our method.

Following, we look for the detected phrasal terms in the queries used for testing, and submit

these queries with the added phrasal terms to a Vector Space Model Search Engine. We also

evaluate the results obtained when manually picking all phrasal terms from the queries. This last

experiment is useful to verify the impact the method would have if all phrasal terms present in

the queries were detected, and to give a better insight about how the proposed method impacts

search in comparison with the best-case scenario, that is human classification.

Table 4.7 presents the total number of queries and the number of queries that have phrasal

terms, either detected by the method or manually detected, for each database. It can be seen that

the OHSUMED collection has the largest number of queries with phrasal terms in the queries

(75). This is due to the fact that the OHSUMED queries are substantially longer and have many

medical terms. It is also interesting to notice that when manually picking phrasal terms, less

queries were found (73). This is due to the fact that some of the phrasal terms found by our

method were not actual phrasal terms . Conversely, only 11 of the Wt10G queries contained
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phrasal terms. Even though this small number may have a small impact in the overall results,

the gain obtained when considering only the modified queries is expressive, as reported in the

following.

number of queries
total automatic manual

Ohsumed 106 75 73
FBIS 50 14 24
L.A.Times 50 9 21
Wt10G 50 11 12

Table 4.7: Number of queries modified for each database

MAP
Baseline Manual Expansion Gain Phrase Gain

Ohsumed 0,1853 0.1864 0,1934 4% 0,1872 1%
FBIS 0,1019 0.1082 0,1084 6% 0,1017 0%
L.A.Times 0,1424 0.1676 0,1555 9% 0,1429 0%
Wt10G 0,1043 0,1144 0,1116 11% 0,1025 -0,02%

Table 4.8: MAP Results obtained when considering all queries.

P10
Baseline Manual Expansion Gain Phrase Gain

Ohsumed 0,2367 0.2333 0,2393 1% 0,2401 1%
FBIS 0,1364 0.1434 0,1491 9% 0,1365 0%
L.A.Times 0,1473 0.1727 0,1618 10% 0,1455 -1%
Wt10G 0,1327 1364 0,1418 7% 0,1291 0,03%

Table 4.9: P10 Results obtained when considering all queries.

Tables 4.8 and 4.9 shows the results for all test queries. Column “Baseline” refers to the

results obtained using VSM. Columns “Phrase” and “Expansion” refer to the use of the detected

phrasal terms as phrases in the queries and to the use of phrasal terms to expand documents,

respectively. Column “Manual” refer to the results obtained when manually picking bigrams.

It is noticeable that using the phrasal terms as phrases in the queries yielded little to no gain

(even small losses in some cases). This is due to the small number of relevant documents in
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each collection, many of which did not contain the phrase being queried. Conversely, using the

detected phrasal terms to expand the documents led to gains in all the databases, both in terms

of MAP and in P@10. An important remind here is that the expansion methods results in less

costly query results computation when compared to the option of phrases.

It is interesting to notice that, as the quality of the phrasal term detection increases, the gain

obtained by the use of phrasal terms also increases. While in OHSUMED the gain was only

of 4% in terms of MAP and 1% in terms of P@10, in Wt10G the gains were more expressive

(around 10%).

It is also interesting to notice that, in comparison to manually detecting phrasal terms, the

results obtained by the automatic classification were similar, and even greater as in FBIS and

OHSUMED. This is a good indication that the impact of the proposed method was near the

optimal possible impact yielded by finding phrasal terms in search queries.

MAP
Baseline Expansion Gain Phrase Gain

Ohsumed 0,1916 0,2052 7% 0,1942 1%
FBIS 0,1457 0,1636 12% 0,1450 -1%
L.A.Times 0,1560 0,2119 36% 0,1585 2%
Wt10G 0,0383 0,0616 23% 0,0364 0%

P10
Baseline Expansion Gain Phrase Gain

Ohsumed 0,2558 0,2642 3% 0,2606 2%
FBIS 0,2013 0,2273 13% 0,2013 0%
L.A.Times 0,1616 0,2424 50% 0,1515 -6%
Wt10G 0,0606 0,1212 17% 0,0404 0%

Table 4.10: Results obtained when considering only queries with phrasal terms.

When considering only queries that contain phrasal terms, the results are quite impressive.

We present in Table 4.10 values obtained when considering only queries that contain phrasal

terms. As can be seen, the gains obtained were significant, ranging from 7% to 36% in terms of

MAP. In terms of P@10, although there was only a small gain in OHSUMED, in the remaining
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databases the gain ranged from 13% to 50%. Once again, the use of phrasing yielded poor results

when regarding only queries with phrasal terms. On the other hand, it is clear that the use of

phrasal terms to expand documents in search tasks can lead to expressive gains. The results

obtained in the Wt10G database may seen oddly small (ranging from 0.03 to 0.06), but this is

due to the fact that a few of the queries that had detected phrasal terms did not yield any relevant

result in the 100 first results, having thus MAP and P@10 values of 0.

It is also important to notice that, when expanding a document with the addition of phrasal

terms, there is a small change, in VSM, in the document’s norm, since the phrasal terms are

added as extra terms in the representation of documents. The documents norm is increased,

reflecting the addition of the phrasal term information to the documents. Thus, it is important

to measure how this change affected the results. To do so, in Table 4.11 we show the results

obtained by queries that do not contain phrasal terms. We do so because the results in these

queries are only affected by the change in the norm of the documents. The results of using

phrasal terms for phrasing are not shown because phrasing does not change the quantity of

information present in the documents.

MAP P@10
Orig. Exp. Gain Orig. Exp. Gain

Ohsumed 0,1703 0,1649 -3% 0,1906 0,1789 -6%
L.A.Times 0,1394 0,1431 3% 0,1441 0,1441 0%
FBIS 0,0898 0,0921 3% 0,1176 0,1257 7%
Wt10G 0,1502 0,1504 0% 0,1921 0,1921 0%

Table 4.11: Results obtained when considering only the queries that do not contain phrasal terms.

The results in Table 4.11 show that the addition of phrasal terms had a small impact in all

databases in terms of MAP, with the gain (or loss) being at most 3%, while in terms of P@10 the

impact was slightly higher in some databases. It is interesting to notice that while most databases

had a slight increase or no change in terms of MAP and P@10, in OHSUMED, the addition
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of phrasal terms to the documents yielded losses in both metrics. This is probably due to the

nature of OHSUMED: it is composed of only the abstract and title of medical papers, which

we verified that resulted in small, phrasal terms heavy documents, in which every phrasal term

added to a document have a large influence in its norm. Further, the individual terms present

on the phrasal terms from this collection are already quite specific and present low ambiguity

when compared to the other two collections. This could cause the loss in precision presented

in Table 4.11. Nevertheless, these results indicate that, while the additional information had

some impact on the results, the gain obtained by the methods was mostly due to the phrasal term

existing in some of the queries, and not due to the information added to the documents.

These results present a strong indication that the method can lead to gains in search tasks.

Further, the comparison with manually identifying phrasal terms show that these gains are near

the best-case scenario for classifying phrasal terms.



Chapter 5

Phrasal Terms in Learning to Rank

Environments

The experiments presented in Chapter 4 indicate that our method to detect phrasal terms results

in better quality of results in a scenario of text search only, disregarding potential differences

of the application of the method in a scenario with multiple sources of relevance evidence.

One example of such scenario is Web search, where search engines use a myriad of sources to

compute the final ranking, ranging from linkage information to user click data.

There are examples in literature where the quality gains observed in single sources of

relevance evidence lead to no visible gains when this source is fused with a number of others.

Different reasons may cause such phenomenon, such as overlap of the relevant results better

scored in a single evidence with scores from other sources, or occurrence of results with

abnormally high scores in other sources of evidence, which may avoid a change in another

evidence modifying the list of top ranked documents. Since these effects cannot be ruled out a

priori, in this chapter we study how the addition of phrasal terms information to textual features

in a multi-feature evidence fusion scenario affects the final quality of the results obtained.

73
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Thus, one of our goals in this Chapter is to assess whether including phrasal term information

to a search task with a large number of sources of relevance evidence can yield quality gains, and

if such gains are on par with those obtained in text-only search. We believe that this investigation

can lead to a better understanding of the full impact that the detection of phrasal terms can have

in I.R. tasks, and possible new research directions regarding them.

Another important aspect we investigate in this Chapter is whether the usage of phrasal

terms may positively affect the results achieved by LePrEF. One of the disadvantages of using

LePrEF to learn to rank is that it does not have access to the term compositions available at

query processing times. Thus, when taking at indexing times information about important term

compositions provided by the phrasal terms, LePrEF may become an even more competitive

learn to rank method. We investigate this hypothesis in this Chapter.

To do so, we used the LETOR benchmark collection (Liu et al., 2007). We had two

particular reasons for choosing so: First, LETOR is a well known, largely employed dataset

when comparing evidence fusion techniques, and thus results obtained in this dataset can readily

compared to a large number of other fusion methods. Second, the LETOR dataset is based on

TREC GOV2 dataset, which we also have access to. This means that we can easily extract

co-occurrence information from it. Third, we used it in our previous experiments with LePrEF

and our GP variation, leading to a direct comparison with previous results obtained in this very

thesis. Due to its availability, we also evaluated its impact in the whole Gov2 collection.

In order to use phrasal term information in the Learning to Rank process, we deployed two

strategies: (1) We treated the phrasal terms in the same way that normal terms are treated, and

their frequencies are added by the IR methods such as BM25 and VSM in the usual way, similar

to our approach of expanding documents with phrasal terms . (2) We treated the phrasal terms as

new features for the evidence fusion methods, giving them the chance to evaluate phrasal term
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information on its own as evidence of relevance. We present more information about the details

of our implementation of these two alternatives in Section 5.1.

We thus evaluated the impact of phrasal terms when using Genetic Programming as the

fusion method. We chose GP for this task because, not only it was the best performing method

in the LETOR dataset in our experiments in Section 3.4, but it is also the basis for LePrEF.

We also evaluated the performance of LePrEF in this datasets with added phrasal term

information. We believe that since LePrEF is based on a term by term approach, and thus

completely disregards any co-occurrence information, it would yield a great advantage from the

addition of such information.

5.1 Metodology

As previously stated, in order to assess whether phrasal terms can enhance result quality in Web

search tasks with evidence fusion, we chose to use two datasets: the original LETOR benchmark

dataset, which is based on Gov2, and a dataset based on previous TREC evaluations also made

with Gov2, which will be referred in this thesis as Gov2 dataset.

As in the experiments presented in Section 3.4.1, we used the LETOR MQ2007 subset, that

has an average of 3.84 words per query, and about 41 documents evaluated per query.

We also performed experiments in our Gov2 dataset, which was based on previous ad hoc

evaluations from TREC (Metzler et al., 2004). We used topics 700-850 as the evaluation queries.

While the number of queries is less than 10% of the number present in LETOR, on the other

hand each query has an average of 900 evaluated results, which can probably give a better insight

on how the proposed modifications can lead not only in an enhanced top result ranking, but also

its capabilities to enhance recall by bringing new results that would not be considered top notch
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otherwise. We split those 150 and performed a 10-fold cross validation.

From Gov2, which is the basis of both datasets, we randomly extracted 500 samples of

phrasal and 500 of non-phrasal terms from the 24,824,998 bigrams present, already discounting

bigrams with stop words and containing numbers, as done in Chapter 4, and used our phrasal

terms detection technique to automatically detect 402,091 of them as phrasal terms. In the 1692

queries present in MQ2007, 721 had detected phrasal terms, for a total of 945 phrasal terms, of

which 759 were distinct (some queries had more than one phrasal term). In Gov2’s 150 queries,

of the 312 possible bigrams in them, only 206 have our phrasal term restrictions (non stop word,

not having numbers, at least appearing 10 times in the dataset). Of these, 92 were detected as

phrasal terms by our method.

As previously stated, we deployed two approaches to adding phrasal term information to

LETOR and Gov2:

a) Updated Features Adding their frequencies and other statistics as new terms. In this

approach, the newly detected phrasal terms are considered as normal, additional terms,

and their frequencies, VSM, BM25 and language model values are added to the respective

textual features of LETOR. In a similar fashion, inverse document frequency and other

statistics that are presented in LETOR are also updated.

b) Extra Features As new features pertaining phrasal terms statistics. In this approach, 30

new features derived from phrasal terms are added to LETOR: we calculated, for each

of the six textual features present in LETOR (text, anchor text, title, url tokenization,

title, whole document) the following features pertaining the presence of phrasal terms in

documents: text frequency, inverse document frequency, VSM score, BM25 score and

Language Model score.
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To add this information, we had to find, for each document present in LETOR or in Gov2,

its corresponding phrasal term information in order to add it to the dataset by either method.

This was done by parsing these documents in GOV2 and extracting the phrasal term information

pertaining only the detected phrasal terms that are present in the queries used in LETOR or

Gov2. We disregarded all other phrasal terms that are present in the queries, since we showed in

Table 4.11 that the impact of phrasal terms not present in the query is negligible. We found that,

of the 65323 documents present in LETOR, 24274 had phrasal terms that were also in at least

one of LETOR queries.

With these two approaches, we cover the most simple and direct methods to include phrasal

terms in a Learn to Rank dataset. We do not dismiss, nonetheless, the possibility of more

sophisticated approaches leading to better quality results. We used GP to do the evaluation, in a

similar setup as presented in Section 3.2, and compared the results obtained by GP in the dataset

without phrasal phrasal terms with our two approaches to add phrasal terms to this dataset.

LePrEF

We also evaluated whether the use of phrasal term information could lead to an increase in the

quality of results obtained by LePrEF or not. To do so, we deployed a direct approach: Since

LePrEF works on term-by-term basis, we simply included the phrasal terms information in the

dataset as new terms in the same queries.

5.2 Experiments

Table 5.1 presents the results obtained by the addition of phrasal terms to LETOR. As can be seen,

the addition of phrasal terms did not led to any form of quality gain. Not only that, in both NDCG
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Table 5.1: Results obtained by adding phrasal terms information to LETOR

LETOR Updated Features Extra Features

GP
NDCG 0.504 0.5001 0.499
MAP 0.469 0.4661 0.4654

LePrEF
NDCG 0.491 0.490 0.488
MAP 0.455 0.451 0.449

and MAP, it led to slight losses in quality, even though small. It is also important to notice that,

while obtaining smaller NDCG and MAP values than the original dataset, updating the features

to include phrasal term information instead of creating new features slightly improved the results,

albeit in a non-statistically significant fashion and still underperforming in comparison to not

adding any phrasal term information.

At first sight, it might seem unusual that the addition of information that has been shown in

Chapter 4 to yield good results in text only search has not yielded similar gains in a scenario with

multiple sources of relevance evidence. One factor that could be the cause of such behavior is

that LETOR is a data collection where there is a large number of queries with very few evaluated

results for each query (Liu et al., 2007) (at most 40). Thus, depending on how these documents

were selected, possible gains obtained by adding phrasal terms could be diminished if potential

good results that the phrasal terms would bring to the top are not present in the dataset. In order

to verify whether that scenario is a real possibility or not, we indexed the Gov2 dataset (which is

the base for both LETOR and the Gov2 dataset), and measured the percentage of the top results

obtained by BM25 that are not present in those datasets.

Figure 5.1 shows the percentage of documents within the top 1,2,3,5,10 and 20 BM25 results

in the Gov2 dataset with the addition of phrasal terms that are not present in the same query in

the LETOR dataset. As can be seen, a very large number of results is missing. In the same table,

we also present the same statistic regarding Gov2 dataset, and as it can be seen, the percentage is
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Figure 5.1: Percentage of Missing Documents in the Top Retrieved Documents from the 1692
LETOR queries

much smaller.

These results represent a strong indication that, while LETOR is a good measure of how

different learning to rank methods fare in comparison to each other, LETOR in fact is unsuitable

to simply adding new information to the same documents, due to its small number of evaluated

results per query. In fact, LETOR was not created with the intent to be a reference collection to

measure the impact of the addition of new sources of relevance evidence, being developed with

the only intent to compare learning to rank methods.

In order to better assess the possible quality gains obtained when adding phrasal terms

information to evidence fusion, we also performed experiments with the whole Gov2 dataset,

using a different subset of previously evaluated queries. The results obtained in this dataset are

presented in Table 5.2.

Table 5.2: Results obtained by adding phrasal term information to the Gov2 Collection

Original GOV2 Updated Features Extra Features

GP
NDCG 0.503 0.508 0.499
MAP 0.344 0.348 0.345

LePrEF
NDCG 0.519 0.526 0.522
MAP 0.361 0.370 0.367
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Table 5.2 presents the results obtained when applying GP to the whole Gov2 collection. As

expected from the results presented in Table 5.1, the fact that each query has a much larger

number of evaluated results might have led to this perceived increase in quality in the index

with phrasal terms. These results by themselves are already an indication that phrasal terms can

indeed enhance search results, especially when updating features instead of creating new ones.

This difference is consistent with what was saw in LETOR (Table 5.1), and is an indication that

using this new information as an independent feature is not a good alternative.

Table 5.2 presents the results obtained by LePrEF in the Gov2 collection. The first detail

that comes to attention is that, while in LETOR GP outperformed LePrEF, in the whole Gov2

collection LePrEF obtained visibly better results in terms of NDCG, with the difference between

GP and LePrEF being statistically significant (p-value < 0.001). Also, with the addition of

phrasal terms, these results were further improved (from 0.503 to 0.509 in GP versus from 5.19

to 5.26 in LePrEF), however, this improvement may not be considered statistically significant

(0.08 < p-value < 0.15 for all comparisons). These results are not only an indication that the

inclusion of phrasal terms information can lead to better search quality, but also that LePrEF has

room for improvement with the addition of co-occurrence information.



Chapter 6

Conclusions

In this thesis we propose and study a new paradigm for adopting machine learning techniques to

improve quality of ranking results on search systems. While previous approaches are usually

focused on applying machine learning techniques and their results directly at query processing

times, such as using learning to rank techniques, we here are focused on applying machine

learning during indexing time, essentially performing a learning to index task. The main

advantage of this is that, since most of the processing is done prior to query processing, the use of

such techniques may lead to many advantages while not imposing a large bump in computational

costs (in fact, one of our methods aims at reducing computational costs).

To present the possible gains obtained by this approach, we proposed two machine learning

techniques that are applied in the indexing stage of search engines: One aiming at reducing

query processing times by performing source of evidence fusion at indexing time, effectively

minimizing the effort needed to process a query, and other aimed at improving the quality of the

final answer provided by such systems by means of detecting special bigrams, the phrasal terms,

that have a specific semantic value when co-occurring, and adding information about those terms

in the index of search engines in order to produce better quality in query processing results.
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Our first approach to enhance search engine dataset indexing is our new learning to index

strategy named as LePrEF, a method to fuse various sources of evidence at indexing time using

genetic programming, which is a well known machine learning technique. The proposal reduces

the query processing computational costs with little loss in the quality of the obtained results. Its

main idea is that several sources of evidence can be fused into a single value at indexing time,

leading to various simplifications in query processing. In the experiments presented using the

LETOR benchmark, the loss was from 0.500 to 0.488 when compared to the best baseline found

in this benchmark in terms of mean NDCG. In terms of MAP, the results varied from 0.467 to

0.452.

Besides LePrEF, we also proposed a modification to the Genetic Programming best candidate

selection phase, and our modified GP obtained results that were better than those presented by

state-of-the-art methods in the LETOR benchmark.

The second approach we proposed was a technique to automatically detect phrasal terms in

search engine datasets, and how to include this new information in search engine indexes.

Since most popular text search models are based on a bag-of-words approach, and that is also

a characteristic of LePrEF, we investigated techniques to add word relationships in IR models,

in order to possibly achieve higher precision levels. We presented a machine learning method

to detect phrasal terms in document collections, based solely in occurrence and co-occurrence

statistics of the terms in large bodies of text. Experiments showed that the proposed method

yields good results, without a large computational overhead. The classification of phrasal terms

achieved values of F1 ranging from 70,80% up to 94%.

We also presented the impact that the use of the phrasal term information has on document

searching, by adding this information to search engine indexes. When compared to the traditional

Vector Space Model, the gain obtained by using phrasal terms was up to 11% in MAP, when
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considering all the queries, and up to 36% when considering only queries that do have phrasal

terms. Thus, the use of phrasal terms is a strong solution to enhance the quality of search tasks

while not adding a large computational overhead, since most of the processing is done at indexing

time.

We also performed experiments evaluating the behavior of a search engine when both of

the machine learning techniques proposed in this thesis are applied to its dataset. These results

showed that the addition of LePrEF and phrasal terms in the index lead to a visibly superior

index quality wise, with NDCG values of 0.526 to the original index’s 0.503.

This research opens several questions that can be addressed in future work both in the

direction of further improving the efficiency of the use of LePrEF and also in the direction of

reducing even more the loss in the quality of results. Future directions can also be related to the

usage of other machine learning methods besides genetic programming in the task of learning to

index.

For instance, when considering efficiency issues the usage of LePrEF opens opportunities

to new research, such as deriving pruning methods. The pruning in UTI indexes is likely to

achieve higher reduction in processing costs than the ones obtained in separate indexes, since it

contains global information about the final ranking, while this information is not available when

the indexes are separated. This possibility should be further investigated in the future.

Another alternative to reduce the possible loss in quality, while taking advantage of the usage

of UTI indexes is to adopt the LePrEF method to obtain the potentially relevant documents at

the first phase of query processing, using a traditional learning method in the second phase.

This alternative can be interesting, since LePrEF is more accurate in the selection of candidates,

allowing a selection of a smaller, and probably better, set of candidate documents in the first

phase. However, a detailed study should be performed to better assert the improvements obtained
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with this idea.

Most importantly, this thesis showed that applying machine learning to the indexing stages

of search engines is indeed a very promising research direction, and we believe that there is still

much work that can be done to improve search engines by doing new research in this direction.
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