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Resumo

Máquinas de busca web para a web indexam grandes volumes de dados, lidando com

coleções que muitas vezes são compostas por dezenas de bilhões de documentos. Méto-

dos aprendizagem de máquina têm sido adotados para gerar as respostas de alta qualidade

nesses sistemas e, mais recentemente, há métodos de aprendizagem de máquina propos-

tos para a fusão de evidências durante o processo de indexação das bases de dados. Estes

métodos servem então não somente para melhorar a qualidade de respostas em sistemas de

busca, mas também para reduzir custos de processamento de consultas. O único método

de fusão de evidências em tempo de indexação proposto na literatura tem como foco ex-

clusivamente o aprendizado de funções de fusão de evidências que gerem bons resultados

durante o processamento de consulta, buscando otimizar este único objetivo no processo

de aprendizagem.

O presente trabalho apresenta uma proposta onde utiliza-se o método de aprendiza-

gem com múltiplos objetivos, visando otimizar, ao mesmo tempo, tanto a qualidade de

respostas produzidas quando o grau de compressão do índice produzido pela fusão de

rankings. Os resultados apresentados indicam que a adoção de um processo de aprendiza-

gem com múltiplos objetivos permite que se obtenha melhora significativa na compressão

dos índices produzidos sem que haja perda significativa na qualidade final do ranking

produzido pelo sistema.

PALAVRAS-CHAVE: Otimização Multi-Objetivo, Combinação Linear Convexo, Ge-

ométrico Médio Ponderado, Algoritmo Evolutivo Pareto, Compressão do Índice.
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Abstract

The world of information retrieval revolves around web search engines. Text search en-

gines are one of the most important source for routing information. The web search

engines index huge volumes of data and handles billions of documents. The learn to rank

methods have been adopted in the recent past to generate high quality answers for the

search engines. The ultimate goal of these systems are to provide high quality results

and, at the same time, reduce the computational time for query processing. Drawing di-

rect correlation from the aforementioned fact; reading from smaller or compact indexes

always accelerate data read or in other words, reduce computational time during query

processing.

In this thesis we study about using learning to rank method to not only produce high

quality ranking of search results, but also to optimize another important aspect of search

systems, the compression achieved in their indexes. We show that it is possible to achieve

impressive gains in search engine index compression with virtually no loss in the final

quality of results by using simple, yet effective, multi objective optimization techniques

in the learning process. We also used basic pruning techniques to find out the impact of

pruning in the compression of indexes. In our best approach, we were able to achieve

more than 40% compression of the existing index, while keeping the quality of results at

par with methods that disregard compression.

KEY-WORDS: Multi-Objective Optimization, Linear Convex Combination, Weighted

Geometric Mean, Pareto Evolutionary Algorithm, Index Compression

f



Contents

List of Figures i

List of Tables k

1 Introduction 1

2 Background and Related Work 8

2.1 Application of Machine Learning . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Multi-Objective Optimization in Genetic Programming . . . . . . . . . . 18

3 Multi-Objective Learn to Precompute Evidence Fusion 25

3.1 Introducing Compression as an Objective . . . . . . . . . . . . . . . . . 26

3.2 Combining Quality and Compression . . . . . . . . . . . . . . . . . . . 28

4 Experiments 33

4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

g



CONTENTS h

4.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Conclusions 55

Bibliography 58



List of Figures

2.1 A sample individual of GP process . . . . . . . . . . . . . . . . . . . . . 14

2.2 Example of pareto distribution of solutions with two objective functions. . 20

4.1 Mean NDCG and MAP results obtained by LePrEF(with integer UTI) and

other state-of-the-art methods. . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 NDCG, MAP and CR(compression rate) levels obtained by MOL using

Linear Convex Combination for different “w” values. The “w” values cor-

respond to the weights assigned to quality(NDCG) and compression(CR). 41

4.3 NDCG, MAP and compression rate levels obtained by MOL using Weighted

Geometric Mean for different “a” values, with “b” = 1. “a” is the weight

assigned to quality (NDCG). The * value is the result obtained for “a”= 1

and “b” = 0 (i.e. all the weight given to quality, which is in fact, the value

for original LePrEF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 NDCG, MAP and compression rate levels obtained by MOL using SPEA2

for two different values, which control Elitism . . . . . . . . . . . . . . . 45

4.5 NDCG@N results obtained by MOL methods which do not show statis-

tically significant quality loss, and LePrEF . . . . . . . . . . . . . . . . . 47

4.6 MAP@N results obtained by MOL methods which do not show statisti-

cally significant quality loss, and LePrEF . . . . . . . . . . . . . . . . . 48

i



LIST OF FIGURES j

4.7 Comparison of the results obtained by MOL methods which do not show

statistically significant quality loss, and the original LePrEF, measured in

terms of NDCG and MAP . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 Compression Rates obtained by MOL methods which do not show statis-

tically significant quality loss, and the original LePrEF, while using Pruning 49

4.9 Compression Rates obtained by MOL methods which do not show statis-

tically significant quality loss, and the original LePrEF, without Pruning . 51

4.10 UTI data distribution for LePrEF . . . . . . . . . . . . . . . . . . . . . . 52

4.11 UTI data distribution for MOL(MOL-Geo - 7) . . . . . . . . . . . . . . . 52

4.12 Comparison of overall compression with respect to compression and prun-

ing separately . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



List of Tables

4.1 Genetic Programming configurations for Linear Convex Combination and

Weighted Geometric Mean . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 GP settings for Elitism with 10% Population . . . . . . . . . . . . . . . . 38

4.3 GP settings for Elitism with 20% Population . . . . . . . . . . . . . . . . 38

4.4 Percent weights assigned to quality(NDCG) of each selected method for

comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

k



Chapter 1

Introduction

Search engines are among the main sources of information on the Web. These systems

receive huge number of queries, while having to deal with massive datasets at the same

time. As per current statistics by internetlivestats1 on an average, Google now processes

over 40,000 search queries every second, which translates to over 3.5 billion searches per

day and 1.2 trillion searches per year worldwide. Besides catering to large number of

queries, the web search engines also have to deal with the huge size of the world wide

web. As quoted by WorldWideWebSize2, the estimated size of Google’s global index is

little over about 45 billion web pages. The fundamental aspect of these systems is the

quality of their results, especially the first ones. Users rarely tend to go beyond the first

page of results [33], in the best case issuing new queries (increasing the load of the system)

or in the worst case trying a competitor system. Moreover, modern search engine users

are used to experience fast query processing times, regardless of the size of the dataset,

and any noticeable increase in waiting time can be a fatal blow to the their perception of

the quality of the system.

1http://www.internetlivestats.com/
2http://www.worldwidewebsize.com/
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1. INTRODUCTION 2

A principal aspect of modern search engines is the use of a large number of distinct

sources of relevance evidence. Relevance evidence can be defined as the features which

can be extracted from the pages of text documents which collectively makes the docu-

ment relevant to the query furnished. In other words everything from the page which can

contribute to the ranking of the page can be called relevance evidence. Examples of such

sources of evidence are frequencies of terms, urls, titles, and other parts of speech, term

frequency-inverse document frequency metrics, web link graph analysis, use of anchor

text of the received links of a web page, their HTML structures, such as titles and head-

ings, url tokenization etc [1]. The distinct sources of relevance evidence are used in order

to compute the query result rankings. To do so, they need a method to unite all those

sources to calculate the best location for each answer in the final ranking. In the past few

decades, most of the work on this fusion of sources has been done with the deployment

of learning to rank methods such as RankBoost [14], Genetic Programming based meth-

ods [5],[34], RankSVM [18] and other learn to rank methods like [39]. These methods use

examples of queries, answers and their selected features (sources of relevance evidence

regarding to specific queries), to train a supervised learning model to determine the rela-

tive position of the results of a query. After training, the model can be used during query

processing to determine the final results ranking. This approach, however, inadvertently

adds computational costs to query processing, which may lead to a drop in performance.

An alternative approach, Learn to Precompute Evidence Fusion (LePrEF) [3], also

based on supervised learning, proposes to implement the bulk of the feature fusion dur-

ing indexing time, generating a single inverted index containing unified entries regarding

all features, called Unified Term Impacts (UTIs). Contrary to the traditional systems it

doesn’t maintain separate inverted indexes for each relevance evidence, rather creates a
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single inverted index containing fused values for all relevance evidences. An UTI can be

seen as a combined value or score of all features, which are available during indexing,

of a word in the text. This largely helps to reduce the overload of the use of multiple

sources of relevance evidence in query processing. The results of LePrEF [3] show that

the method achieved a ranking quality on par with the state-of-the-art while leading to

faster query processing times.

The results attained by the authors of LePrEF [3] were at par with those of the base-

lines regarding quality and precision. The quality result of LePrEF with real UTIs was

closely behind the GP learn to rank method (with selection procedure as per the authors of

LePrEF) and RankBoost [14], and at par with RankSVM [18], whereas the result of LeP-

rEF with integer UTIs was at par with AdaRank [41] and slightly behind RankSVM [18].

The quality achieved by LePrEF with real UTIs was obviously better than that of LePrEF

with integer UTIs. This is expected, as real numbers, being floats, would contain more

information than integer UTIs which are actually the truncated version of the real num-

bers. Although there is a loss of quality from real to integer UTI versions of LePrEF, the

loss is within acceptable limits to bring this method at par with the baselines. The loss

of quality is being compensated by the efficiency of LePrEF, as they were much faster in

response as compared to the baselines. Further experiments have uncovered a minor bug

in the existing code. The correction of the existing code led LePrEF quality metric to im-

prove a great deal, and thus, with the current level of quality and as much more expressive

performance gains over other baselines, LePrEF opens doors for further research in this

direction.

As we have already mentioned earlier regarding the enormous sizes that the world
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wide web can attain, the principal concern is the technology that should be used to han-

dle the needs. The omnipresent solution to this are the inverted indexes which have been

efficiently catering to the needs of information retrieval systems for decades. Inverted

indexes are used to efficiently access text across such huge data collections. The size

of the inverted indexes also turn out to be huge since the data itself is massive. Com-

pression thus can be adopted as the next step in the optimization of the systems. It has

a threefold advantage over information retrieval tasks. The primary benefit of adopting

compression of indexes is imminent enough, which is reduction in disk usage or storage.

Very basic compression schemes have proven to be useful by achieving around 75% or

more compression in disk storages [25].

The secondary advantage of compression is in the increased usability of caching dur-

ing query processing [25]. A very common strategy for search systems to quicken the

query processing is to cache the entries of frequently used terms. While the entries of a

one term query are cached, all response and ranking related computations for the query

are carried out in memory, and the number of disk seeks is reduced. When compression

is applied in such scenarios, more information can be processed in main memory. Thus,

the number of disk seeks is reduced and in turn compensated by decompression of data in

the memory, which has been proven to be more than effective with various high efficiency

data compression techniques available in the literature. The penalty for decompression of

inverted lists in the memory is much smaller than the disk seeks and hence is preferred.

Such arrangements have substantially reduced query processing costs.

Compression also helps in faster disk to memory data transfer [25]. The time taken to

transfer a compressed data chunk from disk to the memory and decompress it, combined,
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is much lesser than the time taken to transfer the same data chunk in an uncompressed

format. Thus, it is possible to load much smaller compressed postings or inverted lists

and decompress them in the memory in a much faster time, even when they need to be

decompressed to carry out ranking related computations. Recent researches have com-

prehensively proven that information retrieval from compressed indexes are much faster

than their uncompressed counterparts [49].

While the creators of LePrEF [3] show that it can lead to high quality results, their

experiments also show that there can be a large variation in the compression rate of the

indexes created by it. The authors implemented variable size encoding schemes such

as Elias-δ [9] to compress the indexes. Search engines usually compress their indexes in

order to be memory efficient, and to produce indexes that allow for high compression rates

is an important feature. LePrEF uses only quality as its objective function and as such may

produce non-compressible indexes, with properties that are not desired in search engines.

An example is the necessity of producing index entries that are compression friendly, in

the sense that they need to allow high compression rates.

In an extension to the work of LePrEF [3] we propose MOL, a Multi-Objective vari-

ant of LePrEF, a method that is not only able to find great ways to fuse evidences, but

also can be used to maximize other objectives, which in this case, is the compression

rate of its generated indexes. In this work, we study the use of various multi-objective

optimization methods and attain a quality level on par with our current baselines and

LePrEF [3], while being able to maintain good compression levels also. We continue us-

ing the same platform as that of LePrEF [3] and same dataset LETOR [24]. We adopted

Genetic Programming(GP) in our implementation since the authors of LePrEF [3] have
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used GP successfully in developing the method and it challenges most baselines convinc-

ingly. We would like to mention here that, other traditional learn-to-rank methods like

RankBoost [14], RankSVM [18] and AdaRank [41] can also be used here to implement a

multi-objective approach.

Our research on the feasibility of multi-objective optimization dwells on the applica-

bility of multiple objectives in the execution of LePrEF [3]. As stated before we used

compression as an auxiliary objective to achieve multi-objective optimization, along with

the principal objective, quality, of the search system. We have implemented Elias-γ [9]

codes to compress the indexes generated by Multi-Objective-LePrEF (MOL), but other

alternative compression methods can also be easily applied on this scenario. We should

emphasize on the fact that the principal objective of this work is to achieve higher com-

pression of inverted indexes without sacrificing any quality of the search results.

In our research we also implemented pruning of indexes to assist in compression and

thereby improve search engine efficiency. Pruning can be considered as a lossy compres-

sion technique of the search indexes. Compression already reduces the index sizes, and

now an efficient pruning should reduce the index size greatly. The objective of such prun-

ing strategies is to reap the benefits of index compression while maintaining the loss of

information to an acceptable limit. As discussed before the readable data is indexed and

impacts related to response is stored in inverted lists or postings. Pruning techniques are

directed to these lists which are responsible for measuring the relative importance of the

individual terms in the documents or queries. The terms which eventually have impacts

on the ranking results or, in other words, which are relevant to the search query, are main-

tained in the index, whereas the ones which do not contribute to the ranking are discarded.
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Various pruning techniques in the literature, for example [7],[6], perform careful scrutiny

of every term for the provision of useful information, and then determine which terms

should be in the index and which should not.

Through our work we came to know about the non-dependency of quality of ranking

and compression rate of inverted indexes on each other during the implementation of

multi-objective optimization. At first glance, it was expected that quality on ranking and

compression rates of inverted indexes were contradictory features for a textual search

system. During the course of research it surfaced that, what appeared at first glance, was

not entirely correct. We were actually able to generate some very high quality indexes

which also compress well.

The remainder of this dissertation is organized as follows: In Section 2 we discuss

the related works and an overview of the basic concepts involved. Section 3 describes the

proposed method describing how we use LePrEF [3] with multi-objective optimization.

Section 4 presents the experimental setup followed by experimental results in comparison

to current baselines in Section 4.3. Finally, Section 5 presents the conclusive remarks and

directions to future research.



Chapter 2

Background and Related Work

In this chapter we present some of the basic concepts to understand the paradigm adopted

in our experiments and the corresponding related works in the literature.

2.1 Application of Machine Learning

Machine learning is a broader application of Artificial Intelligence where it studies the

ability of the computers to learn without them being programmed explicitly.This field of

computation is a machine implementation of how human behavior is towards a situation.

It learns from experience and applies it to the current situation. The input to such systems

is data, in quantities, which depends on specific scenarios, which is then used to learn

patterns present in it. These patterns, which are based on the features which generated

the data; can be leveraged to make predictions on unknown data sets. Machine learning

thus generates models which can learn patterns from sample data and use the knowledge

gained to do the required job. Owing to its remarkable success, machine learning is

used in wide range of fields like medical diagnosis, fraud detection, information retrieval,

8



2. BACKGROUND AND RELATED WORK 9

natural language processing and others.

The machine learning algorithms can be subdivided into three major groups: Super-

vised Learning, Unsupervised Learning and Semi-supervised Learning, based on the type

of learning that is being adopted [1]. Supervised learning can be described as a model

which is provided with input data, known as training data, labeled by human data spe-

cialists. Unsupervised learning, can be explained as that class of learning where none of

the training data is labeled. In Semi-supervised learning a small amount of labeled data

is used to make predictions about large amounts of unlabeled data. The authors of LeP-

rEF [3] deployed supervised techniques for their implementation and so is being followed

by us.

In LePrEF [3], the authors used an application of supervised learning. The imple-

mentation of this is little different from classification of elements, which is a principal

application of supervised learning. Here, learning to rank methods are adopted, where a

fitness score is generated for each element and then all elements are ranked in descending

order of their scores. The best elements based on specific criteria are then selected for

further processing; this paradigm being known as Genetic Programming.

Learn to Pre-Compute Evidence Fusion & Genetic Programming

A key concept in any search engine architecture is relevance evidence. We have already

talked about it in the Introduction. We define relevance evidence as any information which

can be extracted from the documents in the data-set, e.g. in Web search engines its pages’

content, anchor text, url, title, image description, etc. that might contribute to infer that a

webpage is relevant to the user’s query.
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This information is translated into numerical values and stored in search engine in-

dexes, and can be roughly divided into two sets: Query dependent and query independent.

The former is relevance information that depend on the query terms in order to infer web-

page relevance, and is usually stored in inverted indexes, with one entry per term present

in the webpage (the concept of term might vary according to the retrieval model adopted,

with single words used as terms in traditional bag-of-words based models). The latter is

usually information pertaining webpage characteristics, such as PageRank values, number

of received links, number of slashes in the URL etc.

On the contrary to the traditional textual search systems LePrEF [3] adopts the con-

cept of a single numerical value to represent the whole set of relevance evidences, both

query dependent and independent, storing Unified Term Impacts (UTIs) in the inverted

index. Instead of storing several values for each isolated source of evidence it fuses the

sets of index entries for all relevance evidences into a single value. While in the traditional

search systems, we have seen that after the extraction of features from the documents/-

pages the documents are indexed to generate separate inverted indexes for every relevance

evidence, LePrEF [3] involves another step at this stage, where it fuses all available rele-

vance evidences into a single value called UTI and generates an inverted index of UTIs.

At this stage, the cost of the processing in LePrEF [3] is high but these costs never impact

the users’ experience as it occurs during indexing phase. The next stage is query process-

ing where on one hand traditional systems followed a two-phase query processing with

sophisticated ranking functions like BM25 [32] to generate rankings, on the other hand

LePrEF [3] simply has to add the UTI scores to generate the ranking. Thus, it makes

faster query processing at the cost of high indexing costs.
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The authors of LePrEF [3] have used Genetic Programming [GP] as a tool to learn

unified precomputed impacts from various distinct sources of relevance evidence. In the

recent past many researchers have used GP successfully in the fields of text search and

learn to rank functions [5], [10], [12], [34], [39], [43]. As compared to the works men-

tioned here, LePrEF [3] used GP to learn to fuse separate indexes of different relevance

evidences into a single inverted index, and that too during indexing, unlike earlier ap-

proaches where the learning was applied at the query processing time. The inspiration to

use GP as a tool to learn weights of each term of a document is attained from [12]. GP

also proved to be very useful in [11] where it automatically generates ranking strategies

for different contexts.

Various learning methods have been used successfully applied to Information Re-

trieval problems such as [5], [10], [14], [18], [39]. All of the aforementioned cases

showed promising results but they used the learning function during query processing.

The results of [5], [34] nurtured our belief in GP as they achieved at par results in search

systems for textual databases. Further GP uses mathematical operators which result in

simpler computation of impacts for document terms. To provide more insight regarding

the GP process and how it is used in LePrEF [3] to generate the UTIs, we explain the

basics of it in this section.

Genetic Programming framework as depicted in listing 2.1 follows an iterative process

over a given number of generations and individuals until it generates the best individual

based on certain end criteria. In case of our implementation the end criterion is the max-

imum number of generations of the evolutionary process. The GP process runs in two

phases: training Lines(1-10) and validation Lines(11-14). In each of these phases a set
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Listing 2.1: General GP process used both in learn to rank and in LePrEF [3]

1 Let T be a training set of queries ;
2 Let V be a validation set of queries ;
3 Let Ng be the number of generations ;
4 Let Nb be the number of best individuals ;
5 P ← Initial random population of individuals ;
6 Bt ←∅;
7 For each generation g of Ng generations do {
8 Ft ←∅;
9 For each individual i ∈ P do

10 Ft ← Ft ∪{g, i,fitness(i,T )};
11 Bt ← Bt ∪getBestIndividuals(Nb,Ft);
12 P ← applyGeneticOperations(P ,Ft ,Bt ,g);
13 }
14 Bv←∅;
15 For each individual i ∈ Bt do
16 Bv← Bv∪{i,fitness(i,V )};
17 BestIndividual ← applySelectionMethod(Bt ,Bv);

of queries and documents are selected from distinct collections, which are called training

set and validation set[5].

The GP process starts with the creation of a random population of individuals (Line 5),

which are essentially mathematical expressions derived from the combination of relevance

evidences. This random population starts evolving with every passing generation using

genetic operations like reproduction, mutation and crossover until some specified stopping

criterion is met (Line 12), which in this case is the number of generations. In the training

phase each training individual is assigned a score by the fitness function (Line 7-10) and

the individuals are ordered as per their fitness scores. The fittest individual is then allowed

to evolve (Line 11). The next step is to use the best individuals from training on the

validation set of data to remove overfitting (Line 15-16). The fittest individual from this

phase is considered as the best individual (Line 17).

In LePrEF [3] a learn to rank approach is used, wherein the individuals which are ba-
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sically, the evidence fusion functions, generate an UTI value for each term in the inverted

index. The training queries are then processed, based on these UTI values to generate a

ranking for the training set. Thus, for every term occurring in the data collection an UTI

value is generated with respect to the document where the term exists. The sum of the

UTIs for query terms are calculated with respect to each document to rank the all docu-

ments in the collection. The final ranking, hence, is then used to calculate the fitness of

the individuals.

Individual

In genetic programming, an individual can be represented as a mathematical function

organized in a tree structure as shown in 2.1. These mathematical formulas can be ob-

tained from the various ranking formulas in the information retrieval literature. In the

experiments of LePrEF [3] the authors used the values of the features as mentioned in

section 4.1, which are the information obtained from the relevance evidence, for the ter-

minals or the leafs, also combining them with random number constants ranging from 0

to 100. In the inner nodes, the authors use division(/), multiplication(*), addition(+) and

logarithm(log) as corresponding mathematical functions.

Fitness Function

The fitness function is designed so as to measure the quality of rankings generated by the

individuals. Normalized Discounted Cumulative Gain (NDCG) [17] and Mean Average

Precision (MAP) [1] were used by the authors of LePrEF [3] in their initial experiments,



2. BACKGROUND AND RELATED WORK 14

Figure 2.1: A sample individual of GP process

but later the best experiments which resulted in better quality, used mean NDCG [17]

as the fitness function. NDCG measures the performance of a recommendation/retrieval

system based on the graded relevance of the recommended entities. It varies from 0.0 to

1.0, with 1.0 representing the ideal ranking of the entities.

Selection of the Best Individual

The selection of the best individual is done from the validation of LePrEF [3] as sug-

gested in [5]. In this method both the training and validation performance is being taken

into consideration while calculating the final performance. For example if ti is the train-

ing performance and vi is the validation performance of the individual i, then the final

performance fi is fi = (ti + vi)−σi, where σi is the standard deviation of ti and vi. The

best individual is thus given by:

argmax
i

((ti + vi)−σi) (2.1)

This method is known as AVGσ, and the individual with the highest value of AVGσ

is selected as the fittest individual. The selection procedure for the best individual clearly
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implies that a smaller value of σi would contribute more in the selection of the individual,

thereby making it sure that the individuals which perform uniformly over training and

validation data set are selected, whereas (ti + vi) stresses on getting those individuals

selected, which simultaneously performs very good in both the sets.

As we all know that Genetic Programming is associated with some kind randomness

in the process, the authors of LePrEF [3] have run ten processes with different random

seeds instead of a single process. Finally the best individual is selected based on the

AVGσ values of the individuals generated over the ten seeds. Through this approach the

chances of generating a low performing individual with only a single seed is replaced

with an option of multiple seeds where the probability of generating a good individual

increases. The results of LePrEF [3] proves the same.

2.2 Compression

A lot of research has been done in the past and present on data compression in inverted

indexes. A classical approach to such compression that has yielded consistently good

results in this task is done by using universal codes to represent index entries, where each

integer is encoded with a uniquely decodable variable length code. An interesting fact

about these codes is that they are not dependent on the input.

The most common and trusted codes among these are the Elias Gamma/Delta codes [9].

The Delta codes being little more efficient for compression but loses to Gamma codes on

account of decompression. Gamma codes are the simplest of the Elias codes. For exam-

ple if a number x ∈ N = {1,2,3, ...} is encoded with Elias Gamma coding scheme, then
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the encoded number is represented by its binary form preceded by blog2(x)c zeroes. This

encoding scheme is quite lucid and we may note that the total number of bits required to

encode x are (2blog2(x)c+ 1), wherein (blog2(x)c+ 1) bits are required for the binary

representation of x.

The Elias Delta codes are built on top of Elias Gamma and Binary representation of

integers. Suppose we have an integer x ∈N= {1,2,3, ...}. The first part of the delta code

comes from the Elias Gamma representation of (blog2(x)c+ 1). The rest of the number

consists of the binary representation of (x−blog2(x)c), which is coded in blog2(x)c bits.

Thus, the total number of bits needed for Delta codes are (blog2(x)c+2blog2(blog2(x)c+

1)c+1) bits.

Golomb code [15] is run-length encoding also known as variable-length codes. The

length of the encoded number changes as per the selection of a variable, which is used in

the encoding. To compute Golomb code for an integer x ∈ N = {1,2,3, ...}, we need to

compute three values:

q = bx−1
b
c, r = x−qb−1 and c = blog2bc,

where, q is the quotient, r is the remainder and b is a constant based on which Golomb

codes are generated. The encoding is done in two parts; the first part consists of the Unary

representation of (q+1), succeeded by the binary representation of b. In the second part

r is represented in its binary format using c bits for c successive numbers with a most

significant bit of 0, and for the rest the same is represented using c+ 1 bits with a most

significant bit of 1.



2. BACKGROUND AND RELATED WORK 17

Another example of run-length encoding is Rice code [31], which is a very specialized

form of Golomb coding. This code is preferable when the numbers in the data collection

are small. Encoding pattern for Rice codes are exactly the same to that of Golomb coding,

the only difference being b ∈ 2n where, n ∈ N= {1,2,3, ...}.

We adopt Elias codes in our experiments but it is possible to implement other state-of-

art compression schemes like PFOR,PFOR-DELTA and PDICT [50], varint-G8IU [37],

NewPFD [42], PFOR2008 [44], Partitioned Elias-Fano Indexes [29] and SIMD-BP128 [23].

2.3 Pruning

Pruning is another strategy which plays an important role in the field of information re-

trieval. We have already discussed regarding pruning and strategies in the Introduction 1.

Literally index pruning techniques remove entries from the inverted indexes which do not

contribute to the ranking of the documents. There are more complex strategies for com-

puting those values which needs to be removed from the inverted indexes based on various

factors like proximity, relevance and so on. The final goal towards of pruning strategies

are to facilitate indexes more towards compression, thereby saving space and time.

In [6] the authors propose a pruning idea which enhances the time and space effi-

ciency without tinkering with the search effectiveness. They have successfully claimed

that the experiments have proven 60% cost cutting over reduction in index storage, while

keeping the loss in the retrieval precision to a minimum. The have also proven that indexes

were 88% compressed while comparing with uncompressed indexes. To achieve this feat

they have used two kinds of indexes: The frequency index and the positional index. The



2. BACKGROUND AND RELATED WORK 18

frequency index contains the frequency of the term t for all documents where it exists,

which is used to measure the relative importance of terms in documents and queries. The

positional index contains the information of the position of occurrence of the term t in

those documents and thus facilitate processing positional queries.

In another approach towards pruning [7] proposed a static index pruning strategy that

takes into account the locality of occurrences of words in the text. These strategies are

best suited for fast changing document databases such are large web search engines. The

authors achieved around 30% reduction of index sizes in their experiments with almost no

change in the top query results. Locality information is very important in this approach

and a simple approach involving locality can be very well competitive to more complex

strategies that do not rely on locality information.

2.4 Multi-Objective Optimization in Genetic Program-

ming

The Multi-objective Optimization problem (also known as multi-criteria, multi-performance

or vector optimization problem) can be defined as the problem of finding [28]:

a vector of decision variables which satisfies constraints and optimizes a vector func-

tion whose elements represent the objective functions. These functions form a mathemat-

ical description of performance criteria which usually conflict with each other. Hence,

the term “optimize" means finding such a solution which would give the values of all the

objective functions acceptable to the decision maker.
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Multi-objective optimization in genetic programming is a very active field of research

in the last decade or more. Generally, in a multi-objective optimization problem, multiple

objectives, or goals, f1, f2, ..., fn are optimized(maximized or minimized) to find a range

of solutions. These solutions are essentially and necessarily acceptable for all criteria si-

multaneously. The problem arises when these objectives or criteria, directly or indirectly

oppose each other while we try to achieve our goal, thereby reducing the overall perfor-

mance of the system. Multi-objective optimization algorithms offer specialized care in

these situations, thus, achieving optimal results.

A general multi-objective optimization problem can be described as a vector func-

tion f that maps a tuple of m parameters (decision variables) to a tuple of n objectives,

formally [47],[36],[13]:

minimize/maximize y = f (x) = ( f1(x), f2(x), ..., fn(x))

subject to x = (x1,x2, ...,xm) ∈ X (2.2)

y = (y1,y2, ...,yn) ∈ Y

where, x is called the decision vector and y is called the objective vector, and n≥ 2.

We have mentioned the term “optimal” earlier in our discussion regarding multi-

objective optimization. This actually means some value for the decision vector which

is either maximum or minimum, based on requirements. In this case we have multiple

optimal solutions leading to a set of solutions. Such a set of solutions consists of all de-

cision vectors which cannot be improved in any objective without degrading any other

decision vector. These solutions or vectors are known as Pareto Optimal. Pareto im-
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Figure 2.2: Example of pareto distribution of solutions with two objective functions.

provement consists of improving a solution without making any other solution worse, and

when we reach the optimal solutions, then, no further improvements are possible. Pareto

optimality can be formally proposed as [47]: Suppose we have a minimization problem

with two decision vectors a,b ∈ X with n objectives. We state that a dominates b or a� b

iff

∀i ∈ {1,2, ...,n} : fi(a)≤ fi(b) ∧ ∃ j ∈ {1,2, ...,n} : f j(a)< fi(b) (2.3)

The set of optimal solutions or the best solutions from the search space, which is also

known as the non-dominated solutions, constitutes the pareto frontier of the collection.

Figure 2.2 shows an example of a pareto frontier and the distribution. In the figure 2.2 we

show a minimization scheme for optimization and hence the curve is concave, whereas

this can be put forth for a maximization of the objectives also, and in that case the curve

in the figure would be convex.
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A very common idea to use multi-objective optimization with genetic programming

is to combine several fitness functions or objectives by using an aggregate scalar fitness

function. Suppose we have n objective functions f1, f2, ..., fn, then we can can use linear

combination of the form f = Σn
i=1wi. fi, where w1,w2, ...,wn are appropriate constants. A

normalized form of the same idea is to use weights wi ∃ Σn
i=1wi = 1.

Langdon and Poli [22] proposed a semi-linear combination of fitness and speed to

improve the performance of genetic programming on the Santa Fe trail ant problem. A

threshold was applied there to limit the impact of speed to avoid an excessive bias for the

ants which were fast but not able to complete the trails.

Langdon, Barrett and Buxton [21] also used linear combination of two related objec-

tives, the sum of squared errors and the number of hits, where a hit is a case in which the

error is below a pre-defined threshold value. This was used for biochemical predictions

in pharmaceutical industry.

Zhang and Bhowan [45], O’Reilly and Hemberg [27] and Koza, Jones, Keane, and

Streeter [20] also present similar ideas of multi-objective optimization to improve ge-

netic programming performance by doing linear combination of multiple objectives with

carefully chosen weights, which were derived only after considerable experimentation.

Another way of calculating an aggregate of multiple objectives or fitness functions is

to calculate the weighted geometric mean of the objectives. Suppose we have n objectives

f1, f2, ..., fn and w1,w2, ...,wn as the corresponding weights assigned to each objective,

then the geometric mean of the objectives can be computed by

f = W
√

( f w1
1 . f w2

2 ... f wn
n ) ,where W = Σ

n
i=1wi
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Iba, Paul and Hasegawa [16] use equal weights for two objectives, sensitivity and speci-

ficity to compute the geometric mean based fitness as

G f itness =
√

(sensitivity.speci f icity)

In an alternative approach the objectives can also be kept separate while they are

being optimized. The prime idea in multi-objective optimization here is based on pareto

dominance. Given a set of objectives to minimize, for instance, a solution is said to

pareto dominate another, if the first is not strictly inferior to the second in all objectives

and is superior to the second in at least one objective. Zitzler et al.[48], [46] and Deb

et al.[8] used similar approaches to propose evolutionary algorithms which are currently

used widely in various multi-objective approaches in a wide range of applications.

Strength Pareto Evolutionary Algorithm (SPEA2):

One of the most successful approaches to multi-objective optmization is the second ver-

sion of the Strength Pareto Evolutionary Algorithm (SPEA2) [46]. The objective of

SPEA2 is to locate and maintain a front of non-dominated solutions, ideally a set of

pareto optimal solutions. Finding pareto optimal solutions is an strategy adopted while

combining conflicting objectives. At a first glance, finding a solutions that provides good

compression and high quality might be two conflicting objectives, since as compression

rates grow, less information is present to generate the rankings. Thus, using a pareto based

approach could be a natural option for combining such objectives.

The SPEA2 is an evolutionary process which uses genetic operators such as repro-
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duction, crossover and mutation to explore the search space. The selection process uses

a combination of the degree to which a candidate solution is dominated (strength) and an

estimation of density of the pareto front as an assigned fitness. The non-dominated set

of individuals is maintained separately from the population of candidate solutions used in

the evolutionary process, providing a form of elitism. More details about SPEA2 can be

found in the work of Zitzler et al. [46]. The SPEA2 algorithm is described briefly below:

Input : N (population size), T (Maximum number of generations)

Output: A (nondominated set)

Step 1: Initialization: Generate an initial population P0. Set t=0.

Step 2: Fitness Assignment: Calculate fitness values of individuals in Pt . Each individ-

ual i in population Pt is assigned a strength value S(i), representing the number of

solutions it dominates.

S(i) = | { j | j ∈ Pt ∧ i� j} |

where, � corresponds to the pareto dominance relation. Based on the values of S

the raw fitness R(i) of an individual i is calculated:

R(i) = ∑
j∈Pt ,i� j

S( j)

Fitness here needs to be minimized and a value of 0 corresponds to the non-dominated

individuals. When there are many individuals which do not dominate each other.

Density Estimation is used to assign different values to these individuals. The den-

sity estimation is done using kth nearest neighbour method proposed by Silverman

[35]. The value of k is given by:

k =
√

N
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For each individual i the distances (in objective space) to all individuals j in pop-

ulation are calculated and stored in a list. After sorting the list in increasing order,

the kth element gives the distance sought, denoted as σk
i . Thus, density is given by:

D(i) =
1

σk
i +2

Finally D(i) is added to the raw fitness value R(i) of an individual i to give the

fitness F(i):

F(i) = R(i)+D(i)

Step 3: Environmental Selection: The concept of allowing the best individuals to go

through to the next generation untouched is known as elitism. We apply reproduc-

tion to x percent of the population to select the best individuals from the population

and promote them to the next generation. The new generation thus now has only x

percent individuals, which are the best from the previous generation. Formally we

can present this as:

Pt+1 = { j | j ∈ Pt ∧Fj(i)< 1}

where, j is the top x percent of the population Pt . The rest of the individuals in

the new generation are generated from the new population by crossover and mu-

tation, thus generating Pt+1. The value of x is carefully chosen after considerable

experiments.

Step 4: Termination: If t ≥ T or any other stopping criterion is met then set A is said to

be the set of decision vectors represented by the non-dominated individuals in Pt+1.

Owing to the pertaining discussion about multi-objective optimization we were en-

couraged to implement the idea of having multiple objectives during the indexing of LeP-

rEF [3] which when combined with compression yielded great compression rates with

very little or no change in the quality of rankings. This approach is an innovative di-

rection to multi-objective optimization in the field of textual information retrieval where

compression friendly quality indexes are very important.



Chapter 3

Multi-Objective Learn to Precompute

Evidence Fusion

LePrEF [3] is a Learning to Rank method that is based on the idea of fusion of different

sources of relevance at indexing time. To do so, it introduced the concept of Unified Term

Impact (UTI), which is a single numerical value representing the impact that a term has

in a document, taking into consideration all sources of relevance evidences.

To do this fusion, it uses Genetic Programming (GP) in order to generate individuals

(mathematical formulas) to combine all sources of relevance evidence into a single value

for each term-document pair. Then, the quality of the rankings generated by UTIs cre-

ated by each individual is used as this individual’s fitness value. After finding the best

individual during the training stages, the whole dataset has to be indexed according to

that individual, generating an UTI inverted index. In the UTI inverted index we have an

inverted list for each term. The inverted list of the term is composed of pairs consisting

of document id and corresponding UTI value, for all documents in the collection where

the term occurs. A document id is an alphanumeric variable which is used to index the

25
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documents in the collection. Thus while using a single UTI inverted index, the query

processing is just a simple matter of list traversals and accumulator sums, instead of mul-

tiple indexes being traversed followed by a fusion step, as occurs in traditionally indexed

datasets. This advantage leads to a reduction in the number of operations performed by

the query processor since it is, in practice, dealing with a single and unified representation

of the sources of relevance evidence adopted.

We propose Multi-Objective LePrEF (MOL) on the similar lines, a variant of the

LePrEF [3] method that can take into account more than one (which in this case is “quality

of ranking") objectives while generating solution. In this section we will describe MOL,

with emphasis on using both the quality of the ranking and an assumed compression rate

as training objective. This is further realized by means of various optimization schemes

to fortify our proposal.

3.1 Introducing Compression as an Objective

In search engines, it is usual to store the impacts of the terms as integers in inverted lists,

and a similar approach can be used for UTIs. The entire index produced by LePrEF [3]

requires the storage of one UTI for each term that occur in each document of the dataset,

and such task usually requires a large amount of storage space. Thus, in order to mini-

mize the impact that those potentially vast datasets might have on the search system, it is

usual to implement compression schemas in the indexed data, like Elias-γ / δ codes [9] or

Golomb/Rice codes [15],[31] to encode the integer entries.

As in LePrEF [3] we adopted Elias-γ [9] coding in our experiments. Since we are
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interested in adding the compression potential of UTI indexes as an objective function

in the learning process, we adopted the compression rate of data as one of our objec-

tive functions. While processing each generation in the GP process, MOL computes the

NDCG[17] values computed by each individual over a set of training queries, alike LeP-

rEF [3].

While the system is indexing the data collection and computing the UTI values to

generate the inverted index of UTI values, it calculates the compression rates by using

Elias-γ codes, and the compressed size of the index, thereafter. In the next step the relative

difference between the size of the uncompressed and compressed UTIs gives the space

savings or Compression Rate:

CR =
UT I sizeinitial−UT I size f inal

UT I sizeinitial

where, UT I sizeinitial is the size of the inverted index before compression and UT I size f inal

is the final compressed size of the inverted index of UTIs. Note that the index does not

need to be compressed in order to compute the compression rate, since we can compute

the size of an Elias code for any given number.

The value of Compression Rate(CR) varies from 0.0 to 1.0, where 0.0 denotes “no

compression" and 1.0 representing theoretical “100% compression". A one hundred per-

cent compression, though means complete loss of information. Notice that it is also pos-

sible to achieve negative compression, where the compressed data occupies more space

than the uncompressed.
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3.2 Combining Quality and Compression

In order to combine both Quality and compression as our objective functions in Multi-

Objective LePrEF, we experimented with three different techniques discussed in Sec-

tion 2: Linear Convex Combination, Weighted Geometric Mean and Strength Pareto Evo-

lutionary Algorithm (SPEA2) [46]. In all cases, the values of NDCG [17] and compres-

sion rate were adopted to represent how good is each individual regarding the quality of

ranking and compression, respectively.

Formally this is a typical multi-objective optimization problem where we would need

to maximize the objective vector. We have two objectives, quality of ranking and com-

pression of inverted index, represented by q and cr respectively. While we use genetic

programming, we have a decision vector with m parameters or decision variables, and n

contradicting objectives. Thus, the problem can be stated as:

maximize y = f (x) = ( fq(x), fcr(x))

subject to x = (x1,x2, ...,xm) ∈ X (3.1)

y = (yq,ycr) ∈ Y

where, x is the decision vector and y is called the objective vector, and n ≥ 2. Thus,

in our case we have a maximization problem with the objective vector as shown above

and also n = 2 (two objectives: quality and compression). We have k decision vectors,

where k ≥ 1. Thus, if we have {x1,x2, ...,xk} ∈ X as the decision vector, we state that

x1 dominates x2 or x1 � x2 iff
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∀i ∈ {1,2, ...,n} : fi(x1)≥ fi(x2) ∧ ∃ j ∈ {1,2, ...,n} : f j(x1)> f j(x2) (3.2)

Where, the aforementioned pareto optimality is checked between each of the decision

vectors to lead to the best set of pareto optimal solutions.

Linear Convex Combination

One of the most simple alternatives for multi-objective optimizations that we have exper-

imented is linear convex combination. The values for quality of ranking and compression

rates of inverted indexes are calculated by each individual for set of queries and combined

together, leading to a fitness function containing a mixture parameter w dictating the ratio

of importance given to the quality of ranking and the compression rate of inverted index:

score f itness = w.q+(1−w).cr (3.3)

where 0 ≤ w ≤ 1, q represents the quality of ranking produced by the system using the

best individual and cr is the compression rate of the UTI inverted index using the same

individual.

The fitness score computed as shown here is used in the method to compute the fit-

ness of each individual while it processes the training queries. Based on the score of

the individuals the best ones are selected, and those individuals are used to generate the

population for the next generation. This score is used to rank the GP individuals in the

validation phase similarly, and finally the best individual is selected from the combination
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of scores of training and validation phase.

Weighted Geometric Mean

In another alternative approach, we also propose to use a weighted geometric mean be-

tween quality and compression, since it takes into account both mean and variance of a

set of values. We implemented weighted geometric mean to calculate the fitness of an

individual as:

score f itness =
c
√

(q)a.(cr)b (3.4)

where, c is the sum of a and b; a and b are the values of the weights assigned to quality of

ranking and compression rates, respectively. The variables q and cr represent the values

of quality of ranking and compression rate for the inverted list, using the best individual

for that generation. When the weights assigned to the two objectives are equal, it becomes

Geometric Mean. The fitness scores computed here by using geometric weighted mean is

used in the same manner as it is used while using Linear Convex Combination.

Strength Pareto Evolutionary Algorithm (SPEA2)

The third alternative adopted by us is the Strength Pareto Evolutionary Algorithm (SPEA2) [46].

We implemented a fast algorithm [26] to find the non-dominated solution sets 3.1. Unlike

the methods like Linear Combination or Geometric Mean, SPEA2 [46] does not rely on

any scalar values based on the fusion of the values of the objective functions. It uses the
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Listing 3.1: Fast algorithm to find Non-dominated Solutions [26]

1 Sort all the solutions (P1,P2, ...,PN) in decreasing order of their first objective
function (F1) and create a sorted list (O)

2 Initialize an empty set S1 and add the first element of the list O to S1
3 For every solution Oi (other than first solution ) of list O, do
4 Compare solution Oi with the solutions of S1, for both first (F1) and second

(F2) objectives
5 If any element of set S1 dominate Oi

6 then delete Oi from the list
7 If Oi dominate any solution of the set S1
8 then delete that solution from S1
9 If Oi is non dominated to set S1

10 then update set S1 = S1∪Oi

11 If set S1 becomes empty
12 then add the immediate solution to S1
13 Get non−dominated set S1.

aforementioned concept of pareto optimality to determine the non-dominated solutions.

In this implementation we use the same basic infrastructure as of LePrEF [3] and

introduce the SPEA2 [46] code. The values of quality of ranking(NDCG [17]) and com-

pression(using Elias-γ [9] codes) for the training queries are processed using SPEA2 [46]

as the selection function, to generate the best individuals for each generation. The fittest

individuals from the training phase are used to process the validation dataset, again using

SPEA2 [46] to get the best individual in each generation.

Although we have decided to experiment with SPEA2, we notice that compression and

high quality ranking are in fact not necessarily conflicting objectives. Our experiments

show that in fact it is possible to add compression in the goal with almost no loss in quality

of results. Due to this non-conflicting property of the two objective functions studied,

the results achieved with SPEA2 were in fact not superior to the ones achieved by the

other two simpler combination approaches adopted, the linear convex combination and

the weighted geometric mean. There were cases where, for a solution, both quality and
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compression are good, or both are worse. So there may not be a direct tradeoff between

these features. We decided to report the results with SPEA2 anyway, given the importance

of this approach and to report that this possible solution to the problem was considered in

our research.

Our goal with the combination of objective functions is to achieve an UTI index pro-

duced by LePrEF with as large a compressibility as possible, but without any or with very

little loss of quality in the ranking results produced by it.



Chapter 4

Experiments

In this section, we present the experiments done to study the behavior of Multi-Objective

LePrEF (MOL) as compared to the original LePrEF regarding the quality of its query

results and the compression of indexes generated by it.

4.1 Datasets

We used LETOR benchmark [24] to evaluate the quality of ranking results produced by

MOL similar to its predecessor LePrEF [3]. It was initially created from the GOV2 docu-

ment collection which contains roughly 25 million web pages. Precisely, we have chosen

MQ2007 subset of LETOR4 as it has large number of queries. MQ2007 has 1692 queries.

Every query-document pair in this dataset is represented by 46-feature vector, since

the dataset MQ2007 contains 46 features for documents, which are sampled from the top

1000 retrieved documents by using BM25 [32] on the GOV2 corpus for each query. Some

of these textual features are available during the indexing time and some can be obtained

33
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during query processing only.

For MQ2007, we have access to 26 features during the indexing phase. These features

are TF, IDF, TF x IDF and length in number of words. Each of these features are then

applied to five different areas of the documents: the body of the text, the anchor text, the

title, the URL, and the whole document, thereby generating 20 features. Apart from these

there are six other features: PageRank, InLink Count, OutLink Count, Number of Slashes

on URL, Length of URL and Number of Children which are also available during index-

ing. The details of the features may be looked into in the LETOR documentation [24].

The features TF, IDF, TF x IDF are not used in MOL as they are in LETOR; instead of

taking a sum of features values obtained with each query term, we compute the individual

values of frequency of each query term in each document as features.

LETOR also has features which are not available during indexing as we have already

mentioned before. These features are the similarity scores assigned by ranking function

BM25 [32], and by three variations of Language Models based functions. Each function

was applied to five areas of the documents as mentioned earlier. Thus, they constitute

those 20 features which cannot be adopted by MOL.

LETOR was created by using BM25 [32] to select an initial set of documents from

the whole data collection as an initial ranking of the best documents. Thus, while using

LETOR this initial set of best ranked documents are then analysed upon by applying

the whole set of features as discussed early in this section again to generate the final

results [4],[2].

We use the results for LETOR4 by LePrEF [3] as the baseline method to compare the

quality effectiveness results of MOL.
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4.2 Experimental Design

The LETOR [24] is split into 5 folds by default, where 3 folds are used for training

queries, 1 fold for validation queries and the other one for test. This allows for a 5 fold

cross validation scheme to evaluate the results. In our results we have always presented

and used the average of the results at each testing fold.

We have adopted mean NDCG [17], MAP [1], NDCG@N [1] and P@N [1] to com-

pare MOL with LePrEF [3].These are the same metrics which have been used by LETOR [24].

The details about the computation of these metrics can be found in the LETOR documen-

tation [24].

4.2.1 Genetic Programming Settings

We have conducted all experiments presented in this work using the lilGP genetic pro-

gramming distribution [30]. We have adopted the same parameters adopted by Koza [19]

and by LePrEF [3], which is also in line with the parameters proposed in a study that uses

GP as learn to rank [5].

As we have already discussed, Genetic Programming uses random seeds to create its

initial population and the results can be very well affected by the initialization of the

first population. To avoid such a scenario of specificity, where the results are too much

dependent of the random seeds, we followed in the footsteps of LePrEF [3] to perform 10

different runs of MOL with distinct random seeds, while doing a five fold cross validation

with each run, since the data in LETOR is split in five folds already.
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The best individual for each fold is selected, based on the UTI values by using the

AVGσ selection method. The training of the individuals for five folds over ten distinct

random seeds may become very expensive in a real scenario but it can be argued that the

cost is not prohibitive since it occurs ahead of indexing and doesn’t impact the user.

Linear Convex Combination Settings

In Linear Convex Combination we combine the values of quality of ranking and compres-

sion as in equation 3.3. Many values of weights are used to find out the ideal weight that

gives us the best comparative values. In our work the values of the weight “w” were as-

certained manually starting from selecting the most prospective random values like 90%,

80% and so on. Further, finer values of “w” were used to test the behavior of the test

results around those values of “w”, which generated good results. This experiment re-

sulted in more than one good results which were further analyzed statistically for their

significance and thereafter were presented in the Results section 4.3

Table 4.1 presents the genetic programming configurations used for our experiments

using Linear Convex Combination. In this scenario we use 1000 individuals for every

generation of GP, where the stopping criterion for the GP is 40 generations. In our ex-

periments we process the validation queries with the top 10 individuals selected from the

training phase, and select the best one from them.

Weighted Geometric Mean Settings

The table 4.1 presents the genetic programming configurations used for our experiments

using Weighted Geometric Mean. We have used similar configurations but used used a
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Table 4.1: Genetic Programming configurations for Linear Convex Combination and
Weighted Geometric Mean

Parameter Value
Number of Generations 40
Population size 1000
Tree depth 17
Tournament Size 6
Crossover Rate 0.85
Mutation Rate 0.05
Reproduction Rate 0.10

different fitness function for Weighted Geometric Mean as shown in equation 3.4. We

have tested with multiple values of weights assigned to “a” and “b” to finally arrive at

some of the best values which gives statistically significant results. The selection of the

values of “a” and “b” were done manually, similar to the strategy, how we did for Linear

Convex Combination. The parameters and methodology for the GP process remains the

same as shown in the table 4.1 and the Linear Convex Combination method.

Strength Pareto Evolutionary Algorithm Settings

In the implementation of SPEA2 [46] the selection of individuals are not directly done

based on AVGσ selection method. In this pareto based method, MOL implements the

SPEA2 [46] algorithm, where the non-dominated individuals are selected from each gen-

eration to create the population for the next generation. In the training phase the best

individuals are selected and then those are sorted in a top down approach with the best

individuals at the top. Then, those individuals are again used to process the validation

queries. These algorithms generate a SPEA fitness score for every individual. We now

use the AVGσ selection method to find out the best individual which has generated the

best SPEA fitness score.
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Table 4.2: GP settings for Elitism with
10% Population

Parameter Value
Number of Generations 40
Population size 1000
Tree depth 17
Tournament Size 2
Crossover Rate 0.85
Reproduction Rate 0.10
Mutation Rate 0.05

Table 4.3: GP settings for Elitism with
20% Population

Parameter Value
Number of Generations 40
Population size 1000
Tree depth 17
Tournament Size 2
Crossover Rate 0.75
Reproduction Rate 0.20
Mutation Rate 0.05

Table 4.2 and 4.3 presents the two different GP configurations which were for SPEA2 [46].

We keep using similar parameters like 1000 individuals, stopping criteria of 40 genera-

tions and the tree depth, but we change the parameter for the tournament size and those

for the genetic operators. SPEA2 [46] implements a binary tournament to generate the

population while using crossover and mutation. In the third phase of the breeding opera-

tor SPEA2 [46] proposes to select the best individuals, to promote to the next generation,

thereby establishing elitism.

We tested SPEA2 [46] implementation of MOL with two varieties of elitism, where

in table 4.2 the top 10% of the population is promoted to the next generation without

any change. In another approach the top 20% of the population is promoted to the next

generation without any change as shown in table 4.3.

4.2.2 Pruning

In our experiments, we have implemented a basic pruning strategy. We prune all those

entries which do not contribute towards the ranking of the document. We pruned all UTIs

with zero(“0”) values. The zero valued UTI values would nevertheless contribute to the

ranking as they would not contribute to the computation of frequency of the features used.
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This reduces the number of integers stored and facilitates in compression as well. Thus,

it is expected that the results obtained during query processing would not be affected by

the absence of those entries in the index.

Also, while we are compressing the UTI values with the Elias-γ [9] codes, where on

one hand we do not have any codes for “0” in Elias-γ [9] encoding, on the other hand we

remove this limitation by pruning or removing the zero valued entries from the UTI, and

thereby from the inverted index. This strategy in fact reduces a lot of space and hence

improves compression by many folds.

We would like to mention that we performed our experiments also without pruning to

find the exact impact of pruning in our implementation. We can expect that the results

of compression with pruning would be better than those without pruning, but it would be

interesting to study the impact of pruning on compression whatsoever.

4.3 Results

In this section we present the results obtained by the numerous experiments performed by

us to verify our implementation. For the sake of completeness we would like to present

here, the comparison of the results obtained by LePrEF [3] with other state-of-the-art

learn to rank methods. Figure 4.1 shows the values of quality(NDCG [17]) and MAP [1]

for LePrEF and other state-of-art methods as proposed in the article [3].

We can clearly notice that here the NDCG result obtained by LePrEF [3] is very similar

to that of the other state-of-art methods. LePrEF [3] obtained NDCG and MAP of 0.495

and 0.459, which is slightly below GP (with learning during query processing) with mean
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Figure 4.1: Mean NDCG and MAP results obtained by LePrEF(with integer UTI) and
other state-of-the-art methods.

NDCG 0,504 and MAP 0,469, RankBoost [14] with mean NDCG 0.500 and MAP 0.466,

and RankSVM [18] with mean NDCG 0.497 and MAP 0.464. On the other hand LeP-

rEF [3] performed better than ADARANK [41] with mean NDCG 0.491 and MAP 0.455.

Thus, we can conclude with certainty that the results of LePrEF [3] obtained quality at

par with the other state-of-art learn to rank methods.

The state-of-the-art methods mentioned here implement learning during the query pro-

cessing where they have access to all relevance evidence. Although the process generates

search results of high quality, the computational costs are still high. LePrEF [3] here im-

plements a pre-computational step of implementing learning during indexing. Only some

and not all relevance evidences are available during indexing and hence LePrEF gener-

ates UTI indexes based on lesser information than its counterparts and obtains NDCG [17]

results at par with state-of-art methods.

Before comparing the results obtained by our MOL variations, we need to identify
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exactly what are the best results obtainable in MOL using Linear Convex Combination

(MOL-Linear), Weighted Geometric Mean (MOL-Geo) and SPEA2 (MOL-SPEA2) com-

binations of quality and compression rate.

4.3.1 MOL with Linear Convex Combination

In order to verify what is the best mixture parameter “w” for training MOL with linear

convex combination in MQ2007, we experimented with a number of different values, and

present the mean NDCG, MAP and compression rates for the test sets of its 5 folds in

Figure 4.2.

Figure 4.2: NDCG, MAP and CR(compression rate) levels obtained by MOL using Linear
Convex Combination for different “w” values. The “w” values correspond to the weights
assigned to quality(NDCG) and compression(CR).

We can see here that, there is indeed a trade-off between quality(NDCG [17]) and

compression as the weight assigned to quality increases. As we have already mentioned

that our principal target is to achieve better compression without sacrificing quality, we

would study those methods which achieve NDCG values close to LePrEF [3] and then
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study their compression values. The best quality values were obtained by using 0.94,

0.95 and 0.98 as values for “w”. For 0.94, MOL achieved a mean NDCG of 0.49, MAP

of 0.455 and about 84% compression in the test set, which is 5.07 bits/entry; for 0.95%

MOL achieved a mean NDCG of 0.491, MAP of 0.454 and about 81% compression in

the test set, which is 6.14 bits/entry and finally for 0.98, MOL achieved a mean NDCG of

0.493, MAP of 0.459 and about 81% compression in the test set, that is 6.22 bits/entry.

We implemented the LePrEF [3](results are shown as MOL with linear convex combi-

nation where “w” = 1, which behaves exactly as the original LePrEF) by incorporating

the compression calculations in it, and found that the quality values 0.495 were slightly

better, with MAP of 0.459, but with a compression of around 74%, which is 8.33 bit-

s/entry. We can infer from the compression values of the best results for MOL that we

are able to achieve about 39% more compression while using MOL with Linear Convex

Combination, without deviating very much from the quality baselines.

We also performed experiments with values of “w” below 0.75, that is 75% weight to

quality, however we decided not to present them, thereby focusing on the results that we

found to be more interesting for the reader. Results with “w” below 0.75 kept a gradual

fall in quality while the compression kept showing improvements which does not help our

cause as the quality values at this level were too low.

4.3.2 MOL with Weighted Geometric Mean

As with the linear combination, while using the weighted geometric mean, we also have

to verify which parameters might lead to the best compression/quality tradeoff. In order to

verify at which parameters MOL with weighted geometric mean (MOL-Geo) leads to the
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best quality results while maintaining a good compression level, we fixed the parameter

“b”, which pertains to the compression rate, as 1 and tested for the different values of “a”,

and the results are presented in Figure 4.3.

Figure 4.3: NDCG, MAP and compression rate levels obtained by MOL using Weighted
Geometric Mean for different “a” values, with “b” = 1. “a” is the weight assigned to
quality (NDCG). The * value is the result obtained for “a” = 1 and “b” = 0 (i.e. all the
weight given to quality, which is in fact, the value for original LePrEF)

As it may be seen, in MOL-Geo, there is a larger instability in quality and compression

levels as the parameter “a” increases, where small changes in values of “a” can have

positive or negative impact on both compression and quality. The best results with MOL

were obtained with “a” values of 7, 17 and 19 among others, which resulted in NDCG

values in the range of 0.492 – 0.493, MAP values around 0.458, and compression of

around 85%, or 4.8 bits/entry. If we study the pattern of the results achieved by MOL-

Geo as shown in Figure 4.3, we can easily conclude that the results beyond “a” values 50

might not have yielded compression more than our baseline LePrEF [3]. For “a” value

of 50 we have the mean NDCG of 0.491 whereas, the 71% compression drops below the

74% of LePrEF [3].
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Owning to inherent randomness of GP we can always say that there might be one or

more solutions which might prove better than the ones presented here. The experiments

can always be repeated with multiple different “a” values in light of this.

4.3.3 MOL with SPEA2

The results Multi-Objective LePrEF obtained while using SPEA2 [46] to find a pareto

front of individuals were not as good as the ones obtained by linear convex combination

and weighted geometric mean. MOL-SPEA2 obtained very strong compression rates, but

at the cost of smaller quality values. We have used two values for the genetic operator

reproduction: 0.10 and 0.20 which stands for top 10% and 20% respectively, of the pop-

ulation going to the next generation without any modification, which is popularly known

as Elitism, thereby making the next generation more viable for better solutions. Further

higher values were not preferred as those might have an over-fitting solutions. A graphi-

cal comparison of the results of MOL with SPEA2 [46] to that of LePrEF [3] is shown in

Figure 4.4.

The best compression rate achieved by MOL-SPEA2 was about 86% (4.5 bits per

entry), with mean NDCG of 0.475 and MAP of 0.442, which were way below the values

of quality and precision obtained by the original LePrEF as well as MOL with Linear

Convex Combination and MOL with Weighted Geometric Mean.
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Figure 4.4: NDCG, MAP and compression rate levels obtained by MOL using SPEA2 for
two different values, which control Elitism

4.3.4 Overall Results

We have performed multiple experiments for MOL using three different approaches: lin-

ear convex combination, weighted geometric mean and strength pareto evolutionary al-

gorithm – 2. We performed experiments with various data which were first manually

selected at random and then, selected the next parameters based on the results of the past

experiment. The results for all these experiments came out with different values for qual-

ity and compression, some of which are very close of original LePrEF [3] and some are

considerably very less, and can be rejected readily. As we have already discussed earlier

that we are using the mean NDCG [17] values of the collection of queries for each method

over 10 runs, and not the NDCG values for a single run, we need to be statistically sure

before commenting further on any of the final results.

To find out if the differences of the results of MOL were statistically significant than

LePrEF [3] we can use T-Test [38], Wilcoxon Test [40] among others. The results of

experiments of MOL does not follow normal distribution. Thus, we cannot use T-Test in
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Table 4.4: Percent weights assigned to quality(NDCG) of each selected method for com-
parison

Methods % Weight
MOL-Linear - 0.95 95.00%
MOL-Linear - 0.98 98.00%
MOL-Geo - 7.0 87.50%
MOL-Geo - 17.0 94.44%
MOL-Geo - 19.0 95.00%
MOL-Geo - 50.0 98.04%

this scenario. We adopted Wilcoxon Test [40] with 95% significance (α=0.05) to test the

significance of the differences between the results of MOL from LePrEF [3].

The Wilcoxon Test [40] proves that in both the approaches of MOL-SPEA2, NDCG

values suffer from statistically significant loss of quality with respect to LePrEF and thus,

MOL-SPEA2 approaches are ruled out from being solutiosn for MOL, whereas the test

shortlisted four MOL-Geo methods with “a” values of 7, 17, 19 and 50, and two MOL-

Linear methods with “w” values of 0.95 and 0.98 as the ones which do not show statis-

tically significant loss in quality when compared with the NDCG values of LePrEF [3].

This means, the quality results of the methods, MOL-Geo - 7, 17, 19, 50, MOL-Linear

- 0.95, 0.98 and the baseline LePrEF [3] can be considered same. Henceforth we would

present our analysis based on the only those results which do not have statistically sig-

nificant loss in quality when compared to LePrEF [3], thus we remove the results of

MOL-SPEA2 from our consideration. Table 4.4 shows the percentage of weight being

assigned to quality for each of the compared methods mentioned here.

Figure 4.5 shows the NDCG@N results obtained for N= 5 and N= 10, for all of

the compared methods. LePrEF [3] yielded the best result for NDCG@5(0.415) fol-

lowed closely by MOL-Geo - 7.0(0.411), MOL-Geo - 19.0(0.411) and MOL-Linear -

0.98(0.410). The values NDCG@5 for the other compared methods were not really very
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Figure 4.5: NDCG@N results obtained by MOL methods which do not show statistically
significant quality loss, and LePrEF

different, MOL-Geo - 50.0 being 0.407, MOL-Geo - 17.0 being 0.408 and MOL-Linear

- 0.98 showing NDCG@5 of 0.410. When we look at the values of NDCG@10 the best

best values were obtained by MOL-Geo - 17.0 and MOL-Linear - 0.98 which were same

as that of LePrEF [3](0.439). The other compared methods, MOL-Linear - 0.95 (0.434),

MOL-Geo - 7.0(0.437), MOL-Geo - 19.0(0.438) and MOL-Geo - 50.0(0.435) follow

these results closely. We can conclude that in our experiments with MOL we achieve

similar levels of quality with added features of compression.

Figure 4.6 shows the P@5 and P@10 values obtained by all the compared meth-

ods. LePrEF [3](0.414) showed the best P@5 value whereas MOL-Geo - 17.0(0.382)

yielded the best P@10 value. We can see that the other alternatives also obtained very

competitive values, for instance MOL-Linear - 0.98 achieved P@5 of 0.412, MOL-Geo

- 7.0 and MOL-Geo - 19.0 obtained P@5 values of 0.411 and 0.41 respectively. In

case of P@10 also while the baseline LePrEF yielded 0.377, all other compared methods

achieved P@10 values greater than the same except for MOL-Linear - 0.95(0.374). Thus,
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Figure 4.6: MAP@N results obtained by MOL methods which do not show statistically
significant quality loss, and LePrEF

it can be seen that the MOL approach has exceeded precision values than the baseline.

While studying MOL-Linear and MOL-Geo we found that the best approaches of

MOL were numerically little lower than the baseline (LePrEF [3]) but were still com-

petitive. Figure 4.7 presents the comparison of quality values of MOL(best approaches)

against LePrEF [3]. We can readily infer from the graph that the MOL quality values

are very close to LePrEF. LePrEF [3] has NDCG 0.496 and MAP 0.456 whereas, MOL-

Linear with 98% weight on quality (MOL-Linear - 0.98) performs exceptionally well with

NDCG of 0.493 and MAP of 0.458, followed by MOL-Geo - 19.0 with mean NDCG

0.493 and MAP 0.456, MOL-Geo - 7.0 with mean NDCG 0.492 and MAP 0.458, MOL-

Geo - 17.0 with mean NDCG 0.492 and MAP 0.458, MOL-Linear - 0.95 with mean

NDCG 0.491 and MAP 0.454 and MOL-Geo - 50.0 with mean NDCG 0.491 and MAP

0.456.

Finally, the most important outcome from our implementation is the expressive gains
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Figure 4.7: Comparison of the results obtained by MOL methods which do not show
statistically significant quality loss, and the original LePrEF, measured in terms of NDCG
and MAP

in the compression rates achieved in MOL, that comprehensively states that MOL can

successfully generate compression friendly indexes/UTIs, which, at the same time, can

also generate very high quality results. Figure 4.8 shows the compression achieved in all

the compared methods expressed in bits/entry.

Figure 4.8: Compression Rates obtained by MOL methods which do not show statistically
significant quality loss, and the original LePrEF, while using Pruning

In our experiments the best compression is achieved by MOL-Geo - 7.0 (4.8 bit-



4. EXPERIMENTS 50

s/entry) whereas the worst is obtained by MOL-Geo - 50.0 (9.2 bits/entry). Where the

baseline LePrEF [3] is at 8.34 bits/entry after the implementation of similar compression

and pruning strategies, the other compared methods, MOL-Geo - 17.0 obtained a com-

pression of 6.41 bits/entry, MOL-Geo - 19.0 yielded 7.03 bits/entry and MOL-Linear -

0.95 yielded 6.14 bits/entry, each one of these methods thereby providing better com-

pression while maintaining nearly similar levels of quality. The best method MOL-Geo

- 7.0 achieved about 42% more compression than the baseline. The other methods also

obtained good compression levels in comparison to LePrEF [3]: MOL-Linear - 0.95 and

0.98 both yielded about 25% better compression whereas MOL-Geo - 19.0 and MOL-

Geo - 17.0 showed about 16% and 23% gains in compression over the baseline. From the

presented data we can come to the conclusion that, since the Wilcoxon Test [40] shows

that the loss of quality for MOL methods are not statistically significant when compared to

LePrEF [3], the best method is MOL-Geo - 7.0, which yields more than 42% compression

than LePrEF. The next best compression was shown by MOL-Linear - 0.98, MOL-Linear

- 0.95 and MOL-Geo - 17.0.

It is important to mention here that the compression achieved here is a combination of

both pruning and compression. LePrEF [3] was not designed with a pruning strategy and

hence we implemented pruning in LePrEF [3], and thereafter computed all metrics nec-

essary for the comparison of LePrEF [3] with all of the shortlisted methods. To compare

the results of compression obtained in MOL with LePrEF [3] directly, we show the com-

pression obtained by all the methods without considering pruning. Figure 4.9 shows the

compression rates achieved by the compared methods using compression only, without

pruning.
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Figure 4.9: Compression Rates obtained by MOL methods which do not show statistically
significant quality loss, and the original LePrEF, without Pruning

In the experiments performed by us the best compression is obtained by MOL-Geo

- 7.0 with 7.23 bits/entry and the worst is obtained by MOL-Geo - 50.0 with 11.92 bit-

s/entry. The baseline LePrEF [3] yielded a compression of 10.41 bits/entry. With the

exception of MOL-Geo - 50.0, all compared methods which do not have a statistically

significant loss in quality achieved better compression than the baseline. We can clearly

see that the best compression rate achieved in MOL-Geo - 7.0 is more than 30% better

than the baseline if we do not consider pruning. MOL-Geo - 50.0 obtained about 14%

lesser compression, whereas MOL-Linear - 0.98 and MOL-Linear - 0.95 showed better

compression by about 17% and 20% respectively. The MOL-Geo - 17.0 and The MOL-

Geo - 19.0 also showed compression gains of about 15.5% and 5.5% respectively over

the baseline. Thus, MOL methods, as a whole, achieved better compression over LePrEF

without the use of pruning also, with the best method still being MOL-Geo - 7.0. Here

also the next best methods were the same as of that in the case of overall compression

with pruning, MOL-Linear - 0.98, MOL-Linear - 0.95 and MOL-Geo - 17.0.

We performed further analysis of the results of MOL and LePrEF [3] by studying the
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data distribution of UTI values generated by the aforementioned methods. Figures 4.10

and 4.11 presents the UTI data distribution for both.

Figure 4.10: UTI data distribution for LePrEF

Figure 4.11: UTI data distribution for MOL(MOL-Geo - 7)

For better understanding we are using the UTI values of the best MOL method, MOL-

Geo - 7. We can see that the UTI values in LePrEF [3] have a wider distribution of

values than that of MOL. MOL data distribution has UTI integer values of only upto
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49 whereas LePrEF generates UTI integer values of upto 3461. We also notice that the

number of 0 UTI values in MOL is way more than the number in LePrEF, which in turn

helps in concise index and higher compression. In MOL, genetic programming learns

to generate only those UTI values, which leads to good quality search results as well as

good compression, and hence does not generate very high integer values, which are not

very compression friendly. On the contrary, in LePrEF, where only quality is used as an

objective function and not compression, it generates UTI values in order to create a good

quality search results only and does not care even if those values are high and are not

compression friendly.

Impacts of Pruning on Compression

As seen in previous subsections, the implementation of the MOL variations can lead to

significant increase in compression rate. We have mentioned the scenario where MOL

uses compression and no pruning but still leading to better compression rates than LeP-

rEF [3]. In another scenario where we use both pruning and compression together to

compress the inverted indexes we also achieved expressive gains in compression over the

baseline. However, it is not clear whether this behavior is due to the fact that the impact

values generated by MOL are smaller (and, thus, compressing better), or if it is due to the

pruning of larger number of entries. In order to better understand the role of pruning in

this compression gain, in Figure 4.12 we present the overall compression rate achieved by

the methods, as well as how much of this compression was achieved by pruning entries

and by compression the data after pruning. We should note here that the compression

expressed here is in percentage of space saving yielded during our experiments.

As can be seen, indeed the MOL variations lead to an increase in entry pruning in
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Figure 4.12: Comparison of overall compression with respect to compression and pruning
separately

comparison to the original LePrEF [3] in the experiments performed by us. Introduction

of pruning increased the overall compression in all compared methods which do not have

statistically significant loss in quality against LePrEF [3] with the only exception being

MOL-Geo - 50.0 where the overall compression fell below the original compression of

LePrEF. MOL-Geo - 7.0 achieved a greater compression by aggressively pruning a lot of

entries. Further careful study reveals that if we consider the compression of the residual

data after pruning, the trend of compression rates remains almost the same for all com-

pared methods, except an expected little dip in the compression rates. This drop in the

compression rates can be credited to the fact that pruning removes the unyielding entries

from the index, thereby reducing the size and the compression rate.



Chapter 5

Conclusions

In this thesis we implement an idea of introducing multi-objective optimization tech-

niques in LePrEF to propose Multi-Objective LePrEF (MOL) which inherits all advan-

tages of LePrEF and generates high quality compression friendly indexes. The principal

advantage of this method is that with MOL we achieve high quality search results sim-

ilar to those of LePrEF, and also achieve an expressive gain in index compression as an

alternative objective. LePrEF only considers a single objective, quality of search results

(NDCG), whereas MOL works with two objectives (quality and compression) in parallel.

A compressed index is always very important to search systems, because firstly, they take

less space and thus, reduce storage costs, secondly, they make data transfer faster with

lesser disc reads and writes and thirdly, helps in increased and efficient caching during

query processing.

MOL implemented three different techniques to study the effects of multi-objective

optimization on LePrEF. We used linear convex combination(Linear), weighted geomet-

ric mean(Geo) and strength pareto evolutionary algorithm (2nd version)(SPEA2) as our

means to carry our experiments to find out the best possible method. Our studies have
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used LETOR dataset and shown that though MOL-SPEA2 attains a great compression,

the NDCG values were far below the baseline and hence was not acceptable. On the con-

trary the best approaches of MOL-Linear and MOL-Geo showed great NDCG values, the

best one being MOL-Geo - 7.0 with mean NDCG of 0.493 and MAP 0.458 alongside

LePrEF’s NDCG of 0.496 and MAP 0.459. As it was also established by the Wilcoxon

Tests that MOL-Geo - 7.0 results do not have any statistically significant loss in quality

and that showed expressive gains in the compression rates, 4.8 bits/entry to 8.33 bits/en-

try shown by LePrEF, which is about 42% more compression, we can conclude that our

proposal of MOL is able to generate a model which successfully implements multiple

objectives at the same time and generates indexes which yield high quality search results

and are also very much compression friendly.

Our work on one hand answers several questions regarding multi-objective optimiza-

tion in LePrEF, and on the other opens up various new research directions. We have used

basic pruning techniques to remove entries from UTI which do not contribute to ranking.

The use of pruning has helped generating a better compressed index without any visible

loss in the quality of the search results. This motivates us to look further in this direction

with the idea of using more sophisticated pruning techniques to study how the quality of

results behave.

We have used Elias-γ coding to compress the indexes. In future further research may

be put into the same direction by using more sophisticated compression schemes which

can compress the indexes more, thereby reducing the storage and other advantages of

compressed indexes. Also, it would be very interesting to see how does the highly com-

pressed indexes perform during query processing. Thus, usage of compression schemes
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which can decompress very fast would be the next alternative to use in MOL.

In the future MOL can be also used with faster query processing techniques to find out

the efficiency performance of MOL with respect to the baselines. It would be interesting

to find out the details of such experiments and study more about these.

This thesis provided us a new look at the existing LePrEF to use multi-objective op-

timization techniques to generate indexes that compress better. We see that the modern

search systems obviously can be improved a lot and our new research direction can be

further exploited in this direction to achieve more.
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