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Resumo

Sistemas de lo
alização desempenham um papel importante em muitas apli
ações para

Redes Ad Ho
 Vei
ulares (VANets). Embora té
ni
as de fusão de dados podem prover

informações de lo
alização 
on�áveis para atender a maioria dos requisitos de apli
ações

em VANets, aperfeiçoamentos nos sistemas de lo
alização são ne
essários e desejáveis.

Cara
terísti
as úni
as de VANets tais 
omo restrições de mobilidade, o 
omportamento

do 
ondutor e a natureza de alta velo
idade de deslo
amento dos veí
ulos podem 
ausar

rápidas e 
onstantes mudanças na topologia da rede, levando à disseminação de infor-

mações de lo
alização desatualizadas.

Nesta tese, nós identi�
amos que para solu
ionar o problema de disseminação

de informações de lo
alização desatualizadas em VANets, uma alternativa é o uso de

previsão de lo
alização futura de veí
ulos. A prin
ipal ideia desta abordagem é utilizar

a previsão de lo
alização 
omo uma extensão para o sistema de Fusão de Dados de

lo
alização. Em tal abordagem, uma posição futura de um automóvel é predita para um

determinado fragmento de tempo futuro e utilizada para tomar vantagem de uma janela

de espaço-tempo de uma trajetória ve
torial em vez de um ponto de lo
alização estáti
o.

Portanto, nesta tese dis
utimos em detalhes esse assunto, estudando e analisando o uso

da previsão de lo
alização 
omo uma forma natural para aprimorar apli
ações e serviços

em VANets.

Utilizando lo
alização predita 
omo uma métri
a para 
omuni
ação de dados em

VANets, nós propomos uma solução para o problema de divulgação de informações

lo
alização desatualizado 
hamada LPRV (Lo
alization Predi
tion-based Routing for

VANets). Em nosso algoritmo proposto, o en
aminhamento de pa
otes é realizado por

nós 
om lo
alizações preditas mais próximas do destino de entrega, sem a ne
essidade

de tro
a de mensagens de 
ontrole adi
ional. O algoritmo proposto também explora

o 
onhe
imento de um mapa digital para limitar o es
opo de tro
as de mensagens no


aminho mais 
urto para veí
ulos entre a origem e destino.

Palavras-
have: Redes Ad Ho
 Vei
ulares, Previsão de Lo
alização; Previsão

de Séries Temporais, Rastreamento de Alvos; Roteamento Geográ�
o; Geo
ast;

ix



Abstra
t

Lo
alization systems play a major role in many appli
ations for Vehi
ular Ad Ho


Networks (VANets). Although Data Fusion te
hniques 
an provide reliable lo
alization

information for most of the appli
ation requirements in VANets, enhan
ements on the

lo
alization systems are required and desirable. Unique 
hara
teristi
s of VANets su
h

as mobility 
onstraints, driver behavior, and high speed displa
ement nature of vehi
les


ause rapid and 
onstant 
hanges in network topology, leading to dissemination of

outdated lo
alization information.

In this thesis, we identify that to 
ir
umvent the problem of dissemination of

outdated lo
alization information in VANets, an alternative is the use of predi
ted

future lo
ations of vehi
les. The main idea of this approa
h is to use the lo
alization

predi
tion as an extension of a Data Fusion lo
alization system. In su
h an approa
h,

a future position of a vehi
le is predi
ted for a given future time step and used in

order to take advantage of a future time-spa
e window of a ve
torial traje
tory rather

than a stati
 lo
alization point. Thus, in this thesis we further dis
uss this subje
t by

studying and analyzing the use of lo
alization predi
tion as natural way to improve

VANets appli
ations.

Using vehi
les predi
ted lo
ations as a metri
 for data 
ommuni
ation in VANets,

we propose a solution for the problem of dissemination of outdated lo
alization informa-

tion 
alled LPRV (Lo
alization Predi
tion-based Routing for VANets). In our proposed

algorithm, pa
ket forwarding is performed by nodes with predi
ted future lo
alization


loser to the delivery destination, without the need for ex
hanging additional 
ontrol

message. The proposed algorithm also explores the knowledge of a digital map to limit

the s
ope of message ex
hanges in the shortest path for vehi
les between sour
e and

destination.

Keywords: Vehi
ular Ad Ho
 Networks, Lo
alization Predi
tion, Time Series

Predi
tion, Target Tra
king, Position-based Routing, Geo
ast;

x
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Chapter 1

Introdu
tion

1.1 Motivation

Re
ent advan
es in mobile 
omputing, wireless 
ommuni
ation and sensing have en-

abled the development of a number of interesting and desirable appli
ations in In-

telligent Transportation Systems (ITS). In this 
ontext, Vehi
ular Ad Ho
 Networks

(VANets) (Bouker
he et al., 2008; Papadimitratos et al., 2009; Youse� et al., 2006;

Hartenstein and Laberteaux, 2008) emerge as new te
hnology to integrate wireless

networks 
apabilities to vehi
les, providing ubiquitous 
onne
tivity as well as allow-

ing vehi
le-to-vehi
le (V2V) and vehi
le-to-infrastru
ture (V2I) 
ommuni
ation. Thus,

inter
onne
ted vehi
les 
an 
olle
t and share information about themselves and sur-

rounding environments in real time. Therefore, there is an extensive list of potential

appli
ations for VANets, where we 
an highlight 
ategories related to safety, transport

e�
ien
y and information/entertainment appli
ations (Hartenstein and Laberteaux,

2008). Among these appli
ations, safety plays a spe
ial hole in VANets. The growing

number of tra�
 
ongestions, fatalities and injuries, due to the in
reasing number of

vehi
les in operation worldwide, has been re
ognized as a so
ial 
ost and a problem to

be solved by modern so
iety (Papadimitratos et al., 2009; Al-Sultan et al., 2014).

Regarding the operation of lo
alization systems in vehi
ular networks, the esti-

mation of a vehi
le's dynami
 state is one of the most fundamental Data Fusion tasks

for ITS appli
ations (S
hubert et al., 2008). Although Data Fusion te
hniques 
an

provide reliable lo
alization information for most of the appli
ation requirements in

VANets (Nakamura et al., 2007), enhan
ements on the lo
alization systems are still

required and desirable. Unique 
hara
teristi
s of VANets like mobility 
onstraints,

driver behavior, and high speed displa
ement nature of vehi
les 
ause rapid 
hanges

in network topology (Youse� et al., 2006). Thus, leading to the dissemination of out-

dated lo
alization information, spe
i�
ally when the network pa
ket delay is high. In

this 
ontext, some proto
ols that require a

urate position information in
rease the fre-

1



1. Introdu
tion 2

quen
y of periodi
 messages (bea
ons) as a naive solution for this problem. However,

this approa
h leads to unne
essary overhead in the number of transmitted pa
kets,

whi
h 
auses a high 
hannel o

upan
y with an in
reased number of medium a

ess


ollisions, a
tually in
reasing delay (Bouker
he et al., 2009; H. Nguyen, 2012). There-

fore, one problem to be solved in VANets' lo
alization systems is how to avoid the

dissemination of outdated lo
alization information.

To 
ir
umvent the problem of the outdated lo
alization information dissemina-

tion in wireless 
ommuni
ations, some pioneer studies (Kaani
he and Kamoun, 2010;

Lee and Krumm, 2011; Bouker
he et al., 2009; Rezende et al., 2009; Huang et al.,

2008; Agarwal and Das, 2003) ta
kle this problem by predi
ting the future lo
alization

of a mobile node in a small time window. In these studies, well known methods ap-

plied in lo
alization, target tra
king, and time series predi
tion su
h as dead re
koning,

Bayesian Filtering, and Ma
hine Learning are proposed as a metri
 to a
hieve improve-

ments on a single parti
ular appli
ation. However, spe
i�
ally from the viewpoint of

VANets, 
urrent proposals do not dis
uss how the lo
alization predi
tion the
hniques


an be used to improve internal tasks and appli
ations, su
h as an enhan
ement of the

lo
alization system as a whole.

1.2 Obje
tives

This work aims to provide a general dis
ussion for lo
alization predi
tion in VANets as

enhan
ement of the Data Fusion lo
alization system, allowing us to identify open is-

sues, understand the requirements and the impli
ations of using lo
alization predi
tion

in vehi
ular networks. Regarding the problem of the outdated lo
alization informa-

tion dissemination in VANets, the main goals of this work is to demonstrate, design,

and evaluate the performan
e of lo
alization predi
tion the
niques as natural way to

improve appli
ations and servi
es for vehi
ular networks.

To a
hieve these goals, several se
ondary objetives need to be a
omplished. In

order to demonstrate, design, and evaluate the performan
e of lo
alization predi
tion

the
niques in VANets, the following goals need to be a
hieved:

1. Demonstrate and evaluate proposed approa
hes for lo
alization, target tra
king

and time series predi
tion te
hniques that 
an be used to estimate the future po-

sition of a vehi
le to realisti
 VANet s
enarios;

2. propose a routing algorithm using vehi
les predi
ted lo
ations as a metri
 for data


ommuni
ation in VANets; and
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3. analyze the performan
e and demonstrate the e�
ien
y of the proposed routing

solutions in VANet s
enarios.

1.3 Main Contributions

The main 
ontributions of this work in the order they appear in this do
ument are:

1. A survey on lo
alization predi
tion in vehi
ular ad ho
 networks. Al-

though this is not the thesis 
entral 
ontribution, this 
omprehensive survey

about lo
alization predi
tion in VANets is worth to be mentioned. We surveyed

proposed approa
hes for lo
alization, target tra
king and time series predi
tion

te
hniques that 
an be used to estimate the future position of a vehi
le. It dis
uss

how the lo
alization predi
tions methods 
an improve most VANet appli
ations,

espe
ially 
riti
al ones. In this survey we argue that lo
alization predi
tion for

VANets as an extension of a Data Fusion lo
alization system is a feasible approa
h

to 
ir
umvent the problem of the dissemination of outdated lo
alization informa-

tion in vehi
ular networks. We then show how lo
alization predi
tion te
hniques


an be used to 
ompute an a

urate predi
ted positions based on a number of

relatively ina

urate sample position estimations. This survey is presented in

Chapter 2.

2. A predi
tion-based routing algorithm for vehi
ular ad ho
 networks.

The main thesis 
ontribution 
onsists in a new VANet routing algorithm that

uses the knowledge of the vehi
les predi
ted lo
ations to improve the routing

performan
e in several aspe
ts. Our proposed algorithm, 
alled LPRV (Lo
al-

ization Predi
tion-based Routing for VANets), exploits the knowledge of vehi
les

predi
ted future lo
ations and a digital map as metri
s to forward data pa
kets,

without the need for ex
hanging any 
ontrol message. Simulation results demon-

strated the e�
ien
y of the proposed solution for di�erent VANet s
enarios and

the bene�ts of using vehi
les predi
ted lo
ations as a metri
 for data 
ommu-

ni
ation, espe
ially in terms of delivery rate, number of hops and delay, with a

redu
ed number transmitted pa
kets. This solution is presented in Chapter 3.

1.4 Do
ument Outline

This thesis is divided into 4 Chapters. The �rst part of this work, 
omposed of Chap-

ter 2 presents an overview and de�nition of the lo
alization predi
tion methods in

VANets. We highlight potential advantages of using a lo
alization predi
tion system
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in several VANet appli
ations s
enarios. We des
ribe the lo
alization, target tra
king

and time series predi
tion methods and dis
uss the appli
ability, advantages, and lim-

itations of the analyzed solutions. We show our performan
e evaluation when both

solutions are used in a realisti
 VANet s
enario.

In Chapter 3, we 
onsider that VANets apply lo
alization predi
tion te
hniques.

Hen
e, we propose the LPRV routing algorithm to use the knowledge of the vehi
les

predi
ted lo
ations to improve the routing performan
e. The performan
e of the pro-

posed solution is evaluated through simulations. Finaly, Chapter 4 summarizes the

thesis results by presenting the 
urrent 
ontributions and future resear
h dire
tions.



Chapter 2

Lo
alization Predi
tion in Vehi
ular

Ad Ho
 Networks

2.1 Introdu
tion

Many appli
ations for VANets 
an take advantage of lo
alization te
hniques. One

of the most interesting problems to be solved in vehi
ular networks is how to pro-

vide an anywhere and anytime highly a

urate and reliable lo
alization informa-

tion (Bouker
he et al., 2008). Nowadays, most of produ
ed vehi
les are delivered

with a Global Positioning System (GPS) and third-party in-
ar navigation systems


an be installed on used vehi
les at a reasonable 
ost (Papadimitratos et al., 2009;

Skog and Handel, 2009). Also, re
ent te
hnologi
al developments, notably in mobile


omputing, wireless 
ommuni
ation, and remote sensing allow vehi
les to turn into so-

phisti
ated 
omputing systems. With several 
oupled pro
essors and integrated sensors

dedi
ated to the vehi
le operation, the development of more sophisti
ated appli
ations

and servi
es for these networks is a reality today.

However, for VANets' 
riti
al appli
ations that are dependent on high a

urate

and available lo
alization systems, GPS shows some undesired problems su
h as being

unavailable or not being a

urate enough (Alam and Dempster, 2013). For this rea-

son, a number of other lo
alization te
hniques su
h as Map Mat
hing, Dead Re
koning,

Cellular Lo
alization, Image/Video Pro
essing, Lo
alization Servi
es, and Relative Dis-

tributed Ad Ho
 Lo
alization are used 
ombined in VANets to over
ome su
h GPS lim-

itations (Bouker
he et al., 2008; Skog and Handel, 2009) (As depi
ted in Figure 2.1).

In this approa
h, Data Fusion te
hniques are applied to improve the lo
alization system

by 
ombining several lo
alization te
hniques into a single solution that is more robust

and pre
ise than using any individual approa
h (Nakamura et al., 2007; Alam et al.,

2013; Golestan et al., 2012).

Regarding the problem of outdated lo
alization information dissemination in wire-

5
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Image/Video Proc.

GPS

x

Cellular Localization

Ad Hoc Localization

Motion Sensors

Dead Reckinong

x
x

x
x

Localization Services

Current  Position

Map Matching

Figure 2.1. Lo
alization te
hniques to 
ompute vehi
les' 
urrent lo
alization

used 
ombined in VANets to over
ome GPS limitations (Bouker
he et al., 2008).

less 
ommuni
ations, in this work we 
onsider lo
alization predi
tion as natural way to

improve VANets' appli
ations. We study well known methods applied in lo
alization,

target tra
king and time series predi
tion, su
h as Dead Re
koning, Bayesian Filter-

ing and Ma
hine Learning as an enhan
ement of the VANets' lo
alization system. As

depi
ted in Figure 2.2, the main idea of this approa
h is to use the lo
alization predi
-

tion as an extension of a Data Fusion lo
alization system. In su
h a method, a future

position of a vehi
le is predi
ted for a given future time step and used to improve an

appli
ation servi
e. The main idea is to take advantage of a future time-spa
e window

of a ve
torial traje
tory rather than an a
tual stati
 lo
alization point. Thus, as a

solution for the dissemination of outdated lo
alization information in VANets, in this

Chapter we dis
uss the use of lo
alization predi
tion as al way of improving VANets'

appli
ations. We then survey proposed lo
alization, target tra
king and time series

predi
tion te
hniques that 
an be used to estimate the future position of a vehi
le.

We highlight their advantages and disadvantages through an analyti
al analysis dis-


ussion based on the literature review highlighting its potential appli
ation s
enarios

for VANets. Then, we present a set of experiments that show the results of su
h te
h-

niques when applied to a realisti
 VANet s
enario indi
ating 
learly the appli
ability,

pros, and 
ons of ea
h one.
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Cellular Localization

Ad Hoc LocalizationGPS

x

Image/Video Proc.

Map Matching

Motion Sensors

Dead Reckinong

x
x

x
x

Localization Services

Current  Position

Correction

Prediction

Dead Reckoning

Bayesian Filtering

Machine Learning

Estimation

Future  Position

Data Fusion

Figure 2.2. Lo
alization te
hniques, Data Fusion and lo
alization predi
tion in

VANets.

The remainder of this Chapter is organized as follows. In the next Se
tion,

we highlight potential advantages of using a lo
alization predi
tion system in several

VANet appli
ations s
enarios. In Se
tion 2.3, we state the problem of predi
ting a

vehi
le future lo
ation whereas in Se
tion 2.4, we des
ribe the lo
alization, target

tra
king and time series predi
tion methods in this 
ontext. In Se
tion 2.5, we dis
uss

the appli
ability, advantages, and limitations of the analyzed solutions. Se
tion 3.4

shows our performan
e evaluation when both solutions are used in a realisti
 VANet

s
enario. Finally, Se
tion 4.1 presents our 
on
lusions.

2.2 Appli
ations that 
an take advantage of Lo
alization Predi
tion

A key goal of any appli
ation for VANets is to provide a time horizon of new

information sour
es relevant to driving safety, 
omfort and transportation e�-


ien
y (Papadimitratos et al., 2009). V2V and V2I 
ommuni
ations allow the develop-

ment of a large number of appli
ations. Ea
h kind of su
h appli
ations requires or 
an

take advantage of a 
ertain degree of reliability and a

ura
y in the 
omputed lo
ations

of vehi
les and/or infrastru
ture units. Basi
ally, the appli
ations for vehi
ular net-

works 
an be summarized as safety, transport e�
ien
y, and information/entertainment

appli
ations (Al-Sultan et al., 2014; Youse� et al., 2006; Hartenstein and Laberteaux,

2008; Papadimitratos et al., 2009). In all of these 
ategories, expanding the time and

spa
e of a lo
alization system by using future predi
ted lo
ations 
an improve the
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Cooperative Adaptive
Cruise Control

Highway
Entries

V2I

V2V

Internet
Access

F

C

Vehicle Collision
Warning

B
Blind Crossing

Security
Distance
Warning

G

H

A

Cooperative
Intersection
Safety

PlatooningD

Prediction

Communication

E

Figure 2.3. Several VANet appli
ations that 
an take advantage of lo
alization

predi
tion in highways and urban s
enarios. (A) Internet a

ess. (B) Vehi
le Col-

lision Warning Systems. (C) Cooperative Adaptive Cruise Control. (D) Vehi
le

Following or Platooning. (E) Cooperative Interse
tion Safety. (F) Blind Crossing.

(G) Se
urity Distan
e Warning.

performan
e of the appli
ations. In the following, we will further dis
uss how these

servi
es 
an be improved by using lo
alization predi
tion the
niques in highways and

urban s
enarios.

As depi
ted in Figure 2.3A, a �rst example of appli
ation for VANet that 
an

take advantage of lo
alization predi
tion is Internet a

ess. The pa
ket forwarding


an use the vehi
le's predi
ted position to guide pa
kets to the more suitable Internet

gateways, roadside unity or vehi
le in a greedy forwarding fashion, a

ording to the

predi
ted position and the time for the vehi
les to rea
h su
h lo
ations. Besides the

advantage of 
omputing a real shortest path in relation to the vehi
le displa
ement

in time and spa
e, this approa
h 
an also 
onsiderably redu
e the pa
ket delay sin
e

the shortest path 
an be 
omputed in terms of time (Bali
o et al., 2015). The same

idea 
an be applied to the V2V and V2I 
ommuni
ation lo
ally, by 
hoosing the next

best hop a

ording to its neighbors future predi
ted lo
ation. As these appli
ations

also provide servi
es about road and surrounding environmental 
onditions, besides

the bene�ts to the driver's safety, the use of lo
alization predi
tion 
an also improve

the driver's experien
e.

One of the most interesting appli
ations of VANets that 
an be enhan
ed using

lo
alization predi
tion is Vehi
le Collision Warning Systems (as shown in Figure 2.3B).

This type of appli
ation is one of the most important for driver's safety sin
e it pro-
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vides assistan
e for drivers to avoid hazards. One part of these systems is the Se
urity

Distan
e Warning (Figure 2.3G), in whi
h the driver is noti�ed when a threshold dis-

tan
e to another vehi
le is rea
hed. Instead of using the 
urrent lo
ation of a vehi
le,

these appli
ations 
an use the predi
ted future lo
ation of a vehi
le to 
he
k when the

distan
e between two vehi
les, or between a vehi
le and an obsta
le, rea
hed an unsafe

threshold. In this 
ase, the system 
an 
he
k in a few millise
onds or even se
onds

in advan
e the potential risk to take further measures by 
he
king if the traje
tories

des
ribed by predi
tions will 
ollide (Figure 2.3B). Its importan
e to noti
e that, su
h

informations provided in advan
e to dete
t potential hazards 
an be 
ru
ial to avoid

and prevent su
h dangerous situations. In this 
ase, the use of predi
ted future lo
a-

tions 
an improve the speed 
omputation pro
ess and also the pa
ket ex
hange pro
ess,

while also providing relevant data for guiding the drivers for further rea
tions.

Furthermore, Cooperative A
tive Safety appli
ations for VANets (Hrizi et al.,

2012) (Figures 2.3B, 2.3E, 2.3F, 2.3G, 2.3H) require an up-to-date knowledge of a

vehi
le's surrounding entities whi
h is obtained when all vehi
les broad
ast their status

information (position, speed) in a 
ollaborative fashion. The pa
kets 
ontaining this

information need to be periodi
ally transmitted, leading to wireless 
ongestion and

impa
ting the a

ura
y and reliability of the safety appli
ation. In this 
ase, the use of

predi
ted lo
ations 
an avoid the need of ex
hanging periodi
ally lo
alization messages,

sin
e the predi
tions are valid for a time window interval. Thus, the use of a predi
tion

lo
alization system has a potential to in
rease the reliability of the safety appli
ation

whi
h is quite a desirable feature.

Another interesting appli
ation of VANets is Cooperative Interse
tion Safety (as

depi
ted in Figure 2.3E). In this appli
ation, vehi
les arriving at a road/street interse
-

tion ex
hange messages in order to make a safe 
rossing. Highway Entran
e, as show

in Figure 2.3H, is also a similar appli
ation that 
an take advantage of lo
alization

predi
tion. Besides ensuring a safe 
rossing and highway entran
e, it is also possible to

make a Blind Crossing (as shown in Figure 2.3F), where there is no light 
ontrol and

the vehi
les 
ooperate among themselves to make a 
rossing, even when the driver's

�eld of view is obstru
ted by buildings. In these appli
ations, besides avoiding unne
es-

sary pa
ket transmissions overhead, the lo
alization predi
tion 
an provide information

to dete
t and prevent potential hazards by 
he
king in advan
e the potential risk of


ollisions in the 
omputed traje
tories des
ribed by predi
tions.

In Cooperative Adaptive Cruise Control (Figure 2.3C), the vehi
le speed is ad-

justed to maintain the same speed of the vehi
les ahead and those behind in a group

without requiring driver intervention. Usually in this type of appli
ation, the speed is

set by the driver and the system ex
hanges messages between the vehi
les using V2V
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ommuni
ation to 
oordinate the vehi
les' speed adaptively. In this 
ase, the use of

predi
ted future lo
ations 
an be used to 
ompute the speed of the vehi
les in order to

keep safe distan
es among themselves. Vehi
le Following or Platooning, as shown in

Figure 2.3D, is an appli
ation used to make one or more vehi
les follow a leader vehi
le

forming a train-like unit. The use of predi
ted lo
ations in this kind of appli
ation


an help to improve the tra
king of the leader and members' position based on the


omputed traje
tories des
ribed by predi
tions as well as to help guide its following.

Also, it 
an help keeping a minimum distan
e between vehi
les in advan
e preventing

a

idental 
ollision.

As show in this se
tion, several types of appli
ations in VANets that 
an take

advantage of a lo
alization system and also 
an a
hieve improvements when using

lo
alization predi
tion. In the next Se
tions, we formally present the lo
alization pre-

di
tion problem in the 
ontext of VANet some proposed approa
hes to ta
kle the target

tra
king and time series predi
tion problems.

2.3 Problem Statement

In this se
tion, we formally present the 
on
epts used in this work.

De�nition 2.3.1 (Vehi
ular Ad Ho
 Network). We de�ne a VANet as a Eu
lidean

graph G = (V,E, r), where |V | = N is the number of nodes and r is the 
ommuni
ation

range; V = {v0, v1, v2, . . . , vN−1}, where {v0, v1, . . . , vN} is the set of vehi
les; 〈i, j〉 ∈ E

i� vi rea
hes vj, in other words, vi is inside the 
ommuni
ation range r of a node vj ;

and ∀vi ∈ V , Pit = (Xit, Yit, Zit) ∈ R
3
is the 
omputed position of nodes vi (i.e., using

a lo
alization system), Lit = (Xit, Yit, Zit) is the real position of nodes at a dis
rete

time t and Si its displa
ement speed.

P01

P02

P03

P04

v0

v1

P =(X ,Y Z )00 00 00, 00

M =P P1 1t 1(t+1)

P1tP1(t+1)

P =(X ,Y ,Z )05 05 05 05

v3

v2r

r

Figure 2.4. VANet: network nodes de�nition, lo
ation and lo
ation predi
tion.
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De�nition 2.3.2 (Vehi
le Future Lo
ation Predi
tion - Pi(t+1)). The predi
tion of

vehi
le i future position for a dis
rete time step t+1. It 
an be de�ned as a time series

regression fore
asting problem and also 
an be formulated as a target tra
king problem.

Tra
king is usually stated as an estimation problem based on a series of measurements.

The primary obje
tive of target tra
king is to dete
t and 
ontinuously estimate the

evolution of the target state with respe
t to time and update the estimation with

measurements (Ramos et al., 2012; Li and Jilkov, 2003). Sin
e almost all maneuvering

target tra
king methods are model based, we 
an de�ne the traje
tory predi
tion by

the dis
rete-time state-spa
e model as follows:

Pi(t+1) = ft(Pit, ut) + wt, (2.1)

ot = ht(Pt) + bt (2.2)

where P , u, o are the target state, input 
ontrol and observation, respe
tively, w and b

are the pro
ess and measurement noise, respe
tively, f and h are fun
tion ve
tors, and

t ≥ 1 is the measurement epo
h (Ramos et al., 2012). Thus, based on the knowledge

of the 
urrent position of a vehi
le (Pit) at a step time t and the knowledge of the

t− 1 steps, the predi
tion of vehi
le's future position is given by target state estimate

Pi(t+1) whi
h will estimate the future position (Xi(t+1), Yi(t+1), Zi(t+1)) for the next time

step t+1. It is important to noti
e that our approa
h di�ers from 
onventional target

tra
king methods sin
e ea
h node performs the target tra
king only on its own set

of lo
alization samples, without any observations from other network nodes. In other

words, ea
h network node performs self-target tra
king.

De�nition 2.3.3 (Vehi
le Motion Ve
tor -Mi)). This ve
tor represents the movement

of a vehi
le i from its 
urrent position to a future 
omputed position. For the sake

of simpli�
ation, we 
onsider that a vehi
le will maintain the traje
tory of a straight

line during the time required to it rea
hes the 
omputed future lo
ation. This line is

de�ned as Mi =
−−−−−−→
PitPi(t+1) (as depi
ted in Figure 2.4), where Pit is the 
urrent vehi
le's

position, Pi(t+1) is its predi
ted future position and Si its displa
ement speed.

2.4 Lo
ation Predi
tion Methods

Lo
alization-Based and in-
ar navigation systems have been identi�ed as a key

te
hnology to the development and operation of VANets (Papadimitratos et al.,

2009; Skog and Handel, 2009; Obradovi
 et al., 2006). A

ording to Bouker
he et

al. (Bouker
he et al., 2008), an interesting aspe
t of VANets is that most lo
aliza-
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tion te
hniques 
an be applied easily to these network and they 
an be 
ategorized

as Map Mat
hing, Dead Re
koning, Cellular Lo
alization, Image/Video Pro
essing,

Lo
alization Servi
es, and Relative Distributed Ad Ho
 Lo
alization. Sin
e vehi
ular

networks have no signi�
ant power 
onstraints unlike sensor and other types of mo-

bile networks and, also 
an be equipped with a wide variety of sensors and pro
essor

units (Ramos et al., 2012), Data-fusion te
hniques are a natural solution to improve

VANets lo
alization system providing a pre
ision of 
entimeters (Skog and Handel,

2009) to 
ompute the vehi
le's position. However, a 
ommon problem in this approa
h

is the dissemination of outdated lo
alization information and also unne
essary overhead

of transmitted pa
kets.

To over
ome these problems, methods for predi
ting future lo
ations of vehi
les

like target tra
king and time series regression fore
asting are an alternative solution

as an extension of the Data Fusion lo
alization system for vehi
ular networks. The

main reason for that relies on the fa
t that, a

ording with Li et al. (Li et al., 2014),

there is a strong regularity in the daily vehi
ular mobility in both temporal and spatial

dimensions, whi
h 
an allow a high degree in the predi
tions' a

ura
y. Also, this study

showed that for Shanghai and Beijing vehi
ular tra
es, the lo
ation predi
tability 
an

rea
h levels of 80% to 99% of a

ura
y.

An interesting aspe
t of target dete
tion, tra
king, and re
ognition is that they

are 
losely interrelated areas, with signi�
ant overlaps (Li and Jilkov, 2003). Although

the Bayesian Filtering state estimation is the main approa
h to solve the tra
king prob-

lem (Ramos et al., 2012; Lee and Krumm, 2011), the problem of predi
ting a future

lo
ation of a vehi
le 
an also be seem as a time series predi
tion. Time series is a

set of observations from past until the present. In this 
ase, it is possible to apply

Ma
hine Learning te
hniques to build the models from training data and even to ad-

just those models dynami
ally. Learning represents a trade-o� between a

ura
y and

generality and for the 
ase of VANets, it represents a 
ompromise in keep the model

a

urately enough and, at the same time, 
apable of deal with di�erent traje
tories

des
ribed with a wide variety of mathemati
al entities. Another method to approa
h

the problem of predi
ting a future position of a vehi
le is the Dead Re
koning. In this

approa
h, the future position of a vehi
le 
an be 
omputed based on its last known

position and movement information as dire
tion, speed, a

eleration, distan
e and

time (Parker and Valaee, 2006). In the following, these te
hniques will be dis
ussed

further.
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2.4.1 Dead Re
koning

Dead Re
koning (DR) is an an
ient navigation te
hnique where a 
urrent position 
an

be 
omputed using a previous last known lo
ation (Krakiwsky et al., 1988; King et al.,

2006) or a future position 
an be 
omputed using a 
urrent known lo
ation. This

te
hnique uses the last known position, also known as a �x, the displa
ement and the

dire
tion information from vehi
le's sensors to update the lo
ation information. Dead

Re
koning as a stand-alone lo
alization te
hnique 
an be used only for short periods

of GPS unavailability in VANets sin
e it 
an a

umulate errors easily. For high speed

vehi
les, su
h as vehi
les moving at speeds about 100 km/h, dead re
koning 
an rea
h

lo
alization errors up to 20m (Bouker
he et al., 2008; Parker and Valaee, 2006) when

used as a stand-alone lo
alization solution. For this reason, this lo
alization te
hnique

in VANets is used to over
ome the limitations of GPS/GNSS and it is 
onsidered only

as a ba
kup system for periods of GPS/GNSS outage.

However, if it is possible to assume that ea
h node in the network is aware of its

lo
ation, DR 
an be applied to predi
t future lo
ation of nodes as shown in Argawal

et al. (Agarwal and Das, 2003). In the DR model presented, ea
h node 
onstru
ts a

movement model for itself by periodi
ally sampling its lo
ation estimates. In the next

step, the DR model 
omputes the velo
ity 
omponents SXi, SY i and SZi along the X ,

Y and Z axes from two su

essive lo
ation measurements (Xi(t−1), Yi(t−1), Zi(t−1)) and

(Xit, Yit, Zit) taken at times t− 1 and t as follows:

SXi = Xit −Xi(t−1)

t− (t− 1)
, (2.3)

SY i = Yit − Yi(t−1)

t− (t− 1)
(2.4)

and

SZi = Zit − Zi(t−1)

t− (t− 1)
. (2.5)

To predi
t the future lo
ation Pi(t+1) = (Xi(t+1), Yi(t+1), Zi(t+1)) of the node i at the


urrent time as per the following formula:

Xi(t+1) = Xit + (SXi × (t+ 1)− t), (2.6)

Yi(t+1) = Yit + (SY i × (t+ 1)− t) (2.7)



2. Lo
alization Predi
tion in Vehi
ular Ad Ho
 Networks 14

and

Zi(t+1) = Zit + (SZi × (t+ 1)− t) (2.8)

where, t+ 1 is the next time step in whi
h the future lo
ation will be 
omputed.

This DR approa
h was used as a basis for a predi
tion method in a lo
al-

ization system 
alled Dead Re
koning Method (DRM) for Mobile Ad ho
 Network

(MANet) (Agarwal and Das, 2003). The DRM main idea is that ea
h node is able to

tra
k the lo
ation of every other node in the network and then able to predi
t the move-

ment of every other node. Thus, every node is 
apable of 
onstru
ting a topology of the

network using the knowledge of the predi
tions. The authors of DRM demonstrated

that the DRM-Based te
hnique applied in a geographi
 routing approa
h delivered

superior routing performan
e when 
ompared to popular proto
ols su
h as DSR and

AODV in MANets. In King et al. (King et al., 2006), DR was utilized to improve

bea
on a

ura
y in the Position-Based Forwarding (PBF) proto
ol, a greedy position-

based pa
ket forwarding for vehi
ular highway s
enarios. The DR approa
h ta
kles the

problem of always-outdated per
eption of neighbor positions for low bea
oning rates.

In this te
hnique when the GPS signal is temporarily unavailable, a mobile node es-

timates its 
urrent position based on its last measured GPS lo
ation and its motion

parameters (speed, orientation, and time). In Wahab et al.(Wahab et al., 2013), was

proposed a GPS-free lo
alization framework aiming at providing a

urate vehi
le lo
al-

ization for road safety appli
ations in VANets. The proposed lo
alization framework

uses two-way time of arrival with partial use of dead re
koning to lo
ate the vehi
les

based on 
ommuni
ation with a single roadside unity.

2.4.2 Ma
hine Learning

Ma
hine Learning te
hniques in time series fore
asting have been applied in many

areas su
h as �nan
ial market predi
tion, ele
tri
 utility load fore
asting, weather

and environmental state predi
tion, reliability fore
asting and wireless 
ommuni
a-

tions (Sapankevy
h and Sankar, 2009). Time series is a set of data samples from past

until present and the goal of time series predi
tion is to estimate some future value

based on 
urrent and past data samples (Kaani
he and Kamoun, 2010). In this 
on-

text, the lo
alization predi
tion problem 
an be also ta
kled as a parti
ular 
ase of

time series predi
tion. Mathemati
ally, a time series in VANets 
an be stated as:

Pi(t+1) = f(Pit, Pi(t−1), Pi(t−2), ...) (2.9)
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where, for the VANets' 
ontext, Pi(t+1) is the predi
ted value of a future position of a

vehi
le at the dis
rete time t+1 and Pit, Pi(t−1), Pi(t−2), ... is a set of 
omputed lo
ations

from past until present of a vehi
le i and, Lit are the respe
tively target values (real

vehi
le position). The obje
tive of time series predi
tion is to �nd a fun
tion f(P ) su
h

that, given a set of input/target pairs (Pt, Lt), the predi
ted value of the time series

Pi(t+1), at a future point in time t + 1 is unbiased and 
onsistent. In other words, the

predi
ted point Pi(t+1) must be as 
losest as possible to the real vehi
le position Li(t+1).

Training Data

Learning
Algorithm

Trained
Machine

Input Prediction

Pit
Pi(t+1)

Pi -1 i -2(t ) (t ),P ,...

Figure 2.5. Ma
hine Learning phases.

2.4.2.1 Neural Networks

Neural Networks (NNs) were originated in the early 1960s and are parallel distributed

information pro
essing systems that implement supervised learning me
hanisms that,

starting from input/output pairs of examples, are able to generalize and learn in a

supervised fashion (Bonissone, 1997; Nakamura et al., 2007). NN s are a well-known

option to deal with time series predi
tion, and for the 
ase of VANets, are suitable by

being able to give solutions to 
omplex problems due to their non-linear pro
essing,

parallel distributed ar
hite
ture, self-organization, 
apa
ity of learning and generaliza-

tion, and e�
ient hardware implementation (Ibnkahla, 2000).

The Multilayer Feed Forward Neural Network (MLNN), also 
alled Multilayer

Per
eptron (MLP) (often simply 
alled Neural Network), is one of the most popular

neural network ar
hite
tures in use for both 
lassi�
ation and regression (Bishop, 1995).

The fundamental pro
essing element of a neural network is a neuron ( as depi
ted in

Figure 2.7). A neuron 
an be mathemati
ally des
ribed as:

P = φ(ξ) (2.10)
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ξ =

n
∑

j=1

wjpj + b. (2.11)

A neuron is 
omposed of a linear 
ombiner ξ, an a
tivation fun
tion φ(ξ) and the

output signal of the neuron P as depi
ted in Figure 2.6. The linear 
ombiner output

is the weighted sum of the inputs plus a bias term. The a
tivation fun
tion gives

then the neuron output in terms of the a
tivity level at is inputs: where pj is the jth

input signal, wj the 
orresponding synapti
 weight, and b the bias term. The a
tivation

fun
tion may be a linear or non-linear fun
tion and there are many a
tivation fun
tions

like, e.g. the identity fun
tion, the sigmoidal fun
tion, the threshold fun
tion, et
. The


hoi
e of the a
tivation fun
tion depends on the nature of the NN appli
ation (Haykin,

1998).

øΣ

Output

P

w0

w1

wq

p0

p1

pq

Neuron

Figure 2.6. Arti�
ial neuron.

A NN is 
omposed of multiple neurons layers 
onne
ted to ea
h other in a dire
ted

graph as shown in Figure 2.6. The input information is pro
essed from the �rst layer

(input layer) to the output layer. Ea
h node in one layer 
onne
ts with a weight wij

to every node in the following layer. The layer index is denoted by i and Pik is the

output of neuron k of layer i given by:

Pik = φ(ξik), (2.12)

ξik =

n(i−1)
∑

j=1

wijkpi−1j + bik (2.13)

were wijk is the weight that links the output Pi−1k to neuron k of layer i. The value

n(i) is the number of neurons in layer i.

Appli
ations of NNs do not have a priori knowledge of the 
orre
t network weights

and a training pro
edure is required to 
ompute the weights. A method for 
omputing
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p01

p02

p03

[w ]1jk [w ]2jk

Input
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Hidden
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Output
Layer

Pt1

Pt2

Figure 2.7. A three layer Neural Network.

the gradient of the empiri
al risk for the a
tivation fun
tion of NNs, 
alled the Ba
k

Propagation algorithm (BP), was proposed in Rumelhart et al. (Rumelhart et al., 1986)

and Le
un (Le
un, 1986). The BP algorithm (Lippmann, 1987) uses a set of input

output pairs (Pt(n), L(n)) to train the network to a
hieve the desired mapping. It

adjusts the MLP weights aiming at minimizing any di�erentiable 
ost fun
tion su
h

as the Minimum Squared Error (MSE). The MSE fun
tion is the error power between

the network output and the desired output, MSE(n) = ||L(n)− Pt(n)||
2
, where Pt(n)

is the NN output ve
tor at time n and L(n) is the desired output (e.g., real vehi
le

position). The BP algorithm performs a gradient des
ent on the 
ost fun
tion in order

to rea
h a minimum as follows:

wijk(n+ 1) = wijk(n)− α
∂MSE(n)

∂wijk(n)
, (2.14)

were the parameter α is the desired error. This equation 
an be expressed as:

wijk(n + 1) = wijk(n)− αδikP(i−1j). (2.15)

The error term δtk of the output layer is given by:

δtk = φ′(ξtk)− (Lk − Ptk), (2.16)

where φ′
denotes the derivative of the a
tivation fun
tion φ′(ξ) = ∂φ(ξ)

∂ξ
. The error term

δik of the hidden unit (i, k) 
an be expressed as a fun
tion of the next layer error terms

as:

δik = φ′(ξik)

n(i+1)
∑

j=1

wi+1kjδ
i+1
j . (2.17)

Thus, the weight update is performed by propagating errors ba
kwards from the output
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nodes to the input nodes.

Neural Networks have been applied for node mobility predi
tion for 
ellu-

lar networks (Liou and Huang, 2005; Capka and Boutaba, 2004). In Kaani
he and

Kamoun (Kaani
he and Kamoun, 2010), a Neural Network has been applied to es-

timate the duration of a 
ommuni
ation link based on the time series predi
tion in

MANets. In this approa
h, a MLP predi
t the future lo
ation of the mobile user based

on the time series lo
ation observations as the inputs of the NN. The authors also

dis
uss that a variation of the number of neurons of the hidden layer 
an a�e
t the

predi
tion a

ura
y. Neural networks also have been applied in VANets for predi
tion

of future lane 
hange traje
tory based in Tomar et al. (Tomar et al., 2010), where a

NN was proposed to learn and in
orporate the human behavior to predi
t the lane


hanging traje
tory in the near future. The authors dis
uss that the NN is able to give

a

urate the predi
tion for some parts of the path, however, the deviation is signi�
ant

for 
ertain se
tions regarding the vehi
les' speed.

2.4.2.2 Support Ve
tor Regression

Support Ve
tor Ma
hines (SVM) are supervised learning models based on statisti-


al learning theory, or Vapnik-Chervonenkis theory (VC theory), developed during

1960-1990 by Vladimir Vapnik and Alexey Chervonenkis (Sapankevy
h and Sankar,

2009; Vapnik, 1995, 1999). The statisti
al learning theory attempts to explain the

learning pro
ess through a statisti
al point of view. Although SVMs were intro-

du
ed �rst for binary 
lassi�
ation (Vapnik, 1995), they are 
urrently a hot topi


in the Ma
hine Learning 
ommunity and used for many learning �elds su
h as pat-

tern re
ognition, 
lassi�
ation and, in the 
ase of time series predi
tion, regression

analysis (Sapankevy
h and Sankar, 2009).

p

P

p= =(w  P) + bf(P)

-є

+є
0

p

P

-є

+є
0

ξ

p

P

ξ -є

+є
0

Kernela

・ p=f(P)=(w P)) + bø(・

Figure 2.8. SVR predi
tion fun
tion for linear and non-linear regressions.

The SVM 
on
ept of a maximum margin hyperplane is mainly applied to 
lassi-
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�
ation problems. However, SVM algorithms have been applied for numeri
 predi
tion

and share many of the 
lassi�
ation 
ase properties: they produ
e a model that 
an

usually be expressed in terms of a few support ve
tors and 
an be applied to non-linear

problems using kernel fun
tions. Support Ve
tor Regression (SVR) (Müller et al., 1997;

Sapankevy
h and Sankar, 2009; Smola and S
hölkopf, 2004) is a method extended from

SVMs to solve regression problems. The main idea of SVR is, given a set of input time

series data Pk, where k dis
rete time step of n samples: k = {0, 1, 2, ..., n − 1}, and

Lk are the respe
tively target values (real vehi
le position), the goal of SVR (Vapnik,

1995) is to �nd a fun
tion f(P ) that approximates the training points aiming at min-

imizing the predi
tion error. In other words, the deviant distan
e between the output

predi
ted values from the training target labels only will be a

epted if it is less than

ǫ for the same time horizon.

For linear and non-linear regressions the SVR predi
tion fun
tion f(P ), given a

set of input/target pairs (Pk, Lk), approximates the predi
tion fun
tion by:

p = f(P ) = (w · P ) + b (2.18)

p = f(P ) = (w · φ(P )) + b. (2.19)

As show in Figure 2.8, to deal with the non-linear regression using SVR, it is ne
essary

to map the input spa
e P into a high dimensional feature spa
e (φ(P )). Note that

the dot produ
t in Equation 2.19 (w · φ(P )) would have to be 
omputed in this high

dimensional spa
e (whi
h is usually intra
table) (Smola and S
hölkopf, 2004). To over-


ome this problem, the SVR adopts a strategy in whi
h this dot produ
t is impli
itly

expressed in a lower dimensional input spa
e (referred to as a kernel fun
tion).

The goal of the algorithm is to �nd the weight ve
tor w and the bias b minimizing

the error, as well as, simultaneously maximizing the �atness of the regression fun
tion

by:

C

n
∑

i=1

E(L(i), p(i)) +
1

2
‖w‖2, (2.20)

where

E(L, p) =







L(i)− p| − ǫ, if|L(i)− p| ≥ ǫ

0 otherwise

(2.21)

In the Equation 2.20, the �rst term C
n
∑

i=1

E(L(i), p(i)) is the empiri
al error (risk).

The parameters w and b are measured by the ǫ-insensitive loss fun
tion (E, de�ned in
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Equation 2.21). This loss fun
tion provides the pre
ision by whi
h the fun
tion f(P )

is to be approximated, enabling the use of sparse data points to represent the solution.

The �atness of the weights in Equation 2.20 means that we seek a small w, whi
h


an be a
hieved by minimizing the Eu
lidean norm ‖w‖2. The regularized 
onstant C

determines the trade-o� between the empiri
al risk and the regularization term, whi
h

means the trade-o� between the �atness of the fun
tion f and the amount up to whi
h

the deviations larger than ǫ are tolerated. In other words, the errors are ignored by

the SVR algorithm as long as they are less than ǫ, but any deviation larger than this

is not a

epted. It is important to noti
e that both ǫ and C are both user de�ned


onstants and are typi
ally 
omputed empiri
ally. It is impli
itly assumed in Equation

2.21 that a fun
tion f(P ) a
tually exists and approximates all pairs (Pk, Lk) with ǫ

pre
ision (tube size), whi
h means that the optimization problem is feasible. However,

to make the optimization problem feasible errors may have to be a

epted. Therefore,

sla
k variables ξi and ξ∗i are typi
ally introdu
ed to measure the deviation of training

samples outside ǫ-insensitive zone to a

ount for errors. To obtain the estimations of w

and b, Equation 2.20 is transformed into a primal fun
tion stated in Vapnik (Vapnik,

1995) as follows:

Minimize

C

n
∑

i=1

(ξi + ξ∗i ) +
1

2
‖w‖2, (2.22)

subje
ted to



















L(i)− wφ(Pi)− bi ≤ ǫ+ ξi,

wφ(Pi) + bi − L(i) ≤ ǫ+ ξ∗i ,

ξi, ξ
∗
i ≥ 0

(2.23)

By introdu
ing Lagrange multipliers and forming the dual optimization problem,

the de
ision fun
tion given by Equation 2.20 has the following expli
it form (Vapnik,

1995):

f(P, ai, a
∗
i ) =

n
∑

i=1

(ai − a∗i ) +K(P, Pi) + b. (2.24)

The data points on or outside the e ǫ-tube with non-zero Lagrange multipliers are

de�ned as support ve
tors. The optimal weights w having non-zero Lagrange multi-

pliers are typi
ally less than the entire data set, thus, the entire data set is not need

to de�ne f(P ). The sparseness of this solution is one of several advantages of using

this methodology. K(P, Pi) is de�ned as the kernel fun
tion and it 
omputes the inner
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produ
t of two ve
tors P and Pi in the feature spa
e φ(P ) and φ(Pi) by:

K(P, Pi) = φ(x) · φ(Pi) (2.25)

The kernel fun
tion provides a solution to map the input spa
e P into a high di-

mensional feature spa
e (φ(P )) to perform the non-linear regression using SVR. There

are several kernel fun
tions that satisfy Mer
er's 
onditions (Vapnik, 1995) su
h as

Gaussian, polynomial, and hyperboli
 tangent. In SVM/SVR appli
ations, the 
hoi
e

of the kernels is a key fa
tor. Although the Gaussian kernels appears to be the most

prevalent 
hoi
e, typi
ally empiri
al analyses is ne
essary in the sele
tion of the ap-

propriate kernel fun
tion a

ording with the nature of the appli
ation. Finally, the

resulting SVR ar
hite
ture is given below in Figure 2.9.

OutputΣ a K(P,P )+bj i

Weights

Mapped vectors ø(P),ø(P )i

Support vectors P ... P1 i

Test vector P

Σ

a0 a1 aj

( ) Dot product

ø(P )1 ø(P )2 ø(P)

7

Σ

( )・ ( )・・ K(P,P )=(ø(P) ø(P ))i i・

4

1

ø(P )j

1

Figure 2.9. Ar
hite
ture of a regression ma
hine resulting by the SVR algorithm

(Sapankevy
h and Sankar, 2009; Smola and S
hölkopf, 2004).

Learning te
hniques have been applied for target tra
king in diverse WSNs

s
enarios using kernel-based learning (Simi
, 2003) and support ve
tor ma-


hines (Tran and Nguyen, 2008; Viani et al., 2010). A distributed SVM training was

proposed in (Kim et al., 2012) to solve a multi-target tra
king problem in WSNs. After

training the lo
al SVM at ea
h node, this approa
h 
omputes the posterior probability

of the existen
e of the targets using Platt's optimization algorithm. By maximum a

posterior (MAP), the target traje
tories are estimated. In order to over
ome 
hal-

lenges su
h as limited 
ommuni
ation and the 
urse of dimensionality when applying

Ma
hine Learning algorithms su
h as SVR on large-s
ale WSNs, the authors in Kim

et al.(Kim et al., 2013) proposed an ensemble implementation of SVR for the prob-

lem of target lo
alization. Experimental results a
hieved in this work indi
ate that

the performan
e SVR proposed method provides good predi
tion a

ura
y. Also, the

performan
e 
omparison has shown that the SVR proposed method outperforms the
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lassi
 SVR predi
tor in terms of a

ura
y and robustness for large s
ale WSNs.

2.4.3 Filtering

The main goal of target tra
king systems is to 
ontinuously dete
t and estimate the

state of a target or a set of targets. Besides the lo
ation information, target tra
k-

ing 
an be used to dete
t and predi
t future lo
ations of single or multiple targets

su
h as other vehi
les, obje
ts and obsta
les surrounding a given vehi
le (Ramos et al.,

2012; Li and Jilkov, 2003; S
hubert et al., 2008). It is important to noti
e that these

algorithms are exposed to di�erent sour
es of noise, introdu
ed by the measurement

pro
ess and also errors in nodes' lo
ation that are used to estimate the target 
oor-

dinates. Therefore, information fusion (Nakamura et al., 2007) is 
ommonly used for

�ltering su
h noise sour
es.

The targets' state 
an in
lude, among other information, position, velo
ity, a
-


eleration, and jerk (derivative of a

eleration) and this set of state variables 
an also

vary a

ording to the appli
ation requirements and 
onstraints. A

ording to Ramos

et al.(Ramos et al., 2012), target tra
king systems typi
ally rely on a Bayesian mo-

tion estimation framework that require: a motion model that des
ribes the target's

dynami
; samples of the target's state; a data asso
iation algorithm that takes into

a

ount the samples to the 
orre
t target; and an initial probability distribution, also

known as prior knowledge of the target's state. A

ording to the motion model, the

main task performed by the tra
king systems is to estimate the parameters of the

model, 
onsidering the measurements 
olle
ted about the target.

The �ltering 
omponent of target a tra
king system is responsible for de�ning how

the probability density fun
tion (pdf) of the target's state at time step t is 
omputed.

Based on these 
omponents, the target tra
king system has two phases (as depi
ted

in Figure 2.10): predi
tion, whi
h uses the motion model to propagate the probability

fun
tion of the target state over the time; 
orre
tion, whi
h uses the latest 
olle
ted

samples to update the pdf of the target at the 
urrent time step. This task is usually

performed by a Bayesian �lter, su
h as the Kalman �lter and the Parti
le �lter.

2.4.3.1 Kalman Filter

The Kalman Filter (KF) was originally proposed in 1960 by Kalman (Kalman, 1960)

and it is a popular Data Fusion method used to fuse low-level redundant data

(Nakamura et al., 2007; S. et al., 2009). The KF presents some interesting proper-

ties sin
e it 
an re
ursively retrieve statisti
ally optimal estimates when the noise is

Gaussian and, is the linear optimal estimator even when the noises are not Gaussian
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Figure 2.10. Filtering phases.

(Simon, 2006). In other words, the KF is the optimal �lter in terms of unbiased min-

imum varian
e state estimation when the system 
an be des
ribed as a linear model

with Gaussian noise.

The KF applies a linear operator in the 
urrent state to generate a new state

at ea
h dis
rete time in
rement. Besides the measurement noise, the �lter 
an also

optionally 
onsider some information about the 
ontrols on the system. Then, another

linear operator, also subje
t to noise, generates the observed outputs from the true

state (Hossain et al., 2009). The KF estimates the state p of a dis
rete-time t 
ontrolled

pro
ess that is ruled by the state-spa
e model

pt+1 = Ftpt +Btut + wt (2.26)

with measurements (observation) o at time t of a state pt made a

ording to:

ot = Htpt + bt, (2.27)

in whi
h Ft is the state transition matrix applied to the previous state pt, Bt is the

input 
ontrol matrix model that is applied to 
ontrol ve
tor u; Ht is the measurement

matrix (the observation model), whi
h maps the true state spa
e into the observed

spa
e; w is the pro
ess noise; and b the measurement noise, where these noise sour
es

are assumed to be drawn by random zero-mean Gaussian variables with 
ovarian
e

matri
es Qt and Rt, respe
tively.

Based on the measurement ot and the knowledge of the system parameters, the

estimate of pt, represented by p̂t, and the predi
tion of the next state pt+1, represented

by p̂t+1|t are given by:

p̂t = p̂t|t−1 +Kt(ot −Htp̂t|t−1), (2.28)
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Figure 2.11. Blo
k diagram of the Kalman Filter

p̂t+1|t = Ftp̂t +Btut, (2.29)

in whi
h Kt is the Kalman gain determined by

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t +Rt)

−1
, (2.30)

where Pt is the predi
tion 
ovarian
e matrix that 
an be determined by

Pt+1|t = FtPtF
T
t +Qt, (2.31)

with

Pt = (I −KtHt)Pt|t−1, (2.32)

where I is the identity matrix.

The Kalman Filter has two phases: time-update (predi
t) and measurement-

update (
orre
t). The time-update phase is responsible for proje
ting the 
urrent state

and error 
ovarian
e estimates forward, obtaining the a priori estimates for the next

time step and 
onsists of the Equations (2.26) and (2.27). The measurement-update

phase is responsible for the feedba
k, that is, a new measurement at 
urrent time step

is in
orporated into the a priori estimate to obtain an improved a posteriori estimate.

This phase 
onsists of the Equations (2.29), (2.30), and (2.31) (Nakamura et al., 2007).

These predi
t and 
orre
t phases form a loop that is performed while the �lter is fed

by measurements.

The Kalman �lter theory applies to linear-Gaussian problems, but many real

world problems 
annot be represented by linear models, algorithms have emerged based

on the original Kalman Filter theory to deal with nonlinear dynami
s and non-linear

measurement models (Daum, 2005). Variations of the Kalman Filter have also been
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proposed for relaxing the non-linearity assumption of samples. The Extended Kalman

Filter (EKF) (Wel
h and Bishop, 2001) is a popular te
hnique to deal with non-linear

models. The main idea of the EKF is that the state distribution is approximated by

a Gaussian law, and this method uses a linearized model of the pro
ess using Taylor

series, be
ause this is a sub-optimal estimator. Another re
ent variation of the Kalman

�lter is the Uns
ented Kalman Filter (UKF) and represents a great improvement over

EKF (Julier and Uhlmann, 1997). The UKF performs estimations on non-linear sys-

tems without the need to linearize them, be
ause it uses the prin
iple that a set of

dis
rete sampling points 
an be used to parameterize the mean and 
ovarian
e. UKF

is known to greatly improve the performan
e for linear systems when 
ompared to

EKF, be
ause it does not have to deal with linearization errors. However, the quality

of UKF estimates are 
lose to standard KF for linear systems.

Several tra
king solutions are based on Kalman Filters (KF) (Li et al., 2006;

Wel
h and Bishop, 2001; Julier and Uhlmann, 1997; Olfati-Saber, 2005). In VANets,

Armaghan et al. (Armaghan et al., 2009) proposed an estimation method based on

Kalman �lter to de
rease the number of transmitted messages. In this method, ea
h

vehi
le estimates its lo
ation for several intervals and sends them out along with a
tual


urrent position. The estimation is done based on the previous history and re
ord of

the vehi
le's lo
ation. During the time that estimated information is available, there

are no transmissions unless some estimation error is dete
ted. In Mo et al. (Mo et al.,

2008), the authors presented a lo
ation management proto
ol 
alled Mobility-Assisted

Lo
ation Management (MALM), to provide lo
ation servi
e to vehi
les in VANets .

In MALM, a vehi
le 
al
ulates the 
urrent lo
ation of other vehi
les by using Kalman

�ltering based on the histori
al lo
ation information of other nodes. In Lytrivis et

al. (Lytrivis et al., 2011), was proposed the 
ooperative path predi
tion algorithm for

safety appli
ations in VANets . It 
onsiders position, velo
ity, a

eleration, heading

and yaw rate measures to 
reate bea
ons 
ontaining dynami
 status of a transmitting

vehi
le. The algorithm uses UKF for predi
ting both short-distan
e and short-term for

targets within the sensing range of the ego vehi
le.

Aiming at improving se
urity on the roads, Ammoun et al. (Ammoun et al., 2007)

uses a Kalman �lter for traje
tory predi
tion and the estimation of a vehi
le's lo
ation

to evaluate and anti
ipate the risk of 
ollision at a 
rossroad. The authors show that

despite unavoidable laten
ies and positioning errors, the appli
ation performan
e is

still a

eptable when a Kalman �lter is used for traje
tory predi
tion and estimation.

In Najjar and Bonnifait (E. Najjar and Bonnifait, 2005), Belief Theory and Kalman

�lters are used to provide a

urate position estimations for a vehi
le relative to a

digital road map. In this method, the Kalman Filter is used to 
ombine the Antilo
k
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Braking Systems (ABS) measurements with a GPS position, whi
h is then used to

sele
t the most 
redible roads. The sele
tion strategy fuses distan
e, dire
tion, and

velo
ity measurements using Belief Theory. A new observation is then built and the

vehi
le's approximate lo
ation is adjusted by a se
ond Kalman �lter

2.4.3.2 Parti
le Filter

Parti
le Filter (PF) is a �ltering te
hnique that relies on a brute-for
e approa
h to esti-

mates the target's state through a re
ursive implementation of Sequential Monte Carlo

method (SMC) (Dou
et et al., 2001). The Bootstrap Filter was the �rst PF method

proposed in 1993 by Gordon et al. (Gordon et al., 1993). PF 
an deal with non-

linearity and with non-Gaussian noise when Kalman �lter approa
hes do not perform

well. Unlike of the linear/Gaussian problems, the 
omputation of the posterior dis-

tribution of non-linear/non-Gaussian problems are extremely 
omplex (Ramos et al.,

2012). To over
ome this di�
ulty, the Parti
le Filter adopts an approa
h 
alled sam-

pling importan
e. The key idea is to represent the posterior pdf based on a large

number of random samples, 
alled parti
les, whi
h are sequentially propagated over

time (Arulampalam et al., 2002). At ea
h time step, some parti
les that present low

posterior probability are dis
arded by a pro
ess 
alled resampling. To ea
h parti
le

is asso
iated a weight indi
ating its quality, thus, the estimate is the result of the

weighted sum of all parti
les (Nakamura et al., 2007).

As the Kalman Filter, the Parti
le Filter algorithm has two phases: predi
tion

and 
orre
tion. In the predi
tion phase, ea
h parti
le is modi�ed a

ording to the

existing model, in
luding the addition of random noise in order to simulate the e�e
t

of noise. Then, in the 
orre
tion phase, the weight of ea
h parti
le is reevaluated based

on the latest sensory information available, so that parti
les with small weights are

eliminated (resampling pro
ess). The resampling step is the solution adopted to avoid

the degeneration problem, where the parti
les have negligible weights after several

iterations. The parti
les of greater weight are sele
ted and serve as the basis for the


reation of the new parti
les set. Furthermore, the minor parti
les disappear and do not

originate des
endants. For illustration purposes, the Parti
le Filter algorithm presented

in Algorithm 1 (Souza et al., 2013) 
onsiders only one dimension, in whi
h P is the

position, S is the velo
ity and w is the weight of ea
h n parti
les in a dis
rete-time t; the

o variable is the input measurement value (observation). However, this algorithm 
an

easily be applied to 
oordinate systems in R
3
. First, the algorithm randomly distributes

the parti
les (line 2). The parti
le propagation and the 
al
ulus of their importan
e


onsider the distan
e from ea
h parti
le to the measurement position (lines 5-11). The
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Algorithm 1 The Parti
le Filter Algorithm

⊲ Input:

1: The measured ot
A
tion:

2: for i = 1 : N do {FOR: Initialize the parti
les}

3: P i
0 ← random();

4: end for

5: totalWeight← 0;
6: for i = 1 : n do {FOR: Sample parti
les and 
ompute weights}

7: P i
t ← P i

t−1 + Si
t−1 + gaussian();

8: Si
t ← Si

t−1 + gaussian() ∗ 0.05;
9: wi

t ← 1/distance(ot, P
i
t );

10: totalWeight← totalWeight+ wi
t;

11: end for

12: for i = 1 : n do {FOR: Normalize weights}

13: wi
t ← wi

t/totalWeight;
14: end for

15: slice0t ← w0
t ;

16: for i = 2 : n do

17: sliceit ← slicei−1
t + wi

t

18: end for

19: for i = 1 : n do {FOR: Ressampling}

20: c← random();
21: j ← 0;
22: while j < n− 1andslicejt < c do
23: j ← j + 1;
24: end while

25: resamplingit ← particlejt ;
26: end for

27: for i = 1 : N do {FOR: Compute the predi
tion xk+1}

28: Pt+1 ← Pt+1 + P i
t ∗ w

i
t;

29: end for

30: return Pt+1;

normalization pro
ess (line 12) prepares the parti
les weights for the resampling pro
ess

(lines 15-26). Finally, the predi
tion of the position is 
omputed (lines 27-29).

Parti
le Filters are popular for modeling non-linear systems subje
t to non-

Gaussian noise in wireless 
ommuni
ation. There are several tra
king solutions based

on Parti
le Filters for sensor networks (Ver
auteren et al., 2005; Arulampalam et al.,

2002; Rosen
rantz et al., 2003; Jiang and Ravindran, 2011). In VANets, an interesting

study on the suitability of mobility predi
tion to redu
e ex
essive bea
oning to sensitive


ooperative safety appli
ations is presented in (Hrizi et al., 2012). The authors dis
uss

the 
hallenges regarding the trade-o� in periodi
ally transmitted pa
kets leading to

wireless 
ongestion. While adapting the rate of the transmission to some predi
ted

motions impa
ts the a

ura
y of this knowledge and the reliability of the 
ooperative

safety appli
ation. They extend a Parti
le Filter to take into 
onsideration VANets

pe
uliarities. The authors showed that the proposed solution 
an ensure a suitable
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adaptation of the 
hannel load with a high pre
ision of awareness predi
tion to tra�


safety appli
ations.

In Peker et al. (Peker et al., 2011), was presented an algorithm for vehi
le lo-


alization and map-mat
hing using PF. The probability of being on a 
ertain area

of the digital map a

ording to vehi
le speed is used in 
onjun
tion with routing in-

formation to augment the likelihood fun
tion in the weight 
omputation step of the

parti
le �lter. The authors performed real life tests and the results a
hieved show a


onsiderable in
rease in 
orre
tness of Map-Mat
hing and lo
alization a

ura
y. The

proposed algorithm also guides Dead Re
koning when GPS data is unavailable. In

Fernandez-Madrigal et al. (Fernandez-Madrigal et al., 2007), the authors use Parti
le

Filters to 
ope with vehi
le lo
alization in 
ombined indoor and outdoor s
enarios. In

su
h s
enarios, the authors assess the performan
e of ultra-wide band sensor te
hnology

for indoor positioning and GPS for outdoor areas. They also evaluated the use of PF

to fuse observations 
olle
ted from these two types of sensors for vehi
le lo
alization.

Parti
le Filters are also used in Chausse et al.(Chausse et al., 2005) to 
ombine GPS

lo
alization with data extra
ted from vision systems to determine a vehi
le's lo
ation

on the road. The 
ombined information is transformed into a global referen
e using a

Map-Mat
hing the
hnique.

2.5 Te
hniques Dis
ussion

It is well known that the moving of vehi
le in a 
ity is a dynami
 pro
ess, in
luding

stati
 pro
ess (tra�
 light), whi
h is strong nonlinear. These non-linear 
hara
teristi
s

of VANets 
an severely a�e
t the performan
e of the predi
tor algorithm. Table 2.1

brie�y 
ompares these te
hniques in terms of advantages and 
hallenges whereas Table

2.2 brie�y 
ompares them in terms of training and a

ura
y.

The main advantage of DR rely on its good a

ura
y for predi
tions when the

vehi
les have a linear mobility pattern with a fast initial 
onvergen
e. DR is able to

a
hieve a

urate predi
tions when 
omputing a future position only based on the last

know vehi
le position. However, its performan
e is de
reased with the randomness

of non-linear mobility and it is also subje
t for 
umulative errors, espe
ially when

the 
urrent position of a vehi
le is not provided by a Data Fusion approa
h. One of

the most appealing advantages of DR relies on its simpli
ity: the algorithm has a low


omputational 
ost, it is easy to implement, requires low pro
essing power and memory

usage, whi
h su�
iently mat
h the 
apabilities of vehi
les 
omputational devi
es.

Regarding the time series predi
tion aspe
t of lo
alization predi
tion in VANets,

the main advantage of 
onsidering NNs and SVRs as approa
hes is the non-linear
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Method Advantages Challenges

DR

Computationally e�
ient by design

Easy to implement

No free parameters

Subje
ted to 
umulative errors

NN

Not model dependent

Not dependent on linear, stationary

pro
esses

Can be 
omputationally e�
ient (feed

forward pro
ess)

Number of free parameters large

Sele
tion of free parameters usually 
al
ulated

empiri
ally

Not guaranteed to 
onverge to optimal solution

Can be 
omputationally expensive (training pro-


ess)

SVR

Not model dependent

Not dependent on linear, stationary

pro
esses

Guaranteed to 
onverge to optimal so-

lution

Small number of free parameters

Can be 
omputationally e�
ient

Sele
tion of free parameters usually 
al
ulated

empiri
ally

Can be 
omputationally expensive (training pro-


ess)

Trade-o� between a

ura
y and 
omputational

e�ort

KF

Computationally e�
ient by design

Convergen
e guaranteed

Minimizes mean square error by design

Small number of free parameters

Assumes linear, stationary pro
esses

Assumes pro
ess model is known

PF

Not model dependent

Not dependent on linear, stationary

pro
esses

Small number of free parameters

Can deal with non-Gaussian noise

Curse of dimensionality

Requires a large number of parti
les to present

a

urate results

Table 2.1. Traje
tory predi
tion te
hniques: pra
ti
al aspe
ts

(Sapankevy
h and Sankar, 2009; Skog and Handel, 2009; Daum, 2005).

aspe
t of the predi
tion problem. In this 
ase, neural network models have the advan-

tage of allowing the approximation of 
ompli
ated non-linearities whi
h 
ould not be

well modeled by other 
lassi
al models (Ibnkahla, 2000). NNs are self-adaptive, data-

driven that do not require any a priori assumptions about the problem spa
e, not even

information about the statisti
al distribution. In fa
t, NNs are universal fun
tion ap-

proximators and it has been demonstrated that they 
an approximate any 
ontinuous

fun
tion to any desired a

ura
y (Irie and Miyake, 1988; Hornik et al., 1989). Consid-

ering the VANets' mobility 
hara
teristi
s, NNs are well suited sin
e they 
an represent

knowledge that is di�
ult to spe
ify but, in whi
h, there are enough data or observa-

tion about the problem. In terms of lo
alization systems, NNs are also attra
tive sin
e

they 
an generalize and 
an often 
orre
tly infer the unseen part of data even if the

data sample 
ontains noise.

The non-linear aspe
t of lo
alization predi
tion in VANets is shared

with many real-world appli
ations. A

ording to Sapankevy
h and Sankar

(Sapankevy
h and Sankar, 2009), traditional (and more sophisti
ated) model-based

te
hniques generally do not perform as well as the SVR in predi
ting time series gen-
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Method Training Predi
tion A

ura
y

DR

Not required

Fast initial 
onvergen
e

Good for short time sample horizon

A

urate for linear mobility pattern

NN Required

Good short time horizon

Can dete
t driver patterns in long time horizon

A

urated for non-linear mobility pattern

SVR

Required

Can be 
omputationally expen-

sive

Good short time samples' horizon

Can dete
t driver patterns in long time samples' hori-

zon

KF

Not required

Fast initial 
onvergen
e

Good for short time sample horizon

Provides the linear MSE solution to the �ltering prob-

lem

PF

Required

Convergen
e of initial distribu-

tions

Good short time horizon

A

urated for non-linear mobility pattern

Table 2.2. Traje
tory predi
tion te
hniques: the 
omputational aspe
t

(Sapankevy
h and Sankar, 2009; Skog and Handel, 2009; Daum, 2005).

erated from non-linear systems. This is based on the fa
t that the Ma
hine Learning

te
hniques like SVR and NNs lets the data speak for itself whereas the model-based

te
hniques typi
ally 
annot model the non-linear pro
esses well. Consequently, these

te
hniques are less sus
eptible to the problem of model misspe
i�
ation as 
ompared

to most of the parametri
 models. The main advantage of the SVRs when 
ompared to

the traditional model-based te
hniques rely on the fa
t that, by design, the SVR guar-

antees a global minimum solution and is typi
ally superior in the ability to generalize.

For the lo
alization predi
tion problem in VANets, in theory it means that SVRs by

design 
an be superior in terms of the a

ura
y in the lo
alization predi
tion. However,

there is a tradeo� in terms of the 
omputational e�ort required to a
hieve su
h a

u-

rate results. This tradeo� 
an also a�e
t the NNs, but it a�e
ts more the SVRs due

to the 
omputational e�ort to solve the global minimum solution problem. In theory,

these ma
hine learning te
hniques 
an lead to very a

urate lo
alization predi
tion.

However, due to the real-time 
hara
teristi
 of VANets appli
ations, this a

ura
y 
an

be redu
ed by the 
omputational time required to 
ompute the predi
tions in a feasible

time for its use.

Another important issue in the appli
ation of the NNs and SVRs in VANets is

the free parameter sele
tion and the required training, whi
h 
an be 
omputationally

expensive. This is not a spe
i�
 VANet issue, but an issue observed in many real

world appli
ation of su
h te
hniques. Regarding the parameter sele
tion, whi
h is

more 
hallenging in the 
ase of NNs due to its large number, there are several pro-

posed approa
hes, however, most of them are usually quite 
omplex and di�
ult to

implement. Also, due to fa
t that streets in VANets 
an vary from a large number of
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geometri
 shapes, su
h parameters guidelines 
an be simply guided by heuristi
s, sim-

ulations or also by experiments on the target area. In this 
ase, the main 
ompromise

is to balan
e between 
omputational 
omplexity, robustness against modeling errors,

and a

ura
y of the algorithm (Skog and Handel, 2009). Regarding the training of the

Ma
hine Learning methods, large window size (number of 
olle
ted lo
ation samples)


an in
rease the 
omplexity of the 
onvergen
e pro
edure and resulting in long training

time, whi
h is not suitable for real-time implementations. In this 
ase, smaller training

window sizes are quite preferable. However, sin
e the main advantages of su
h ap-

proa
hes rely on the ability to generalize, a long term training approa
h is also feasible

when asso
iated with an optimization pro
ess. For instan
e, su
h algorithm 
an be

trained on data 
olle
ted over a large time horizon (daily, weekly, or monthly) and the

driver's 
ommon routes, based on its routine (e.g. routes to work and home), 
an be

easily identi�ed improving the a

ura
y of the long-term predi
tions.

A re
urrent issue for Ma
hine Learning and Bayesian Filtering approa
hes is

the 
urse of dimensionality. That is, the 
omputational 
omplexity of the predi
tor

method usually grows exponentially with the dimension of the state ve
tor being esti-

mated (Skog and Handel, 2009; Daum, 2005). Therefore, even vehi
les equipped with

high 
omputational 
apa
ity, non-linear �lters and Ma
hine Learning algorithms 
an

be unfeasible for navigation systems with high-dimensional state ve
tors. In this 
ase,

the introdu
tion of sensor's that 
an provide information about a vehi
le's state mea-

surements like wheel odometers, magnetometers, a

elerometers, et
., 
an improve the

predi
tor's method a

ura
y. However, its 
omputational 
omplexity will also grow

exponentially. An e�
ient approa
h in this 
ase would be to 
onsider only position

information in the state ve
tor of the predi
tor. Sin
e it is quite 
ommon the use of 
om-

puted position of vehi
les in R
3
, the problem of the 
urse of dimensionality 
an be easily

avoided in VANets. Besides, su
h sensor's data 
an be more e�
iently pro
essed in

the vehi
le's 
urrent position estimation using Data Fusion methods (Nakamura et al.,

2007; Bouker
he et al., 2008).

In the Bayesian Filtering approa
h, the model must be 
omplete enough to give an

adequate des
ription of the system and, at the same time, be su�
iently simple for the

�ltering algorithm to be
ome 
omputationally feasible (Gri�n and Sage, 1969). Su
h

assumptions are satis�ed in VANets sin
e Data Fusion methods 
an provide a 
omplete

mobility model and vehi
les 
an be 
oupled with reasonable 
omputational units. The

Minimum Mean Square Error (MSE) solution to the linear problem is then provided

by the Kalman �lter, assuming Gaussian distributed noise sour
es (Skog and Handel,

2009; Kailath, 1998). In terms of VANets, the Kalman �lter is the optimal 
hoi
e when

the system is linear with Gaussian noise (Ramos et al., 2012). In this 
ase, the Kalman
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�lter is an attra
tive approa
h for VANets s
enarios sin
e the linear 
hara
teristi
 of

streets, espe
ially in grid models, 
an be des
ribed as a linear vehi
le movement model

and also the lo
alization error usually is 
omposed by Gaussian noise in the average.

KFs are relatively easy to design and 
ode, and they often provide good predi
tion

a

ura
y. One advantage of KF when 
ompared to Ma
hine Learning methods is the

fast initial 
onvergen
e of the predi
tions without requiring training. On the other

hand, KF a

ura
y 
an be surprisingly bad for some pra
ti
al appli
ations when the

physi
al system is des
ribed by non-linear equations or the model is ina

urate or

in
omplete (Daum, 2005).

Parti
le Filter 
an outperform the KF espe
ially for the non-linear 
ase, with

the 
ost of additional 
omputational e�ort, be
ause it typi
ally requires a large num-

ber of parti
les to provide a

urate results (Ramos et al., 2012). Therefore, in sys-

tems with a highly non-linear nature and non-Gaussian noise sour
es PF 
an keep

the non-linear stru
ture of the problem, signi�
antly improving the system perfor-

man
e (van der Merwe et al., 2004; Daum, 2005). However, sin
e the navigation equa-

tions in VANets are only partial non-linear, the lo
alization predi
tion problem 
an be

divided into a linear part and a nonlinear part (Skog and Handel, 2009). In this 
ase,

under the assumption of Gaussian-distributed noise sour
es, the linear 
ase may be

solved using a KF, hen
e, redu
ing the 
omputational 
omplexity (S
hön et al., 2005;

Karlsson et al., 2005) and also in
reasing the a

ura
y of the lo
alization system. PF

are also relatively easy to design and 
ode and works well for a high range of lo
al-

ization problems. The a

ura
y of PF's approximation is determined by the size of

the parti
le set. In this 
ase, in
reasing the number of parti
les also in
reases the

a

ura
y of the predi
tor. However, it also in
reases the 
omputational 
ost of the

lo
alization system. In other words, the number of parti
les is a trade-o� between the

a

ura
y and available 
omputational resour
es (Golestan et al., 2012). Also, regard-

ing the 
omputational 
ost, the initial distribution of the parti
les requires additional

time to 
onverge in a

urate predi
tions when 
ompared to the Kalman Filter.

Although there are several promising approa
hes to ta
kle the problem of lo
aliza-

tion predi
tion in wireless networks, based on a theoreti
al analysis, Dead Re
koning,

Ma
hine Learning, and Bayesian Filtering are e�
ient and feasible approa
hes to be

applied to the 
ontext of vehi
ular network. In short, all of these te
hniques present

advantage to be 
onsidered in the di�erent VANets s
enarios. Dead Re
koning has

the advantage of providing good a

ura
y with a lower 
omputational 
ost for short

time predi
tions subje
ted to low levels of lo
alization noise sour
es. Ma
hine Learning


an provide a

urately predi
tion estimations for the non-linear 
ase but su�er from

the 
omputational 
omplexity required. However, NNs and SVR are able to general-
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ize patterns in the data, thus, they are able to dis
over the driver's 
ommon habits,

su
h as daily routes for long-term predi
tions. Therefore, su
h in advan
e information


an be used to improve both lo
alization systems and many other VANets servi
es

that 
an take advantage of long-term lo
alization information. For non-Gaussian noise

sour
es and the linear 
ase, the Kalman Filter provides the linear MSE solution to

the �ltering problem. For highly non-linear nature mobility models and non-Gaussian

noise sour
es, Parti
le Filters keep the non-linear stru
ture of the problem signi�
antly

improving the lo
alization predi
tion a

ura
y.

Finally, even though these analyzed approa
hes ta
kles di�erent pro
esses and

measurement models, an interesting alternative to improve VANets servi
es through

lo
alization predi
tion 
an be the 
ombination, in a single solution, of two or more of

these solutions to deal with Gaussian/non-Gaussian noise and linear/non-linear mod-

els. In the next se
tion, we evaluate the performan
e of the lo
alization predi
tion

te
hniques dis
ussed in this work.

2.6 Performan
e Evaluation

2.6.1 Proposed Approa
h

In our approa
h, during the lo
alization pro
ess, we assume that ea
h vehi
le i periodi-


ally observes its 
urrent position (Pit) at a step time t. Based on the knowledge of the

t−1 steps, the predi
tion of a vehi
le's future position is given by target state estimate

Pi(t+1), whi
h will estimate the future position (Xi(t+1), Yi(t+1), Zi(t+1)) for the next time

step t+ 1. Regarding the Dead Re
koning approa
h, the future position predi
tion of

ea
h vehi
le is made by 
omputing the 
oordinates Xi(t+1), Yi(t+1) and Zi(t+1) by using

equations 2.6 and 2.7.

The parameters of the ma
hine Learning algorithms have been adjusted through

plenty of simulation experiments. We aimed to obtain the best a

ura
y (less error

rate and suitable 
omputational e�ort). For the NN and SVR, the input ve
tor is


omposed of (Xit, Yit, Zit, st), where Xit, Yit and Zit are the 
oordinates of the vehi
le's


urrent lo
ation and St its 
urrent displa
ement speed. Thus, at ea
h time step t

an input ve
tor (Xit, Yit, Zit, St) is added to the set of training data along with the

t − 1 inputs. For ea
h vehi
le, the training is performed on the last t − 1 training

inputs. Sin
e during the initial experiments we observed that the SVR required a huge

additional time on training, we limited the training of this method to a window of

t− 13 inputs. This de
reasing on the training size of the SVR was justi�ed to a
hieve

a good a

ura
y in a suitable response time. Also, we noti
ed the trade-o� in the
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free parameter sele
tion and the 
omputational e�ort for the NN and SVR. During

the initial experiments, when applying these methods, the 
hanges in the parameters

values de
reased the lo
alization error of the predi
tions to 
onsiderable small values.

However, when de
reasing the error, the 
omputational time required for 
omputing

the predi
tions in
reased in the inverse proportion. Thus, the heuristi
 adopted in

the parameters' sele
tion and size of training data was the 
ompromise of keeping the

error rate in lower levels and, at the same time, keep the time required to 
ompute

ea
h predi
tion feasible to the use of the predi
tion in a real appli
ation.

The NN used in this work is 
omposed of three layers. The input layer is 
om-

posed of four neurons to map the input ve
tor of 
oordinates and speed of the ve-

hi
le. By the initial experiments, we noti
ed that, to a
hieve the lower error rate

and suitable training time, the most suitable number of neurons for the hidden layer

was 1100. We also noti
ed the same behavior of NNs dis
ussed in Kaani
he and

Kamoun (Kaani
he and Kamoun, 2010): variation in the number of neurons of the

hidden layer 
an a�e
t the predi
tion a

ura
y. The output layer has three neurons,


orresponding to the 
oordinates of the predi
ted future position in ∈ R
3
. We use the

tangent hyperboli
 a
tivation fun
tion for all neurons, sin
e it provide a faster 
onverge

to the learning algorithm (Bishop, 1995). The tangent hyperboli
 a
tivation fun
tion

is given by:

φ(ξ) = tanh(ξ) =
exp(ξ)− exp(−ξ)

exp(ξ) + exp(−ξ)
. (2.33)

Sin
e this fun
tion outputs values that range between [−1, 1], to perform the

regression over the time series lo
alization values, it is ne
essary to s
ale the values

of the 
oordinates also between [−1, 1] using a s
ale fa
tor. The training of the MLP

algorithm is performed in 400 epo
hs before ea
h predi
tion. We also utilized a mo-

mentum value 0.89, and an adaptive learning rate with initial value 0.5 divided by

the a
tivation fun
tion s
ale fa
tor. The momentum parameter is used to prevent the

system from 
onverging to a lo
al minimum and the learning rate spe
i�es how fast

the model adjusts itself to new 
ase.

For the SVR approa
h, the key parameters that 
ontrol the 
omplexity of the

model are ǫ, C, and the kernel fun
tion. The ǫ parameter was set to 0.15 and we

noti
ed in our initial experiments that, de
reasing this parameter leads to more a

urate

results, however, the 
omputational time in
reases in the inverse proportion. Sin
e the

training of the SVR was made with a window of the last 13 past observations, the

parameter C was set to 1300 en
ouraging exa
t �tting of the predi
tions. Regarding
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the kernel fun
tion, we used the radial basis kernel de�ned as:

K(Pi, Pj) = expr(
−||Pi − Pj||

2

2σ2
), (2.34)

sin
e the similarity of two examples is simply judged by their Eu
lidean distan
e. The

parameter σ of the radial basis kernel determines the area of in�uen
e in whi
h the


omputed support ve
tors have over the data spa
e and it is de�ned as 1.0 divided by

mean squared distan
e between the sample points training data.

The �ltering approa
h is performed with Kalman or Parti
le �lters. The Kalman

Filter has its linear system equations represented by:
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in whi
h P represents the state of a dis
rete-time t, 
omposed by the position (Xi, Yi)

and velo
ity (SiX , SiY ); o is a measurement value; w and b represent the pro
ess and

measurement noise, respe
tively. For illustration purposes, the KF linear equations

are des
ribed R
2
. However, they 
an easily be applied to 
oordinate systems in R

3
. It

is important to noti
e that the KF used in this work does not have parameters to be

adjusted and, sin
e this approa
h 
an fast 
onverge to a good initial a

ura
y, there was

no need of prior simulation experiments and also training to obtain the best estimation

results for this method.

The Parti
le Filter used in the experiments is represented by the Algorithm 1.

The Parti
le Filter uses 1000 parti
les. This value was set based on some previous em-

piri
al tests that showed that more than 1000 parti
les do not improve the predi
tions

signi�
antly. It is important to noti
e that the PF does not require training. However,

during the initial experiments we observed that the PF required a huge initial time for


onvergen
e of initial distributions to start 
omputing a

urate predi
tions.
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Parameter Value

Simulation area 21600m×23728m
Number of vehi
les 33

Measurements Interval 1.5 s

Number of Training Samples 300

Number of Test Samples 300

Lo
alization error 0.5m

Table 2.3. Lo
alization predi
tion simulation parameters.

2.6.2 Methodology

The performan
e evaluation is performed through simulations using the NS-2 and the

default values are shown in Table 2.3. In all of the results, 
urves represent average

values, while error bars represent 
on�den
e intervals for 95% of 
on�den
e from 33

independent instan
es (33 di�erent vehi
les moving during the simulation). The per-

forman
e of the lo
alization predi
tion methods presented in this work is performed in

a s
enario where the vehi
les' mobility is simulated through a set of realisti
 vehi
ular

tra�
 data (Uppoor and Fiore, 2011). This data set (depi
ted in Figure 2.12) is based

on information provided by the TAPASCologne proje
t (TAPASCologne, 2014), an

initiative by the Institute of Transportation Systems at the German Aerospa
e Center

(ITS-DLR). This proje
t aims at reprodu
ing, with the highest level of realism possible,

vehi
ular tra�
 in the greater urban area of the 
ity of Köln, in Germany.

Figure 2.12. Snapshot of the TAPASCologne dataset tra�
 status at 7:00 am,

in a 400 km2
region of the 
ity Köln (Uppoor and Fiore, 2011).

The evaluation methodology is divided into two phases. In the �rst phase, a
-


ording to the values of the data set of vehi
ular tra�
, the simulation is started in time

21600 s. After that time, a

ording to the measurements' interval value (step time t to
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perform the predi
tion), ea
h vehi
le uses a number of 300 lo
ation samples to 
alibrate

the �lter algorithms and train the ma
hine learning methods. In the se
ond phase, ea
h

algorithm perform the predi
tions of the future positions during an interval of 300 
on-

se
utive lo
alization samples, also a

ording to the measurements time interval. To

simulate position 
omputation ina

ura
ies, we introdu
ed errors on the 
omputed po-

sition of the vehi
les by using a Gaussian distribution with mean equal to the a
tual

position of the vehi
le and a standard deviation of 0.5m (Langendoen and Reijers,

2003).

2.6.3 Simulation Results

Regarding the bene�ts of lo
alization predi
tion in several appli
ations for VANets,

we evaluate in this work two s
enarios that 
an severely in�uen
e the 
hoi
e of the

predi
tion algorithm. The �rst s
enario refers to the granularity of the lo
ation infor-

mation in terms of time. In this 
ontext, there are several types of VANet appli
ation

that require lo
alization information in di�erent periodi
ity. For instan
e, real-time

and non-real-time appli
ation. Thus, the 
hoi
e of the predi
tion algorithm 
an also

be in�uen
ed a

ording with its behavior regarding the level of periodi
ity, in terms of

required time granularity of lo
ation information. In the se
ond s
enario, we evaluate

the impa
t of lo
alization errors in the vehi
le's 
omputed position, sin
e minimizing

these errors is the main goal of a lo
alization system. Therefore, we evaluate how these

errors 
an a�e
t the a

ura
y of the predi
tion algorithms. Sin
e several appli
ations

of VANets di�er on the lo
alization a

ura
y required in order to be able to fun
tion

properly (Bouker
he et al., 2008), the same prin
iple 
an be extended to lo
alization

predi
tion in terms of the 
hoi
e of the predi
tion algorithm.

2.6.4 The Impa
t of the Measurements Interval

To evaluate the impa
t of the measurements' interval, we in
rease this parameter from

0.5 s to 2 s. Thus, when in
reasing the step time t of the samples, we also in
rease

the total distan
e traveled by the vehi
les from 2465m to 11174m. As depi
ted in

Figure 2.13(a), the DR and the KF lead to a small error in the distan
e between

the predi
ted lo
ation and the real future lo
ation. While in
reasing the step time

of the lo
alization samples, we 
an noti
e that the PF, NN, and the SVR leads to

a lower a

ura
y on the predi
tions. In this result, the small error on the predi
ted

distan
e a
hieved by the DR and the PF is explained by the Gaussian nature of the

introdu
ed lo
alization errors and also by the fa
t that, in the average, the lo
alization

samples in our studied s
enario has a strong linear 
hara
teristi
. In Figure 2.13(b), we
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evaluate the MSE average of the predi
tion algorithms. The MSE is arguably the most

important 
riterion used to evaluate the performan
e of a predi
tor. The MSE assesses

the quality of an estimator in terms of its variation and degree of bias. In this result,

we 
an noti
e that the DR and the PF also lead to a small MSE, thus resulting in more

a

urate predi
tions. Also in Figure 2.13(b), we 
an noti
e the disadvantage of PF,

NN and the SVR with a high in
rease in the MSE while in
reasing the measurements'

interval. In this 
ase, these algorithms present a high error in the predi
tion due to

the Gaussian nature of the noise and the linear average of the samples, whi
h a�e
ts

more the a

ura
y of these algorithms sin
e their best performan
e is related to the

non-linear 
ase.
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Figure 2.13. Impa
t of the measurements' interval in terms of distan
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Figure 2.14. Impa
t of the measurements' interval in terms of time.

We also evaluated the predi
ted time average, the time average required for the
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vehi
les to rea
h the predi
ted lo
ations. In terms of pra
ti
al appli
ations, the ideal


ondition is that the predi
ted time must be as near as possible to the value of the

step time t. As shown in Figure 2.14(a), we 
an noti
e that the DR, KF and PF give

results 
loser to the ideal expe
ted time value, with a disadvantage for the PF when

the measurements' interval are lower than 0.75 s. In terms of the predi
ted distan
e

errors and the MSE, this result indi
ates that the distan
e of the predi
tions performed

by these algorithms are 
loser to the real lo
ation. However, as the PF has high errors,

it means that the predi
ted results point are more often in the wrong dire
tion, while

the DR and PF, for this s
enario, give more a

urate results for both dire
tion and

distan
e. Also in Figure 2.14(a), we 
an noti
e that the SVR presents results lower

than the expe
ted values, meaning that the predi
tions in the average are lower than

the expe
ted distan
e to the real lo
ation. The NN presents average results of the

predi
ted time greater than the expe
ted values, whi
h in this 
ase represents that the

predi
tions in the average are more often in the wrong dire
tion of the real lo
ation.

Another important fa
tor to be 
onsidered for the appli
ation of lo
alization

predi
tion in VANets is the 
omputational time required to 
ompute the predi
tions

at ea
h time step. Also in terms of VANet appli
ations and regarding the predi
ted

time, the 
omputation of the predi
ted lo
ations must be performed in a small amount

of time su
h that its use 
an be feasible. Regarding the 
omputational time required

to perform the predi
tions, we 
an noti
e on Figure 2.14(b) that the DR, KF and PF

are more e�
ient. Thus, these algorithms 
an be applied also for lower 
apabilities


omputational devi
es. Also, these algorithms do not require training and the DR

and KF have a fast initial 
onvergen
e to a

urate predi
tions. However, the PF

�lter require an initial number of samples to the initial distribution of the parti
les


onverge to a

urate predi
tions. Regarding the Ma
hine Learning algorithms, the


omputational time required for the predi
tions is higher sin
e these methods need to

perform training on the samples set to a
hieve a

urate predi
tions. However, we 
an

noti
e that the 
omputational time required for these algorithms while in
reasing the

measurements' interval is almost 
onstant and only 
orrespond to a small fra
tion of

the time step t. This result indi
ates that the Ma
hine Learning algorithms are also a

suitable approa
h.

2.6.5 Lo
alization Predi
tion Behavior for the Measurements Interval

To illustrate the behavior of the lo
alization predi
tion algorithms, we show some

snapshots of the resulting Vehi
le Motion Ve
tors (Mi). In these snapshots, the X and

Y axis 
orrespond to the vehi
le traje
tory during the simulation and the predi
tions
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performed while the Z axis show the error of ea
h predi
tion. To illustrate the behavior

of the predi
tions, in �gure 2.15(a) we show a snapshot of 10 predi
tions performed

by all the algorithms illustrated side by side to 
ompare them. In this result, we 
an

noti
e that booth DR and KF have a better a

ura
y in the predi
tion in terms of

the dire
tion and the distan
e to the target lo
ation. The NN and the SVR also have

a good a

ura
y on the predi
tions, however, despite predi
ting the 
orre
t dire
tion,

these algorithms have higher errors in the distan
e between the predi
ted and the target

lo
ation of the vehi
le. The PF �lter also has good a

ura
y on the predi
tions but is

more a�e
ted by errors in the distan
e and the dire
tion of the predi
tions due to the

linear 
hara
teristi
 of this s
enario.

With a snapshot of 300 predi
tions, in Figures 2.15(b) and 2.15(
) we 
an noti
e

the best a

ura
y a
hieved by the DR and the KF for linear and non-linear traje
tories.

In terms of linear samples, this algorithm have the best estimations in terms of distan
e

and dire
tion of the predi
tions. The a

ura
y of these algorithms is only a�e
ted

by 
hanges in the vehi
les speed and when the vehi
le traje
tory 
hanges to non-

linear very fast. However, due to the nature of the Gaussian lo
alization errors, these

algorithms have the best a

ura
y also in terms of non-linear traje
tories and they have

the advantage of a fast re
overy when the traje
tory turns ba
k to linear.

In Figure 2.15(d), we 
an noti
e that the NN has a good a

ura
y for linear

traje
tories and the errors 
orrespond in more 
ases to distan
e to the 
orre
t lo
a-

tion. However, the NN is more a�e
ted by sudden and abrupt 
hanges in the vehi
le's

traje
tories whi
h leads to high errors in the dire
tion of the predi
tions. Also, we

noti
ed that in all of the simulations, these 
hanges 
onstantly a�e
t the performan
e

of the NN sin
e this algorithm require more samples to 
onverge again to a

urate

predi
tions. The SVR also a
hieved good a

ura
y as shown in Figure 2.15(e). Also,

we noti
ed in the simulations that the SVR is more a

urate when the traje
tories are

more non-linear and this algorithm is more e�
ient for abrupt 
hanges in the vehi
le's

traje
tories, a
hieving the best results in this 
ase. However, in the average, the errors

in the distan
e to the 
orre
t lo
ation a�e
ts strongly the performan
e of the SVR.

As depi
ted in Figure 2.15(f), the PF has a good a

ura
y for linear and non-linear

traje
tories. Most of the errors in the predi
tions done by this algorithm are related to

errors on the dire
tions of the predi
tions. The reason is that the non-Gaussian nature

of the Parti
le Filter results in redu
ing a small fra
tion of the introdu
ed Gaussian

errors. Also, regarding the NN, SVR and the PF, the non-linearity nature of these

algorithms results in a lower a

ura
y when 
ompared to the DR and KF sin
e, in

the average, the traje
tories in the analyzed VANets s
enarios are mostly linear in the

average.
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Figure 2.15. Impa
t of the measurements' interval on the 
omputed predi
tions.
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2.6.6 The Impa
t of the Lo
alization Errors

To evaluate the impa
t of the lo
alization error, we in
rease this parameter from

1m to 5m. Thus, when in
reasing the errors in the 
omputed positions, we analy-

ses how this introdu
ed errors interfere on the predi
tions' a

ura
y. Sin
e we keep

the same time step for the predi
tions, the traje
tories of the vehi
les in this s
e-

nario will be the same, thus the total distan
e traveled by the vehi
les keeps 
onstant

with an average of 10275m. In this 
ontext, an interesting result 
an be seen in Fig-

ures 2.16(a) and 2.16(b): the predi
tion a

ura
y of the PF and NN is almost 
onstant

while in
reasing the errors in the 
urrent 
omputed positions of the vehi
les. In this

result, these algorithms are not highly a�e
ted by the Gaussian noise introdu
ed on the

lo
ation of the vehi
les while the KF, DR and spe
ially the SVR are highly a�e
ted by

the introdu
ed lo
alization errors. Also, we 
an noti
e that, in terms of the predi
ted

distan
e error and the MSE the KF �lter leads to more a

urate results followed by the

DR. However, when the lo
alization errors are greater than 4m the DR algorithm has

an a

ura
y 
loser to the PF and NN. Also, we 
an noti
e that, for lo
alization errors

greater than 5m, the KF tends to be less a

urate than the PF and NN. Regarding

these results, for high lo
alization errors, the non-linear nature algorithm like PF and

NN seem to be more suitable for high levels of lo
alization errors. The main reason

for that relies on the fa
t that, despite the Gaussian nature of the lo
alization errors,

for high values of errors, the linear traje
tories start be
oming non-linear due to the

interferen
e of the noise on the 
omputed positions.
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Figure 2.16. Impa
t of the lo
alization errors in terms of distan
e.

As shown in Figure 2.17(a), we 
an noti
e that the DR, KF and PF give results


loser to the ideal expe
t time values. Also, we 
an noti
e a disadvantage for the DR

when the lo
alization errors are greater than 3m. In terms of the predi
ted distan
e
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Figure 2.17. Impa
t of the lo
alization errors in terms of time.

errors and the MSE, this result indi
ates that the size of the predi
tions regarding

distan
e are 
loser to the real distan
e. Also, in Figure 2.17(a), we 
an noti
e that

the SVR presents results lower than the expe
ted values. In this 
ase, the lo
alization

errors make the SVR algorithm perform predi
tions in the average lower than the

expe
ted distan
e to the real lo
ation and, 
onsequently resulting in a predi
tion time

shorter than the expe
ted values. On the other hand, the NN present average results

of the predi
ted time greater than the expe
ted values in the average.

Regarding the 
omputational time required to perform the predi
tions, we 
an

noti
e on Figure 2.17(b) that the DR, KF and PF are more e�
ient as well when

in
reasing the lo
alization errors. Also, this result was expe
ted sin
e these algorithms

do not require training and the DR and KF have a fast initial 
onvergen
e to a

urate

predi
tions. Regarding the Ma
hine Learning algorithms, the 
omputational time re-

quired for the predi
tions is also higher when in
reasing the lo
alization errors, due to

the time required to perform training on the samples set. Another interesting result 
an

be seen in Figure 2.15(d): the 
omputational time de
reases in the SVR while in the

NN it remains almost the same. For the NN, the main reason for this behavior is the

fa
t that the training of the MLP algorithm is performed in 
onstant 400 epo
hs before

ea
h predi
tion. The de
rease in the SVR 
omputational time required is explained by

the �xed ǫ parameter introdu
ed to measure the deviation of training samples outside

ǫ-insensitive zone. In this 
ase, the introdu
ed lo
alization error makes the lo
alization

samples be
ome more sparse and the SVR algorithm is able to �nd faster the support

ve
tors. However, the a

ura
y of the sele
ted support ve
tors is highly 
ompromised

by su
h lo
alization errors.
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2.6.7 Lo
alization Predi
tion Behavior for the Lo
alization Errors

We also show some snapshots to illustrate the behavior of the lo
alization predi
tion

algorithms for the introdu
ed lo
alization errors. In �gure 3.8(
) we show a snapshot

of 10 predi
tions performed by all the algorithm side by side to 
ompare them. In

this result, we 
an noti
e that besides a�e
ting the 
omputed position of vehi
les, su
h

errors also a�e
t the a

ura
y of all the predi
tion algorithms. Therefore, we 
an noti
e

that the introdu
ed lo
alization errors a�e
t the nature of vehi
le's traje
tories sin
e it

start be
oming more non-linear. In this result, we 
an noti
e that the NN, KF, and the

PF are able to give better a

ura
y predi
tions in terms of dire
tion and distan
e to

the target lo
ation. We also 
an noti
e that booth DR and SVR are more a�e
ted by

su
h lo
alization errors when 
ompared to lower levels of errors. In this s
enario, the

KF is a�e
ted by the lo
alization errors with more predi
tions in the wrong dire
tion.

However, the KF is still able to give the best results.

With a snapshot of 300 predi
tions, in Figure 2.18(
), we 
an noti
e that the

best a

ura
y is a
hieved by the KF for linear and non-linear traje
tories. We 
an also

noti
e that the KF has the best estimations in terms of distan
e and dire
tion of the

predi
tions for the lo
alization errors introdu
ed. As 
an we see in Figure 3.8(d), the

a

ura
y of DR is highly a�e
ted by su
h lo
alization errors, sin
e it only uses the last

known position to 
ompute the predi
tions. In these algorithms, we 
an noti
e that

the lo
alization errors a�e
t the a

ura
y in all aspe
ts sin
e the linear traje
tories

start be
oming non-linear, even with a Gaussian nature lo
alization errors. However,

in this s
enario these algorithms still present the best a

ura
y in terms of non-linear

traje
tories and they have the advantage of a fast re
overy when the traje
tory turns

ba
k to a linear traje
tory for small lo
alization errors.

In Figures 2.18(d) and 2.18(e), we 
an noti
e that the NN and PF have a good

a

ura
y for linear and non-linear 
ases being able to over
ome the lo
alization errors

in almost the same level of DR and KF. For higher lo
alization errors the NN and the

PF will over
ome the DR and KF with the best a

ura
y in the lo
alization predi
-

tion. However, the NN is still a�e
ted by sudden and abrupt 
hanges in the vehi
le's

traje
tories whi
h leads to high errors in the dire
tion of the predi
tions. Finally, as

shown in Figure 2.18(f), the SVR is more a�e
ted by the lo
alization errors, espe
ially

when the traje
tories are linear. In this 
ase, the lo
alization errors introdu
ed turn

the lo
alization samples more sparse and the SVR algorithm is able to �nd faster the

support ve
tors, due to the �xed ǫ parameter to measure the deviation of training

samples outside ǫ-insensitive zone. However, these support ve
tors are not the best

options, thus resulting in a low a

ura
y. For the Ma
hine Learning algorithm, the
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Figure 2.18. Impa
t of the lo
alization errors on the 
omputed predi
tions.

interferen
e of lo
alization errors indi
ates that, regarding the behavior of the results,
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the best alternative to over
ome su
h limitations is the introdu
tion of methods for

dynami
 parameter sele
tion.

2.7 Sumary

In this Chapter, lo
alization predi
tion were studied from the viewpoint of VANets.

We dis
ussed how these lo
alization predi
tions methods 
an improve most VANet

appli
ations, espe
ially 
riti
al ones. We surveyed proposed approa
hes for lo
alization,

target tra
king and time series predi
tion te
hniques that 
an be used to estimate

the future position of a vehi
le. A number of lo
alization predi
tion methods are

available to be used by vehi
les to estimate future positions: Dead Re
koning, Neural

Networks, Support Ve
tor Regression, Kalman Filter and Parti
le Filter. All of these

te
hniques have their pros and 
ons. In this work we argue that lo
alization predi
tion

for VANets as an extension of a Data Fusion lo
alization system is a feasible approa
h to


ir
umvent the problem of disseminating outdated lo
alization information in vehi
ular

networks. We then show how lo
alization predi
tion te
hniques 
an be used to 
ompute

a

urate predi
ted positions based on a number of relatively ina

urate sample position

estimations.



Chapter 3

A Predi
tion-based Routing

Algorithm for Vehi
ular

Ad Ho
 Networks

3.1 Introdu
tion

A major 
hallenge in VANets is to provide reliable information ex
hange between ve-

hi
les with stri
t delay 
onstraints. For emergen
y appli
ations in VANets, people's

safety is a key fa
tor and must be 
onsidered. In 
ertain s
enarios, in 
ases of 
ollisions

and a

idents, alert messages must be delivered in time to prevent further hazards.

The high speed of vehi
les is another spe
i�
 
hallenge in VANets, whi
h motivates

the resear
h for new data 
ommuni
ation algorithms, sin
e traditional proto
ols for

Ad Ho
 and MANet do not have satisfa
tory performan
e when applied to vehi
ular

networks, due to their highly dynami
 topology (Li and Wang, 2007).

In this Chapter, we 
onsider a vehi
le predi
ted lo
ation as its dire
tion and speed

at a given future time step (ve
torial traje
tory). We them propose a new Routing al-

gorithm for data 
ommuni
ation in VANets: the LPRV (Lo
alization Predi
tion-based

Routing for VANets) algorithm. The main idea of the proposed LPRV algorithm is

to exploit the knowledge of vehi
les predi
ted lo
ations and a digital map as metri
s

to forward data pa
kets, without the need for ex
hanging additional 
ontrol message.

We evaluate the performan
e of the proposed algorithm using the NS-2 simulator in


omparison to both 
lassi
 Flooding and SIFT (Labiod et al., 2010) (Simple Forward-

ing over Traje
tory) algorithms. We also present an extensive set of experiments that


learly demonstrate the e�
ien
y of our proposed solution in di�erent s
enarios, espe-


ially in terms of delivery rate, number of hops and delay, while maintaining a redu
ed

number message transmissions.

47
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The remaining of this Chapter is organized as follows. Se
tion 3.2 des
ribes the

related work regarding position-based and geo
ast routing. Se
tion 3.3 presents our

LPRV algorithm, whereas Se
tion 3.4 des
ribes its performan
e evaluation. Finally,

Se
tion 3.5 presents our 
on
lusions.

3.2 Related Work

Position-based routing has been identi�ed as one of the most promising routing

paradigms for VANets (Li and Wang, 2007). In this approa
h, pa
kets are for-

warded using the vehi
les geographi
 lo
ation, whi
h 
an be obtained through the

use of on-board navigation systems (GPS), maps, mobility and tra�
 models. The

GPSR (Karp and Kung, 2000) (Greedy Perimeter Stateless Routing) is one of the most

well-known position-based routing proto
ols. It 
ombines greedy forwarding with fa
e

routing to rea
h destinations where greedy forwarding fails. One main drawba
k of the

GPSR proto
ol is the interferen
e 
aused by buildings and other obsta
les in urban s
e-

narios, generating failures in greedy forwarding pro
ess, sin
e dire
t 
ommuni
ations

between nodes may not exist. The A-STAR (Liu et al., 2004) (An
hor-based Street and

Tra�
 Aware Routing) position-based routing proto
ol was proposed to over
ome su
h

interferen
es in 
ity environments. A-STAR uses digital maps to 
ompute a sequen
e

of 
rossing points (an
hors), through whi
h a pa
ket must visit to rea
h its destination.

This algorithm also explores tra�
 awareness to ensure a higher probability of delivery

su

ess. Results indi
ate that A-STAR has the best performan
e when 
ompared to

GPSR, sin
e it 
an sele
t paths with higher 
onne
tivity for pa
ket delivery. However,

the A-STAR algorithm needs to keep streets' tra�
 information updated to 
ompute

the an
hors. This means an additional overhead sin
e 
ities 
an 
hange the buses �eet

a

ording to its demands. The TBF (Ni
ules
u and Nath, 2003) (Traje
tory-Based

Forwarding) is a position-based routing proto
ol that �rst introdu
ed the idea of us-

ing a prede�ned map traje
tory (path) to guide routing de
isions and forward pa
kets

along a prede�ned path. The sour
e spe
i�es the traje
tory in a pa
ket and based on

the neighborhood lo
ation information, a forwarding node makes a greedy de
ision to

determine the next hop that is the 
losest to the traje
tory.

An approa
h based on the position-based routing, the Geo
ast (Maihofer, 2004),

has attra
ted interest in several VANet appli
ations, mainly related to safety (a

ident

alerts and prevention). In geo
ast, messages are also forwarded via lo
ation infor-

mation, however, pa
kets are delivered to all nodes in a given geographi
al region.

Classi
 Flooding is a well-known routing proto
ol that 
an also be used to deliver

pa
kets to a geo
ast region. In this approa
h, all network nodes propagate a parti
-
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ular pa
ket until it is re
eived at its �nal destination. The 
lassi
 Flooding was not

originally proposed as a geo
ast routing proto
ol, however, it is useful for 
omparison

with other geo
ast proto
ols and it is a building blo
k for many of them (Maihofer,

2004). The SIFT (Labiod et al., 2010) (Simple Forwarding over Traje
tory) proto
ol

uses traje
tory-based routing in order to a
hieve s
alability. SIFT 
omputes the short-

est path between sour
e and destination (geographi
al region) through a digital map

to forward pa
kets and limit broad
asting at the 
omputed path, without ex
hanging

any 
ontrol messages among network nodes. This proto
ol uses the nodes' distan
e

to the shortest path to guide data forwarding and, also as a 
ontention me
hanism to

avoid unne
essary transmissions.

As in our proposed solution, position-based and geo
ast routing proto
ols in the

literature are mainly based on the knowledge of vehi
les lo
ation and digital maps to

forward data pa
kets. However, these studies do not 
onsider vehi
les predi
ted future

lo
ations as metri
 for data 
ommuni
ation in VANets, whi
h is the main motivation

of this work.

3.3 Lo
alization Predi
tion-based Routing for VANets � LPRV

In this se
tion, we propose a new routing algorithm for data 
ommuni
ation in VANets:

the LPRV (Lo
alization Predi
tion-based Routing for VANets) algorithm. The main

idea of the proposed LPRV algorithm is to exploit the knowledge of vehi
les predi
ted

future lo
ations as a metri
 to forward data pa
kets, without the need for ex
hanging

any extra 
ontrol message, sin
e traje
tories are sent along with the pa
kets. To avoid

the broad
ast storm problem, the LPRV algorithm also takes advantage of a digital map

to limit the s
ope of message ex
hanges in the shortest path for vehi
les between sour
e

and destination, thus avoiding unne
essary transmissions. Sin
e predi
ted lo
ations

are en
oded in the pa
kets, only nodes with future 
omputed positions 
loser to the

destination are 
hosen as next hop of a forwarding a pa
ket. To ensure the ele
tion

of the best traje
tories in the pa
ket forwarding, the proposed algorithm 
omputes a


ontention time in whi
h the farthest nodes in a given path segment wait more time

than the 
loser nodes, thus ensuring better greedy forwarding de
isions. This will be

further dis
ussed and de�ned below.

3.3.1 Preliminary De�nitions

In this se
tion, we formally present the 
on
epts used in this work.

De�nition 1 (Vehi
ular Ad Ho
 Network): we de�ne a VANet as an Eu
lidean

graph G = (V,E, r), where |V | = n is the number of nodes and r is the 
ommuni
ation
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range; V = {v0, v1, v2, . . . , vn−1}, where {v0, v1, . . . , vn−1} is the set of vehi
les; 〈i, j〉 ∈

E i� vi rea
hes vj, in other words, vi is inside the 
ommuni
ation range r of a node vj ;

and ∀vi ∈ V , (Xci, Y ci, Zci) ∈ R
3
is the 
omputed position of nodes vi (i.e., using a

lo
alization system).

(Xc ,Yc Zc )0 0, 0

(Xd ,Yd Zd )0 0, 0

P0

v0

v1

P1

v3

v2r

r

Figure 3.1. LPRV Forwarding: network nodes de�nition, lo
ation and traje
-

tory.

De�nition 2 (Vehi
le Future Lo
ation Predi
tion - Pi): Is the predi
tion of a ve-

hi
le i future position. It 
an be de�ned as a time series regression fore
asting problem

and also 
an be formulated as a target tra
king problem. In this work we 
onsider

a ve
tor that represents the movement of a vehi
le i from its 
urrent position to a

future 
omputed position. This traje
tory 
an be a line, a 
urve or any other traje
-

tory that 
an be mathemati
ally expressed. For the sake of simpli�
ation, we 
onsider

that a vehi
le will maintain the traje
tory of a straight line. This line is de�ned as

Pi = ((Xci, Y ci, Zci), (Xdi, Y di, Zdi)) (as depi
ted in Figure 1), where (Xci, Y ci, Zci)

is the 
urrent vehi
le's position, (Xdi, Y di, Zdi) is the next estimated position dire
-

tion and si its displa
ement speed. We also de�ne a fun
tion Pi.distance(Dk) whi
h


omputes the shortest distan
e from the line Pi (traje
tory) to the pa
ket destination

point Dk, based on the Eu
lidean geometry distan
e 
omputation from a line to a

point. As we showed in Chapter 2, the predi
tion of a vehi
le future position 
an be

a

urately 
omputed using target tra
king and time series approa
hes. In addition,

a

ording to Barrios and Motai (2011) a future lo
ation of an automobile 
an also be

a

urately predi
ted using a 
ombination of Global Positioning System (GPS), Geo-

graphi
 Information System (GIS) and Kalman Filters (KFs). Also related, as shown

in (Gning and Bonnifait, 2004), su
h traje
tory information 
an be obtained by the


ombination of dead re
koning and in-vehi
le sensors.

De�nition 3 (Digital Map): digital road map is de�ned as a dire
ted graph M =
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(A, S), where A = {a0, a1, a2, . . . , am} is the set of verti
es (e.g. 
rossings in a urban

area) and ∀ai ∈ A, (Xai, Y ai, Zai) ∈ R
3
is a vertex lo
ation, 〈i, j〉 ∈ S i� exists a

path from ai to aj , in other words, exists a street on the map where a vehi
le vi ∈ V ,

starting passing by ai 
an rea
h aj . We de�ne the fun
tion M.shortestPath(as, ad)

whi
h returns a set of verti
es A′ ∪ A 
orresponding to the shortest path between the

starting vertex as and the destination vertex ad (as shown in Figure 2). We also

de�ne the fun
tion M.lastV ertex(Pi), whi
h returns the last visited vertex and the

next vertex to be visited by the traje
tory Pi.

a0

a1

a2

a3

a4

a5

(Xa ,Ya Za )3 3, 3

(Xa ,Ya Za )2 2, 2

Figure 3.2. Digital map and the shortest path fun
tion example:

M.shortestPath(a3, a2).

3.3.2 The LPRV Algorithm

Our proposed LPRV algorithm, shown and explained in Algorithm 2, is divided into

three operating phases: send, re
eption, and forward. The �rst phase starts when the

appli
ation generates a data pa
ket to be forwarded to a destination region (Lines 1�6).

The destination Di is 
hosen by the appli
ation and it refers to a monitoring station

or an area to report an event, su
h as when a vehi
le 
ollision o

urs. This pa
ket


ontains, among other information, the node future position and displa
ement speed

(Pi and si, Line 4), the initial vertex on map where the pa
ket was generated, and it

is sent by broad
ast to all nodes in the one-hop neighborhood (Line 6).

The next two phases start when a node re
eives a pa
ket (Lines 7�8). First, it

is veri�ed if the position of the 
urrent node is within the pa
ket's destination area

(Lines 9�12). If so, the pa
ket is re
eived (re
eption phase). Otherwise, the for-

ward phase is started by 
he
king if the 
urrent node has never forwarded this pa
ket

(Line 13). If this 
ondition holds, the node updates its forward table, traje
tory and

speed information, the last visited vertex, and the next vertex to be visited in the
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Algorithm 2 The LPRV Algorithm

⊲ Input:

1: Node vi sends a pa
ket with id pktidi to Di.

A
tion:

2: pktidi ← nextPktID(); {Pa
ket id}

3: sr
i ← vi;Di ← (Xd, Yd, Zd, Range); {sour
e node and destination}

4: Pi ← predi
Lo
ation(); si ← speed();{Node future position and speed}

5: startMi ←Map.lastV ertex(Pi); {Course starting vertex}

6: Broad
ast pa
ket(pktidi, sr
i,Di, Pi, si, startMi, data);
⊲ Input:

7: Node vj re
eives a pa
ket with id pktidf addressed to Dk area.

8: msgk ← pa
ket(pktidk, sr
k,Dk, Pk, sk, startMk, data);
A
tion:

9: Lpj ← (X
j ,Y
j ,Z
j); {Position of the 
urrent node}

10: if Lpj .distance(Dk) ≤ Dk.Range then {Node within dest area}

11: re
eive(msgk); {Current node re
eives the pa
ket}

12: end if

13: if (sr
k, pktidk) /∈ Fwdj then {IF: the node never forwarded the pa
ket}

14: Fwdj ← Fwdj ∪ (sr
k, pktidk); {Update the forward table}

15: Pj ← predi
Lo
ation(); sj ← speed(); {Node traje
tory and speed}

16: lastMj ←Map.lastV ertex(Pj); {Last visited vertex}

17: nextMj ←Map.nextV ertex(Pj); {Next vertex to visit}

18: if (lastMj ∈Map.shortestPath(startMk,Dk)) ∨(nextMj ∈Map.shortestPath(startMk,Dk))
then {IF: node traje
tory is in the shortest path}

19: if Pj .distance(Dk) < Pk.distance(Dk) then {IF: node traje
tory is more 
loser to

destination}

20: timej ←
distance(Lpj ,nextM)

(sj×α) ; {Time to next vertex}

21: Broad
ast pa
ket(pktidk, sr
k,Dk, Pj , sj, startMk, data) in timej ; {Forwards the pa
ket}

22: end if

23: end if

24: end if

digital map based on its traje
tory (Lines 14�17). These two verti
es are used to verify

if the 
urrent vehi
le's traje
tory is in the 
omputed shortest path on the digital map

(Line 18). The 
urrent node's traje
tory is also 
ompared with the traje
tory of the

last node that forwarded the pa
ket in order to verify if the 
urrent node's traje
tory

is 
loser to destination area (Line 19). This 
omparison basi
ally 
onsists of 
omput-

ing the shortest distan
e from ea
h line to a point based on the Eu
lidean geometry

(De�nition 2). If the 
urrent node has a better traje
tory, a time for this node to the

next vertex in the digital map is 
omputed (Line 20). This time is used as a broad
ast

storm 
ontention me
hanism. This strategy for
es the nodes 
loser to the destination

area to forward their pa
kets �rst, preventing nodes with farther traje
tories from for-

warding unne
essary pa
kets (as depi
ted in Figure 3.3.2). The parameter α is an

environment adaptation parameter to adjust the 
ontention time value in the same

s
ale of the network pa
ket delay. It 
an be dynami
ally 
omputed using the di�eren
e

of base 10 logarithms of both values (e.g. timej ← 10log timei−log pktDelay

i
). Finally, when
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the 
ontention time expires, the pa
ket is forwarded via broad
ast to all nodes in the

one-hop neighborhood (Line 21). This pro
ess is repeated until the pa
ket rea
hes its

destination.

a0

a1

a2

a3

a4

Dk

Sk

Pi

timei

P .distance(D )i k

Figure 3.3. LPRV Forwarding: 
hoi
e of the traje
tory 
loser to destination and


ontention time 
omputing.

It is important to note that this work fo
uses mainly on simple pa
ket forwarding.

We 
onsider this approa
h more suitable for VANets s
enarios sin
e the LPRV algo-

rithm does not use any 
ontrol messages to �nd destination nodes, maintain routing

paths, and report errors. Traditional end-to-end routing s
hemes that try to main-

tain routes between sour
e and destination nodes are not very e�
ient in VANets due

to the high mobility of nodes. Finally, the LPRV algorithm 
an be easily adapted

to reply to data queries (Bouker
he and Nikoletseas, 2004), likewise in Wireless Sen-

sor Networks where the sink node sends a query (whi
h is disseminated by �ood-

ing) to the sensor network, as if it was a distributed database system (i.e., sensor

databases (Hong and Madden, 2004)).

3.4 Performan
e Evaluation

3.4.1 Methodology

The performan
e evaluation is performed through simulations using the NS-2. We eval-

uate the performan
e results of our proposed algorithm, in 
omparison to both 
lassi


Flooding and SIFT algorithms, in terms of network s
ale, delivery ratio, delay, number

of hops, and pa
ket traveled distan
e. The default values for our simulation parameters

are shown in Table 1. In all the results, 
urves represent average values, while error

bars represent 
on�den
e intervals for 95% of 
on�den
e from 33 independent instan
es

(seeds).
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Parameter Value

Simulation area 1000m×1000m
Number of nodes 700

Communi
ation range 100m

One hop delay 0.1 s

Non-determ. errors 30µs

Vehi
les' speed 7-40 km/h

Table 3.1. LPRV simulation parameters.

As in Labiod et al. (2010), the simulation �eld map represents a simple grid-

shaped urban s
enario. Network nodes are distributed on a 1000m×1000m re
tangular

simulation area. The road map is a 10×10 one-way streets grid, where two parallel

streets always have opposite dire
tion of tra�
 between ea
h other. We assume that

ea
h vehi
le travels these streets with speeds from 7km/h to 40 km/h. Thus, vehi
les

are allowed to overtake ea
h other. We also de�ned four sour
e/destination targets

where pa
kets need to be forwarded from: S1 = (0, 0, 0) to D1 = (800, 800, 0), from

S2 = (900, 100, 0) to D2 = (100, 800, 0), from S3 = (900, 900, 0) to D3 = (100, 100, 0)

and from S4 = (100, 900, 0) to D4 = (800, 100, 0) a

ording to the Cartesian 
oordinate

system of the simulation area (as shown in Figure 4). It is important to noti
e that,

although the 
hoi
e of random sour
e/destination targets 
an improve the average

results, we 
hoose to analyze the worst 
ase for data delivery points in terms of distan
e.

In addition, we 
onsider that the appli
ation generates a data pa
ket when reporting

information to a monitoring station, su
h as when a vehi
le 
ollision o

urs. Also, these

points are not stationary and they may vary depending on the algorithm's appli
ation.

S
1

D
1

S
2

D
2

S
3

D
3

S
4

D
4

Figure 3.4. Simulation s
enario: vehi
les nodes, pa
kets' sour
e and destination
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Regarding the network topology, we assume that node lo
ation initially obeys a

disturbed grid, in whi
h the lo
ation of ea
h node in the streets node is disturbed by

a random zero-mean Gaussian error. Therefore, nodes will tend to uniformly o

upy

ea
h street without forming a regular line. Finally, to simulate delay measurement in-

a

ura
ies we disturbed the mean delay by a standard deviation of 30µs (Maróti et al.,

2004).

3.4.2 The Impa
t of Network S
ale

S
alability is evaluated by in
reasing the network size from 350 to 1000 vehi
les. As

shown in Figure 3.5(a), we 
an noti
e that the Flooding algorithm is able to deliver

almost all pa
kets after 450 nodes. This result is explained by the 
hara
teristi
 of

this algorithm of always delivering pa
kets if there is 
onne
tivity between sour
e and

destination. Our LPRV algorithm has a higher data delivery rate, being higher than

the SIFT algorithm. In this 
ase, with small-s
ale network, these two Algorithms

are a�e
ted by the existen
e of intermittent 
onne
tivity at 
omputed delivery paths,

while the Flooding algorithm 
an deliver pa
kets by bypassing these areas through

detour paths. However, a disadvantage of Flooding is highlighted in the number of

transmitted pa
kets when in
reasing the network s
ale (as shown in Figure 3.5(b)). In

this result, we 
an see the redu
ed number of transmitted pa
kets a
hieved by both

LPRV and SIFT algorithms where the SIFT algorithm has a small advantage. This

result is mainly due to the limited pa
ket broad
ast proposed in these solutions without

the need for ex
hanging additional 
ontrol message.

Figure 3.5(
) shows that our LPRV algorithm outperforms the other algorithms by

using fewer hops to deliver pa
kets. Sin
e predi
ted traje
tories 
loser to the destination

are sele
ted to forward pa
kets, LPRV 
an deliver pa
kets via the shortest paths, as well

as by greedy forwarding algorithms. Additionally, the lower average number of hops in

the delivered pa
kets a
hieved by LPRV is also due to its 
hara
teristi
 of 
hoosing only

predi
ted future positions lo
ated on the shortest path for vehi
les between sour
e and

destination. As we 
an see in Figure 3.5(d), the 
hoi
e of best traje
tories performed

by the LPRV algorithm also leads to a smaller distan
e traveled by the pa
kets. These

results show the bene�ts of using vehi
les predi
ted future lo
ations as a metri
 for

data 
ommuni
ation, demonstrating that our LPRV algorithm is s
alable.

3.4.3 The Impa
t of Vehi
le Speed

To evaluate the impa
t of vehi
le speed, we in
rease this parameter from 20 km/h to

80 km/h. As shown in Figure 3.6(a), we 
an see that the Flooding algorithm is not
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Figure 3.5. Impa
t of the network s
ale.

a�e
ted by the vehi
les speed. However, the SIFT algorithm is highly a�e
ted by

this in
rease while the LPRV algorithm 
an a
hieve a higher delivery rate, being less

a�e
ted by the in
rease in the vehi
les speed, sin
e it a
tually uses the knowledge of the

vehi
les speed to forward pa
kets. The delivery rate de
rease in these two algorithms

is explained by the in
rease in the vehi
les speed, whi
h generates a higher number of

regions with intermittent 
onne
tion. In Figure 3.6(b), we 
an highlight again the high

number of pa
kets transmitted by the Flooding algorithm, while the SIFT algorithm

and LPRV perform less pa
ket transmissions due to their limited broad
asts.

Figure 3.6(
) shows that in
reasing the vehi
le's speed does not a�e
t the num-

ber of hops traversed by pa
kets in all analyzed algorithms. LPRV presents better

performan
e in terms of the number of hops required to deliver pa
kets, sin
e it uses

predi
ted traje
tories 
loser to the destination to forward pa
kets 
onsidering the speed

of the nodes, and also by 
hoosing only predi
ted future positions lo
ated on the short-

est path for vehi
les between sour
e and destination. As shown in Figure 3.6(d), the

LPRV algorithm also has a lower delay in delivered pa
kets due to the in
rease of the

nodes speed, whi
h redu
es the waiting time for the 
ontention of the pa
kets, thus

resulting in a shorter data delivery delay. The SIFT algorithm has a higher pa
ket
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Figure 3.6. Impa
t of the vehi
les speed.

delay sin
e its 
ontention me
hanism does not 
onsider the vehi
le's speed.

3.4.4 The Impa
t of the Communi
ation Range

To evaluate the impa
t of the 
ommuni
ation range, we in
rease this parameter from

90m to 160m. After a 
ommuni
ation range of 120m, almost 100% of the pa
kets

are delivered in all algorithms (as shown in Figure 3.7(a)). This is due to the fa
t

that a greater 
overage area is a
hieved when in
reasing the 
ommuni
ation range,

whi
h results in fewer areas with intermittent 
onne
tivity. For a 
ommuni
ation range

bellow 120m, we 
an noti
e that the SIFT algorithm is the most a�e
ted while the

LPRV algorithm 
an deliver more pa
kets. As the LPRV algorithm uses predi
ted

lo
ations to verify if a vehi
le is in the shortest path area, a larger 
overage area is

a
hieved when 
ompared to the use of node's lo
ation, making the LPRV algorithm

more robust to areas with intermittent 
onne
tivity. As shown in Figure 3.7(b), the

Flooding algorithm has a higher de
rease in the pa
ket delay with the in
rease in the


ommuni
ation range. The SIFT and LPRV algorithms have a 
onstant pa
ket delivery

delay when in
reasing the 
ommuni
ation range due to the 
ontention time introdu
ed.
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However, the LPRV algorithm is able to deliver pa
kets with lower delay.
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Figure 3.7. Impa
t of the 
ommuni
ation range.

Figure 3.7(
) shows that the number of hops used to deliver pa
kets de
reases in

all analyzed algorithms, with a slight advantage to LPRV. This de
rease was expe
ted

sin
e with the in
rease of the 
ommuni
ation range, a greater 
overage area is a
hieved,

thus resulting in fewer hops required to deliver pa
kets. As we 
an see in Figure 3.7(d),

the in
rease in the 
ommuni
ation range also de
reases the distan
e traveled by the

pa
kets in all algorithms with an advantage to the LPRV algorithm. In these results,

the better results obtained by the LPRV algorithm show the use of vehi
les predi
ted

future lo
alization an e�
ient strategy in terms of 
ommuni
ation range, sin
e the

bene�ts of the in
reased 
overage area are 
ombined with the advantages of forwarding

pa
kets through predi
ted traje
tories 
loser to the destination.

3.4.5 The Impa
t of Hop Delay

Hop delay refers to the pro
essing time of the node before forwarding a pa
ket (i.e.,

to 
ompute its lo
ation and predi
t the traje
tory, and to a

ess the digital map).

To evaluate the impa
t of this delay, we vary this parameter from 0.1 s to 0.8 s. As
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depi
ted in Figure 3.8(a), this delay a�e
ts the number of transmitted pa
kets in the

LPRV algorithm and espe
ially in the SIFT algorithm, sin
e the in
rease in pa
ket

delay leads to more frequent network topology 
hanges. The LPRV algorithm has

better results 
ompared to the SIFT algorithm due to the use of the vehi
les predi
ted

lo
ations, resulting in less impa
t on network topology 
hanges. As 
an be seen in

Figure 3.8(b), the in
rease of the pa
ket delay does not a�e
t the algorithms analyzed

in this work in terms of transmitted pa
kets. In this result, we 
an see the redu
ed

number of transmitted pa
kets a
hieved by the LPRV and SIFT algorithms, in whi
h

the SIFT algorithm has a small advantage. Also, this result shows that the LPRV

algorithm and the SIFT algorithm have a redu
ed number of transmitted pa
kets for

the di�erent VANet s
enarios analyzed.
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Figure 3.8. Impa
t of the hop delay.

Figure 3.8(
) depi
ts that the number of hops to deliver pa
kets has a small

de
rease in all analyzed algorithms, with an advantage to LPRV. For all analyzed s
e-

narios in this work, the use of vehi
les predi
ted future lo
ations and by 
hoosing only

traje
tories lo
ated on the shortest path for vehi
les between sour
e and destination

leads to a few hops used in pa
kets delivery. Finally, as we 
an see in Figure 3.8(d),
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the LPRV algorithm has a small delay in the delivered pa
ket when in
reasing the one

hop delay. This result shows that the LPRV algorithm introdu
es a lower pa
ket delay

in the di�erent VANet s
enarios analyzed.

3.5 Sumary

In this Chapter, we proposed a new VANet routing algorithm that uses the knowledge of

the vehi
les predi
ted lo
ations to improve the routing performan
e in several aspe
ts.

In our algorithm, 
alled LPRV (Traje
tory-based Routing for VANets), we exploit the

knowledge of vehi
les predi
ted future lo
ations and a digital map as metri
s to forward

data pa
kets, without the need for ex
hanging any 
ontrol message. We presented an

extensive set of simulation experiments 
omparing our proposed solution to both 
lassi


Flooding and SIFT algorithms. The obtained results demonstrated the e�
ien
y of

the proposed solution for di�erent VANet s
enarios and the bene�ts of using vehi
les

predi
ted lo
ations as a metri
 for data 
ommuni
ation, espe
ially in terms of delivery

rate, number of hops and delay, with a redu
ed number transmitted pa
kets.



Chapter 4

Con
lusions

This Chapter summarizes the thesis proposal 
on
lusions and future resear
h dire
tions.

We �rst present the thesis 
on
lusions in Se
tion 4.1. Then, in Se
tion 4.2, we present

the future dire
tions of this work, and we �nish the do
ument by presenting, in Se
tion

4.3, the list of produ
ed works and publi
ations we a
hieved during the 
on
eption of

this thesis.

4.1 Final Remarks and Summary of Contributions

In this work, lo
alization predi
tion were studied from the viewpoint of Vehi
ular Ad

Ho
 Networks (VANets). We dis
ussed how these lo
alization predi
tions methods


an improve most VANet appli
ations, espe
ially 
riti
al ones. We surveyed proposed

approa
hes for lo
alization, target tra
king and time series predi
tion te
hniques that


an be used to estimate the future position of a vehi
le. A number of lo
alization

predi
tion methods are available to be used by vehi
les to estimate future positions:

Dead Re
koning, Neural Networks, Support Ve
tor Regression, Kalman Filter and Par-

ti
le Filter. All of these te
hniques have their pros and 
ons. In this work we argue

that lo
alization predi
tion for VANets as an extension of a Data Fusion lo
alization

system is a feasible approa
h to 
ir
umvent the problem of disseminating outdated lo-


alization information in vehi
ular networks. We then show how lo
alization predi
tion

te
hniques 
an be used to 
ompute a

urate predi
ted positions based on a number of

relatively ina

urate sample position estimations.

As a general 
on
lusion, the Dead Re
koning, Kalman Filter, and Parti
le Filter

have shown best 
omputational performan
e in terms of response time. The Ma
hine

Learning methods also showed a viable 
omputational e�ort for 
omputing the pre-

di
tions. For lower lo
alization errors, the Dead Re
koning and the Kalman Filter

a
hieved the best a

ura
y in the predi
tions due to the fa
t that the traje
tories in

the realisti
 VANet s
enario analyzed are strongly linear. However, when introdu
-

61



4. Con
lusions 62

ing high levels of lo
alization noise, Parti
le Filters and Neural Networks su

essfully

�ltered the errors asso
iated to the target predi
tion estimation. Consequently, the

Parti
le Filter and Neural Networks tends to outperform the Kalman Filter as the lo-


alization error in
reases sin
e su
h Gaussian errors 
an a�e
t the linear aspe
t of the

vehi
les' traje
tories.

We also proposed a new VANet routing algorithm that uses the knowledge of the

vehi
les predi
ted lo
ations to improve the routing performan
e in several aspe
ts. In

our proposed LPRV algorithm, we exploit the knowledge of vehi
les predi
ted future

lo
ations and a digital map as metri
s to forward data pa
kets, without the need for

ex
hanging any 
ontrol message. We presented an extensive set of simulation experi-

ments 
omparing our proposed solution to both 
lassi
 Flooding and SIFT algorithms.

The obtained results demonstrated the e�
ien
y of the proposed solution for di�erent

VANet s
enarios and the bene�ts of using vehi
les predi
ted lo
ations as a metri
 for

data 
ommuni
ation, espe
ially in terms of delivery rate, number of hops and delay,

with a redu
ed number transmitted pa
kets.

4.2 Dire
tions for Future Resear
h

This work leads to some parti
ularly interesting dire
tions. The �rst is to properly


hara
terize the traje
tories nature in terms of linear/non-linear samples, so that we


an understand the expe
ted magnitude, dire
tion, and orientation of the error result-

ing from lo
alization predi
tion algorithms. Su
h knowledge allows us to improve the

lo
alization predi
tion methods that use su
h information to 
ompensate and redu
e

the impa
t of predi
tion errors. The se
ond is related to the lo
alization errors on the


omputed position of the vehi
les, whi
h extremely a�e
ts the performan
e of a predi
-

tor algorithm. Therefore, even though these approa
hes ta
kles di�erent pro
esses and

measurement models, an interesting alternative to improve VANets servi
es through

lo
alization predi
tion 
an be 
ombining, in a single solution, two or more solutions to

deal with Gaussian/non-Gaussian noise sour
es and linear/non-linear traje
tory mod-

els.

Regarding our LPRV algorithm, the results are very promising, but some limi-

tations still need to be further exploited as future work. First, we will evaluate our

solution using real world vehi
ular mobility data and the interferen
e of buildings on

the wireless link. Then, we will evaluate the performan
e and the 
omputational 
ost

of the proposed solution using several methods for predi
ting vehi
le future lo
ation

and evaluate the impa
t of errors introdu
ed by su
h algorithms for linear/non-linear

models subje
ted to Gaussian/non-Gaussian noise sour
es.
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4.3 List of Publi
ations

Publi
ations done by the author during the do
torate.

• Awards:

Bali
o, L. N., Oliveira,H. A., Barreto, R. S., Loureiro, A.A. F., and Pazzi, R. W.

(2015). A predi
tion-based routing algorithm for vehi
ular ad ho
 net-

works. Best International Paper Award. In 20th IEEE Symposium on

Computers and Communi
ations (ISCC'15).

• Conferen
es papers:

Bali
o, L. N., Oliveira, H. A., Barreto, R. S., Loureiro, A. A., and Pazzi, R. W.

(2015). A predi
tion-based routing algorithm for vehi
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• Periodi
al papers under authors evaluation.

Bali
o, L. N., Souza, E. L., Oliveira, H. A., Pazzi, R. W., Nakamura, E. F.,

Barreto, R. S., and Loureiro, A. A. (2015d). Data aggregation toward a high

speed sink using a
tual lo
alization systems in sensor networks. Springer Wireless
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alization predi
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Appendix A

Glossary of Terms

A-STARAn
hor-based Street and Tra�
 Aware Routing .

BP Ba
k Propagation algorithm.

DR Dead Re
koning .

EKF Extended Kalman Filter .

GNSS Global Navigation Satellite System.

GPS Global Positioning System.

GPSR Greedy Perimeter Stateless Routing .

ITS Intelligent Transportation Systems.

KF Kalman Filter .

LPRV Lo
alization Predi
tion-based Routing for VANets.

MANet Mobile Ad ho
 Network .

MLNN Multilayer Feed Forward Neural Network .

MLP Multilayer Per
eptron.

MSE Minimum Squared Error .

NN Neural Network .

NS-2 The Network Simulator - ns-2 v2.34 .

PF Parti
le Filter .

SIFT Simple Forwarding over Traje
tory .

SVM Support Ve
tor Ma
hines.

SVR Support Ve
tor Regression.
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TBF Traje
tory-Based Forwarding .

UKF Uns
ented Kalman Filter .

V2I vehi
le-to-vehi
le.

V2V vehi
le-to-vehi
le.

VANet Vehi
ular Ad Ho
 Network .

VC Vapnik-Chervonenkis theory .

WSN Wireless Sensor Network .
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