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Resumo

Sistemas de localizacao desempenham um papel importante em muitas aplicacoes para
Redes Ad Hoc Veiculares (VANets). Embora técnicas de fusao de dados podem prover
informagcoes de localizacao confidveis para atender a maioria dos requisitos de aplicacoes
em VANets, aperfeicoamentos nos sistemas de localizagdo sao necessérios e desejaveis.
Caracteristicas tinicas de VANets tais como restricoes de mobilidade, o comportamento
do condutor e a natureza de alta velocidade de deslocamento dos veiculos podem causar
rapidas e constantes mudancas na topologia da rede, levando & disseminac¢ao de infor-
macoes de localizacao desatualizadas.

Nesta tese, nos identificamos que para solucionar o problema de disseminacao
de informacoes de localizacao desatualizadas em VANets, uma alternativa é o uso de
previsao de localizacao futura de veiculos. A principal ideia desta abordagem é utilizar
a previsao de localizacao como uma extensao para o sistema de Fusao de Dados de
localizacao. Em tal abordagem, uma posicao futura de um automovel é predita para um
determinado fragmento de tempo futuro e utilizada para tomar vantagem de uma janela
de espaco-tempo de uma trajetoria vectorial em vez de um ponto de localizacao estético.
Portanto, nesta tese discutimos em detalhes esse assunto, estudando e analisando o uso
da previsao de localizacao como uma forma natural para aprimorar aplicagoes e servicos
em VANets.

Utilizando localizacao predita como uma métrica para comunicacao de dados em
VANets, nés propomos uma solucao para o problema de divulgacao de informacgoes
localizagao desatualizado chamada LPRV (Localization Prediction-based Routing for
VANets). Em nosso algoritmo proposto, o encaminhamento de pacotes é realizado por
no6s com localizagoes preditas mais proximas do destino de entrega, sem a necessidade
de troca de mensagens de controle adicional. O algoritmo proposto também explora
o conhecimento de um mapa digital para limitar o escopo de trocas de mensagens no
caminho mais curto para veiculos entre a origem e destino.

Palavras-chave: Redes Ad Hoc Veiculares, Previsao de Localizagao; Previsao

de Séries Temporais, Rastreamento de Alvos; Roteamento Geografico; Geocast;

X



Abstract

Localization systems play a major role in many applications for Vehicular Ad Hoc
Networks (VANets). Although Data Fusion techniques can provide reliable localization
information for most of the application requirements in VANets, enhancements on the
localization systems are required and desirable. Unique characteristics of VANets such
as mobility constraints, driver behavior, and high speed displacement nature of vehicles
cause rapid and constant changes in network topology, leading to dissemination of
outdated localization information.

In this thesis, we identify that to circumvent the problem of dissemination of
outdated localization information in VANets, an alternative is the use of predicted
future locations of vehicles. The main idea of this approach is to use the localization
prediction as an extension of a Data Fusion localization system. In such an approach,
a future position of a vehicle is predicted for a given future time step and used in
order to take advantage of a future time-space window of a vectorial trajectory rather
than a static localization point. Thus, in this thesis we further discuss this subject by
studying and analyzing the use of localization prediction as natural way to improve
VANets applications.

Using vehicles predicted locations as a metric for data communication in VANets,
we propose a solution for the problem of dissemination of outdated localization informa-
tion called LPRV (Localization Prediction-based Routing for VANets). In our proposed
algorithm, packet forwarding is performed by nodes with predicted future localization
closer to the delivery destination, without the need for exchanging additional control
message. The proposed algorithm also explores the knowledge of a digital map to limit
the scope of message exchanges in the shortest path for vehicles between source and
destination.

Keywords: Vehicular Ad Hoc Networks, Localization Prediction, Time Series

Prediction, Target Tracking, Position-based Routing, Geocast;
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Chapter 1

Introduction

1.1 Motivation

Recent advances in mobile computing, wireless communication and sensing have en-
abled the development of a number of interesting and desirable applications in In-
telligent Transportation Systems (ITS). In this context, Vehicular Ad Hoc Networks
(VANets) (Boukerche et al., 2008; Papadimitratos et al., 2009; Yousefi et al., 2006;
Hartenstein and Laberteaux, 2008) emerge as new technology to integrate wireless
networks capabilities to vehicles, providing ubiquitous connectivity as well as allow-
ing vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication. Thus,
interconnected vehicles can collect and share information about themselves and sur-
rounding environments in real time. Therefore, there is an extensive list of potential
applications for VANets, where we can highlight categories related to safety, transport
efficiency and information/entertainment applications (Hartenstein and Laberteaux,
2008). Among these applications, safety plays a special hole in VANets. The growing
number of traffic congestions, fatalities and injuries, due to the increasing number of
vehicles in operation worldwide, has been recognized as a social cost and a problem to
be solved by modern society (Papadimitratos et al., 2009; Al-Sultan et al., 2014).
Regarding the operation of localization systems in vehicular networks, the esti-
mation of a vehicle’s dynamic state is one of the most fundamental Data Fusion tasks
for ITS applications (Schubert et al., 2008). Although Data Fusion techniques can
provide reliable localization information for most of the application requirements in
VANets (Nakamura et al., 2007), enhancements on the localization systems are still
required and desirable. Unique characteristics of VANets like mobility constraints,
driver behavior, and high speed displacement nature of vehicles cause rapid changes
in network topology (Yousefi et al., 2006). Thus, leading to the dissemination of out-
dated localization information, specifically when the network packet delay is high. In

this context, some protocols that require accurate position information increase the fre-
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quency of periodic messages (beacons) as a naive solution for this problem. However,
this approach leads to unnecessary overhead in the number of transmitted packets,
which causes a high channel occupancy with an increased number of medium access
collisions, actually increasing delay (Boukerche et al., 2009; H. Nguyen, 2012). There-
fore, one problem to be solved in VANets’ localization systems is how to avoid the
dissemination of outdated localization information.

To circumvent the problem of the outdated localization information dissemina-
tion in wireless communications, some pioneer studies (Kaaniche and Kamoun, 2010;
Lee and Krumm, 2011; Boukerche et al., 2009; Rezende et al., 2009; Huang et al.,
2008; Agarwal and Das, 2003) tackle this problem by predicting the future localization
of a mobile node in a small time window. In these studies, well known methods ap-
plied in localization, target tracking, and time series prediction such as dead reckoning,
Bayesian Filtering, and Machine Learning are proposed as a metric to achieve improve-
ments on a single particular application. However, specifically from the viewpoint of
VANets, current proposals do not discuss how the localization prediction thechniques
can be used to improve internal tasks and applications, such as an enhancement of the

localization system as a whole.

1.2 Objectives

This work aims to provide a general discussion for localization prediction in VANets as
enhancement of the Data Fusion localization system, allowing us to identify open is-
sues, understand the requirements and the implications of using localization prediction
in vehicular networks. Regarding the problem of the outdated localization informa-
tion dissemination in VANets, the main goals of this work is to demonstrate, design,
and evaluate the performance of localization prediction thecniques as natural way to
improve applications and services for vehicular networks.

To achieve these goals, several secondary objetives need to be acomplished. In
order to demonstrate, design, and evaluate the performance of localization prediction

thecniques in VANets, the following goals need to be achieved:

1. Demonstrate and evaluate proposed approaches for localization, target tracking
and time series prediction techniques that can be used to estimate the future po-

sition of a vehicle to realistic VANet scenarios;

2. propose a routing algorithm using vehicles predicted locations as a metric for data

communication in VANets; and
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3. analyze the performance and demonstrate the efficiency of the proposed routing

solutions in VANet scenarios.

1.3 Main Contributions

The main contributions of this work in the order they appear in this document are:

1. A survey on localization prediction in vehicular ad hoc networks. Al-
though this is not the thesis central contribution, this comprehensive survey
about localization prediction in VANets is worth to be mentioned. We surveyed
proposed approaches for localization, target tracking and time series prediction
techniques that can be used to estimate the future position of a vehicle. It discuss
how the localization predictions methods can improve most VANet applications,
especially critical ones. In this survey we argue that localization prediction for
VANets as an extension of a Data Fusion localization system is a feasible approach
to circumvent the problem of the dissemination of outdated localization informa-
tion in vehicular networks. We then show how localization prediction techniques
can be used to compute an accurate predicted positions based on a number of
relatively inaccurate sample position estimations. This survey is presented in
Chapter 2.

2. A prediction-based routing algorithm for vehicular ad hoc networks.
The main thesis contribution consists in a new VANet routing algorithm that
uses the knowledge of the vehicles predicted locations to improve the routing
performance in several aspects. Our proposed algorithm, called LPRV (Local-
ization Prediction-based Routing for VANets), exploits the knowledge of vehicles
predicted future locations and a digital map as metrics to forward data packets,
without the need for exchanging any control message. Simulation results demon-
strated the efficiency of the proposed solution for different VANet scenarios and
the benefits of using vehicles predicted locations as a metric for data commu-
nication, especially in terms of delivery rate, number of hops and delay, with a

reduced number transmitted packets. This solution is presented in Chapter 3.

1.4 Document Outline

This thesis is divided into 4 Chapters. The first part of this work, composed of Chap-
ter 2 presents an overview and definition of the localization prediction methods in

VANets. We highlight potential advantages of using a localization prediction system
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in several VANet applications scenarios. We describe the localization, target tracking
and time series prediction methods and discuss the applicability, advantages, and lim-
itations of the analyzed solutions. We show our performance evaluation when both
solutions are used in a realistic VANet scenario.

In Chapter 3, we consider that VANets apply localization prediction techniques.
Hence, we propose the LPRV routing algorithm to use the knowledge of the vehicles
predicted locations to improve the routing performance. The performance of the pro-
posed solution is evaluated through simulations. Finaly, Chapter 4 summarizes the

thesis results by presenting the current contributions and future research directions.



Chapter 2

Localization Prediction in Vehicular
Ad Hoc Networks

2.1 Introduction

Many applications for VANets can take advantage of localization techniques. One
of the most interesting problems to be solved in vehicular networks is how to pro-
vide an anywhere and anytime highly accurate and reliable localization informa-
tion (Boukerche et al., 2008). Nowadays, most of produced vehicles are delivered
with a Global Positioning System (GPS) and third-party in-car navigation systems
can be installed on used vehicles at a reasonable cost (Papadimitratos et al., 2009;
Skog and Handel, 2009). Also, recent technological developments, notably in mobile
computing, wireless communication, and remote sensing allow vehicles to turn into so-
phisticated computing systems. With several coupled processors and integrated sensors
dedicated to the vehicle operation, the development of more sophisticated applications
and services for these networks is a reality today.

However, for VANets’ critical applications that are dependent on high accurate
and available localization systems, GPS shows some undesired problems such as being
unavailable or not being accurate enough (Alam and Dempster, 2013). For this rea-
son, a number of other localization techniques such as Map Matching, Dead Reckoning,
Cellular Localization, Image /Video Processing, Localization Services, and Relative Dis-
tributed Ad Hoc Localization are used combined in VANets to overcome such GPS lim-
itations (Boukerche et al., 2008; Skog and Handel, 2009) (As depicted in Figure 2.1).
In this approach, Data Fusion techniques are applied to improve the localization system
by combining several localization techniques into a single solution that is more robust
and precise than using any individual approach (Nakamura et al., 2007; Alam et al.,
2013; Golestan et al., 2012).

Regarding the problem of outdated localization information dissemination in wire-

5
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Figure 2.1. Localization techniques to compute vehicles’ current localization
used combined in VANets to overcome GPS limitations (Boukerche et al., 2008).

less communications, in this work we consider localization prediction as natural way to
improve VANets’ applications. We study well known methods applied in localization,
target tracking and time series prediction, such as Dead Reckoning, Bayesian Filter-
ing and Machine Learning as an enhancement of the VANets’ localization system. As
depicted in Figure 2.2, the main idea of this approach is to use the localization predic-
tion as an extension of a Data Fusion localization system. In such a method, a future
position of a vehicle is predicted for a given future time step and used to improve an
application service. The main idea is to take advantage of a future time-space window
of a vectorial trajectory rather than an actual static localization point. Thus, as a
solution for the dissemination of outdated localization information in VANets, in this
Chapter we discuss the use of localization prediction as al way of improving VANets’
applications. We then survey proposed localization, target tracking and time series
prediction techniques that can be used to estimate the future position of a vehicle.
We highlight their advantages and disadvantages through an analytical analysis dis-
cussion based on the literature review highlighting its potential application scenarios
for VANets. Then, we present a set of experiments that show the results of such tech-
niques when applied to a realistic VANet scenario indicating clearly the applicability,

pros, and cons of each one.
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Figure 2.2. Localization techniques, Data Fusion and localization prediction in
VANets.

The remainder of this Chapter is organized as follows. In the next Section,
we highlight potential advantages of using a localization prediction system in several
VANet applications scenarios. In Section 2.3, we state the problem of predicting a
vehicle future location whereas in Section 2.4, we describe the localization, target
tracking and time series prediction methods in this context. In Section 2.5, we discuss
the applicability, advantages, and limitations of the analyzed solutions. Section 3.4
shows our performance evaluation when both solutions are used in a realistic VANet

scenario. Finally, Section 4.1 presents our conclusions.

2.2 Applications that can take advantage of Localization Prediction

A key goal of any application for VANets is to provide a time horizon of new
information sources relevant to driving safety, comfort and transportation effi-
ciency (Papadimitratos et al., 2009). V2V and V2I communications allow the develop-
ment of a large number of applications. Each kind of such applications requires or can
take advantage of a certain degree of reliability and accuracy in the computed locations
of vehicles and/or infrastructure units. Basically, the applications for vehicular net-
works can be summarized as safety, transport efficiency, and information /entertainment
applications (Al-Sultan et al., 2014; Yousefi et al., 2006; Hartenstein and Laberteaux,
2008; Papadimitratos et al., 2009). In all of these categories, expanding the time and

space of a localization system by using future predicted locations can improve the
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Figure 2.3. Several VANet applications that can take advantage of localization
prediction in highways and urban scenarios. (A) Internet access. (B) Vehicle Col-
lision Warning Systems. (C) Cooperative Adaptive Cruise Control. (D) Vehicle
Following or Platooning. (E) Cooperative Intersection Safety. (F) Blind Crossing.
(G) Security Distance Warning.

performance of the applications. In the following, we will further discuss how these
services can be improved by using localization prediction thecniques in highways and
urban scenarios.

As depicted in Figure 2.3A, a first example of application for VANet that can
take advantage of localization prediction is Internet access. The packet forwarding
can use the vehicle’s predicted position to guide packets to the more suitable Internet
gateways, roadside unity or vehicle in a greedy forwarding fashion, according to the
predicted position and the time for the vehicles to reach such locations. Besides the
advantage of computing a real shortest path in relation to the vehicle displacement
in time and space, this approach can also considerably reduce the packet delay since
the shortest path can be computed in terms of time (Balico et al., 2015). The same
idea can be applied to the V2V and V2I communication locally, by choosing the next
best hop according to its neighbors future predicted location. As these applications
also provide services about road and surrounding environmental conditions, besides
the benefits to the driver’s safety, the use of localization prediction can also improve
the driver’s experience.

One of the most interesting applications of VANets that can be enhanced using
localization prediction is Vehicle Collision Warning Systems (as shown in Figure 2.3B).

This type of application is one of the most important for driver’s safety since it pro-
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vides assistance for drivers to avoid hazards. One part of these systems is the Security
Distance Warning (Figure 2.3G), in which the driver is notified when a threshold dis-
tance to another vehicle is reached. Instead of using the current location of a vehicle,
these applications can use the predicted future location of a vehicle to check when the
distance between two vehicles, or between a vehicle and an obstacle, reached an unsafe
threshold. In this case, the system can check in a few milliseconds or even seconds
in advance the potential risk to take further measures by checking if the trajectories
described by predictions will collide (Figure 2.3B). Its importance to notice that, such
informations provided in advance to detect potential hazards can be crucial to avoid
and prevent such dangerous situations. In this case, the use of predicted future loca-
tions can improve the speed computation process and also the packet exchange process,
while also providing relevant data for guiding the drivers for further reactions.

Furthermore, Cooperative Active Safety applications for VANets (Hrizi et al.,
2012) (Figures 2.3B, 2.3E, 2.3F, 2.3G, 2.3H) require an up-to-date knowledge of a
vehicle’s surrounding entities which is obtained when all vehicles broadcast their status
information (position, speed) in a collaborative fashion. The packets containing this
information need to be periodically transmitted, leading to wireless congestion and
impacting the accuracy and reliability of the safety application. In this case, the use of
predicted locations can avoid the need of exchanging periodically localization messages,
since the predictions are valid for a time window interval. Thus, the use of a prediction
localization system has a potential to increase the reliability of the safety application
which is quite a desirable feature.

Another interesting application of VANets is Cooperative Intersection Safety (as
depicted in Figure 2.3E). In this application, vehicles arriving at a road/street intersec-
tion exchange messages in order to make a safe crossing. Highway Entrance, as show
in Figure 2.3H, is also a similar application that can take advantage of localization
prediction. Besides ensuring a safe crossing and highway entrance, it is also possible to
make a Blind Crossing (as shown in Figure 2.3F), where there is no light control and
the vehicles cooperate among themselves to make a crossing, even when the driver’s
field of view is obstructed by buildings. In these applications, besides avoiding unneces-
sary packet transmissions overhead, the localization prediction can provide information
to detect and prevent potential hazards by checking in advance the potential risk of
collisions in the computed trajectories described by predictions.

In Cooperative Adaptive Cruise Control (Figure 2.3C), the vehicle speed is ad-
justed to maintain the same speed of the vehicles ahead and those behind in a group
without requiring driver intervention. Usually in this type of application, the speed is

set by the driver and the system exchanges messages between the vehicles using V2V
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communication to coordinate the vehicles’ speed adaptively. In this case, the use of
predicted future locations can be used to compute the speed of the vehicles in order to
keep safe distances among themselves. Vehicle Following or Platooning, as shown in
Figure 2.3D, is an application used to make one or more vehicles follow a leader vehicle
forming a train-like unit. The use of predicted locations in this kind of application
can help to improve the tracking of the leader and members’ position based on the
computed trajectories described by predictions as well as to help guide its following.
Also, it can help keeping a minimum distance between vehicles in advance preventing
accidental collision.

As show in this section, several types of applications in VANets that can take
advantage of a localization system and also can achieve improvements when using
localization prediction. In the next Sections, we formally present the localization pre-
diction problem in the context of VANet some proposed approaches to tackle the target

tracking and time series prediction problems.

2.3 Problem Statement

In this section, we formally present the concepts used in this work.

Definition 2.3.1 (Vehicular Ad Hoc Network). We define a VANet as a Euclidean
graph G = (V, E,r), where |V| = N is the number of nodes and r is the communication
range; V = {vg, vy, o, ..., uy_1}, where {vg, v, ..., vx} is the set of vehicles; (i, j) € E
iff v; reaches v;, in other words, v; is inside the communication range r of a node vj;
and Vv; € V., Py = (X, Yis, Zi) € R3 is the computed position of nodes v; (i.e., using
a localization system), L; = (X, Yi, Zi;) is the real position of nodes at a discrete

time t and S; its displacement speed.

v, P o=Xhs Yo Z,)

o >
M=PP,.,
< ........... o,
P ()():(AX(){» Y()(), 0(1) P 1(+1) P It

Figure 2.4. VANet: network nodes definition, location and location prediction.
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Definition 2.3.2 (Vehicle Future Location Prediction - Pi(t—l—l))' The prediction of
vehicle ¢ future position for a discrete time step t+ 1. It can be defined as a time series
regression forecasting problem and also can be formulated as a target tracking problem.
Tracking is usually stated as an estimation problem based on a series of measurements.
The primary objective of target tracking is to detect and continuously estimate the
evolution of the target state with respect to time and update the estimation with
measurements (Ramos et al., 2012; Li and Jilkov, 2003). Since almost all maneuvering
target tracking methods are model based, we can define the trajectory prediction by

the discrete-time state-space model as follows:

Piut1) = [i( P, wg) 4 wy, (2.1)

oy = h(P,) + b, (2.2)

where P, u, o are the target state, input control and observation, respectively, w and b
are the process and measurement noise, respectively, f and h are function vectors, and
t > 1 is the measurement epoch (Ramos et al., 2012). Thus, based on the knowledge
of the current position of a vehicle (P;) at a step time ¢t and the knowledge of the
t — 1 steps, the prediction of vehicle’s future position is given by target state estimate
Pj441) which will estimate the future position (X;u11), Yi(t+1), Zig+1)) for the next time
step t 4+ 1. It is important to notice that our approach differs from conventional target
tracking methods since each node performs the target tracking only on its own set
of localization samples, without any observations from other network nodes. In other

words, each network node performs self-target tracking.

Definition 2.3.3 (Vehicle Motion Vector - M;)). This vector represents the movement
of a vehicle 7 from its current position to a future computed position. For the sake
of simplification, we consider that a vehicle will maintain the trajectory of a straight
line during the time required to it reaches the computed future location. This line is
defined as M, = fm (as depicted in Figure 2.4), where P is the current vehicle’s

position, P41 is its predicted future position and S; its displacement speed.

2.4 Location Prediction Methods

Localization-Based and in-car navigation systems have been identified as a key
technology to the development and operation of VANets (Papadimitratos et al.,
2009; Skog and Handel, 2009; Obradovic et al., 2006). According to Boukerche et
al. (Boukerche et al., 2008), an interesting aspect of VANets is that most localiza-
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tion techniques can be applied easily to these network and they can be categorized
as Map Matching, Dead Reckoning, Cellular Localization, Image/Video Processing,
Localization Services, and Relative Distributed Ad Hoc Localization. Since vehicular
networks have no significant power constraints unlike sensor and other types of mo-
bile networks and, also can be equipped with a wide variety of sensors and processor
units (Ramos et al., 2012), Data-fusion techniques are a natural solution to improve
VANets localization system providing a precision of centimeters (Skog and Handel,
2009) to compute the vehicle’s position. However, a common problem in this approach
is the dissemination of outdated localization information and also unnecessary overhead
of transmitted packets.

To overcome these problems, methods for predicting future locations of vehicles
like target tracking and time series regression forecasting are an alternative solution
as an extension of the Data Fusion localization system for vehicular networks. The
main reason for that relies on the fact that, according with Li et al. (Li et al., 2014),
there is a strong regularity in the daily vehicular mobility in both temporal and spatial
dimensions, which can allow a high degree in the predictions’ accuracy. Also, this study
showed that for Shanghai and Beijing vehicular traces, the location predictability can
reach levels of 80 % to 99 % of accuracy.

An interesting aspect of target detection, tracking, and recognition is that they
are closely interrelated areas, with significant overlaps (Li and Jilkov, 2003). Although
the Bayesian Filtering state estimation is the main approach to solve the tracking prob-
lem (Ramos et al., 2012; Lee and Krumm, 2011), the problem of predicting a future
location of a vehicle can also be seem as a time series prediction. Time series is a
set of observations from past until the present. In this case, it is possible to apply
Machine Learning techniques to build the models from training data and even to ad-
just those models dynamically. Learning represents a trade-off between accuracy and
generality and for the case of VANets, it represents a compromise in keep the model
accurately enough and, at the same time, capable of deal with different trajectories
described with a wide variety of mathematical entities. Another method to approach
the problem of predicting a future position of a vehicle is the Dead Reckoning. In this
approach, the future position of a vehicle can be computed based on its last known
position and movement information as direction, speed, acceleration, distance and
time (Parker and Valaee, 2006). In the following, these techniques will be discussed
further.
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2.4.1 Dead Reckoning

Dead Reckoning (DR) is an ancient navigation technique where a current position can
be computed using a previous last known location (Krakiwsky et al., 1988; King et al.,
2006) or a future position can be computed using a current known location. This
technique uses the last known position, also known as a fix, the displacement and the
direction information from vehicle’s sensors to update the location information. Dead
Reckoning as a stand-alone localization technique can be used only for short periods
of GPS unavailability in VANets since it can accumulate errors easily. For high speed
vehicles, such as vehicles moving at speeds about 100 km/h, dead reckoning can reach
localization errors up to 20 m (Boukerche et al., 2008; Parker and Valaee, 2006) when
used as a stand-alone localization solution. For this reason, this localization technique
in VANets is used to overcome the limitations of GPS/GNSS and it is considered only
as a backup system for periods of GPS/GNSS outage.

However, if it is possible to assume that each node in the network is aware of its
location, DR can be applied to predict future location of nodes as shown in Argawal
et al. (Agarwal and Das, 2003). In the DR model presented, each node constructs a
movement model for itself by periodically sampling its location estimates. In the next
step, the DR model computes the velocity components Sx;, Sy; and Sz; along the X,
Y and Z axes from two successive location measurements (Xi(t,l), Yii—1), Zl-(t,l)) and
(Xit, Y, Zi) taken at times ¢t — 1 and ¢ as follows:

Sxi = X — Xig—1)

2.3
—(i=1) (2:3)
Syi = Yy — Yiu-1) (2.4)
t—(t—1) '
and
Szi = Zit — Zit—1) (2.5)

t—(t—1)
To predict the future location P11y = (Xieq1), Yies1), Zig+1)) of the node i at the

current, time as per the following formula:

Xigr1y = X + (Sxs x (t+1) — t), (2.6)

Y;'(t.i_l) - Y;t + (Syl X (t + 1) — t) (27)
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and

where, t + 1 is the next time step in which the future location will be computed.

This DR approach was used as a basis for a prediction method in a local-
ization system called Dead Reckoning Method (DRM) for Mobile Ad hoc Network
(MANet) (Agarwal and Das, 2003). The DRM main idea is that each node is able to
track the location of every other node in the network and then able to predict the move-
ment of every other node. Thus, every node is capable of constructing a topology of the
network using the knowledge of the predictions. The authors of DRM demonstrated
that the DRM-Based technique applied in a geographic routing approach delivered
superior routing performance when compared to popular protocols such as DSR and
AODV in MANets. In King et al. (King et al., 2006), DR was utilized to improve
beacon accuracy in the Position-Based Forwarding (PBF) protocol, a greedy position-
based packet forwarding for vehicular highway scenarios. The DR approach tackles the
problem of always-outdated perception of neighbor positions for low beaconing rates.
In this technique when the GPS signal is temporarily unavailable, a mobile node es-
timates its current position based on its last measured GPS location and its motion
parameters (speed, orientation, and time). In Wahab et al.(Wahab et al., 2013), was
proposed a GPS-free localization framework aiming at providing accurate vehicle local-
ization for road safety applications in VANets. The proposed localization framework
uses two-way time of arrival with partial use of dead reckoning to locate the vehicles

based on communication with a single roadside unity.

2.4.2 Machine Learning

Machine Learning techniques in time series forecasting have been applied in many
areas such as financial market prediction, electric utility load forecasting, weather
and environmental state prediction, reliability forecasting and wireless communica-
tions (Sapankevych and Sankar, 2009). Time series is a set of data samples from past
until present and the goal of time series prediction is to estimate some future value
based on current and past data samples (Kaaniche and Kamoun, 2010). In this con-
text, the localization prediction problem can be also tackled as a particular case of

time series prediction. Mathematically, a time series in VANets can be stated as:

Pi(t+1) = f(Pita Pi(t71)7 Pi(t72)7 ) (29)
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where, for the VANets’ context, P11 is the predicted value of a future position of a
vehicle at the discrete time t+1 and Py, P—1), Pi—2), --- is a set of computed locations
from past until present of a vehicle ¢ and, L; are the respectively target values (real
vehicle position). The objective of time series prediction is to find a function f(P) such
that, given a set of input/target pairs (P, L;), the predicted value of the time series
P41, at a future point in time ¢ + 1 is unbiased and consistent. In other words, the

predicted point Pj;4.1) must be as closest as possible to the real vehicle position Ljq1).

Training Data
P i(t—])’P it-2pr

Learning
Algorithm

Y

Input ) Trained Prediction )
Pit | Machine Pl_ )

Figure 2.5. Machine Learning phases.

2.4.2.1 Neural Networks

Neural Networks (NNs) were originated in the early 1960s and are parallel distributed
information processing systems that implement supervised learning mechanisms that,
starting from input/output pairs of examples, are able to generalize and learn in a
supervised fashion (Bonissone, 1997; Nakamura et al., 2007). NN s are a well-known
option to deal with time series prediction, and for the case of VANets, are suitable by
being able to give solutions to complex problems due to their non-linear processing,
parallel distributed architecture, self-organization, capacity of learning and generaliza-
tion, and efficient hardware implementation (Ibnkahla, 2000).

The Multilayer Feed Forward Neural Network (MLNN), also called Multilayer
Perceptron (MLP) (often simply called Neural Network), is one of the most popular
neural network architectures in use for both classification and regression (Bishop, 1995).
The fundamental processing element of a neural network is a neuron ( as depicted in

Figure 2.7). A neuron can be mathematically described as:

P = ¢(¢) (2.10)
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n
£=> wp;+b. (2.11)
j=1

A neuron is composed of a linear combiner £, an activation function ¢(£) and the
output signal of the neuron P as depicted in Figure 2.6. The linear combiner output
is the weighted sum of the inputs plus a bias term. The activation function gives
then the neuron output in terms of the activity level at is inputs: where p; is the jth
input signal, w; the corresponding synaptic weight, and b the bias term. The activation
function may be a linear or non-linear function and there are many activation functions
like, e.g. the identity function, the sigmoidal function, the threshold function, etc. The
choice of the activation function depends on the nature of the NN application (Haykin,

1998).

Neuron

P

Output

Figure 2.6. Artificial neuron.

A NN is composed of multiple neurons layers connected to each other in a directed
graph as shown in Figure 2.6. The input information is processed from the first layer
(input layer) to the output layer. Each node in one layer connects with a weight w;;
to every node in the following layer. The layer index is denoted by ¢ and Pj is the

output of neuron k of layer ¢ given by:

Py, = ¢(&ir), (2.12)
n(i—1)
ik = Z WijkPi—1j + bk (2.13)
j=1

were w;;;, is the weight that links the output F;_i; to neuron k of layer . The value
n(i) is the number of neurons in layer 7.
Applications of NNs do not have a priori knowledge of the correct network weights

and a training procedure is required to compute the weights. A method for computing
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Figure 2.7. A three layer Neural Network.

the gradient of the empirical risk for the activation function of NNs, called the Back
Propagation algorithm (BP), was proposed in Rumelhart et al. (Rumelhart et al., 1986)
and Lecun (Lecun, 1986). The BP algorithm (Lippmann, 1987) uses a set of input
output pairs (P(n),L(n)) to train the network to achieve the desired mapping. It
adjusts the MLP weights aiming at minimizing any differentiable cost function such
as the Minimum Squared Error (MSE). The MSE function is the error power between
the network output and the desired output, MSE(n) = ||L(n) — P;(n)||?, where P;(n)
is the NN output vector at time n and L(n) is the desired output (e.g., real vehicle
position). The BP algorithm performs a gradient descent on the cost function in order

to reach a minimum as follows:

wijr(n+ 1) = w;jp(n) — a%, (2.14)
were the parameter « is the desired error. This equation can be expressed as:
wije(n + 1) = wijr(n) — ady Py—1j).- (2.15)
The error term J}, of the output layer is given by:
0 = ¢' (&) — (L — Pu), (2.16)

where ¢’ denotes the derivative of the activation function ¢'(§) = 8%—(;). The error term
¢ of the hidden unit (i, k) can be expressed as a function of the next layer error terms

as:
n(i+1

)
8, = &' (&) Z W1k 05 (2.17)
j=1

Thus, the weight update is performed by propagating errors backwards from the output
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nodes to the input nodes.

Neural Networks have been applied for node mobility prediction for cellu-
lar networks (Liou and Huang, 2005; Capka and Boutaba, 2004). In Kaaniche and
Kamoun (Kaaniche and Kamoun, 2010), a Neural Network has been applied to es-
timate the duration of a communication link based on the time series prediction in
MANets. In this approach, a MLP predict the future location of the mobile user based
on the time series location observations as the inputs of the NN. The authors also
discuss that a variation of the number of neurons of the hidden layer can affect the
prediction accuracy. Neural networks also have been applied in VANets for prediction
of future lane change trajectory based in Tomar et al. (Tomar et al., 2010), where a
NN was proposed to learn and incorporate the human behavior to predict the lane
changing trajectory in the near future. The authors discuss that the NN is able to give
accurate the prediction for some parts of the path, however, the deviation is significant

for certain sections regarding the vehicles’ speed.

2.4.2.2 Support Vector Regression

Support Vector Machines (SVM) are supervised learning models based on statisti-
cal learning theory, or Vapnik-Chervonenkis theory (VC theory), developed during
1960-1990 by Vladimir Vapnik and Alexey Chervonenkis (Sapankevych and Sankar,
2009; Vapnik, 1995, 1999). The statistical learning theory attempts to explain the
learning process through a statistical point of view. Although SVMs were intro-
duced first for binary classification (Vapnik, 1995), they are currently a hot topic
in the Machine Learning community and used for many learning fields such as pat-
tern recognition, classification and, in the case of time series prediction, regression

analysis (Sapankevych and Sankar, 2009).

N

p| PE)=(w-P) o o pErero) b |

Figure 2.8. SVR prediction function for linear and non-linear regressions.

The SVM concept of a maximum margin hyperplane is mainly applied to classi-
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fication problems. However, SVM algorithms have been applied for numeric prediction
and share many of the classification case properties: they produce a model that can
usually be expressed in terms of a few support vectors and can be applied to non-linear
problems using kernel functions. Support Vector Regression (SVR) (Miiller et al., 1997,
Sapankevych and Sankar, 2009; Smola and Schélkopf, 2004) is a method extended from
SVMs to solve regression problems. The main idea of SVR is, given a set of input time
series data Py, where k discrete time step of n samples: k£ = {0,1,2,...,n — 1}, and
Ly, are the respectively target values (real vehicle position), the goal of SVR (Vapnik,
1995) is to find a function f(P) that approximates the training points aiming at min-
imizing the prediction error. In other words, the deviant distance between the output
predicted values from the training target labels only will be accepted if it is less than
e for the same time horizon.

For linear and non-linear regressions the SVR prediction function f(P), given a

set of input/target pairs (P, L), approximates the prediction function by:

p=f(P)=(w-P)+b (2.18)

p=[f(P)=(w-¢(P))+b. (2.19)

As show in Figure 2.8, to deal with the non-linear regression using SVR, it is necessary
to map the input space P into a high dimensional feature space (¢(P)). Note that
the dot product in Equation 2.19 (w - ¢(P)) would have to be computed in this high
dimensional space (which is usually intractable) (Smola and Scholkopf, 2004). To over-
come this problem, the SVR adopts a strategy in which this dot product is implicitly
expressed in a lower dimensional input space (referred to as a kernel function).

The goal of the algorithm is to find the weight vector w and the bias b minimizing
the error, as well as, simultaneously maximizing the flatness of the regression function
by:

& PI |
O3 BIL). p0) + Sl (2:20)
i=1
where
L(i) — p| — if| L(7) — p| >
0 otherwise

In the Equation 2.20, the first term C ) E(L(i),p(i)) is the empirical error (risk).
i=1

The parameters w and b are measured byithe e-insensitive loss function (E, defined in
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Equation 2.21). This loss function provides the precision by which the function f(P)
is to be approximated, enabling the use of sparse data points to represent the solution.
The flatness of the weights in Equation 2.20 means that we seek a small w, which
can be achieved by minimizing the Euclidean norm ||w||?>. The regularized constant C
determines the trade-off between the empirical risk and the regularization term, which
means the trade-off between the flatness of the function f and the amount up to which
the deviations larger than e are tolerated. In other words, the errors are ignored by
the SVR algorithm as long as they are less than ¢, but any deviation larger than this
is not accepted. It is important to notice that both ¢ and C are both user defined
constants and are typically computed empirically. It is implicitly assumed in Equation
2.21 that a function f(P) actually exists and approximates all pairs (P, L) with €
precision (tube size), which means that the optimization problem is feasible. However,
to make the optimization problem feasible errors may have to be accepted. Therefore,
slack variables & and & are typically introduced to measure the deviation of training
samples outside e-insensitive zone to account for errors. To obtain the estimations of w
and b, Equation 2.20 is transformed into a primal function stated in Vapnik (Vapnik,
1995) as follows:

Minimize .

O 6+ + 5wl (2.22)

i=1
subjected to
L(i) —wo(P) — b < e+ &,
wé(P;) +b; — L(i) < e+ &, (2.23)
&, & =0
By introducing Lagrange multipliers and forming the dual optimization problem,

the decision function given by Equation 2.20 has the following explicit form (Vapnik,
1995):

n

f(Pai af) = (a; —af) + K(P,P) +b. (2.24)

i=1
The data points on or outside the e e-tube with non-zero Lagrange multipliers are
defined as support vectors. The optimal weights w having non-zero Lagrange multi-
pliers are typically less than the entire data set, thus, the entire data set is not need
to define f(P). The sparseness of this solution is one of several advantages of using

this methodology. K (P, P;) is defined as the kernel function and it computes the inner
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product of two vectors P and P; in the feature space ¢(P) and ¢(FP;) by:
K(P,P) = ¢(z) - ¢(P) (2.25)

The kernel function provides a solution to map the input space P into a high di-
mensional feature space (¢(P)) to perform the non-linear regression using SVR. There
are several kernel functions that satisfy Mercer’s conditions (Vapnik, 1995) such as
Gaussian, polynomial, and hyperbolic tangent. In SVM/SVR applications, the choice
of the kernels is a key factor. Although the Gaussian kernels appears to be the most
prevalent choice, typically empirical analyses is necessary in the selection of the ap-
propriate kernel function according with the nature of the application. Finally, the

resulting SVR architecture is given below in Figure 2.9.

P Output2’ GJK(RP)+b
an /z' RN Weights
g\) g “) . oo () | Dot product K(P.P)=(a(P)-0(P))
o(P,) o(P,)| |o(P) 0(P) Mapped vectors @(P),@(P,)

o o o Support vectors P1--- P,.
m Test vector P

Figure 2.9. Architecture of a regression machine resulting by the SVR algorithm
(Sapankevych and Sankar, 2009; Smola and Schoélkopf, 2004).

Learning techniques have been applied for target tracking in diverse WSNs
scenarios using kernel-based learning (Simic, 2003) and support vector ma-
chines (Tran and Nguyen, 2008; Viani et al., 2010). A distributed SVM training was
proposed in (Kim et al., 2012) to solve a multi-target tracking problem in WSNs. After
training the local SVM at each node, this approach computes the posterior probability
of the existence of the targets using Platt’s optimization algorithm. By maximum a
posterior (MAP), the target trajectories are estimated. In order to overcome chal-
lenges such as limited communication and the curse of dimensionality when applying
Machine Learning algorithms such as SVR on large-scale WSNs, the authors in Kim
et al.(Kim et al., 2013) proposed an ensemble implementation of SVR for the prob-
lem of target localization. Experimental results achieved in this work indicate that
the performance SVR proposed method provides good prediction accuracy. Also, the

performance comparison has shown that the SVR proposed method outperforms the
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classic SVR predictor in terms of accuracy and robustness for large scale WSNs.

2.4.3 Filtering

The main goal of target tracking systems is to continuously detect and estimate the
state of a target or a set of targets. Besides the location information, target track-
ing can be used to detect and predict future locations of single or multiple targets
such as other vehicles, objects and obstacles surrounding a given vehicle (Ramos et al.,
2012; Li and Jilkov, 2003; Schubert et al., 2008). It is important to notice that these
algorithms are exposed to different sources of noise, introduced by the measurement
process and also errors in nodes’ location that are used to estimate the target coor-
dinates. Therefore, information fusion (Nakamura et al., 2007) is commonly used for
filtering such noise sources.

The targets’ state can include, among other information, position, velocity, ac-
celeration, and jerk (derivative of acceleration) and this set of state variables can also
vary according to the application requirements and constraints. According to Ramos
et al.(Ramos et al., 2012), target tracking systems typically rely on a Bayesian mo-
tion estimation framework that require: a motion model that describes the target’s
dynamic; samples of the target’s state; a data association algorithm that takes into
account the samples to the correct target; and an initial probability distribution, also
known as prior knowledge of the target’s state. According to the motion model, the
main task performed by the tracking systems is to estimate the parameters of the
model, considering the measurements collected about the target.

The filtering component of target a tracking system is responsible for defining how
the probability density function (pdf) of the target’s state at time step ¢ is computed.
Based on these components, the target tracking system has two phases (as depicted
in Figure 2.10): prediction, which uses the motion model to propagate the probability
function of the target state over the time; correction, which uses the latest collected
samples to update the pdf of the target at the current time step. This task is usually
performed by a Bayesian filter, such as the Kalman filter and the Particle filter.

2.4.3.1 Kalman Filter

The Kalman Filter (KF) was originally proposed in 1960 by Kalman (Kalman, 1960)
and it is a popular Data Fusion method used to fuse low-level redundant data
(Nakamura et al., 2007; S. et al., 2009). The KF presents some interesting proper-
ties since it can recursively retrieve statistically optimal estimates when the noise is

Gaussian and, is the linear optimal estimator even when the noises are not Gaussian
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Figure 2.10. Filtering phases.

(Simon, 2006). In other words, the KF is the optimal filter in terms of unbiased min-
imum variance state estimation when the system can be described as a linear model
with Gaussian noise.

The KF applies a linear operator in the current state to generate a new state
at each discrete time increment. Besides the measurement noise, the filter can also
optionally consider some information about the controls on the system. Then, another
linear operator, also subject to noise, generates the observed outputs from the true
state (Hossain et al., 2009). The KF estimates the state p of a discrete-time ¢ controlled

process that is ruled by the state-space model
pe+1 = Fipy + By + wy (2.26)
with measurements (observation) o at time ¢ of a state p; made according to:
0, = Hypy + by, (2.27)

in which F; is the state transition matrix applied to the previous state p;, B; is the
input control matrix model that is applied to control vector u; H; is the measurement,
matrix (the observation model), which maps the true state space into the observed
space; w is the process noise; and b the measurement noise, where these noise sources
are assumed to be drawn by random zero-mean Gaussian variables with covariance
matrices (0; and Ry, respectively.

Based on the measurement o; and the knowledge of the system parameters, the
estimate of p;, represented by p;, and the prediction of the next state p;. 1, represented
by piy1)¢ are given by:

Pt = Deje—1 + Ke(0r — Hypep—), (2.28)



2. LOCALIZATION PREDICTION IN VEHICULAR AD HoCc NETWORKS 24

Figure 2.11. Block diagram of the Kalman Filter

Pr1je = Lipr + Bruy, (2.29)
in which K, is the Kalman gain determined by

-1

Ky = Py H (H;Pyy1 H + Ry) (2.30)
where P, is the prediction covariance matrix that can be determined by
Py = FE,PF] + Qs (2.31)
with
Pt - (_[ - Kth)Pt‘tfla (232)

where [ is the identity matrix.

The Kalman Filter has two phases: time-update (predict) and measurement-
update (correct). The time-update phase is responsible for projecting the current state
and error covariance estimates forward, obtaining the a priori estimates for the next
time step and consists of the Equations (2.26) and (2.27). The measurement-update
phase is responsible for the feedback, that is, a new measurement at current time step
is incorporated into the a priori estimate to obtain an improved a posteriori estimate.
This phase consists of the Equations (2.29), (2.30), and (2.31) (Nakamura et al., 2007).
These predict and correct phases form a loop that is performed while the filter is fed
by measurements.

The Kalman filter theory applies to linear-Gaussian problems, but many real
world problems cannot be represented by linear models, algorithms have emerged based
on the original Kalman Filter theory to deal with nonlinear dynamics and non-linear

measurement models (Daum, 2005). Variations of the Kalman Filter have also been



2. LOCALIZATION PREDICTION IN VEHICULAR AD HoCc NETWORKS 25

proposed for relaxing the non-linearity assumption of samples. The Extended Kalman
Filter (EKF) (Welch and Bishop, 2001) is a popular technique to deal with non-linear
models. The main idea of the EKF is that the state distribution is approximated by
a Gaussian law, and this method uses a linearized model of the process using Taylor
series, because this is a sub-optimal estimator. Another recent variation of the Kalman
filter is the Unscented Kalman Filter (UKF) and represents a great improvement over
EKF (Julier and Uhlmann, 1997). The UKF performs estimations on non-linear sys-
tems without the need to linearize them, because it uses the principle that a set of
discrete sampling points can be used to parameterize the mean and covariance. UKF
is known to greatly improve the performance for linear systems when compared to
EKF, because it does not have to deal with linearization errors. However, the quality
of UKF estimates are close to standard KF for linear systems.

Several tracking solutions are based on Kalman Filters (KF) (Li et al., 2006;
Welch and Bishop, 2001; Julier and Uhlmann, 1997; Olfati-Saber, 2005). In VANets,
Armaghan et al. (Armaghan et al., 2009) proposed an estimation method based on
Kalman filter to decrease the number of transmitted messages. In this method, each
vehicle estimates its location for several intervals and sends them out along with actual
current, position. The estimation is done based on the previous history and record of
the vehicle’s location. During the time that estimated information is available, there
are no transmissions unless some estimation error is detected. In Mo et al. (Mo et al.,
2008), the authors presented a location management protocol called Mobility-Assisted
Location Management (MALM), to provide location service to vehicles in VANets .
In MALM, a vehicle calculates the current location of other vehicles by using Kalman
filtering based on the historical location information of other nodes. In Lytrivis et
al. (Lytrivis et al., 2011), was proposed the cooperative path prediction algorithm for
safety applications in VANets . It considers position, velocity, acceleration, heading
and yaw rate measures to create beacons containing dynamic status of a transmitting
vehicle. The algorithm uses UKF for predicting both short-distance and short-term for
targets within the sensing range of the ego vehicle.

Aiming at improving security on the roads, Ammoun et al. (Ammoun et al., 2007)
uses a Kalman filter for trajectory prediction and the estimation of a vehicle’s location
to evaluate and anticipate the risk of collision at a crossroad. The authors show that
despite unavoidable latencies and positioning errors, the application performance is
still acceptable when a Kalman filter is used for trajectory prediction and estimation.
In Najjar and Bonnifait (E. Najjar and Bonnifait, 2005), Belief Theory and Kalman
filters are used to provide accurate position estimations for a vehicle relative to a

digital road map. In this method, the Kalman Filter is used to combine the Antilock
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Braking Systems (ABS) measurements with a GPS position, which is then used to
select the most credible roads. The selection strategy fuses distance, direction, and
velocity measurements using Belief Theory. A new observation is then built and the

vehicle’s approximate location is adjusted by a second Kalman filter

2.4.3.2 Particle Filter

Particle Filter (PF) is a filtering technique that relies on a brute-force approach to esti-
mates the target’s state through a recursive implementation of Sequential Monte Carlo
method (SMC) (Doucet et al., 2001). The Bootstrap Filter was the first PF method
proposed in 1993 by Gordon et al. (Gordon et al., 1993). PF can deal with non-
linearity and with non-Gaussian noise when Kalman filter approaches do not perform
well. Unlike of the linear/Gaussian problems, the computation of the posterior dis-
tribution of non-linear /non-Gaussian problems are extremely complex (Ramos et al.,
2012). To overcome this difficulty, the Particle Filter adopts an approach called sam-
pling importance. The key idea is to represent the posterior pdf based on a large
number of random samples, called particles, which are sequentially propagated over
time (Arulampalam et al., 2002). At each time step, some particles that present low
posterior probability are discarded by a process called resampling. To each particle
is associated a weight indicating its quality, thus, the estimate is the result of the
weighted sum of all particles (Nakamura et al., 2007).

As the Kalman Filter, the Particle Filter algorithm has two phases: prediction
and correction. In the prediction phase, each particle is modified according to the
existing model, including the addition of random noise in order to simulate the effect
of noise. Then, in the correction phase, the weight of each particle is reevaluated based
on the latest sensory information available, so that particles with small weights are
eliminated (resampling process). The resampling step is the solution adopted to avoid
the degeneration problem, where the particles have negligible weights after several
iterations. The particles of greater weight are selected and serve as the basis for the
creation of the new particles set. Furthermore, the minor particles disappear and do not
originate descendants. For illustration purposes, the Particle Filter algorithm presented
in Algorithm 1 (Souza et al., 2013) considers only one dimension, in which P is the
position, S is the velocity and w is the weight of each n particles in a discrete-time ¢; the
o variable is the input measurement value (observation). However, this algorithm can
easily be applied to coordinate systems in R?. First, the algorithm randomly distributes
the particles (line 2). The particle propagation and the calculus of their importance

consider the distance from each particle to the measurement position (lines 5-11). The
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Algorithm 1 The Particle Filter Algorithm

> Input:
1: The measured oy
Action:
: for i =1: N do {FOR: Initialize the particles}
P¢ + random();
: end for

2
3
4
5: totalWeight < 0;
6
7
8

: for i =1 :n do {FOR: Sample particles and compute weights}
Pj «+ P}, + Si_| + gaussian();
: SP« Si_, + gaussian() x 0.05;
9:  w! < 1/distance(o, P});
10:  totalWeight < totalWeight + wi;
11: end for
12: for i =1 :n do {FOR: Normalize weights}
13:  wi < wi/totalWeight;
14: end for
15: slice) + w?;
16: for i =2:n do
17:  slicel + slicef;_1 + w}
18: end for
19: for i = 1: n do {FOR: Ressampling}
20: ¢+ random();

21: 5+ 0; _

22:  while j < n — landslice] < ¢ do
23: je—Ji+1

24:  end while ‘

25:  resampling! < particle};

26: end for

27: for i = 1: N do {FOR: Compute the prediction x4}
28: PtJrl — PtJrl + PZ * ’LU;,

29: end for

30: return Py;

normalization process (line 12) prepares the particles weights for the resampling process
(lines 15-26). Finally, the prediction of the position is computed (lines 27-29).
Particle Filters are popular for modeling non-linear systems subject to non-
(Gaussian noise in wireless communication. There are several tracking solutions based
on Particle Filters for sensor networks (Vercauteren et al., 2005; Arulampalam et al.,
2002; Rosencrantz et al., 2003; Jiang and Ravindran, 2011). In VANets, an interesting
study on the suitability of mobility prediction to reduce excessive beaconing to sensitive
cooperative safety applications is presented in (Hrizi et al., 2012). The authors discuss
the challenges regarding the trade-off in periodically transmitted packets leading to
wireless congestion. While adapting the rate of the transmission to some predicted
motions impacts the accuracy of this knowledge and the reliability of the cooperative
safety application. They extend a Particle Filter to take into consideration VANets

peculiarities. The authors showed that the proposed solution can ensure a suitable
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adaptation of the channel load with a high precision of awareness prediction to traffic
safety applications.

In Peker et al. (Peker et al., 2011), was presented an algorithm for vehicle lo-
calization and map-matching using PF. The probability of being on a certain area
of the digital map according to vehicle speed is used in conjunction with routing in-
formation to augment the likelihood function in the weight computation step of the
particle filter. The authors performed real life tests and the results achieved show a
considerable increase in correctness of Map-Matching and localization accuracy. The
proposed algorithm also guides Dead Reckoning when GPS data is unavailable. In
Fernandez-Madrigal et al. (Fernandez-Madrigal et al., 2007), the authors use Particle
Filters to cope with vehicle localization in combined indoor and outdoor scenarios. In
such scenarios, the authors assess the performance of ultra-wide band sensor technology
for indoor positioning and GPS for outdoor areas. They also evaluated the use of PF
to fuse observations collected from these two types of sensors for vehicle localization.
Particle Filters are also used in Chausse et al.(Chausse et al., 2005) to combine GPS
localization with data extracted from vision systems to determine a vehicle’s location
on the road. The combined information is transformed into a global reference using a

Map-Matching thechnique.

2.5 Techniques Discussion

It is well known that the moving of vehicle in a city is a dynamic process, including
static process (traffic light), which is strong nonlinear. These non-linear characteristics
of VANets can severely affect the performance of the predictor algorithm. Table 2.1
briefly compares these techniques in terms of advantages and challenges whereas Table
2.2 briefly compares them in terms of training and accuracy.

The main advantage of DR rely on its good accuracy for predictions when the
vehicles have a linear mobility pattern with a fast initial convergence. DR is able to
achieve accurate predictions when computing a future position only based on the last
know vehicle position. However, its performance is decreased with the randomness
of non-linear mobility and it is also subject for cumulative errors, especially when
the current position of a vehicle is not provided by a Data Fusion approach. One of
the most appealing advantages of DR relies on its simplicity: the algorithm has a low
computational cost, it is easy to implement, requires low processing power and memory
usage, which sufficiently match the capabilities of vehicles computational devices.

Regarding the time series prediction aspect of localization prediction in VANets,

the main advantage of considering NNs and SVRs as approaches is the non-linear
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Method | Advantages Challenges
Computationally efficient by design

DR Easy to implement Subjected to cumulative errors
No free parameters

Number of free parameters large
N 1
NEE Hcllzd:n((ii:r?: nc()ir?n?inear stationar Selection of free parameters usually calculated
P ’ y empirically

NN processes . .
Can be computationally efficient (feed Not guaranteed to converge to optimal solution
forward process) Can be computationally expensive (training pro-

P cess)

Not model dependent .
Not dependent on linear, stationary Selection of free parameters usually calculated
processes ’ empirically

SVR Guaranteed to converge to optimal so- Can be computationally expensive (training pro-
lution cess)
Sl mromaber of fres persmEers Trade-off between accuracy and computational
Can be computationally efficient effort
Computationally efficient by design

KF Convergence guaranteed Assumes linear, stationary processes
Minimizes mean square error by design | Assumes process model is known
Small number of free parameters
Not model dependent
Not dependent on linear, stationary | Curse of dimensionality

PF processes Requires a large number of particles to present
Small number of free parameters accurate results
Can deal with non-Gaussian noise

Table 2.1. Trajectory prediction techniques: practical aspects

(Sapankevych and Sankar, 2009; Skog and Handel, 2009; Daum, 2005).

aspect of the prediction problem. In this case, neural network models have the advan-
tage of allowing the approximation of complicated non-linearities which could not be
well modeled by other classical models (Ibnkahla, 2000). NNs are self-adaptive, data-
driven that do not require any a priori assumptions about the problem space, not even
information about the statistical distribution. In fact, NNs are universal function ap-
proximators and it has been demonstrated that they can approximate any continuous
function to any desired accuracy (Irie and Miyake, 1988; Hornik et al., 1989). Consid-
ering the VANets’ mobility characteristics, NNs are well suited since they can represent
knowledge that is difficult to specify but, in which, there are enough data or observa-
tion about the problem. In terms of localization systems, NNs are also attractive since
they can generalize and can often correctly infer the unseen part of data even if the
data sample contains noise.

in VANets is
According to Sapankevych and Sankar

The non-linear aspect of localization prediction shared
with many real-world applications.
(Sapankevych and Sankar, 2009), traditional (and more sophisticated) model-based

techniques generally do not perform as well as the SVR in predicting time series gen-
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Method | Training Prediction Accuracy
DR Not required Good for short time sample horizon
Fast initial convergence Accurate for linear mobility pattern
Good short time horizon
NN Required Can detect driver patterns in long time horizon
Accurated for non-linear mobility pattern
Required Good short time samples’ horizon
SVR Can be computationally expen- | Can detect driver patterns in long time samples’ hori-
sive Zon
. Good for short time sample horizon
Not required . . . .
KF e Provides the linear MSE solution to the filtering prob-
Fast initial convergence .
] em
PF PC{equu"ed ¢ initial distrib Good short time horizon
t‘onvergence of imitial diStribu- | 4 .. rated for non-linear mobility pattern
ions
Table 2.2. Trajectory prediction techniques: the computational aspect

(Sapankevych and Sankar, 2009; Skog and Handel, 2009; Daum, 2005).

erated from non-linear systems. This is based on the fact that the Machine Learning
techniques like SVR and NNs lets the data speak for itself whereas the model-based
techniques typically cannot model the non-linear processes well. Consequently, these
techniques are less susceptible to the problem of model misspecification as compared
to most of the parametric models. The main advantage of the SVRs when compared to
the traditional model-based techniques rely on the fact that, by design, the SVR guar-
antees a global minimum solution and is typically superior in the ability to generalize.
For the localization prediction problem in VANets, in theory it means that SVRs by
design can be superior in terms of the accuracy in the localization prediction. However,
there is a tradeoff in terms of the computational effort required to achieve such accu-
rate results. This tradeoff can also affect the NNs, but it affects more the SVRs due
to the computational effort to solve the global minimum solution problem. In theory,
these machine learning techniques can lead to very accurate localization prediction.
However, due to the real-time characteristic of VANets applications, this accuracy can
be reduced by the computational time required to compute the predictions in a feasible
time for its use.

Another important issue in the application of the NNs and SVRs in VANets is
the free parameter selection and the required training, which can be computationally
expensive. This is not a specific VANet issue, but an issue observed in many real
world application of such techniques. Regarding the parameter selection, which is
more challenging in the case of NNs due to its large number, there are several pro-
posed approaches, however, most of them are usually quite complex and difficult to

implement. Also, due to fact that streets in VANets can vary from a large number of



2. LOCALIZATION PREDICTION IN VEHICULAR AD HoCc NETWORKS 31

geometric shapes, such parameters guidelines can be simply guided by heuristics, sim-
ulations or also by experiments on the target area. In this case, the main compromise
is to balance between computational complexity, robustness against modeling errors,
and accuracy of the algorithm (Skog and Handel, 2009). Regarding the training of the
Machine Learning methods, large window size (number of collected location samples)
can increase the complexity of the convergence procedure and resulting in long training
time, which is not suitable for real-time implementations. In this case, smaller training
window sizes are quite preferable. However, since the main advantages of such ap-
proaches rely on the ability to generalize, a long term training approach is also feasible
when associated with an optimization process. For instance, such algorithm can be
trained on data collected over a large time horizon (daily, weekly, or monthly) and the
driver’s common routes, based on its routine (e.g. routes to work and home), can be
easily identified improving the accuracy of the long-term predictions.

A recurrent issue for Machine Learning and Bayesian Filtering approaches is
the curse of dimensionality. That is, the computational complexity of the predictor
method usually grows exponentially with the dimension of the state vector being esti-
mated (Skog and Handel, 2009; Daum, 2005). Therefore, even vehicles equipped with
high computational capacity, non-linear filters and Machine Learning algorithms can
be unfeasible for navigation systems with high-dimensional state vectors. In this case,
the introduction of sensor’s that can provide information about a vehicle’s state mea-
surements like wheel odometers, magnetometers, accelerometers, etc., can improve the
predictor’s method accuracy. However, its computational complexity will also grow
exponentially. An efficient approach in this case would be to consider only position
information in the state vector of the predictor. Since it is quite common the use of com-
puted position of vehicles in R3, the problem of the curse of dimensionality can be easily
avoided in VANets. Besides, such sensor’s data can be more efficiently processed in
the vehicle’s current position estimation using Data Fusion methods (Nakamura et al.,
2007; Boukerche et al., 2008).

In the Bayesian Filtering approach, the model must be complete enough to give an
adequate description of the system and, at the same time, be sufficiently simple for the
filtering algorithm to become computationally feasible (Griffin and Sage, 1969). Such
assumptions are satisfied in VANets since Data Fusion methods can provide a complete
mobility model and vehicles can be coupled with reasonable computational units. The
Minimum Mean Square Error (MSE) solution to the linear problem is then provided
by the Kalman filter, assuming Gaussian distributed noise sources (Skog and Handel,
2009; Kailath, 1998). In terms of VANets, the Kalman filter is the optimal choice when

the system is linear with Gaussian noise (Ramos et al., 2012). In this case, the Kalman
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filter is an attractive approach for VANets scenarios since the linear characteristic of
streets, especially in grid models, can be described as a linear vehicle movement model
and also the localization error usually is composed by Gaussian noise in the average.
KFs are relatively easy to design and code, and they often provide good prediction
accuracy. One advantage of KF when compared to Machine Learning methods is the
fast initial convergence of the predictions without requiring training. On the other
hand, KF accuracy can be surprisingly bad for some practical applications when the
physical system is described by non-linear equations or the model is inaccurate or
incomplete (Daum, 2005).

Particle Filter can outperform the KF especially for the non-linear case, with
the cost of additional computational effort, because it typically requires a large num-
ber of particles to provide accurate results (Ramos et al., 2012). Therefore, in sys-
tems with a highly non-linear nature and non-Gaussian noise sources PF can keep
the non-linear structure of the problem, significantly improving the system perfor-
mance (van der Merwe et al., 2004; Daum, 2005). However, since the navigation equa-
tions in VANets are only partial non-linear, the localization prediction problem can be
divided into a linear part and a nonlinear part (Skog and Handel, 2009). In this case,
under the assumption of Gaussian-distributed noise sources, the linear case may be
solved using a KF, hence, reducing the computational complexity (Schon et al., 2005;
Karlsson et al., 2005) and also increasing the accuracy of the localization system. PF
are also relatively easy to design and code and works well for a high range of local-
ization problems. The accuracy of PF’s approximation is determined by the size of
the particle set. In this case, increasing the number of particles also increases the
accuracy of the predictor. However, it also increases the computational cost of the
localization system. In other words, the number of particles is a trade-off between the
accuracy and available computational resources (Golestan et al., 2012). Also, regard-
ing the computational cost, the initial distribution of the particles requires additional
time to converge in accurate predictions when compared to the Kalman Filter.

Although there are several promising approaches to tackle the problem of localiza-
tion prediction in wireless networks, based on a theoretical analysis, Dead Reckoning,
Machine Learning, and Bayesian Filtering are efficient and feasible approaches to be
applied to the context of vehicular network. In short, all of these techniques present
advantage to be considered in the different VANets scenarios. Dead Reckoning has
the advantage of providing good accuracy with a lower computational cost for short
time predictions subjected to low levels of localization noise sources. Machine Learning
can provide accurately prediction estimations for the non-linear case but suffer from

the computational complexity required. However, NNs and SVR are able to general-
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ize patterns in the data, thus, they are able to discover the driver’s common habits,
such as daily routes for long-term predictions. Therefore, such in advance information
can be used to improve both localization systems and many other VANets services
that can take advantage of long-term localization information. For non-Gaussian noise
sources and the linear case, the Kalman Filter provides the linear MSE solution to
the filtering problem. For highly non-linear nature mobility models and non-Gaussian
noise sources, Particle Filters keep the non-linear structure of the problem significantly
improving the localization prediction accuracy.

Finally, even though these analyzed approaches tackles different processes and
measurement models, an interesting alternative to improve VANets services through
localization prediction can be the combination, in a single solution, of two or more of
these solutions to deal with Gaussian/non-Gaussian noise and linear/non-linear mod-
els. In the next section, we evaluate the performance of the localization prediction

techniques discussed in this work.

2.6 Performance Evaluation

2.6.1 Proposed Approach

In our approach, during the localization process, we assume that each vehicle ¢ periodi-
cally observes its current position (P;) at a step time ¢. Based on the knowledge of the
t — 1 steps, the prediction of a vehicle’s future position is given by target state estimate
P;(111), which will estimate the future position (X1, Yi(t41); Zie41)) for the next time
step t + 1. Regarding the Dead Reckoning approach, the future position prediction of
each vehicle is made by computing the coordinates Xj1), Yig41) and Zji41) by using
equations 2.6 and 2.7.

The parameters of the machine Learning algorithms have been adjusted through
plenty of simulation experiments. We aimed to obtain the best accuracy (less error
rate and suitable computational effort). For the NN and SVR, the input vector is
composed of (X, Yy, Zit, $¢), where Xy, Yy, and Z;; are the coordinates of the vehicle’s
current location and S; its current displacement speed. Thus, at each time step t
an input vector (X, Y, Zi,S;) is added to the set of training data along with the
t — 1 inputs. For each vehicle, the training is performed on the last ¢ — 1 training
inputs. Since during the initial experiments we observed that the SVR required a huge
additional time on training, we limited the training of this method to a window of
t — 13 inputs. This decreasing on the training size of the SVR was justified to achieve

a good accuracy in a suitable response time. Also, we noticed the trade-off in the
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free parameter selection and the computational effort for the NN and SVR. During
the initial experiments, when applying these methods, the changes in the parameters
values decreased the localization error of the predictions to considerable small values.
However, when decreasing the error, the computational time required for computing
the predictions increased in the inverse proportion. Thus, the heuristic adopted in
the parameters’ selection and size of training data was the compromise of keeping the
error rate in lower levels and, at the same time, keep the time required to compute
each prediction feasible to the use of the prediction in a real application.

The NN used in this work is composed of three layers. The input layer is com-
posed of four neurons to map the input vector of coordinates and speed of the ve-
hicle. By the initial experiments, we noticed that, to achieve the lower error rate
and suitable training time, the most suitable number of neurons for the hidden layer
was 1100. We also noticed the same behavior of NNs discussed in Kaaniche and
Kamoun (Kaaniche and Kamoun, 2010): variation in the number of neurons of the
hidden layer can affect the prediction accuracy. The output layer has three neurons,
corresponding to the coordinates of the predicted future position in € R3. We use the
tangent hyperbolic activation function for all neurons, since it provide a faster converge
to the learning algorithm (Bishop, 1995). The tangent hyperbolic activation function

is given by:

— ani (e = €EPE) — exp(=E)
O(8) = tanh(&) = S T erp(—) (2.33)

Since this function outputs values that range between [—1,1], to perform the

regression over the time series localization values, it is necessary to scale the values
of the coordinates also between [—1,1] using a scale factor. The training of the MLP
algorithm is performed in 400 epochs before each prediction. We also utilized a mo-
mentum value 0.89, and an adaptive learning rate with initial value 0.5 divided by
the activation function scale factor. The momentum parameter is used to prevent the
system from converging to a local minimum and the learning rate specifies how fast
the model adjusts itself to new case.

For the SVR approach, the key parameters that control the complexity of the
model are ¢, C', and the kernel function. The e parameter was set to 0.15 and we
noticed in our initial experiments that, decreasing this parameter leads to more accurate
results, however, the computational time increases in the inverse proportion. Since the
training of the SVR was made with a window of the last 13 past observations, the

parameter C' was set to 1300 encouraging exact fitting of the predictions. Regarding
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the kernel function, we used the radial basis kernel defined as:

—||P; — Pi|?
K(P, P) = expr(IE LI

), (2.34)
since the similarity of two examples is simply judged by their Euclidean distance. The
parameter o of the radial basis kernel determines the area of influence in which the
computed support vectors have over the data space and it is defined as 1.0 divided by
mean squared distance between the sample points training data.

The filtering approach is performed with Kalman or Particle filters. The Kalman

Filter has its linear system equations represented by:

Xi(t+1) ]_ O T O Xit
Y, 01 0T Y,
P — T+ | _ y tl o,
Six (t+1) 0010 Sixt
S; 00 0 1 S;
R B A I (2.35)
Xt
1.0 00 Y
Oy = X + bt
01 00 Sixt
\ I Sivt |

in which P represents the state of a discrete-time ¢, composed by the position (X;,Y;)
and velocity (S;x, Siy); o is a measurement value; w and b represent the process and
measurement, noise, respectively. For illustration purposes, the KF linear equations
are described R2. However, they can easily be applied to coordinate systems in R3. It
is important to notice that the KF used in this work does not have parameters to be
adjusted and, since this approach can fast converge to a good initial accuracy, there was
no need of prior simulation experiments and also training to obtain the best estimation
results for this method.

The Particle Filter used in the experiments is represented by the Algorithm 1.
The Particle Filter uses 1000 particles. This value was set based on some previous em-
pirical tests that showed that more than 1000 particles do not improve the predictions
significantly. It is important to notice that the PF does not require training. However,
during the initial experiments we observed that the PF required a huge initial time for

convergence of initial distributions to start computing accurate predictions.
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| Parameter | Value |
Simulation area 21600 mx 23728 m
Number of vehicles 33
Measurements Interval 1.5s
Number of Training Samples | 300
Number of Test Samples 300
Localization error 0.5m

Table 2.3. Localization prediction simulation parameters.

2.6.2 Methodology

The performance evaluation is performed through simulations using the NS-2 and the
default values are shown in Table 2.3. In all of the results, curves represent average
values, while error bars represent confidence intervals for 95% of confidence from 33
independent instances (33 different vehicles moving during the simulation). The per-
formance of the localization prediction methods presented in this work is performed in
a scenario where the vehicles’ mobility is simulated through a set of realistic vehicular
traffic data (Uppoor and Fiore, 2011). This data set (depicted in Figure 2.12) is based
on information provided by the TAPASCologne project (TAPASCologne, 2014), an
initiative by the Institute of Transportation Systems at the German Aerospace Center
(ITS-DLR). This project aims at reproducing, with the highest level of realism possible,

vehicular traffic in the greater urban area of the city of Koln, in Germany.
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Figure 2.12. Snapshot of the TAPASCologne dataset traffic status at 7:00 am,
in a 400 km? region of the city Koln (Uppoor and Fiore, 2011).

The evaluation methodology is divided into two phases. In the first phase, ac-
cording to the values of the data set of vehicular traffic, the simulation is started in time

21600s. After that time, according to the measurements’ interval value (step time ¢ to
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perform the prediction), each vehicle uses a number of 300 location samples to calibrate
the filter algorithms and train the machine learning methods. In the second phase, each
algorithm perform the predictions of the future positions during an interval of 300 con-
secutive localization samples, also according to the measurements time interval. To
simulate position computation inaccuracies, we introduced errors on the computed po-
sition of the vehicles by using a Gaussian distribution with mean equal to the actual
position of the vehicle and a standard deviation of 0.5m (Langendoen and Reijers,
2003).

2.6.3 Simulation Results

Regarding the benefits of localization prediction in several applications for VANets,
we evaluate in this work two scenarios that can severely influence the choice of the
prediction algorithm. The first scenario refers to the granularity of the location infor-
mation in terms of time. In this context, there are several types of VANet application
that require localization information in different periodicity. For instance, real-time
and non-real-time application. Thus, the choice of the prediction algorithm can also
be influenced according with its behavior regarding the level of periodicity, in terms of
required time granularity of location information. In the second scenario, we evaluate
the impact of localization errors in the vehicle’s computed position, since minimizing
these errors is the main goal of a localization system. Therefore, we evaluate how these
errors can affect the accuracy of the prediction algorithms. Since several applications
of VANets differ on the localization accuracy required in order to be able to function
properly (Boukerche et al., 2008), the same principle can be extended to localization

prediction in terms of the choice of the prediction algorithm.

2.6.4 The Impact of the Measurements Interval

To evaluate the impact of the measurements’ interval, we increase this parameter from
0.5s to 2s. Thus, when increasing the step time ¢ of the samples, we also increase
the total distance traveled by the vehicles from 2465m to 11174 m. As depicted in
Figure 2.13(a), the DR and the KF lead to a small error in the distance between
the predicted location and the real future location. While increasing the step time
of the localization samples, we can notice that the PF, NN, and the SVR leads to
a lower accuracy on the predictions. In this result, the small error on the predicted
distance achieved by the DR and the PF is explained by the Gaussian nature of the
introduced localization errors and also by the fact that, in the average, the localization

samples in our studied scenario has a strong linear characteristic. In Figure 2.13(b), we
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evaluate the MSE average of the prediction algorithms. The MSE is arguably the most
important criterion used to evaluate the performance of a predictor. The MSE assesses
the quality of an estimator in terms of its variation and degree of bias. In this result,
we can notice that the DR and the PF also lead to a small MSE, thus resulting in more
accurate predictions. Also in Figure 2.13(b), we can notice the disadvantage of PF,
NN and the SVR with a high increase in the MSE while increasing the measurements’
interval. In this case, these algorithms present a high error in the prediction due to
the Gaussian nature of the noise and the linear average of the samples, which affects
more the accuracy of these algorithms since their best performance is related to the

non-linear case.

1400 14000
£ 1200 |- 12000
: g
] 1000 10000 =
@0 - Distance - =
g B 800 [t -1 8000 2
k: = g
= 0 £

[
a = :
3 S
5] 2
% 5 - amme A
= 1 - _-_—_::.—.. TR
R 1 --_..-.u.ﬁ....---ﬁ-—"‘"""'""'a’
0 | |
0.5 0.75 1 1.5 2
Measurements Interval (s) Measurements Interval (s)
(a) (b)

Figure 2.13. Impact of the measurements’ interval in terms of distance.
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Figure 2.14. Impact of the measurements’ interval in terms of time.

We also evaluated the predicted time average, the time average required for the
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vehicles to reach the predicted locations. In terms of practical applications, the ideal
condition is that the predicted time must be as near as possible to the value of the
step time ¢t. As shown in Figure 2.14(a), we can notice that the DR, KF and PF give
results closer to the ideal expected time value, with a disadvantage for the PF when
the measurements’ interval are lower than 0.75s. In terms of the predicted distance
errors and the MSE, this result indicates that the distance of the predictions performed
by these algorithms are closer to the real location. However, as the PF has high errors,
it means that the predicted results point are more often in the wrong direction, while
the DR and PF, for this scenario, give more accurate results for both direction and
distance. Also in Figure 2.14(a), we can notice that the SVR presents results lower
than the expected values, meaning that the predictions in the average are lower than
the expected distance to the real location. The NN presents average results of the
predicted time greater than the expected values, which in this case represents that the
predictions in the average are more often in the wrong direction of the real location.
Another important factor to be considered for the application of localization
prediction in VANets is the computational time required to compute the predictions
at each time step. Also in terms of VANet applications and regarding the predicted
time, the computation of the predicted locations must be performed in a small amount
of time such that its use can be feasible. Regarding the computational time required
to perform the predictions, we can notice on Figure 2.14(b) that the DR, KF and PF
are more efficient. Thus, these algorithms can be applied also for lower capabilities
computational devices. Also, these algorithms do not require training and the DR
and KF have a fast initial convergence to accurate predictions. However, the PF
filter require an initial number of samples to the initial distribution of the particles
converge to accurate predictions. Regarding the Machine Learning algorithms, the
computational time required for the predictions is higher since these methods need to
perform training on the samples set to achieve accurate predictions. However, we can
notice that the computational time required for these algorithms while increasing the
measurements’ interval is almost constant and only correspond to a small fraction of
the time step t. This result indicates that the Machine Learning algorithms are also a

suitable approach.

2.6.5 Localization Prediction Behavior for the Measurements Interval

To illustrate the behavior of the localization prediction algorithms, we show some
snapshots of the resulting Vehicle Motion Vectors (M;). In these snapshots, the X and

Y axis correspond to the vehicle trajectory during the simulation and the predictions
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performed while the Z axis show the error of each prediction. To illustrate the behavior
of the predictions, in figure 2.15(a) we show a snapshot of 10 predictions performed
by all the algorithms illustrated side by side to compare them. In this result, we can
notice that booth DR and KF have a better accuracy in the prediction in terms of
the direction and the distance to the target location. The NN and the SVR also have
a good accuracy on the predictions, however, despite predicting the correct direction,
these algorithms have higher errors in the distance between the predicted and the target
location of the vehicle. The PF filter also has good accuracy on the predictions but is
more affected by errors in the distance and the direction of the predictions due to the
linear characteristic of this scenario.

With a snapshot of 300 predictions, in Figures 2.15(b) and 2.15(¢) we can notice
the best accuracy achieved by the DR and the KF for linear and non-linear trajectories.
In terms of linear samples, this algorithm have the best estimations in terms of distance
and direction of the predictions. The accuracy of these algorithms is only affected
by changes in the vehicles speed and when the vehicle trajectory changes to non-
linear very fast. However, due to the nature of the Gaussian localization errors, these
algorithms have the best accuracy also in terms of non-linear trajectories and they have
the advantage of a fast recovery when the trajectory turns back to linear.

In Figure 2.15(d), we can notice that the NN has a good accuracy for linear
trajectories and the errors correspond in more cases to distance to the correct loca-
tion. However, the NN is more affected by sudden and abrupt changes in the vehicle’s
trajectories which leads to high errors in the direction of the predictions. Also, we
noticed that in all of the simulations, these changes constantly affect the performance
of the NN since this algorithm require more samples to converge again to accurate
predictions. The SVR also achieved good accuracy as shown in Figure 2.15(e). Also,
we noticed in the simulations that the SVR is more accurate when the trajectories are
more non-linear and this algorithm is more efficient for abrupt changes in the vehicle’s
trajectories, achieving the best results in this case. However, in the average, the errors
in the distance to the correct location affects strongly the performance of the SVR.
As depicted in Figure 2.15(f), the PF has a good accuracy for linear and non-linear
trajectories. Most of the errors in the predictions done by this algorithm are related to
errors on the directions of the predictions. The reason is that the non-Gaussian nature
of the Particle Filter results in reducing a small fraction of the introduced Gaussian
errors. Also, regarding the NN, SVR and the PF, the non-linearity nature of these
algorithms results in a lower accuracy when compared to the DR and KF since, in
the average, the trajectories in the analyzed VANets scenarios are mostly linear in the

average.
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Figure 2.15. Impact of the measurements’ interval on the computed predictions.
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2.6.6 The Impact of the Localization Errors

To evaluate the impact of the localization error, we increase this parameter from
1m to 5m. Thus, when increasing the errors in the computed positions, we analy-
ses how this introduced errors interfere on the predictions’ accuracy. Since we keep
the same time step for the predictions, the trajectories of the vehicles in this sce-
nario will be the same, thus the total distance traveled by the vehicles keeps constant
with an average of 10275 m. In this context, an interesting result can be seen in Fig-
ures 2.16(a) and 2.16(b): the prediction accuracy of the PF and NN is almost constant
while increasing the errors in the current computed positions of the vehicles. In this
result, these algorithms are not highly affected by the Gaussian noise introduced on the
location of the vehicles while the KF, DR and specially the SVR, are highly affected by
the introduced localization errors. Also, we can notice that, in terms of the predicted
distance error and the MSE the KF filter leads to more accurate results followed by the
DR. However, when the localization errors are greater than 4 m the DR algorithm has
an accuracy closer to the PF and NN. Also, we can notice that, for localization errors
greater than 5m, the KF tends to be less accurate than the PF and NN. Regarding
these results, for high localization errors, the non-linear nature algorithm like PF and
NN seem to be more suitable for high levels of localization errors. The main reason
for that relies on the fact that, despite the Gaussian nature of the localization errors,
for high values of errors, the linear trajectories start becoming non-linear due to the

interference of the noise on the computed positions.
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Figure 2.16. Impact of the localization errors in terms of distance.

As shown in Figure 2.17(a), we can notice that the DR, KF and PF give results
closer to the ideal expect time values. Also, we can notice a disadvantage for the DR

when the localization errors are greater than 3m. In terms of the predicted distance
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Figure 2.17. Impact of the localization errors in terms of time.

errors and the MSE, this result indicates that the size of the predictions regarding
distance are closer to the real distance. Also, in Figure 2.17(a), we can notice that
the SVR presents results lower than the expected values. In this case, the localization
errors make the SVR algorithm perform predictions in the average lower than the
expected distance to the real location and, consequently resulting in a prediction time
shorter than the expected values. On the other hand, the NN present average results
of the predicted time greater than the expected values in the average.

Regarding the computational time required to perform the predictions, we can
notice on Figure 2.17(b) that the DR, KF and PF are more efficient as well when
increasing the localization errors. Also, this result was expected since these algorithms
do not require training and the DR and KF have a fast initial convergence to accurate
predictions. Regarding the Machine Learning algorithms, the computational time re-
quired for the predictions is also higher when increasing the localization errors, due to
the time required to perform training on the samples set. Another interesting result can
be seen in Figure 2.15(d): the computational time decreases in the SVR while in the
NN it remains almost the same. For the NN, the main reason for this behavior is the
fact that the training of the MLP algorithm is performed in constant 400 epochs before
each prediction. The decrease in the SVR computational time required is explained by
the fixed ¢ parameter introduced to measure the deviation of training samples outside
e-insensitive zone. In this case, the introduced localization error makes the localization
samples become more sparse and the SVR algorithm is able to find faster the support
vectors. However, the accuracy of the selected support vectors is highly compromised

by such localization errors.
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2.6.7 Localization Prediction Behavior for the Localization Errors

We also show some snapshots to illustrate the behavior of the localization prediction
algorithms for the introduced localization errors. In figure 3.8(c) we show a snapshot
of 10 predictions performed by all the algorithm side by side to compare them. In
this result, we can notice that besides affecting the computed position of vehicles, such
errors also affect the accuracy of all the prediction algorithms. Therefore, we can notice
that the introduced localization errors affect the nature of vehicle’s trajectories since it
start becoming more non-linear. In this result, we can notice that the NN, KF', and the
PF are able to give better accuracy predictions in terms of direction and distance to
the target location. We also can notice that booth DR and SVR are more affected by
such localization errors when compared to lower levels of errors. In this scenario, the
KF is affected by the localization errors with more predictions in the wrong direction.
However, the KF is still able to give the best results.

With a snapshot of 300 predictions, in Figure 2.18(c), we can notice that the
best accuracy is achieved by the KF for linear and non-linear trajectories. We can also
notice that the KF has the best estimations in terms of distance and direction of the
predictions for the localization errors introduced. As can we see in Figure 3.8(d), the
accuracy of DR is highly affected by such localization errors, since it only uses the last
known position to compute the predictions. In these algorithms, we can notice that
the localization errors affect the accuracy in all aspects since the linear trajectories
start becoming non-linear, even with a Gaussian nature localization errors. However,
in this scenario these algorithms still present the best accuracy in terms of non-linear
trajectories and they have the advantage of a fast recovery when the trajectory turns
back to a linear trajectory for small localization errors.

In Figures 2.18(d) and 2.18(e), we can notice that the NN and PF have a good
accuracy for linear and non-linear cases being able to overcome the localization errors
in almost the same level of DR and KF. For higher localization errors the NN and the
PF will overcome the DR and KF with the best accuracy in the localization predic-
tion. However, the NN is still affected by sudden and abrupt changes in the vehicle’s
trajectories which leads to high errors in the direction of the predictions. Finally, as
shown in Figure 2.18(f), the SVR is more affected by the localization errors, especially
when the trajectories are linear. In this case, the localization errors introduced turn
the localization samples more sparse and the SVR algorithm is able to find faster the
support vectors, due to the fixed ¢ parameter to measure the deviation of training
samples outside e-insensitive zone. However, these support vectors are not the best

options, thus resulting in a low accuracy. For the Machine Learning algorithm, the
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Figure 2.18. Impact of the localization errors on the computed predictions.

interference of localization errors indicates that, regarding the behavior of the results,



2. LOCALIZATION PREDICTION IN VEHICULAR AD HoCc NETWORKS 46

the best alternative to overcome such limitations is the introduction of methods for

dynamic parameter selection.

2.7 Sumary

In this Chapter, localization prediction were studied from the viewpoint of VANets.
We discussed how these localization predictions methods can improve most VANet
applications, especially critical ones. We surveyed proposed approaches for localization,
target tracking and time series prediction techniques that can be used to estimate
the future position of a vehicle. A number of localization prediction methods are
available to be used by vehicles to estimate future positions: Dead Reckoning, Neural
Networks, Support Vector Regression, Kalman Filter and Particle Filter. All of these
techniques have their pros and cons. In this work we argue that localization prediction
for VANets as an extension of a Data Fusion localization system is a feasible approach to
circumvent the problem of disseminating outdated localization information in vehicular
networks. We then show how localization prediction techniques can be used to compute
accurate predicted positions based on a number of relatively inaccurate sample position

estimations.



Chapter 3

A Prediction-based Routing
Algorithm for Vehicular
Ad Hoc Networks

3.1 Introduction

A major challenge in VANets is to provide reliable information exchange between ve-
hicles with strict delay constraints. For emergency applications in VANets, people’s
safety is a key factor and must be considered. In certain scenarios, in cases of collisions
and accidents, alert messages must be delivered in time to prevent further hazards.
The high speed of vehicles is another specific challenge in VANets, which motivates
the research for new data communication algorithms, since traditional protocols for
Ad Hoc and MANet do not have satisfactory performance when applied to vehicular
networks, due to their highly dynamic topology (Li and Wang, 2007).

In this Chapter, we consider a vehicle predicted location as its direction and speed
at a given future time step (vectorial trajectory). We them propose a new Routing al-
gorithm for data communication in VANets: the LPRV (Localization Prediction-based
Routing for VANets) algorithm. The main idea of the proposed LPRV algorithm is
to exploit the knowledge of vehicles predicted locations and a digital map as metrics
to forward data packets, without the need for exchanging additional control message.
We evaluate the performance of the proposed algorithm using the NS-2 simulator in
comparison to both classic Flooding and SIFT (Labiod et al., 2010) (Simple Forward-
ing over Trajectory) algorithms. We also present an extensive set of experiments that
clearly demonstrate the efficiency of our proposed solution in different scenarios, espe-
cially in terms of delivery rate, number of hops and delay, while maintaining a reduced

number message transmissions.
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The remaining of this Chapter is organized as follows. Section 3.2 describes the
related work regarding position-based and geocast routing. Section 3.3 presents our
LPRV algorithm, whereas Section 3.4 describes its performance evaluation. Finally,

Section 3.5 presents our conclusions.

3.2 Related Work

Position-based routing has been identified as one of the most promising routing
paradigms for VANets (Li and Wang, 2007). In this approach, packets are for-
warded using the vehicles geographic location, which can be obtained through the
use of on-board navigation systems (GPS), maps, mobility and traffic models. The
GPSR (Karp and Kung, 2000) (Greedy Perimeter Stateless Routing) is one of the most
well-known position-based routing protocols. It combines greedy forwarding with face
routing to reach destinations where greedy forwarding fails. One main drawback of the
GPSR protocol is the interference caused by buildings and other obstacles in urban sce-
narios, generating failures in greedy forwarding process, since direct communications
between nodes may not exist. The A-STAR (Liu et al., 2004) (Anchor-based Street and
Traffic Aware Routing) position-based routing protocol was proposed to overcome such
interferences in city environments. A-STAR uses digital maps to compute a sequence
of crossing points (anchors), through which a packet must visit to reach its destination.
This algorithm also explores traffic awareness to ensure a higher probability of delivery
success. Results indicate that A-STAR has the best performance when compared to
GPSR, since it can select paths with higher connectivity for packet delivery. However,
the A-STAR algorithm needs to keep streets’ traffic information updated to compute
the anchors. This means an additional overhead since cities can change the buses fleet
according to its demands. The TBF (Niculescu and Nath, 2003) (Trajectory-Based
Forwarding) is a position-based routing protocol that first introduced the idea of us-
ing a predefined map trajectory (path) to guide routing decisions and forward packets
along a predefined path. The source specifies the trajectory in a packet and based on
the neighborhood location information, a forwarding node makes a greedy decision to
determine the next hop that is the closest to the trajectory.

An approach based on the position-based routing, the Geocast (Maihofer, 2004),
has attracted interest in several VANet applications, mainly related to safety (accident
alerts and prevention). In geocast, messages are also forwarded via location infor-
mation, however, packets are delivered to all nodes in a given geographical region.
Classic Flooding is a well-known routing protocol that can also be used to deliver

packets to a geocast region. In this approach, all network nodes propagate a partic-
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ular packet until it is received at its final destination. The classic Flooding was not
originally proposed as a geocast routing protocol, however, it is useful for comparison
with other geocast protocols and it is a building block for many of them (Maihofer,
2004). The SIFT (Labiod et al., 2010) (Simple Forwarding over Trajectory) protocol
uses trajectory-based routing in order to achieve scalability. SIFT computes the short-
est path between source and destination (geographical region) through a digital map
to forward packets and limit broadcasting at the computed path, without exchanging
any control messages among network nodes. This protocol uses the nodes’ distance
to the shortest path to guide data forwarding and, also as a contention mechanism to
avoid unnecessary transmissions.

As in our proposed solution, position-based and geocast routing protocols in the
literature are mainly based on the knowledge of vehicles location and digital maps to
forward data packets. However, these studies do not consider vehicles predicted future
locations as metric for data communication in VANets, which is the main motivation

of this work.

3.3 Localization Prediction-based Routing for VANets — LPRV

In this section, we propose a new routing algorithm for data communication in VANets:
the LPRV (Localization Prediction-based Routing for VANets) algorithm. The main
idea of the proposed LPRV algorithm is to exploit the knowledge of vehicles predicted
future locations as a metric to forward data packets, without the need for exchanging
any extra control message, since trajectories are sent along with the packets. To avoid
the broadcast storm problem, the LPRV algorithm also takes advantage of a digital map
to limit the scope of message exchanges in the shortest path for vehicles between source
and destination, thus avoiding unnecessary transmissions. Since predicted locations
are encoded in the packets, only nodes with future computed positions closer to the
destination are chosen as next hop of a forwarding a packet. To ensure the election
of the best trajectories in the packet forwarding, the proposed algorithm computes a
contention time in which the farthest nodes in a given path segment wait more time
than the closer nodes, thus ensuring better greedy forwarding decisions. This will be

further discussed and defined below.

3.3.1 Preliminary Definitions

In this section, we formally present the concepts used in this work.
Definition 1 (Vehicular Ad Hoc Network): we define a VANet as an Euclidean

graph G = (V| E,r), where |V| = n is the number of nodes and r is the communication
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range; V = {vg, v1, v, ..., 0,1}, where {vg,vy,...,v,_1} is the set of vehicles; (i, j) €
E iff v; reaches v;, in other words, v; is inside the communication range 7 of a node v;;
and Vv; € V, (X¢;, Y, Zc;) € R3 is the computed position of nodes v; (i.e., using a

localization system).
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Figure 3.1. LPRV Forwarding: network nodes definition, location and trajec-
tory.

Definition 2 (Vehicle Future Location Prediction - P;): Is the prediction of a ve-
hicle ¢ future position. It can be defined as a time series regression forecasting problem
and also can be formulated as a target tracking problem. In this work we consider
a vector that represents the movement of a vehicle 7 from its current position to a
future computed position. This trajectory can be a line, a curve or any other trajec-
tory that can be mathematically expressed. For the sake of simplification, we consider
that a vehicle will maintain the trajectory of a straight line. This line is defined as
P = ((Xe¢,Ye, Ze;), (Xd;, Yd;, Zd;)) (as depicted in Figure 1), where (X¢;, Ye;, Z¢;)
is the current vehicle’s position, (Xd;, Yd;, Zd;) is the next estimated position direc-
tion and s; its displacement speed. We also define a function P;.distance(Dy) which
computes the shortest distance from the line P; (trajectory) to the packet destination
point Dy, based on the Euclidean geometry distance computation from a line to a
point. As we showed in Chapter 2, the prediction of a vehicle future position can be
accurately computed using target tracking and time series approaches. In addition,
according to Barrios and Motai (2011) a future location of an automobile can also be
accurately predicted using a combination of Global Positioning System (GPS), Geo-
graphic Information System (GIS) and Kalman Filters (KFs). Also related, as shown
in (Gning and Bonnifait, 2004), such trajectory information can be obtained by the
combination of dead reckoning and in-vehicle sensors.

Definition 8 (Digital Map): digital road map is defined as a directed graph M =
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(A, S), where A = {ag,a1,as,...,a,} is the set of vertices (e.g. crossings in a urban
area) and Va; € A, (Xa;,Ya;, Za;) € R? is a vertex location, (i,j) € S iff exists a
path from a; to a;, in other words, exists a street on the map where a vehicle v; € V,
starting passing by a; can reach a;. We define the function M.shortestPath(as, aq)
which returns a set of vertices A’ U A corresponding to the shortest path between the
starting vertex as and the destination vertex ay (as shown in Figure 2). We also
define the function M.lastVertex(FP;), which returns the last visited vertex and the
next vertex to be visited by the trajectory P;.

A

| v
<- (Xa,,Ya,Za,) <-
<. ............. .. pa.

(Xa, Ya,Za,)

Figure 3.2. Digital map and the shortest path function example:
M .shortest Path(as, as).

3.3.2 The LPRV Algorithm

Our proposed LPRV algorithm, shown and explained in Algorithm 2, is divided into
three operating phases: send, reception, and forward. The first phase starts when the
application generates a data packet to be forwarded to a destination region (Lines 1-6).
The destination D; is chosen by the application and it refers to a monitoring station
or an area to report an event, such as when a vehicle collision occurs. This packet
contains, among other information, the node future position and displacement speed
(P; and s;, Line 4), the initial vertex on map where the packet was generated, and it
is sent by broadcast to all nodes in the one-hop neighborhood (Line 6).

The next two phases start when a node receives a packet (Lines 7-8). First, it
is verified if the position of the current node is within the packet’s destination area
(Lines 9-12). 1If so, the packet is received (reception phase). Otherwise, the for-
ward phase is started by checking if the current node has never forwarded this packet
(Line 13). If this condition holds, the node updates its forward table, trajectory and

speed information, the last visited vertex, and the next vertex to be visited in the
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Algorithm 2 The LPRV Algorithm

> Input:
1: Node v; sends a packet with id pktid; to D;.
Action:
2: pktid, + nextPktID(); {Packet id}
3: sre; v Dy« (X4, Yy, Za, Range); {source node and destination}
4: P; « predicLocation(); s; + speed();{Node future position and speed}
5: startM; < Map.lastVertex(P;); {Course starting vertex}
6: Broadcast packet(pktid,, sre;, D;, P;, s;, startM;, data);

> Input:

7: Node v; receives a packet with id pktid; addressed to Dy, area.
8: msg, < packet(pktid,,, src, Dy, Py, sk, startMy, data);

Action:

9: Lp; « (X¢j, Yej, Zej); {Position of the current node}
10: if Lp;.distance(Dy) < Di.Range then {Node within dest area}
11:  receive(msgy); {Current node receives the packet}
12: end if
13: if (srey, pktid,) ¢ Fwd; then {IF: the node never forwarded the packet}
14:  Fwd; + Fwd; U (sreg, pktidy,); {Update the forward table}
15:  Pj < predicLocation(); s; < speed(); {Node trajectory and speed}
16:  lastM; < Map.lastVertex(P;); {Last visited vertex}
17:  nextM; < Map.nextVertex(F;); {Next vertex to visit}
18:  if (lastM; € Map.shortest Path(startMy, Dy)) V(nextM; € Map.shortestPath(startMy, D))

then {IF: node trajectory is in the shortest path}
19: if P;.distance(Dy) < Py.distance(Dy) then {IF: node trajectory is more closer to

destination}

20: time; <— dwmm(es(ffg;eth); {Time to next vertex}
21: Broadcast packet(pktid,,, srcy, Dy, Pj, s;, startMy, data) in time;; {Forwards the packet}
22: end if
23:  end if
24: end if

digital map based on its trajectory (Lines 14-17). These two vertices are used to verify
if the current vehicle’s trajectory is in the computed shortest path on the digital map
(Line 18). The current node’s trajectory is also compared with the trajectory of the
last node that forwarded the packet in order to verify if the current node’s trajectory
is closer to destination area (Line 19). This comparison basically consists of comput-
ing the shortest distance from each line to a point based on the Euclidean geometry
(Definition 2). If the current node has a better trajectory, a time for this node to the
next vertex in the digital map is computed (Line 20). This time is used as a broadcast
storm contention mechanism. This strategy forces the nodes closer to the destination
area to forward their packets first, preventing nodes with farther trajectories from for-
warding unnecessary packets (as depicted in Figure 3.3.2). The parameter « is an
environment adaptation parameter to adjust the contention time value in the same
scale of the network packet delay. It can be dynamically computed using the difference

of base 10 logarithms of both values (e.g. time; < 108 timei—logphtDelay;) - Finally, when
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the contention time expires, the packet is forwarded via broadcast to all nodes in the
one-hop neighborhood (Line 21). This process is repeated until the packet reaches its

destination.

Figure 3.3. LPRV Forwarding: choice of the trajectory closer to destination and
contention time computing.

It is important to note that this work focuses mainly on simple packet forwarding.
We consider this approach more suitable for VANets scenarios since the LPRV algo-
rithm does not use any control messages to find destination nodes, maintain routing
paths, and report errors. Traditional end-to-end routing schemes that try to main-
tain routes between source and destination nodes are not very efficient in VANets due
to the high mobility of nodes. Finally, the LPRV algorithm can be easily adapted
to reply to data queries (Boukerche and Nikoletseas, 2004), likewise in Wireless Sen-
sor Networks where the sink node sends a query (which is disseminated by flood-
ing) to the sensor network, as if it was a distributed database system (i.e., sensor
databases (Hong and Madden, 2004)).

3.4 Performance Evaluation

3.4.1 Methodology

The performance evaluation is performed through simulations using the NS-2. We eval-
uate the performance results of our proposed algorithm, in comparison to both classic
Flooding and STFT algorithms, in terms of network scale, delivery ratio, delay, number
of hops, and packet traveled distance. The default values for our simulation parameters
are shown in Table 1. In all the results, curves represent average values, while error

bars represent confidence intervals for 95% of confidence from 33 independent instances
(seeds).
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| Parameter | Value |
Simulation area 1000 mx 1000 m
Number of nodes 700
Communication range | 100 m
One hop delay 0.1s
Non-determ. errors 30 us
Vehicles’ speed 7-40km/h

Table 3.1. LPRV simulation parameters.

As in Labiod et al. (2010), the simulation field map represents a simple grid-
shaped urban scenario. Network nodes are distributed on a 1000 mx 1000 m rectangular
simulation area. The road map is a 10x10 one-way streets grid, where two parallel
streets always have opposite direction of traffic between each other. We assume that
each vehicle travels these streets with speeds from 7km/h to 40 km/h. Thus, vehicles
are allowed to overtake each other. We also defined four source/destination targets
where packets need to be forwarded from: S; = (0,0,0) to D; = (800,800,0), from
Ss = (900, 100,0) to Dy = (100,800, 0), from S = (900, 900,0) to D3 = (100, 100, 0)
and from S, = (100, 900, 0) to D4 = (800, 100, 0) according to the Cartesian coordinate
system of the simulation area (as shown in Figure 4). It is important to notice that,
although the choice of random source/destination targets can improve the average
results, we choose to analyze the worst case for data delivery points in terms of distance.
In addition, we consider that the application generates a data packet when reporting
information to a monitoring station, such as when a vehicle collision occurs. Also, these

points are not stationary and they may vary depending on the algorithm’s application.

omese  w e o ooe o @ oemer mee o o 3 we
1 [} :

Figure 3.4. Simulation scenario: vehicles nodes, packets’ source and destination
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Regarding the network topology, we assume that node location initially obeys a
disturbed grid, in which the location of each node in the streets node is disturbed by
a random zero-mean Gaussian error. Therefore, nodes will tend to uniformly occupy
each street without forming a regular line. Finally, to simulate delay measurement in-
accuracies we disturbed the mean delay by a standard deviation of 30 us (Maroti et al.,
2004).

3.4.2 The Impact of Network Scale

Scalability is evaluated by increasing the network size from 350 to 1000 vehicles. As
shown in Figure 3.5(a), we can notice that the Flooding algorithm is able to deliver
almost all packets after 450 nodes. This result is explained by the characteristic of
this algorithm of always delivering packets if there is connectivity between source and
destination. Our LPRV algorithm has a higher data delivery rate, being higher than
the SIFT algorithm. In this case, with small-scale network, these two Algorithms
are affected by the existence of intermittent connectivity at computed delivery paths,
while the Flooding algorithm can deliver packets by bypassing these areas through
detour paths. However, a disadvantage of Flooding is highlighted in the number of
transmitted packets when increasing the network scale (as shown in Figure 3.5(b)). In
this result, we can see the reduced number of transmitted packets achieved by both
LPRV and SIFT algorithms where the SIFT algorithm has a small advantage. This
result is mainly due to the limited packet broadcast proposed in these solutions without
the need for exchanging additional control message.

Figure 3.5(¢) shows that our LPRV algorithm outperforms the other algorithms by
using fewer hops to deliver packets. Since predicted trajectories closer to the destination
are selected to forward packets, LPRV can deliver packets via the shortest paths, as well
as by greedy forwarding algorithms. Additionally, the lower average number of hops in
the delivered packets achieved by LPRV is also due to its characteristic of choosing only
predicted future positions located on the shortest path for vehicles between source and
destination. As we can see in Figure 3.5(d), the choice of best trajectories performed
by the LPRV algorithm also leads to a smaller distance traveled by the packets. These
results show the benefits of using vehicles predicted future locations as a metric for

data communication, demonstrating that our LPRV algorithm is scalable.

3.4.3 The Impact of Vehicle Speed

To evaluate the impact of vehicle speed, we increase this parameter from 20km/h to

80km/h. As shown in Figure 3.6(a), we can see that the Flooding algorithm is not
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Figure 3.5. Impact of the network scale.

affected by the vehicles speed. However, the SIFT algorithm is highly affected by
this increase while the LPRV algorithm can achieve a higher delivery rate, being less
affected by the increase in the vehicles speed, since it actually uses the knowledge of the
vehicles speed to forward packets. The delivery rate decrease in these two algorithms
is explained by the increase in the vehicles speed, which generates a higher number of
regions with intermittent connection. In Figure 3.6(b), we can highlight again the high
number of packets transmitted by the Flooding algorithm, while the SIF'T algorithm
and LPRV perform less packet transmissions due to their limited broadcasts.

Figure 3.6(c) shows that increasing the vehicle’s speed does not affect the num-
ber of hops traversed by packets in all analyzed algorithms. LPRV presents better
performance in terms of the number of hops required to deliver packets, since it uses
predicted trajectories closer to the destination to forward packets considering the speed
of the nodes, and also by choosing only predicted future positions located on the short-
est path for vehicles between source and destination. As shown in Figure 3.6(d), the
LPRV algorithm also has a lower delay in delivered packets due to the increase of the
nodes speed, which reduces the waiting time for the contention of the packets, thus

resulting in a shorter data delivery delay. The SIFT algorithm has a higher packet
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Figure 3.6. Impact of the vehicles speed.

delay since its contention mechanism does not consider the vehicle’s speed.

3.4.4 The Impact of the Communication Range

To evaluate the impact of the communication range, we increase this parameter from
90m to 160m. After a communication range of 120m, almost 100% of the packets
are delivered in all algorithms (as shown in Figure 3.7(a)). This is due to the fact
that a greater coverage area is achieved when increasing the communication range,
which results in fewer areas with intermittent connectivity. For a communication range
bellow 120 m, we can notice that the SIFT algorithm is the most affected while the
LPRV algorithm can deliver more packets. As the LPRV algorithm uses predicted
locations to verify if a vehicle is in the shortest path area, a larger coverage area is
achieved when compared to the use of node’s location, making the LPRV algorithm
more robust to areas with intermittent connectivity. As shown in Figure 3.7(b), the
Flooding algorithm has a higher decrease in the packet delay with the increase in the
communication range. The SIFT and LPRV algorithms have a constant packet delivery

delay when increasing the communication range due to the contention time introduced.
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However, the LPRV algorithm is able to deliver packets with lower delay.
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Figure 3.7. Impact of the communication range.

Figure 3.7(c) shows that the number of hops used to deliver packets decreases in
all analyzed algorithms, with a slight advantage to LPRV. This decrease was expected
since with the increase of the communication range, a greater coverage area is achieved,
thus resulting in fewer hops required to deliver packets. As we can see in Figure 3.7(d),
the increase in the communication range also decreases the distance traveled by the
packets in all algorithms with an advantage to the LPRV algorithm. In these results,
the better results obtained by the LPRV algorithm show the use of vehicles predicted
future localization an efficient strategy in terms of communication range, since the
benefits of the increased coverage area are combined with the advantages of forwarding

packets through predicted trajectories closer to the destination.

3.4.5 The Impact of Hop Delay

Hop delay refers to the processing time of the node before forwarding a packet (i.e.,
to compute its location and predict the trajectory, and to access the digital map).

To evaluate the impact of this delay, we vary this parameter from 0.1s to 0.8s. As
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depicted in Figure 3.8(a), this delay affects the number of transmitted packets in the
LPRV algorithm and especially in the STFT algorithm, since the increase in packet
delay leads to more frequent network topology changes. The LPRV algorithm has
better results compared to the SIFT algorithm due to the use of the vehicles predicted
locations, resulting in less impact on network topology changes. As can be seen in
Figure 3.8(b), the increase of the packet delay does not affect the algorithms analyzed
in this work in terms of transmitted packets. In this result, we can see the reduced
number of transmitted packets achieved by the LPRV and SIFT algorithms, in which
the SIFT algorithm has a small advantage. Also, this result shows that the LPRV
algorithm and the SIFT algorithm have a reduced number of transmitted packets for

the different VANet scenarios analyzed.

100 4—rrrsli—— A S

S @
Tn/ 80}_, ,,,,,,,,,,,,,,, B % 500
[0} © L .
G B0 [ T T @ 400 SIFT =--&-~
o b ® 300 Flooding & -
4OPmmmm @iy = LPRV —>¢—
kS SIFT St S § 200 [ e S '
2 20 F Flooding : A TR 00 e e 3
= © 100
I LPRV —>— = ?9 """ O S
Q o 1 1 0 1 1 1
0.1 025 045 0.65 0.85 01 025 045 065 0.85
Hop Delay (s) Hop Delay (s)

-
-

-
-

_____
________
,,,,,

E3 SIFT =-Qma 2 4T SIFT =-G-= 7]
=12 Flooding --As S Flooding :--:A: |
:ll‘(l) """"""""""""" | LPRV H&!I
0.1 025 045 0.65 0.85 0.45 0.65 0.85
Hop Delay (s) Hop Delay (s)

(c) (d)

Figure 3.8. Impact of the hop delay.

Figure 3.8(c) depicts that the number of hops to deliver packets has a small
decrease in all analyzed algorithms, with an advantage to LPRV. For all analyzed sce-
narios in this work, the use of vehicles predicted future locations and by choosing only
trajectories located on the shortest path for vehicles between source and destination

leads to a few hops used in packets delivery. Finally, as we can see in Figure 3.8(d),
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the LPRV algorithm has a small delay in the delivered packet when increasing the one
hop delay. This result shows that the LPRV algorithm introduces a lower packet delay

in the different VANet scenarios analyzed.

3.5 Sumary

In this Chapter, we proposed a new VANet routing algorithm that uses the knowledge of
the vehicles predicted locations to improve the routing performance in several aspects.
In our algorithm, called LPRV (Trajectory-based Routing for VANets), we exploit the
knowledge of vehicles predicted future locations and a digital map as metrics to forward
data packets, without the need for exchanging any control message. We presented an
extensive set of simulation experiments comparing our proposed solution to both classic
Flooding and SIFT algorithms. The obtained results demonstrated the efficiency of
the proposed solution for different VANet scenarios and the benefits of using vehicles
predicted locations as a metric for data communication, especially in terms of delivery

rate, number of hops and delay, with a reduced number transmitted packets.



Chapter 4

Conclusions

This Chapter summarizes the thesis proposal conclusions and future research directions.
We first present the thesis conclusions in Section 4.1. Then, in Section 4.2, we present
the future directions of this work, and we finish the document by presenting, in Section
4.3, the list of produced works and publications we achieved during the conception of
this thesis.

4.1 Final Remarks and Summary of Contributions

In this work, localization prediction were studied from the viewpoint of Vehicular Ad
Hoc Networks (VANets). We discussed how these localization predictions methods
can improve most VANet applications, especially critical ones. We surveyed proposed
approaches for localization, target tracking and time series prediction techniques that
can be used to estimate the future position of a vehicle. A number of localization
prediction methods are available to be used by vehicles to estimate future positions:
Dead Reckoning, Neural Networks, Support Vector Regression, Kalman Filter and Par-
ticle Filter. All of these techniques have their pros and cons. In this work we argue
that localization prediction for VANets as an extension of a Data Fusion localization
system is a feasible approach to circumvent the problem of disseminating outdated lo-
calization information in vehicular networks. We then show how localization prediction
techniques can be used to compute accurate predicted positions based on a number of
relatively inaccurate sample position estimations.

As a general conclusion, the Dead Reckoning, Kalman Filter, and Particle Filter
have shown best computational performance in terms of response time. The Machine
Learning methods also showed a viable computational effort for computing the pre-
dictions. For lower localization errors, the Dead Reckoning and the Kalman Filter
achieved the best accuracy in the predictions due to the fact that the trajectories in

the realistic VANet scenario analyzed are strongly linear. However, when introduc-
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ing high levels of localization noise, Particle Filters and Neural Networks successfully
filtered the errors associated to the target prediction estimation. Consequently, the
Particle Filter and Neural Networks tends to outperform the Kalman Filter as the lo-
calization error increases since such Gaussian errors can affect the linear aspect of the
vehicles’ trajectories.

We also proposed a new VANet routing algorithm that uses the knowledge of the
vehicles predicted locations to improve the routing performance in several aspects. In
our proposed LPRV algorithm, we exploit the knowledge of vehicles predicted future
locations and a digital map as metrics to forward data packets, without the need for
exchanging any control message. We presented an extensive set of simulation experi-
ments comparing our proposed solution to both classic Flooding and STFT algorithms.
The obtained results demonstrated the efficiency of the proposed solution for different
VANet scenarios and the benefits of using vehicles predicted locations as a metric for
data communication, especially in terms of delivery rate, number of hops and delay,

with a reduced number transmitted packets.

4.2 Directions for Future Research

This work leads to some particularly interesting directions. The first is to properly
characterize the trajectories nature in terms of linear/non-linear samples, so that we
can understand the expected magnitude, direction, and orientation of the error result-
ing from localization prediction algorithms. Such knowledge allows us to improve the
localization prediction methods that use such information to compensate and reduce
the impact of prediction errors. The second is related to the localization errors on the
computed position of the vehicles, which extremely affects the performance of a predic-
tor algorithm. Therefore, even though these approaches tackles different processes and
measurement models, an interesting alternative to improve VANets services through
localization prediction can be combining, in a single solution, two or more solutions to
deal with Gaussian/non-Gaussian noise sources and linear/non-linear trajectory mod-
els.

Regarding our LPRV algorithm, the results are very promising, but some limi-
tations still need to be further exploited as future work. First, we will evaluate our
solution using real world vehicular mobility data and the interference of buildings on
the wireless link. Then, we will evaluate the performance and the computational cost
of the proposed solution using several methods for predicting vehicle future location
and evaluate the impact of errors introduced by such algorithms for linear/non-linear

models subjected to Gaussian/non-Gaussian noise sources.
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e Conferences papers:
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Appendix A

(GGlossary of Terms

A-STARAnchor-based Street and Traffic Aware Routing.
BP Back Propagation algorithm.

DR Dead Reckoning.

EKF Extended Kalman Filter.

GNSS  Global Navigation Satellite System.
GPS Global Positioning System.
GPSR Greedy Perimeter Stateless Routing.

ITS Intelligent Transportation Systems.
KF Kalman Filter.
LPRV  Localization Prediction-based Routing for VANets.

MANet Mobile Ad hoc Network.

MLNN Multilayer Feed Forward Neural Network.
MLP Multilayer Perceptron.

MSE Minimum Squared Error.

NN Neural Network.
NS-2 The Network Simulator - ns-2 v2.34.

PF Particle Filter.

SIFT Simple Forwarding over Trajectory.
SVM Support Vector Machines.
SVR Support Vector Regression.
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TBF Trajectory-Based Forwarding.

UKF Unscented Kalman Filter.

V2I vehicle-to-vehicle.

vV2v vehicle-to-vehicle.

VANet Vehicular Ad Hoc Network.
VC Vapnik-Chervonenkis theory.

WSN Wireless Sensor Network.
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