
Universidade Federal do Amazonas

Instituto de Computação

Programa de Pós-Graduação em Informática

Learning to Recommend Similar Alternative Products in
e-Commerce Catalogs

Urique Hoffmann de Souza Almeida

Manaus, Brasil

Junho, 2016

Urique Hoffmann de Souza Almeida

Learning to Recommend Similar Alternative Products in
e-Commerce Catalogs

Dissertação de Mestrado apresentada ao
Programa de Pós-Graduação em Infor-
mática, Instituto de Computação - IComp,
da Universidade Federal do Amazonas,
como parte dos requisitos necessários à
obtenção do título de Mestre em Infor-
mática

Universidade Federal do Amazonas

Instituto de Computação

Programa de Pós-Graduação em Informática

Orientador: Altigran Soares da Silva

Manaus, Brasil

Junho, 2016

Ficha Catalográfica

A447l Learning to Recommend Similar Alternative Products in e-
Commerce Catalogs / Urique Hoffmann de Souza Almeida. 2016
 67 f.: il. color; 31 cm.

 Orientador: Altigran Soares da Silva
 Dissertação (Mestrado em Informática) - Universidade Federal do
Amazonas.

 1. Product Comparison Functions. 2. E-Commerce. 3. Sistemas
de Recomendação. 4. Programação Genética. I. Silva, Altigran
Soares da II. Universidade Federal do Amazonas III. Título

Ficha catalográfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

Almeida, Urique Hoffmann de Souza

Urique Hoffmann de Souza Almeida

Learning to Recommend Similar Alternative Products in
e-Commerce Catalogs

Dissertação de Mestrado apresentada ao
Programa de Pós-Graduação em Infor-
mática, Instituto de Computação - IComp,
da Universidade Federal do Amazonas,
como parte dos requisitos necessários à
obtenção do título de Mestre em Infor-
mática

Trabalho Aprovado em. Manaus, Brasil, 15 de Junho de 2016:

Altigran Soares da Silva
Orientador

Juliana Freire de Lima e Silva
Convidado 1

Edleno Silva de Moura
Convidado 2

Moisés Gomes de Carvalho
Convidado 3

Manaus, Brasil
Junho, 2016

I dedicate this work to the person who is responsible for everything I am, my mother Auriete
de Araújo Souza.

Acknowledgements

First of all I thank GOD for giving me the opportunity to achieve this dream of
having a master degree. Thank you my Lord, my King, my God. My God never fails.

I thank my mother Auriete de Araújo Souza for fighting with me for my dreams
and spare no effort to help me. My queen, all I am and everything I have today I
owe to this wonderful person she is, I can not express in words how grateful I am for
everything you did, does and will do for me.

I thank my classmates for everything we passed through together.

I thank my professors Altigran Soares da Silva and Moisés Gomes de Carvalho
for teaching me, for pushing me, for helping me, for having patience with me, for
trusting in me. Without them, nothing of this would be possible.

Finally, I thank everyone who somehow helped me in this process.

Thank you so much!

’I have fought the good fight,
I have finished the race,

I have kept the faith’
(Holy Bible, 2 Timothy 4, 7)

Resumo
Nesse trabalho, descrevemos um novo método que projetamos, implementamos e
testamos para a tarefa de encontrar produtos que são alternativas similares a um
dado produto em um catálogo de um site de comércio eletrônico. Nesse trabalho,
consideramos como alternativas similares produtos que, apesar de não serem idênticos
a um produto de interesse, têm características que os tornam boas alternativas a esse
produto. Nossa motivação para esse trabalho é poder recomendar produtos similares
com base apenas nas suas características, sem a necessidade da utilização do histórico
de compras dos usuários. Assim, nesse trabalho lidamos com o chamado problema
de cold start, que é comumente encontrado em abordagens de recomendação, e que
pode levar a perda de lucro em sites de comércio eletrônico. Nosso método, chamado
GPClerk, utiliza Programação Genética (GP) para aprender funções que comparam
dois produtos, e dizem se estes são similares ou não. Essas funções são chamadas
nesse trabalho de product comparison functions. Para tornar nosso método viável em
um cenário típico de comércio eletrônico, propomos também uma estratégia não
supervisionada para gerar exemplos de treino a serem utilizados no processo de
aprendizagem. Resultados de experimentos que executamos e descrevemos nessa
dissertação indicam que nosso método é capaz de gerar funções adequadas, e que
nossa estratégia para geração automática de dados de treino é efetiva para essa tarefa.

Palavras-chave: Product Comparison Functions, E-Commerce, Sistemas de Recomen-
dação, Programação Genética.

Abstract
In this work, we describe a novel method we designed, implemented and tested to
finding products that are similar alternatives to a given product in the catalog of an
e-commerce site. By similar alternatives, we mean products that, although are not
identical to a product of interest, have features that make them suitable alternatives
for customers that look for it. Our motivation is to enable the recommendation of
alternative products based solely on the product’s features, without relying on historical
purchase data. By doing so, we address the so-called cold start problem, which is often
found in product recommendation approaches, and that may lead to profit loss in e-
commerce sites. Our method, we call GPClerk, uses Genetic Programming (GP) to learn
functions for comparing two products and telling whether two products are similar
alternatives or not. These functions are termed here as product comparison functions.
To make our method feasible in typical e-commerce settings, we also propose an
unsupervised strategy to generate training examples to be used in the learning process.
Results of experiments we carried out and report here indicate that our method is
capable of generating suitable product comparison functions and that our strategy for
automatically generating training data is effective for this task.

Keywords: Product Comparison Functions, E-Commerce, Recommender Systems,
Genetic Programming.

List of Figures

Figure 1 – Pairs of similar alternative products identified by users in our exper-
iments. For simplifying the presentation, only a subset of the actual
set of attributes of each category is illustrated. 34

Figure 2 – Illustration of the main concepts related to our assumptions to
obtaining training data. 36

Figure 3 – Main steps in GPClerk. 37
Figure 4 – Examples of trees representing product comparison functions. Tree

S3 results from a crossover operation involving Trees S1 and S2. . . . 45
Figure 5 – Algorithm for Generating Comparison Functions 46
Figure 6 – Average values for all metrics in PEFEvol validation with user-

provided training. 57
Figure 7 – Average values for all metrics in PEFEvol validation with the Rele-

vance Filter (R), with the Semantic Filter (S), and with both filters
(HC). 59

Figure 8 – Percentage of user agreement with GPClerk. 61

List of Tables

Table 1 – Attributes for two camera models with their values (some values were
truncated to save space). 26

Table 2 – Main features of the experimental datasets. 56
Table 3 – GP Parameters used in the experiments 56
Table 4 – PEFEvol validation with user-provided training. 57
Table 5 – PEFEvol validation with the Relevance Filter (R), with the Semantic

Filter (S), and with both filters (HC). 58
Table 6 – Training data automatically generated for PEFEvol 58
Table 7 – Results of the user evaluation of GPClerk. 60
Table 8 – Precision achieved by GPClerk in and out of UV. 62

List of abbreviations and acronyms

GP Genetic Programming

GPClerk Name given for our proposed method

UVP User-Viewed Product Pairs

HCP Highly Co-related Products Pairs

PEFEvol Name given for our proposed evolutionary algorithm

NPC Naive Product Comparison

CAM Category of Cameras

REF Category of Refrigerators

LAP Category of Laptops

SMP Category of Smartphones

TV Category of Tvs

R Relevance Filter

S Semantic Filter

List of symbols

∈ Set Membership

⊆ Subset

∪ Set Union

∩ Set Intersection

< Strict Inequality

> Proper Subgroup

≤ Inequality

≥ Subgroup

∀ Universal Quantification

∑ Summation

α Alpha

τ Tau

µ Mu

σ Sigma

β Beta

` Ell

ε Epsilon

R Real Numbers Set

T Set of All Training Pairs

T + Set of Negative Training Pairs

T − Set of Positive Training Pairs

P+ Set of Positive Pairs

P− Set of Negative Pairs

A Attributes Set

S Product Comparison Function

N Set of New Individuals

B Set of Best Individuals

S Set of All Similar Product Pairs

UV Set of User-Viewed Product Pairs

P Set of Products

P2 Set of All Product Pairs

HC Set of Positive Examples

NC Set of Negative Examples

C Product Category

Contents

1 INTRODUCTION . 25

2 RELATED WORK . 29
2.1 Finding Similar Products . 29
2.2 GP Methods for Record Deduplication 31

3 OVERVIEW . 33
3.1 Problem Statement . 33
3.2 General Approach . 34
3.3 Obtaining Training Data . 35
3.4 GPClerk . 36
3.5 Multiple Product Comparison Functions 37

4 ATTRIBUTE-SPECIFIC SIMILARITY 39
4.1 Attribute Taxonomy . 39
4.2 Similarity Functions . 40

5 GENETIC PROGRAMMING PROCESS 43
5.1 Genetic Programming Basic Concepts 43
5.2 Evolving Product Comparison Functions 45
5.3 Practical Issues . 48

6 OBTAINING TRAINING DATA . 49
6.1 Relevance Filter . 49
6.2 Semantic Filter . 52

7 EXPERIMENTAL RESULTS . 55
7.1 Experimental Setup . 55
7.2 PEFEvol Validation . 56
7.3 GPClerk Evaluation . 60
7.4 Result Analysis . 62

8 CONCLUSIONS AND FUTURE WORK 63
8.1 Conclusions . 63
8.2 Future Work . 64

Bibliography . 65

25

1 Introduction

Recommender systems are used by most e-commerce sites to suggest prod-
ucts to users and provide additional information to help customers to decide which
products to acquire. Products can be recommended based on several different types
of information, such as top overall sellers on a site (LONG et al., 2012), customer’s
demographics, customer’s past buying behaviour (HAMMAR; KARLSSON; NILS-
SON, 2013), product attributes (SCHAFER; KONSTAN; RIEDL, 2001; KAGIE; WEZEL;
GROENEN, 2008b), e.g., technical specifications, general characteristics, brand, etc.
Recommendations based on this last kind of information are called content-based or
knowledge-based recommendations (BURKE, 2000).

A compelling form of content-based recommendation is to present the user that
is looking for a particular product other products that are similar to it, with respect
to its features. This form of recommendation is useful, for instance, when a costumer
explicitly wants to find products with certain characteristics or when the seller wants
to present alternatives to a product the customer is interested in, e.g., for the sake of
comparison or to provide options to out-of-stock items. Although relatively new, this
problem is already attracting attention both from the industry (KATUKURI et al., 2014)
and from the academia (MCAULEY; PANDEY; LESKOVEC, 2015).

An interesting aspect of this kind of recommendation is that it enables suggest-
ing products to the customers without relying on historical data. It means that the
system can recommend products and provide buying options even if a customer is new
to the system or if the product is new to the catalog. In fact, even for products that are
not new, traditional recommendation techniques are suitable only for popular items,
and recommendation error increases quickly with the decrease of popularity of the
item. Recent research indicate that recommendation for infrequent items is especially
important for e-commerce sites since they usually embrace relatively large marginal
profit (YIN et al., 2012). This problem is referred to as cold start in the literature. It is
prevalent in almost all recommender systems, and most existing approaches suffer
from it (SCHEIN et al., 2002).

In typical e-commerce sites, to look for similar alternative products may require
the user to browse manually through a large number of products. For instance, suppose
a user is interested in a particular camera, say, “Nikon S3500”. Currently, if this user
wants to find alternative cameras that are similar to this model (i.e., having similar
features), for the sake of comparing their prices, it is likely that she would have to
browse through hundreds of other cameras in some site’s catalog to find them. On the

26 Chapter 1. Introduction
Attribute Nikon S3500 Sony W830

Brand Nikon Sony
Type of Camera Compact Digital Camera

Monitor/Display 2,7" LCD / TFT 230.000 2.7"-LCD TFT-Clear Photo LCD
Resolution 20,1 20,1

Internal Memory 25MB 27MB
Memory Cards Yes Yes

Compatible Memory Cards SD, SDHC and SDXC Stick Duo, Stick PRO Duo (High
Speed)

Sensor CCD 1/2, 3 inch. Super HAD CCD
Optical Zoom 7x 8x
Digital Zoom 4x 32x

Lenses Crystal NIKKOR 26-182mm fixed -
Shutter Speed 1/2000 - 1 s 4 s -
Focus range [W]: Aprox. 50 cm/[T]: Aprox. 1 m . . . -

Opening f/3.4-6.4 -
Flash Modes Automatic TTL Flash with pre-flash

monitor
Auto/On/Off/ Slow Syncro / Flash
Extended

Flash range [T]:1,0 to 2,1m (3 feet 4 inch. to 7 feet 1
inch.) . . .

ISO Auto: Aprox. 0.3m to 2.8m

Battery Type Rechargeable Li-ion Battery EN-EL19 Battery Charger Adapter, Power Ca-
ble

Video Features Full HD: 1920px1080p/30 / HD:
1280px720p/30 . . .

-

Scene modes Backlight,. . .,Sports, Sunset Sensitivity/Twilight/. . ./Pets
File Formats .avi,.jpg,.wav JPEG

Built-in microphone Yes -
Tripod mount Yes -

Menu Languages Chinese,Danish,. . ., Arabic -
Color Purple Violet

Dimensions (HxWxD) 5,7x9,6x2cm 9,31x5,25x2,25cm
Weight 129g 120g

Table 1 – Attributes for two camera models with their values (some values were trun-
cated to save space).

other hand, if this camera is not in stock, it would be interesting to provide the user
with similar alternative cameras in stock, without having her to look over the whole
catalog.

To find whether two products are similar or not, it is necessary to compare their
attributes. This can be challenging, or even unfeasible, to be carried out manually by
casual users on the Web. For instance, in a certain e-commerce site, to verify whether
the “Nikon S3500” camera is similar to another camera, say the “Sony W830", a user
has the option of comparing the 26 attributes provided for the first camera with the
corresponding attributes of the second cameras. The lists of attributes available for
each camera in a real site we used in our experiments are presented in Table 1. Notice
that the second camera has only 18 attributes. Also, notice that many attributes are
difficult to be compared, unless the user is an expert or knows the existent lingo related
to the field.

In general, the same situation occurs in many other categories, that is, finding,
in a catalog, products that are similar to a given product may require comparing tens
of attributes from thousands of products pairs. For each pair of products of a given
category, comparing its attributes may be hard, since some of the attributes may have
very specific semantics. Moreover, the casual user may not be aware of the relevance of

27

some attributes when comparing products on-line.

To deal with this problem, in this work we describe a novel method we designed,
implemented and tested to finding products that are similar alternatives to a given
product. We assume that we are given a set of products from a same category of a
same on-line store, along with their attributes. Our method uses Genetic Programming
(GP) (KOZA, 1992) to learn functions for comparing two products based on their
attributes, so to tell whether the two products are similar or not. These functions
are called here product comparison functions. Notice that determining if a product can
be a similar alternative for another product is intrinsically dependent on the users’
judgement. We thus claim that machine learning techniques such as GP are suitable
for capturing such a notion from user provided examples. Intuitively, we picture our
method as playing the role of a savvy store clerk, that is able to recommend alternative
products to a costumer. Thus, we call our method GPClerk.

GP is a well-known optimization and machine learning technique that has been
successfully applied for several problems that involve learning functions for comparing
multi-attribute objects. In particular, recent GP-based methods have been proposed
for the problem of record deduplication (CARVALHO et al., 2006; CARVALHO et al.,
2012; ISELE; BIZER, 2012), which is related, although different, from the problem we
address here. This motivated us to choose GP among many other possible machine
learning techniques.

In our case, GPClerk relies on a set of attribute-specific similarity functions to
compare the values of attributes in two given products. These similarity functions are
automatically selected according to the attributes that are common to the two products.
A suitable product comparison function must be able of properly combine and weight
the scores these functions obtain, so to produce a single score that measures how
similar the two products are. We then propose a GP-based algorithm to evolute such
functions from sets of training pairs of products that can be considered as similar
alternatives and pairs of products that cannot be considered as so.

A critical issue in any learning method is how to obtain the training examples.
This is particularly problematic in our case, since asking users to find examples of pairs
of similar alternative products to provide as examples might be unfeasible, due to the
potentially high number of pairs and to the possible degree of expertise required to
compare values of some more technical attributes (e.g., the shutter speed of a camera).
To overcome this, we propose an unsupervised strategy to find training examples by
mining the logs of the web site to find pairs of products of a same category that are
frequently viewed together in same user section on the site. This information is easy to
be obtained and it is, in fact, used for other types of product recommendation methods,
such as the well-known collaborative filtering methods.

28 Chapter 1. Introduction

To evaluate our GPClerk, we carried out several experiments using real datasets
on 5 different popular product categories, involving more than a thousand products,
and nearly 200000 potential product pairs. The results indicate our method is able to
correctly predict whether two given products are similar alternative or not based on
the values of their attributes. Indeed, the product comparison functions it generates
achieved, on average, above 0.8 in terms of F-measure. The results also indicated
that the strategy we proposed to find training examples is an effective alternative for
obtaining such examples in an unsupervised way.

The remainder of this thesis is organized as follows. In Chapter 2 we review
related work. In Chapter 3 we present an overview of our method. In Chapter 4 we
present our first contribution in this work, an attribute taxonomy for four different
classes of common attributes present in products of e-commerce Web sites and their
respective attribute-specific similarity functions. In Chapter 5 we describe our second
contribution in this work, the evolutionary algorithm we designed to generate suitable
product comparison functions. In Chapter 6 we detail our third contribution, a strategy
to obtain training examples for this algorithm in an unsupervised way. In Chapter 7, we
report experiments we carried out to evaluate our method and its results. In Chapter 8
we present our conclusions and directions for future work.

29

2 Related Work

In this chapter we overview recent works we considered as related to ours in
two aspects. First, we discuss methods presented in the literature that face the problem
of finding similar products. Next, we cover methods that apply GP to the problem of
record deduplication. These methods were influential to us in choosing GP as the basis
of our method.

2.1 Finding Similar Products
Over the years, there has been a lot of attention in the literature to the problem

of finding the same product occurring in various e-commerce sites, for instance, for the
sake of price comparison (BILENKO; BASU; SAHAMI, 2005; GOPALAKRISHNAN et
al., 2012; NGUYEN et al., 2011; KÖPCKE et al., 2012). In most case, several titles of
product offers are collected from distinct merchants, and the goal is to cluster those
offers that correspond to the same product. Using different strategies, methods such
as those described in (GOPALAKRISHNAN et al., 2012), (NGUYEN et al., 2011), and
(KÖPCKE et al., 2012), try to spot in the title, strings that can be used as key identifiers
for the product, such as product codes, model part numbers, or universal identifier
such as UPCs. These identifiers then are used for clustering. A different approach is
taken in (BILENKO; BASU; SAHAMI, 2005), where a similarity function is trained by
inducing a linear combination of basis similarity functions that compare attributes of
different products. Thus, the authors consider, as we do, that the product catalog, with
attributes and their values, is available.

Although important and challenging, this problem is different from the one we
tackle here, since we do not want to spot the same product, but different products
that are similar to a given product. The problem we addressed here is relatively
new and, to best of our knowledge, has been studied in only a few previous work
in the literature (KAGIE; WEZEL; GROENEN, 2008b; KAGIE; WEZEL; GROENEN,
2008a; KATUKURI et al., 2014; KöNIK; MUKHERJEE; KATUKURI, 2015; MCAULEY;
PANDEY; LESKOVEC, 2015).

In (KAGIE; WEZEL; GROENEN, 2008b), Kagie et. al. proposed a content-
based graphical shopping interface based on product attributes to recommend similar
products. To use this interface, the user must first define an ideal product by providing
desired values to its attributes. The interface then shows products considered as similar
to this ideal product in a 2D Map. By interacting with this map, the user chooses, from
the products plotted, the most similar to the ideal. The interface then recalculates the

30 Chapter 2. Related Work

similarity between the ideal product to all other products in the dataset. This process
continues until the interface shows a product the user considers as the most similar. In
this work the authors consider only two of attribute classes: categorical and numeric.
In (KAGIE; WEZEL; GROENEN, 2008a), the same authors improve their similarity
calculation by proposing a Poisson regression model to determine attribute weights.
Our method differs from this in two main aspects. First, in GPCleark, the user does
not need to specify an ideal product. Second, we do not require the user to actively
interact with the system to find similar products.

In (KATUKURI et al., 2014), the authors present a similarity-based recommen-
dation system designed to the e-Bay web site. This system works in two steps. First, an
offline algorithm groups frequent user queries based on common features of the items
that return from those queries. This results in a dictionary of clusters definitions. The
goal of this algorithm is to capture item similarity dimensions that the users consider
as important. Second, a runtime component retrieves the best matching clusters for a
given a seed item. From these clusters, this component construct a small set of items
that are similar to the seed item in dimensions considered as important. This approach
makes use of features extracted from items description, mainly the title. Also, it may
require the user to enter additional attribute-value pairs to enrich the description of
the items. The paper does not present experimental results with direct measures of
quality. Instead, it reports metrics showing improvements in user engagement and
revenue in comparison to a previous system they used. In (KöNIK; MUKHERJEE;
KATUKURI, 2015), the same authors propose a new algorithm that improves the
system by personalizing the recommendations according to user intentions.

In (MCAULEY; PANDEY; LESKOVEC, 2015), the authors describe a system
named Sceptre, whose main goal is to find, for a given product, other related prod-
ucts, specifically complementary and substitutable products. Intuitively, the concept of
substitutable product, resembles the notion of similar alternative product used in our
work. To accomplish this, Sceptre first builds a graph of related products based on
log information, that is, products bought or views by the same user, products bought
together, etc. Then, the system iteratively mines features from the text of reviews, using
topic modelling, to build a vector representing each product, and applies supervised
link prediction to predict links between products that denote the semantics of some re-
lationship, that is, complementarity or substitutability. During the process, the product
representations are continually refined to find best features, so to improve prediction,
until convergence is reached. Finally, the resulting graph is used to recommend a list
of the most related, i.e., complementary or substitutable, products to a given product.

Differently from the systems described in (KATUKURI et al., 2014) and (MCAULEY;
PANDEY; LESKOVEC, 2015), which rely on features extracted from textual sources,

2.2. GP Methods for Record Deduplication 31

GPClerk relies on data available in a product catalog, which contains the specifications
of the products. For instance, in the case of (KATUKURI et al., 2014), the system is
designed to the e-Bay scenario, in which only item descriptions are available. This is
reason why in (KATUKURI et al., 2014), the set of feature extracted from the description
sometimes needs to be expanded by the user.

Also, both in (KATUKURI et al., 2014) and (MCAULEY; PANDEY; LESKOVEC,
2015), the recommendation is made from structures build offline, i.e., as set of products
clusters in the case of (KATUKURI et al., 2014), and graph representing predict product
relationships in (MCAULEY; PANDEY; LESKOVEC, 2015). This means that these
structures must be re-generated from times to times to include new added items. In
GPClerk, product comparison functions relies on data available in a product catalog,
and this is the only required information for making recommendations for new added
products. It means that, once we have the product comparison functions, having only
the information from the attributes of the new added products, GPClerk can naturally
make recommendations for them.

2.2 GP Methods for Record Deduplication

Our solution to the problem of finding similar alternative products is inspired
by previous works that successfully applied GP to the problem of finding record
duplicates based on attributes values (CARVALHO et al., 2012; ISELE; BIZER, 2012).
Thus, in the following we review recent representative methods based on such an
approach.

In (CARVALHO et al., 2012), the authors propose a GP-based approach for
record deduplication. Similarly to GPClerk, their method takes as input training exam-
ples and generates record deduplication functions, using an evolutionary algorithm.
This methods is also similar to GPClerk in the sense that the record deduplication
functions combine and weights several attribute similarity functions. However, differ-
ently from our method, only string and textual similarity functions are considered. In
GPClerk, a set of similarity functions suitable for comparing typical attributes used
for describing e-commerce products is adopted. Indeed, as described in Chapter 4,
GPClerk deals with many forms of textual and numerical attributes. Another inter-
esting difference on GPClerk is that it takes advantage of the e-commerce setting
to automatically find examples to be provided to the evolutionary algorithm. Thus,
GPClerk runs in unsupervised way.

In (ISELE; BIZER, 2012), the authors describe GenLink, a supervised learning
algorithm which employs GP in order to generate rules that specify the conditions
that two entities must fulfill in order to be considered the same real-world object. As it

32 Chapter 2. Related Work

happens in (CARVALHO et al., 2012), GenLink takes as input examples of pairs that
identify the same real world object. However, instead of a function, GenLink generates
rules that combine different kind of operators, i.e., value operators and similarity
operators, to find the same entity. Similarly to (CARVALHO et al., 2012), Genlink is
also supervised.

33

3 Overview

In this chapter we present an overview of our approach for dealing with the
problem of finding similar alternative products in a catalog.

3.1 Problem Statement
Consider a set P of products of some category C in the catalog of an e-

commerce Web site. Assume that each product P has a value for each attribute of a set
A(C)={A1, . . ., An}, that is, the set of attributes common to products of this category.
The value of some of these attributes may be null for some products. For instance,
Table 1 shows an example of two products and the values they have for each attribute
of the Camera category.

Let P2=P×P, be the set of all possible pairs of products in C. We assume that
there is a subset S⊆P2 whose elements are pairs of similar alternative products.

Definition 1 We say that two products x and y of some category C are similar alternatives if
the products are evaluated by costumers as alternatives for buying, given their features.

Intuitively, a consumer who wants to buy x could buy y as well instead, if, for
instance, y is cheaper, or x is out-of-stock, etc.

In Figure 1 we illustrate pairs of similar alternative products from two distinct
categories. We took these pairs from a set of real similar alternative product pairs
identified by users in our experiments. Notice that, for some attributes, which are
highlighted in the figure, the values are not the same in the two similar alternative
products. This is the case of Brand in the Notebook category. In the case of numerical
attributes, values may be very divergent, as it is the case of Memory in the Smartphones
categories. This suggests that not all attributes have the same importance for the
consumer when comparing attribute values to select similar alternative products.

We stress that the definition of similar alternative products is rather fuzzy, and
it is completely dependent on the consumers’ judgement. Such a fuzzy property makes
the task of finding similar alternative products a challenging one.

Our goal is to find a function S:P2→R, where S(x, y)≥τ, if 〈x, y〉∈S, otherwise
S(x, y)<τ, where τ is a threshold value that separates pairs of similar alternative
products from the remaining pairs. Our motivation for this is twofold. First, we aim
at enabling costumers to find in the catalog products that are similar alternatives to a

34 Chapter 3. Overview

Attribute Notebook 1 Notebook 2
RAM 4GB 4GB
Cache 3MB L3 Cache 3MB L3 Cache
Drives DVD DVD
Dimensions 2,5x25,3x38,1cm 2,7x 24,5x34,2 cm
Motherboard Intel R© HM77 Express Intel R© HM77 Express
HD 500GB 500GB
Screen 15,6" 14"
Brand Gateway Acer
OS Windows 8 Windows 8
Video Intel R© HD Graphics Intel R© HD Graphics
Collor Black Black
Processor Intel Core i5 Intel Core i5
Chipset Intel R© HM77 Express Intel R© HM77 Express
Bus 1333 MHz 1333 MHz

Attribute Smartphone 1 Smartphone 2
GPRS No No
Memory Cards micro SD 4GB Micro SD 4GB
Calendar yes yes
Memory 256MB 128MB
Sound MP3, FM radio MP3, MP4
Brand Multilaser Multilaser
Keyboard Qwerty Qwerty
Band Quadriband GSM
Color White/Rose White/Rose
Dimensions 11,15x4,6x1,5 cm 11x5,6x1,8cm
Camera 0.3MP 1.3MP
Bluetooth Yes Yes

Figure 1 – Pairs of similar alternative products identified by users in our experiments.
For simplifying the presentation, only a subset of the actual set of attributes
of each category is illustrated.

given product. Second, we want to make this task feasible to be carried out in cases
were the catalog is large.

3.2 General Approach

We propose that the product comparison function S(x, y) can be computed by
comparing the values of each attribute for products x and y, and combining results
of comparing each attribute to reach a conclusion on how similar x and y are. More
precisely, let sk be a function that computes how close are the values of attribute Ak in
x and y. We look for a function S(x, y) that combines functions s1, . . . , sn to produce
an comparison score value.

For each attribute, the comparison of their values in different products is carried
out using a specific similarity function, which depends on the class of the attribute,e.g.,
if the attribute is numerical, categorical, etc. In Chapter 4 we describe the attribute-
specific similarity function we adopted in our work.

3.3. Obtaining Training Data 35

As in the case of other problems in which the solution is heavily dependent on
the users’ judgement, we claim that using a machine learning technique to induce the
function S from a few examples given by users is an interesting alternative.

We propose and experiment using Genetic Programming (GP) (KOZA, 1992)
to induce function S based on examples of similar alternative products provided by
users. GP is a well-known optimization and machine learning technique that has been
successfully applied for several problems that involve learning functions for comparing
multi-attribute objects. In particular, recent GP-based methods have been proposed for
the problem of record deduplication (CARVALHO et al., 2012; ISELE; BIZER, 2012),
which is related, although different, from the problem we address here.

Considering the application scenario of an e-commerce Web site, identifying
and recruiting some costumers and have them finding some pairs of similar alternative
products in a large catalog is hardly viable. Moreover, such cumbersome procedure
would have to be repeated for each site and each category. To avoid it, we propose an
alternative strategy we describe below.

3.3 Obtaining Training Data

Considering a product category C and the catalog of an e-commerce web site.
Consider also a log of user’s activities in this site, which is divide into user sections. Let
Vi,j be the set of products visited by a user Ui during some user session Sj on the site.
Thus, the set V2

i,j=Vi,j×Vi,j is the set of all pairs of products that were visited by a same
user Ui in the same session Sj. We define UV=

⋃
∀i,j V2

i,j as the set of all user-viewed
product pairs (UVP). The set UV can be extracted from the user log of the Web site
considering a certain period of time. In practice, the identification of users and sessions
in an e-commerce Web log is based on some standard methods (SRIVASTAVA et al.,
2000). The description of these methods is out of the scope of this thesis, but we used
them while carrying out our experiments.

We claim that there exists a non-empty intersection S∩UV between the set S of
similar alternative pairs and the set UV of user-viewed product pairs. This concept is
illustrated in Figure 2. The intuition behind this claim is that one of the most common
reasons for users to visit two products during a session is because they are similar
alternatives.

The approach we propose in our work essentially consists in using pairs in this
intersection as examples to induce the product comparison function S.

Now, to identify such pairs, we propose a strategy to find a set of HC of highly
co-related products pairs (HCP) among user-viewed product pairs, that is HC⊆UV. In

36 Chapter 3. Overview

P2

UVS

HC

Figure 2 – Illustration of the main concepts related to our assumptions to obtaining
training data.

this work we show empirical evidences that suggest that at least some of the pairs in
HC are similar alternatives, that is HC∩S 6=∅. The strategy we propose for generating
HC tries to ensure that this set is a representative subset of UV and that most, if not
all, of its elements are also in S. Under such a condition, we may use the pairs in
HC as examples to induce the product comparison function S. As described in the
Chapter 6, our strategy for generating HC relies in a number of factors, such as the
frequency of the pairs, the significance of the pairs among all possible pairs and the
average similarity of the attributes values for the products in the pair.

3.4 GPClerk

Figure 3 summarizes our method, called GPClerk, which we developed based
on the approach described above.

The first step 1 of the method is simply mining the user log to obtain the set
UV of all user-viewed product pairs. Next, 2 the method carries out the mining of
the set HC of highly co-related products pairs. In addition, it also identifies a set of
product pairs, we call NC, that are estimated to be not correlated at all. This process

3.5. Multiple Product Comparison Functions 37

UV
HC

Log	
Mining

Mining
High-Correlated	

Pairs

Genetic	
Programming

ProcessNC

Product
Catalog

User
Log

1

2 3

Figure 3 – Main steps in GPClerk.

leverage information taken both from the user log (e.g., frequency of products and
pairs, etc.) and from the product catalog (e.g., attribute values). Finally, 3 the pairs in
HC and NC are used, respectively, as positive and negative training examples for the
genetic programming process that generates a product comparison function S. The last
two steps are described in the details in the next chapters.

Once the function S is generated, it can be used to identify pairs of similar
alternative products. In the application scenario we consider, one of the products, say
x, is given (e.g., by a costumer) and we want to find similar alternative products in the
same category.

Currently, in our method, we perform a simple pairwise comparison between x
and all other y ∈ P. As the number of true pairs of similar alternative products S is
typically a small portion of P2, some form of blocking technique (CHRISTEN, 2012)
can be adapted to avoid this brute force procedure. This is left as future work.

3.5 Multiple Product Comparison Functions

The fact that the sets HC and NC can be obtained in an unsupervised fashion
allows us to select several subsets of these sets and generate different product com-
parison functions, say S1, S2, . . . , Sk from these subsets. These functions can then be
combined using some ensemble technique, resulting in a stronger prediction (WITTEN;
FRANK, 2005) for pairs of similar alternative products. To do so, our method is used for
generating n distinct product comparison functions according to the process described
above, using different subsets of HC and NC selected at random. Then, the best k < n

38 Chapter 3. Overview

functions are selected and are combined using a simple voting scheme (bagging) to
predict if two products in a given pair are similar alternatives. This procedure was
used in one of our experiments, in which we used n = 20 and k = 10.

39

4 Attribute-Specific Similarity

In this chapter we describe the attribute-specific similarity functions we adopt
in our work. As described earlier, these functions are combined through a function S

to obtain score for product comparison.

4.1 Attribute Taxonomy

In our work, each attribute of a given product category is assigned to a single
class of a simple attribute taxonomy comprising four classes, namely: Numerical, Cate-
gorical, Multicategorical and Dimensional. This taxonomy was created based on previous
work by Kagie et. al. (KAGIE; WEZEL; GROENEN, 2008b; KAGIE; WEZEL; GROE-
NEN, 2008a) and in our own experience in dealing with e-commerce catalogs. The
original taxonomy by Kagie et. al. in (KAGIE; WEZEL; GROENEN, 2008b) included
only Numerical and Categorical attributes. It was extended in (KAGIE; WEZEL; GROE-
NEN, 2008a) to include the Multicategorical class. We further expanded it with the
Dimensional class to handle the common case of attributes that describe the dimensions
of products, displays, etc.

To determine the class of each attribute, a number of different approaches could
have been used. In our case, we opted for using a simple strategy in which the values
expected for the attributes in a given class are described by a regular expression we
call Domain Descriptors. Domain descriptors are similar to the Data Frames used by
Embley et. al. in several methods (e.g., in (AL-MUHAMMED; EMBLEY, 2007)) and
provide a description on how values of attributes of the four classes above are written.

The classification of an attribute is carried out as follows. Let Ak be an attribute
that occurs for products p1,. . .,pn in a given category. For instance, attribute Scene
Modes occurs in the description of many products in the Cameras category.

First, for all products pi(1≤i≤n), we take the value vik for Ak occurring in pi.
Next, we perform several cleaning and standardization operations over set of values
vik of Ak taken from products. These operations include duplicate values removal,
white space and case normalization, among others. The result is a set of values
o1k,. . .,omk(m≤n) which we call the occurrences of Ak. Notice that by doing so we
assume that all values of Ak have the same semantics in all pi. For instance, we assume
that the attribute Scene Modes has the same semantics in the description of all products
in the Cameras category.

Finally, we test each occurrence o1k,. . .,omk against each domain descriptor

40 Chapter 4. Attribute-Specific Similarity

ε` (`=1,. . .,4) and associate attribute Ak with the attribute class C` whose domain
descriptor ε` recognizes the majority of its occurrences.

Although simple, this classification procedure is very effective as we demon-
strate in experiments we carried out and reported in (HOFFMANN; SILVA; CAR-
VALHO, 2015).

4.2 Similarity Functions
For each one of the four attribute classes we defined an appropriate similarity

function. In the following, each function sα
xyk computes the similarity of values vxk and

vyk, which are the respective values of products x and y for the attribute Ak, whose
class is α ∈ {N, C, M, D}.

For the Numerical class, the similarity function is defined as the absolute differ-
ence between the values of the attribute in the two products, as shown in Equation 4.1.

sN
xyk = 1−

|vxk − vyk|
max (vxk, vyk),

(4.1)

For the Categorical class, the similarity function is defined as

sC
xyk = 1(vxk = vyk) (4.2)

implying that objects having the same value get a similarity score of 1 and 0 otherwise.

For the Multicategorical class, the similarity function is computed using the
Jaccard coefficient (CHA, 2007), as follows.

sM
xyk =

|vxk ∩ vyk|
|vxk ∪ vyk|

(4.3)

In this case, vxk and vyk denote the sets of individual categorical values composing
the actual values. For instance, vxk would be { Auto, On, Off, Slow Syncro, . . . } for the
attribute Flash Modes in the camera Sony W830 of Table 1.

For the Dimensional class, the similarity function is the normalized euclidean
distance over the dimension values, as described in Equation 4.4.

sD
xyk = 1−

[M

∑
d=1

((vd
xk)

′ − (vd
yk)

′
)2
] 1

2
(4.4)

where M is the number of dimensions found in the values of the attribute and vd
xk is

the value for dimension d in vxk (the same applies to vd
yk). For computing this function,

each dimension is mean-centred and normalized using

(vd
xk)

′
= ((vd

xk)− µd)/σd (4.5)

4.2. Similarity Functions 41

µd and σd are, respectively, the mean and the standard deviation of the set of values of
dimension p in all values of attribute k, for the products in the category.

It is important to notice that we do not make use of the price attribute. Despite
the fact that it is a relevant attribute, its value is not fixed, like the other ones (e.g.
dimensions, weight, etc.), as it can eventually be changed on commercial interests (e.g.
Black-Friday, Christmas, etc.) nonetheless. In a nutshell, our approach only relies on
the product attributes that are strictly related to its technical features and physical
characteristics.

43

5 Genetic Programming Process

In this chapter, we present the genetic process used in GPClerk. Before describ-
ing the process it self, we review some major concepts on Genetic Programming.

5.1 Genetic Programming Basic Concepts
Genetic Programming (GP) (KOZA, 1992; BANZHAF et al., 1998) is one of the

best-known evolutionary programming techniques. It is a direct evolution of programs
or algorithms used for the purpose of inductive learning (supervised learning). GP,
as well as others evolutionary techniques, is known for its capability of working with
multi-objective problems, that are normally modelled as environment restrictions
during the evolutionary process (BANZHAF et al., 1998). It is also widely known
for their good performance on searching over very large – possibly infinite – search
spaces, where the optimal solution in many cases is not known, usually providing
near-optimal answers (KOZA, 1992; BANZHAF et al., 1998).

Individuals and Genetic Operations

Usually, a GP process evolves a population of length-free data structures, often
called individuals. Each individual represents a single solution to a given problem.
In our particular case, individuals correspond to the product comparison functions
defined in Chapter 3.

As in other GP-based solutions, in here we adopt trees to represent such
individuals. For this, a set of terminals and functions must be defined (KOZA, 1992).
Terminals are inputs, constants or zero argument1 that correspond to leaf nodes in
the tree. The function set is the collection of operators, statements, and basic or user-
defined functions that can be used by the GP evolutionary process to manipulate the
terminal values. These functions are placed in the internal nodes of the tree.

During the evolutionary process, individuals are handled and modified by ge-
netic operations such as evaluation, reproduction, selection, crossover and mutation (KOZA,
1992). This process occurs in an iterative way that is expected to spawn better individ-
uals (solutions to the proposed problem) in the subsequent generations.

The evaluation operation assigns to an individual a value that measures how
suitable that individual is to the proposed problem. In our case, individuals are
evaluated on how well they predict that two products are similar alternatives, using
1 Terminals nodes that have an arity of zero.

44 Chapter 5. Genetic Programming Process

the set of functions and terminals available. The resulting value is also called raw fitness
and the evaluation functions are called fitness functions.

Reproduction is the operation that copies individuals without modifying them.
Usually, this operator is used to implement an elitist strategy (KOZA, 1992), that is
adopted to keep the genetic code of the fittest individuals across the changes in the
generations.

The selection operation applies a criterion for choosing the individuals that
should be in the next generation. After the evaluation operation, each solution has a
fitness value that measures how good or bad it is to the given problem. Using these
values, it is possible to decide whether an individual should be in the next generation.

The crossover operation allows genetic content (e.g., subtrees) exchange between
two parents, in a process that can generate two or more children. In a GP evolutionary
process, two parent trees are selected according to a matching (or pairing) policy and,
then, a random subtree is selected in each parent. Child trees are the result from the
swap of the selected subtrees between the parents.

Finally, the mutation operation has the role of keeping a minimum diversity
level of individuals in the population, thus avoiding premature convergence. Every
solution tree resulting from the crossover operation has an equal chance of suffering
a mutation process. In a GP tree representation, a random node is selected and the
corresponding subtree is replaced by a new randomly created subtree.

Generational Evolutionary Algorithm

GP evolutionary processes are usually guided by a generational evolutionary
algorithm. This means that there are well-defined and distinct generation cycles. The
steps of this algorithm are the following:

1. Create an initial population with random generated individuals.

2. Evaluate all individuals in the current population, assigning a numeric rating or
fitness value to each one.

3. If the termination criterion is fulfilled, then, execute the last step. Otherwise continue.

4. Reproduce the best B individuals into the next generation population.

5. Using a selection process, select M individuals that will compose the next generation
with the best parents.

6. Apply the genetic operations to all individuals selected. Their offspring will compose
the next population. Replace the existing generation by the generated population
and go back to Step 2.

5.2. Evolving Product Comparison Functions 45

SCREEN BRAND

➗

COLORRAM

X

+

SIZE SSD

➗

RAMMOUSE

X

X

SCREEN BRAND

➗

RAMMOUSE

X

X

1 2

3

Figure 4 – Examples of trees representing product comparison functions. Tree S3 results
from a crossover operation involving Trees S1 and S2.

7. Present the best individual(s) in the population as the output of the evolutionary
process.

5.2 Evolving Product Comparison Functions

Product Comparison Functions

As already mentioned, the individuals in our GP process are product compari-
son functions for products in a given product category C. Each function is represented
as a tree whose leaves correspond to attributes of the category and whose internal
nodes represent simple arithmetic operations (i.e., +,−,×,÷,exp). Integer constants
from 0 to 9 are also allowed as leaves.

In Figure 4, we illustrate trees representing product comparison functions on
the Notebook category. For instance, in Tree S3 the leaves represent attributes MOUSE,
RAM, SCREEN and BRAND.

Given a pair of products, x and y, an comparison function S computes an
similarity score between them as follows. First, for each attribute Ak in the leaves of S,
it takes the value of the similarity function sX

ijk between the values of attribute Ak for
products i and j. This similarity is computed according to the class X ∈ {N, C, M, D}
of Ak, as described in Chapter 4, generating a normalized real number value between
0.0 and 1.0. For instance, in Tree S3, the similarity function sC

ijk will be used for MOUSE
and BRAND, which are categorical attributes, sN

ijk will be used for RAM, a numeric
attribute, and sD

ijk will be used for the dimensional attribute SCREEN.

Once these values are known, the operators defined in internal nodes up to the
root node are applied to produce an similarity score that measures if two products x
and y can be considered as similar alternatives according to this particular product

46 Chapter 5. Genetic Programming Process

comparison function.

Our goal is to evolve a suitable product comparison functions S, so that
S(x, y)≥τ, if x and y are similar alternative products, according to the discussion
in Chapter 3, and S(x, y)<τ, otherwise, where τ is an arbitrary threshold value.

To evolve such functions, we propose the PEFEvol algorithm, which is a Genera-
tional Evolutionary Algorithm we have designed for using in GPClerk. This algorithm
is presented next.

The PEFEvol Algorithm

The specific GP process we use in our work is described by the algorithm
PEFEvol presented in Figure 5.

Algorithm PEFEvol

Training Pairs
T +: set of pairs of products regarded as similar alternatives.
T −: set of pairs of products not regarded as similar alternatives.

Parameters
B: Number of best individuals to be selected in each generation
N: Number of new individuals to be generated in each generation
P: Number individuals allowed in each generation P = B + N
G: Number of generations
τ: Threshold value for product similarity

1: P0 ← Initial random population of P individuals;
2: for j = 1 to G do
3: for each individual Si ∈ Pj−1 do
4: fi ← fitness(Si, T +, T −, τ)
5: end for
6: B ← B best individuals from Pj−1
7: N ← N new individuals from genetic operations over Pj−1
8: Pj ← B ∪N
9: end for

10: B ← B best individuals from PG
11: return B

Figure 5 – Algorithm for Generating Comparison Functions

The algorithm takes as input training sets with examples of pairs of negative

5.2. Evolving Product Comparison Functions 47

and positive pairs of a same category. It also takes a number of parameters that guide
the evolution process.

The process begins with a initial population of product comparison functions
generated entirely at random (Line 1). The evolutionary process itself corresponds to
the Loop 2–9, which iterates a fixed number of times according to parameter G.

In the Loop 3–5, each individual Si in the current population Pj−1 is evaluated
by a fitness function, assigning a fitness value fi to it. The fitness function works by
computing an similarity score for each pair in the training sets using Si and verifying
how well Si performs in the tasks of correctly predicting if the products in a pair are
similar alternatives or not. Given its importance to the process, we briefly postpone
the discuss on the details of the fitness function we adopt.

The next population of product comparison functions is generated in Line 8.
This population will have P individuals, including the B best individuals of the current
population, according to their fitness values (Line 6) and N new individuals generated
by apply genetic operations over the individuals of the current population (Line 7).
Based on previous results of on evolving functions of this kind (CARVALHO et al.,
2006; CARVALHO et al., 2008; CARVALHO et al., 2012) and after preliminary tests, in
our experiments we adopted a setup with P=200, B=40 and N=160.

In the end of the process, the algorithm outputs the B best individuals from
the last population PG. In our experiments we used G = 40, also based on our past
experience.

Fitness Evaluation

A crucial step in the Generational Evolutionary Algorithm we adopt is the
evaluation of each individual in the current population according to a fitness function,
so that the fittest individuals can be selected for contributing to the next generation.

In our setting, this function is used to express, as a single value, how well
a specific individual performs in the task of predicting a pair of similar alternative
products based on the values of their common attributes. Thus, in our work we adopted
the accuracy metric.

Let T be a set of training products pairs, so that T = T + ∪ T −, where T + is a
set of alternative product pairs and T − is a set of product pairs that are not similar.

For each pair 〈x, y〉∈T, the fitness evaluation computes a similarity score S =

S(x, y). If S(x, y)≥τ, x and y are considered as similar alternatives products.

Let P+ and P− be respectively the set of pairs considered as similar alternatives
and those considered otherwise by a comparison function S. We measure the accuracy

48 Chapter 5. Genetic Programming Process

of S as:

accuracy =
|P+ ∩ T +|+ |P− ∩ T −|

|T |

The choice of the threshold value τ to separate similar alternative pairs from
those that are not is an import issue in our method. However, as observed in (CAR-
VALHO et al., 2012), GP-based algorithms are typically able to evolve functions
adapted to arbitrary threshold values in a wide range. That is, the generated functions
become progressively adapted to a fixed threshold value given as input. Based on this
observation, we use a fixed value of τ=1 in all of our experiments.

5.3 Practical Issues
As described in Chapter 3, considering the application scenario of an e-commerce

Web site, is hard to obtain reliable training data to evaluate the fitness of the individuals
being generate. As discussed earlier, recruiting some costumers and have them finding
some pairs of similar alternative products in a large catalog is hardly viable. Moreover,
such cumbersome procedure would have to be repeated for each site and each category.
In the next chapter we describe the details of an alternative strategy we propose for
obtaining training data.

Another important issue is that, in practice, as discussed Chapter 3.5, our
method can be used to evolve several product comparison functions using Algorithm
PEFEvol. In this case, a few best functions are selected and combined using a simple
voting scheme (bagging) to determine if two products in a given pair are similar
alternatives. We explore this strategy in one of our experiments.

49

6 Obtaining Training Data

As described in Chapter 3, to avoid the user’s effort in labelling training data
for the GP process, we rely on user behaviour information taken from the log for
obtaining training data. In this chapter, we detail the process of mining high-correlated
pairs, the HC set, and non-correlated pairs, the NC set, which are used, respectively,
as positive and negative training examples for the GP process described in Chapter 5.
This corresponds to Step 2 in our method GPClerk (Figure 3).

In a nutshell, given the set UV of all user-viewed product pairs of a same
category in a certain period of time, we apply two consecutive filters. The first filter, the
Relevance Filter applies a relevance metric based on the frequency and on the estimated
significance of pairs, to spot the most relevant pairs from UV. Then, a second filter,
we call the Semantic Filter is applied to filter out pairs which, although relevant in
comparison to the other pairs mined from log, have disparate values in their attributes,
and thus, cannot be adjudged as similar alternatives. These two filters are described
henceforth.

6.1 Relevance Filter

The relevance filter tries to identify among all pairs in the set UV of Figure 2,
those that are likely to be also in E, that is, those that are more relevant in comparison
to the other pairs of products viewed together.

Intuitively, we may consider that the pairs which are frequently viewed together
are likely to be pairs of similar alternative products, even though they probably cover
small subset of the similar alternative pairs. However, frequency alone is not enough
to indicate similarity. In particular, there are some products that are frequently viewed
together with many different products, that is, they occur in many distinct pairs mined
from the log. This is the case, for instance, of very popular products, or those promoted
by marketing campaigns (e.g., products advertised on the main page of the site), which
will be frequently viewed by many users, thus appearing along with many other
products. We claim that pairs containing these products are less significant than those
pairs formed by products that co-occur with fewer other products. Thus, our measure
of relevance for a pair of products combines frequency with significance.

50 Chapter 6. Obtaining Training Data

Pairing Frequency

For a pair of products 〈x,y〉, its raw frequency f (x,y) is simply the number
of times these products were “viewed” together. For smoothing purposes, we use a
popular variation of sub-linear frequency scaling, define as:

p f (x,y) =

{
1 + log f (x,y) if f (x,y) > 0

0 otherwise
(6.1)

In our particular setting, we call this formula the pairing frequency of products x
and y.

Pair Significance

Following the ideas described in (TATTI, 2007), the significance of a pair can be
evaluated by verifying how “surprising” is the occurrence of the products composing
in comparison to the other products.

Given a product x, let P(y|x) be the probability of a pair be composed by
product y given this pair contains x. If this probability is high for many distinct y, then
the occurrence of x in a pair is not “surprising”. On the other hand, this occurrence is
more meaningful if this distribution is more biased. As in (TATTI, 2007), we used the
entropy of the distribution of p(y|x) to characterize this diversity. This entropy can be
calculated as:

H = − ∑
y∈all pairs 〈x,y〉

p(y|x) log p(y|x)

The values of probabilities p(y|x) can be estimated empirically from the pairs
mined from log by using

p(y|x) =
Nx,y

Nx
,

where Nx,y is the number of pairs containing x and y and, Nx is the number of pairs
containing x along with any other product. Thus,

H = − ∑
y∈all pairs 〈x,y〉

Nx,y

Nx
log

Nx,y

Nx
(6.2)

In Eq. 6.2, as we are trying to measure how diverse are the pairs in which
product x appears, we only need to count distinct pairs of products, that thisNx,y is 1
if there is at least one pair 〈x,y〉 mined from the log, and it is zero otherwise. In the

6.1. Relevance Filter 51

same way, Nx is the the number of distinct pairs that include product x. Thus, we can
simplify Eq. 6.2 as follows.

H = − ∑
y∈all pairs 〈x,y〉

1
Nx

log
1

Nx
(6.3)

We can simplify Eq. 6.3 by replacing the sum over all pairs〈x,y〉 with Nx since
the sum would be executed Nx times. Thus, the simplified equation can be written as
follows.

H = −Nx×
1

Nx
log

1
Nx

= log Nx (6.4)

Given two products x1 and x2, we say that the most significant one for our
purposes is the one with the lowest value computed by Eq. 6.4. Thus, in practice instead
of comparing the entropy corresponding to each product, we need an absolute metric
that gives highest values to products with the lowest values for Eq. 6.4. This metric, we
call product significance, is given by:

sig(x) = log N − log Nx = log
N
Nx

, (6.5)

where N is the total number of distinct pairs of products extracted from the log.

Then, considering that the joint entropy of a set of two variables is less than or
equal to the sum of the individual entropies of these variables, for ranking purposes,
we can define the significance of a pair of products 〈x,y〉 as the sum of the significance
of their component products. This is define by Eq. 6.6.

sig(x, y)= log
N
Nx

+ log
N
Ny

= log
N2

Nx×Ny
(6.6)

Estimated Pair Relevance

The estimated relevance of a pair is then defined by Eq. 6.7, which combines
the pairing frequency (Eq. 6.1) and the pair significance (Eq. 6.6).

r(x, y) = p f (x, y)× sig(x, y) (6.7)

For each distinct pair of products extracted from the log, that is, those in the set
UV of Figure 3, our method first computes its relevance according to Eq. 6.7. Then,
these pairs are ranked and just a few of them in the top of the rank are selected.

There are many possible strategies to select these few top pairs. In the experi-
ments we report here, we normalize all scores by the highest relevance value obtained

52 Chapter 6. Obtaining Training Data

and then we select only pairs with a normalized relevance score above a threshold
value. For all experiments in all categories, we used 0.7 as the threshold value. This
value was empirically chosen after a preliminary experiments we performed to validate
our method.

6.2 Semantic Filter
The Relevance Filter described above is based on statistical properties that make

some pairs stand out from the others. This filter does not consider the values of the
attributes of the products in composing the pair. Thus, there can be cases in which a
frequent and significant pair has products that cannot be similar, since their attributes
have very disparate values.

To detect and filter out these spurious pairs, we propose applying a Semantic
Filter over the pairs selected by the Relevance Filter. Thus, this filter outputs both the
set of positive and negative examples for the genetic programming process. In terms
of the Figure 3, these sets of examples correspond to the sets HC and NC.

The Semantic Filter works as follows. For each relevant pair 〈x,y〉, we compare
the values of the attributes common to x and y using a function we call Naive Product
Comparison (NPC) function, defined in Eq. 6.8.

NPC(x, y) =
∑Ak∈Ax∩Ay sα

xyk

max{|Ax|, |Ay|}
(6.8)

In this formula, Ax (Ay) is the set of attributes with non-null values in x (y),
and sα

xyk is the attribute-specific similarity functions for attribute Ak, whose class is α,
as defined in Chapter 4.

Eq. 6.8 corresponds to a product comparison function that computes a linear
combination of the values obtained by attribute-specific similarity functions applied to
the attributes common to x and y.

The idea here is that if the result of this simple linear combination is very high,
then values of the attributes common to x and y are must be very close and they are
likely to be similar.

Thus, we build the set HC of positive examples by including in it all relevant
pairs of products 〈x,y〉, for which NPC(x, y) ≥ β+, where β+ is a pre-defined threshold
value.

The NPC function is also used to compose the set NC of pairs of non-correlated
products, but using a different strategy. We select from all possible pairs of products,
a random sample of pairs 〈u,v〉, for which NPC(u, v) ≤ β−, where β− is also a pre-

6.2. Semantic Filter 53

defined threshold value. To ensure a balance and bound the number of negative pairs,
which is naturally much larger than the number of positive pairs, the random sample
has the double number of pairs in HC, that this, |NC| = 2 ∗ |HC|.

In all experiments we report in this work, we used β+ = 0.5 and β− = 0.1.
These values were determined after a few initial validation experiments.

We notice that our NPC function is based on the General Coefficient of Similarity
proposed by Gower (GOWER, 1971) and later used by Kagie et. al in (KAGIE; WEZEL;
GROENEN, 2008b; KAGIE; WEZEL; GROENEN, 2008a) However, this coefficient is
unsuitable to deal with products that have few common attributes. For instance, if two
products have many distinct attributes with null values but just one common attribute
and this attribute have the same non-null value for both products, Gower’s coefficient
results in high value. The NPC function tries to overcome this problem by normalizing
the sum of attribute values similarities by the maximum number of attributes with
non-null values between the two product, as defined in Eq. 6.8.

55

7 Experimental Results

In this chapter we report the experimental results we achieved in the evaluation
of our method using real datasets of 5 different popular product categories. In the
following sections, we first describe the details on the experimental setup. Next, we
present two sets of experiments. The first set corresponds to those we carried out to
validate the PEFEvol algorithm described in Chapter 5.2. The second set of experiments
aims at validating the whole process of GPClerk, including the strategy for obtaining
training data described in Chapter 6.

7.1 Experimental Setup

Table 2 presents the main features of the experimental datasets used in our
experiments. These datasets were provided by Neemu1, a company that develops
search and recommendation technology for major e-commerce sites in Brazil. They
comprise five different popular product categories: Cameras (CAM), Refrigerators (REF),
Laptops (LAP), Smartphones (SMP) and TVS (TVS). The datasets in each category
includes a set of products with their attribute values and a set of user viewed product
pairs extracted from a seven months access log.

The product records available in these datasets often provide many attributes
that are not related to the product characteristics themselves. For instance, attributes
related to the packing of the products such as, packing dimension, package contents,
etc., are very common. Thus, we disregarded these attributes in our experiments.

As a simple pruning strategy, we removed all attributes that are not found in at
least 30% of the products records from a given category. In addition, a few cleaning
procedures were used to remove noise from attribute values (e.g., spurious characters,
etc.).

Table 2, shows, for each dataset, the number of products available (Products), the
number of attributes initially available (Initial), and the number of attributes remaining
after the pruning (Remaining). Notice that, even though many attributes were removed,
still the number of attributes considered is large to be handled manually by humans.

This table also presents the number of attributes per each classes of our tax-
onomy (Chapter 4), that is: Numerical (N), Categorical (C), Multicategorical (M) and
Dimensional (D). Notice that the large majority of the attributes is categorical. This

1 <http://www.neemu.com>

http://www.neemu.com

56 Chapter 7. Experimental Results

Dataset Products #Attributes #Attr/Class
Initial Remaining N C M D

CAM 451 178 27 5 15 6 1
REF 129 53 39 3 34 1 1
LAP 335 76 26 5 19 1 1
SMP 126 105 38 2 29 6 1
TVS 187 96 31 6 22 2 1

Table 2 – Main features of the experimental datasets.

trend was observed in all categories. Also, only a single dimensional attribute was
found in each category.

Table 3 presents the main parameters we used in the configuration of the GP
process. These parameters are fairly standard and were the same used in experiments
with other related GP-based methods (e.g.,(CARVALHO et al., 2012)).

Parameter Value
Number of Runs 20

Max Number of Generations 40
Population 200

Initial Random Population Method Ramped Half-and-Half
Reproduction Rate 20%
Selection Strategy Ranking

CrossOver Rate 80%
CrossOver Method Random SubTree Exchange

Mating (Pairing) Random
Mutation Rate 2%

Mutation Operation Random SubTree Insertion
Max Random Tree Depth 4

Table 3 – GP Parameters used in the experiments

7.2 PEFEvol Validation
In this first experiment our goal is to validate our evolutionary process. For this,

we took sets of positive and negative training pairs selected by users (see Chapter 7.4)
and executed several experiments using a standard cross validation procedure. For
each round, each of the training datasets, positive and negative, was randomly shuffled
and separated in two subsets, one for training (2/3) and one for validation (1/3). The
results are presented in Table 4.

In Table 4, column “Pairs” shows the number of positive and negative pairs used
for training in each category. Notice that the number of negative pairs is always double
the number of positive pairs. This was enforced to bound the number of negative

7.2. PEFEvol Validation 57

Dataset Pairs (+/-) Accuracy Precision Recall F-Measure
CAM 72/144 0.976 0.956 0.970 0.963
REF 55/110 0.824 0.749 0.725 0.737
LAP 48/96 0.938 0.930 0.887 0.908
SMP 56/112 0.935 0.867 0.894 0.880
TV 53/106 0.902 0.847 0.864 0.855

Table 4 – PEFEvol validation with user-provided training.

Acurracy Precision Recall F-Measure
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.92

0.87 0.87 0.87

Average Values

PEFEvol validation with user-provided training

Metric

Va
lu

e

Figure 6 – Average values for all metrics in PEFEvol validation with user-provided
training.

pairs, which is naturally much larger than the number of positive pairs. A excessive
imbalance between the positive and negative sets could harm the learning process.

Table 4 also shows the values of obtained for accuracy, precision, recall and
f-measure. All values corresponds to averages taken after 20 rounds of training and
validation.

As it can be observed in Table 4, good results were obtained in all categories.
Figure 6 shows overall averages values for the 5 categories above 0.8 in all metrics.
In particular, recall that the accuracy measure is used as the fitness function in our
GP process. The only metrics presented in Table 4 with values lower than the average
showed in Figure 6 are the precision, recall, and, as a consequence, f-measure, for

58 Chapter 7. Experimental Results

“REF”. In this category, which corresponds to refrigerators, products have many boolean
attributes, whose values are only YES or NO, thus the similarity between attributes
tends to be high for many attributes, leading to some false positive pairs.

Dataset Accuracy Precision Recall F-measure
HC R S HC R S HC R S HC R S

CAM 0.957 0.888 0.951 0.965 0.911 0.956 0.908 0.737 0.896 0.936 0.815 0.925
REF 0.815 0.753 0.675 0.735 0.696 0.555 0.729 0.501 0.749 0.732 0.583 0.638
LAP 0.967 0.882 0.946 0.941 0.873 0.945 0.963 0.754 0.885 0.952 0.809 0.914
SMP 0.902 0.881 0.882 0.850 0.822 0.805 0.838 0.801 0.850 0.844 0.811 0.827
TV 0.856 0.763 0.829 0.805 0.681 0.766 0.732 0.574 0.746 0.767 0.623 0.756

Table 5 – PEFEvol validation with the Relevance Filter (R), with the Semantic Filter (S),
and with both filters (HC).

Overall, the results obtained in this experiment indicate that our algorithm
PEFEvol is able to evolve suitable product comparison functions when it receives
reliable training data from users. However, in our proposed method GPClerk, this
training data is automatically provided by the strategy described in Chapter 6. This
scenario was addressed in another experiment we carried out and whose results are
presented in Table 5 and Figure 7. Before analysing these results, we discuss the
training data used for this experiment, whose details are presented in Table 6.

In Table 6, column “UV” presents the number of distinct User-viewed Product
Pairs mined from the log and column “HC” presents the number of distinct pairs
generated to be used as positive examples after applying the Relevance and the
Semantic Filters, as described in Chapter 6, there is, the set HC. The number of pairs
in set NC, which provides the negative examples, is double the value of “HC” for the
same reason as the previous experiment.

Dataset
#Pairs

UV HC Relevance Semantic

CAM 6068 51 98 206

REF 6073 272 396 3006

LAP 10169 134 345 341

SMP 1681 82 136 488

TVS 9289 281 665 1344

Table 6 – Training data automatically generated for PEFEvol

Also in Table 6, columns “Relevance” and “Semantic” show the number of pairs
select by each of the respective filter taken in isolation. We used these sets of pairs to

7.2. PEFEvol Validation 59

Acurracy Precision Recall F-Measure
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.9
0.86

0.83
0.85

0.83
0.8

0.67

0.73

0.86

0.81 0.82 0.81

Average Values

PEFEvol validation with the Relevance Filter (R), with the Semantic Filter (S),and with both filters (HC)

HC

R

S

Metric

Va
lu

e

Figure 7 – Average values for all metrics in PEFEvol validation with the Relevance
Filter (R), with the Semantic Filter (S), and with both filters (HC).

verify the effectiveness of each filter taken in isolation in comparison to using both
filters.

To generate the sets of pairs presented in Table 6, for all categories, we used
0.7 as the threshold for the Relevance Filter, and β+ = 0.5, β− = 0.1 for the Semantic
Filter. These values were determined after a few initial trial experiments.

Table 5 presents validation results for PEFEvol when training pairs are generated
using the Relevance Filter only (R), with the Semantic Filter only (S), and with both
filters (HC), as we do in GPClerk. The best results for each metric in each category
are in boldface. We notice that, for all metrics, the overall averages obtained with both
filters are better then with each filter individually as can be seen in Figure 7. Also,
these averages are very similar to those obtained with user-provided training (see
Figure 6). In fact, Table 5 shows that in the large majority of the cases, the results
obtained with both filters are better than with a single filter. The exceptions are a few
cases in which the Semantic Filter alone led to a better result.

To explain this, notice that the Semantic Filter alone is useful for detecting, on
the training data, spurious products pairs, that is, those that in spite of being seen
together in the log, cannot correspond to similar alternative products, since many of

60 Chapter 7. Experimental Results

their common attributes do not have similar values. However as discussed above, in
some categories, as in the case of REF, products have many boolean attributes, whose
values are only YES or NO, thus the similarity between attributes tends to be high for
many attributes, leading to some false positive pairs, harming the precision metric.
Indeed, notice that the lower precision values for REF category were obtained when
the semantic filter is used alone. In fact, in this category, the precision values with the
semantic filter alone are the worst. Thus, the Relevance Filter has an important role of
selecting only product pairs that are significant, among all pairs of products that are
seen together.

7.3 GPClerk Evaluation
In our second experiment, our aim was to validate the whole process, including

the strategy for obtaining training data (Chapter 6). For this, we first generated the
sets HC and NC for each category, from User-viewed Product Pairs mined from the
log. Then, we generate 20 random subsets with 2/3 of the pairs in HC and in NC.
Next, each pair of subsets, say, HCi and NCi, are used as an input for the PEFEvol
algorithm. Thus, 20 distinct product comparison functions were obtained. Finally, we
used a simple voting scheme (bagging) to determine if two products in a given pair
are similar alternatives or not. We took the 10 best of these functions, according to
their fitness values, and evaluate each pair of products in a given category. Products
in a pair were considered as similar alternatives, if at least 8 of the functions evaluate
it as so. All these parameters were set empirically in initial validation experiments.
Table 7 shows the total number of pairs evaluated (“All Pairs”) and the number of
pairs considered as similar alternatives in each category (“Similar”).

Dataset All Pairs Similar Sample Precison
GPClerk Random

CAM 101322 438 79 0.911 0.228
REF 7440 511 81 0.679 0.284
LAP 55543 731 85 0.565 0.318
SMP 7629 250 70 0.800 0.243
TVS 16548 537 82 0.646 0.317

Table 7 – Results of the user evaluation of GPClerk.

To measure the quality of the prediction made by the assembling of the 10
product comparison functions, 60 users were recruited. Each pair of products was
evaluated by 3 users, and a product pair was considered (labelled) as representing
similar alternative products, if at least 2 out of the 3 users found them as so. The
evaluation was carried out using a sample of the pairs considered as positive by the
functions. The size of sample was calculated to give 95% of confidence level in a 10

7.3. GPClerk Evaluation 61

0.3 to 0.4 0.4 to 0.5 0.5 to 0.6 0.6 to 0.7 0.7 to 0.8 0.8 to 0.9 0.9 to 1
0

2

4

6

8

10

12

14

16

3

6

13

8

15

12

3

User Agreement

User agreement with GPClerk

Range of agreement

N
um

be
r

of
 u

se
rs

Figure 8 – Percentage of user agreement with GPClerk.

confidence interval. The users also evaluated a similar size sample, generated randomly.
This made it possible to compare our GP based method to a simple random selection.

In Table 7 we present, for each category, the size of the sample evaluated by
users (“Sample”) and the precision achieved, both with GPClerk and with the random
selection.

As it can be noticed, the GPClerk results are far superior to random’s. For
all datasets evaluated by the users, the GPClerk achieved satisfactory results. In the
Camera Dataset, GPClerk achieved 0.91 of precision in according to user evaluation.

Figure 8 presents a graph that shows in which extent the users agreed with the
similar alternative pairs identified by GPClerk. There was no such case in which the
users completely disagreed from our method, as it can be seen in the lowest agreement
values of 0.3 and 0.4 (from only 3 users out of the 60 participants). In fact, most of the
users agreed with at least 50% of the pairs identified with GPClerk. In addition, half of
the users agreed with at least 70% of the answers.

62 Chapter 7. Experimental Results

7.4 Result Analysis
The results achieved in the evaluation of the PEFEvol (Chapter 7.2) indicate that

this algorithm is able to correctly learn patterns related to the similarity of the attributes
of two products to predict whether these products are similar alternatives. For this,
algorithm receives as input examples of pairs considered as similar alternatives. The
examples labelled by users, used in the experiment reported in Table 4, were collected
in our second experiment. We gathered the product pairs obtained in GPClerk user
evaluation and submitted as input for the PEFEvol algorithm.

The second experiment shows that the strategy presented in Chapter 6 is
effective for obtaining such examples in an unsupervised way. Importantly, the results
of this second also validate the hypotheses we assume in Chapter 3. Indeed, according
to the results in Table 7, the evaluation made by users confirms that there exists similar
alternative pairs of products, and GPClerk is able on finding them, and these pairs
can be identified by analysing the similarity of values of common attributes between
products.

These results also confirmed that there are similar alternative pairs that do not
belong to the set of product pairs mined from the log, i.e., those pairs occurring in
the UV set of Figure 2. Table 8 shows details the precision achieve by the method
considering only pairs that belong to UV and pairs that are not in UV. This leads
us to conclude that, indeed, methods such as GPClerk that are able to spot pairs of
similar alternative products in whole catalog, independently from the user behaviour,
are needed.

Dataset Precison
in UV out of UV

CAM 0.923 0.906
REF 0.704 0.500
LAP 0.625 0.486
SMP 0.815 0.750
TVS 0.696 0.538

Table 8 – Precision achieved by GPClerk in and out of UV.

63

8 Conclusions and Future Work

In this chapter we present our conclusions and discuss directions for future
work.

8.1 Conclusions

We described a novel method we designed, implemented and tested to find
products that are similar alternatives to a given product. Although relatively new, this
problem has already attracted attention both from the industry and from the academia.

Our method uses Genetic Programming (GP) to learn functions for comparing
two products based on their attributes, so to tell whether the two products are similar
alternatives or not. These functions are called here product comparison functions. We
show GP is a suitable machine learning technique for capturing the notion of similarity
from user provided examples. We call our method GPClerk. For this method, we
proposed a GP-based algorithm called PEFEvol to evolute the product comparison
functions from sets of training pairs of positive and negative examples.

We consider that providing training examples of similar alternative products is
problematic in our setting, due to the potentially high number of pairs of products to
consider, and to the degree of expertise required to compare values of more technical
attributes (e.g., the shutter speed of a camera). To address this, GPClerk includes
an unsupervised strategy we proposed to generate training examples. This strategy
consists of mining logs for pairs of products of a same category that are frequently
viewed together in same user section.

To evaluate our method, we carried out experiments using real datasets on
5 different popular product categories over hundreds of thousands product pairs.
In a first set of experiments, we validate our evolutionary algorithm PEFEvol. The
results indicate that the algorithm is able to successfully learn the concept of product
comparison implicitly defined by instances in the training datasets, achieving F-
measure values above 0.8, on average.

In a second set of experiments we carried out, the goal was verifying the
effectiveness of the whole process of GPClerk, including the strategy for obtaining
training data. This experiments was conducted with the help of users that verify the
pairs of products identified as similar alternatives by our method. The results show
that, considering all datasets, nearly 70% of the pairs indicated by our method as
similar alternatives, were also identified by the users as so.

64 Chapter 8. Conclusions and Future Work

Another interesting results is that GPClerk was able to find pairs of similar
alternative products, even if they are not viewed together by users. This indicates that
our method is a suitable complement to the traditional recommendation methods
based on collaborative filtering techniques, in particular for dealing with the long
standing cold start problem.

8.2 Future Work
Our work with GPClerk opened a number of opportunities for future work. We

mention some of them in the following.

The product comparison functions generated by the PEFEvol algorithm, implic-
itly indicates which attributes are the most important to users, at least according to the
training data provided. By generating several of these functions and combining them
using some logistic regression technique, we plan to identify which are the attributes
that are the most important in a specific category. Once this attributes are identified,
we believe that a number of applications may follow. Among them, multi-objetive opti-
mization techniques could be used to rank products according to the most important
attributes, so that products can be compared by their features.

In another line of investigation, we believe that our general approach can be
adapted to find products related by other kinds of relationships besides similarity. In
particular, we plan to experiment this approach to find complementary products, as
in (MCAULEY; PANDEY; LESKOVEC, 2015). This the case of accessories, supplies, etc.

Finally, currently GPCLerk requires that products being compared have their
specifications available in a product catalog. However, we believe that it can also be used
to compare products represented by textual unstructured product offer descriptions.
This would require integrating in the process information extraction methods like
those proposed in (CORTEZ et al., 2010; CORTEZ et al., 2011).

65

Bibliography

AL-MUHAMMED, M.; EMBLEY, D. Ontology-based constraint recognition for
free-form service requests. In: IEEE 23rd International Conference on Data Engineering.
[S.l.: s.n.], 2007. p. 366–375. Cited on page 39.

BANZHAF, W. et al. Genetic Programming - An Introduction: on the Automatic Evolution
of Computer Programs and Its Applications. [S.l.]: Morgan Kaufmann Publishers, 1998.
Cited on page 43.

BILENKO, M.; BASU, S.; SAHAMI, M. Adaptive product normalization: Using online
learning for record linkage in comparison shopping. In: Proceedings of the Fifth IEEE
International Conference on Data Mining. Washington, DC, USA: IEEE Computer Society,
2005. (ICDM ’05), p. 58–65. ISBN 0-7695-2278-5. Cited on page 29.

BURKE, R. Knowledge based recommender systems. In: Encyclopedia of Library and
Information Science. [S.l.: s.n.], 2000. v. 69. Cited on page 25.

CARVALHO, M. G. de et al. Learning to deduplicate. In: Proceedings of the 6th
ACM/IEEE-CS Joint Conference on Digital Libraries. [S.l.: s.n.], 2006. p. 41–50. ISBN
1-59593-354-9. Cited 2 times on pages 27 and 47.

CARVALHO, M. G. de et al. Replica identification using genetic programming. In:
Proceedings of the 23rd Annual ACM Symposium on Applied Computing - SAC . [S.l.: s.n.],
2008. Cited on page 47.

CARVALHO, M. G. de et al. A genetic programming approach to record deduplication.
IEEE Trans. Knowl. Data Eng., v. 24, n. 3, p. 399–412, 2012. Cited 7 times on pages 27,
31, 32, 35, 47, 48, and 56.

CHA, S.-H. Comprehensive survey on distance/similarity measures between
probability density functions. International Journal of Mathematical Models and Methods in
Applied Sciences, v. 4, n. 1, p. 300–307, 2007. Cited on page 40.

CHRISTEN, P. A survey of indexing techniques for scalable record linkage and
deduplication. IEEE Transactions on Knowledge and Data Engineering, v. 24, n. 9, p.
1537–1555, 2012. Cited on page 37.

CORTEZ, E. et al. Joint unsupervised structure discovery and information extraction.
In: Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2011, Athens, Greece, June 12-16, 2011. [S.l.: s.n.], 2011. p. 541–552. Cited on
page 64.

CORTEZ, E. et al. ONDUX: on-demand unsupervised learning for information
extraction. In: Proceedings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010. [S.l.: s.n.], 2010. p.
807–818. Cited on page 64.

GOPALAKRISHNAN, V. et al. Matching product titles using web-based enrichment.
In: Proceedings of the 21st ACM International Conference on Information and Knowledge

66 Bibliography

Management. New York, NY, USA: ACM, 2012. (CIKM ’12), p. 605–614. ISBN
978-1-4503-1156-4. Cited on page 29.

GOWER, J. A general coefficient of similarity and some of its properties. Biometrics,
v. 27, n. 4, p. 857–874, 1971. Cited on page 53.

HAMMAR, M.; KARLSSON, R.; NILSSON, B. J. Using maximum coverage to optimize
recommendation systems in e-commerce. In: Proceedings of the 7th ACM Conference on
Recommender Systems. New York, NY, USA: ACM, 2013. (RecSys ’13), p. 265–272. ISBN
978-1-4503-2409-0. Cited on page 25.

HOFFMANN, U.; SILVA, A. S. da; CARVALHO, M. G. de. Finding similar products
in e-commerce sites based on attributes. In: Proceedings of the 9th Alberto Mendelzon
International Workshop on Foundations of Data Management. [S.l.]: CEUR-WS.org, 2015.
(CEUR Workshop Proceedings, v. 1378). Cited on page 40.

ISELE, R.; BIZER, C. Learning expressive linkage rules using genetic programming.
Proc. VLDB Endow., v. 5, n. 11, p. 1638–1649, 2012. Cited 3 times on pages 27, 31,
and 35.

KAGIE, M.; WEZEL, M. van; GROENEN, P. J. Choosing attribute weights for item
dissimilarity using clikstream data with an application to a product catalog map. In:
Proceedings of the 2008 ACM Conference on Recommender Systems. [S.l.: s.n.], 2008. p.
195–202. Cited 4 times on pages 29, 30, 39, and 53.

KAGIE, M.; WEZEL, M. van; GROENEN, P. J. A graphical shopping interface based
on product attributes. Decision Support Systems, v. 46, n. 1, p. 265 – 276, 2008. Cited 4
times on pages 25, 29, 39, and 53.

KATUKURI, J. et al. Recommending similar items in large-scale online marketplaces.
In: IEEE International Conference on Big Data. [S.l.: s.n.], 2014. p. 868–876. Cited 4 times
on pages 25, 29, 30, and 31.

KöNIK, T.; MUKHERJEE, R.; KATUKURI, J. Subjective similarity: Personalizing
alternative item recommendations. In: Proceedings of the 24th International Conference
on World Wide Web. Republic and Canton of Geneva, Switzerland: International
World Wide Web Conferences Steering Committee, 2015. (WWW ’15 Companion), p.
1275–1279. ISBN 978-1-4503-3473-0. Cited 2 times on pages 29 and 30.

KÖPCKE, H. et al. Tailoring entity resolution for matching product offers. In: 15th
International Conference on Extending Database Technology, EDBT ’12, Berlin, Germany,
March 27-30, 2012, Proceedings. [S.l.: s.n.], 2012. p. 545–550. Cited on page 29.

KOZA, J. R. Gentic Programming: on the Programming of Computers by Means of Natural
Selection. [S.l.]: MIT Press, 1992. Cited 4 times on pages 27, 35, 43, and 44.

LONG, B. et al. Enhancing product search by best-selling prediction in e-commerce.
In: Proceedings of the 21st ACM International Conference on Information and Knowledge
Management. New York, NY, USA: ACM, 2012. (CIKM ’12), p. 2479–2482. ISBN
978-1-4503-1156-4. Cited on page 25.

Bibliography 67

MCAULEY, J.; PANDEY, R.; LESKOVEC, J. Inferring networks of substitutable and
complementary products. In: Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. [S.l.: s.n.], 2015. p. 785–794. ISBN
978-1-4503-3664-2. Cited 5 times on pages 25, 29, 30, 31, and 64.

NGUYEN, H. et al. Synthesizing products for online catalogs. PVLDB, v. 4, n. 7, p.
409–418, 2011. Cited on page 29.

SCHAFER, J.; KONSTAN, J.; RIEDL, J. E-commerce recommendation applications.
Data Mining and Knowledge Discovery, v. 5, n. 1-2, p. 115–153, 2001. Cited on page 25.

SCHEIN, A. I. et al. Methods and metrics for cold-start recommendations. In: ACM.
Proceedings of the 25th annual international ACM SIGIR conference on Research and
development in information retrieval. [S.l.], 2002. p. 253–260. Cited on page 25.

SRIVASTAVA, J. et al. Web usage mining: Discovery and applications of usage patterns
from web data. ACM SIGKDD Explorations Newsletter, v. 1, n. 2, p. 12–23, 2000. Cited
on page 35.

TATTI, N. Maximum entropy based significance of itemsets. In: Proceeding of the 7th
IEEE International Conference on Data Mining. [S.l.: s.n.], 2007. p. 312–321. Cited on
page 50.

WITTEN, I. H.; FRANK, E. Data Mining: Practical Machine Learning Tools and Techniques,
Second Edition (Morgan Kaufmann Series in Data Management Systems). [S.l.]: Morgan
Kaufmann Publishers Inc., 2005. Cited on page 37.

YIN, H. et al. Challenging the long tail recommendation. Proc. VLDB Endow., VLDB
Endowment, v. 5, n. 9, p. 896–907, maio 2012. ISSN 2150-8097. Cited on page 25.

