

UNIVERSIDADE FEDERAL DO AMAZONAS INSTITUTO DE CIÊNCIAS EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS

MICROFÁCIES CARBONÁTICAS DA FORMAÇÃO ITAITUBA (CARBONÍFERO DA BACIA DO AMAZONAS), NA REGIÃO DO MUNICÍPIO DE ITAITUBA (PA)

KATY MARILYM DE MATOS NEVES

MANAUS 2018

UNIVERSIDADE FEDERAL DO AMAZONAS INSTITUTO DE CIÊNCIAS EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS

KATY MARILYM DE MATOS NEVES

MICROFÁCIES CARBONÁTICAS DA FORMAÇÃO ITAITUBA (CARBONÍFERO DA BACIA DO AMAZONAS), NA REGIÃO DO MUNICÍPIO DE ITAITUBA (PA)

Dissertação apresentada ao Programa de PósGraduação em Geociências Universidade da Federal do Amazonas, como requisito parcial para a obtenção do título de Mestre em Geociências, área de concentração em Geologia Sedimentar e Meio Ambiente.

Orientadora: Prof.^a Dr.^a Valquíria Porfírio Barbosa

MANAUS 2018

Ficha Catalográfica

Ficha catalográfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

KATY MARILYM DE MATOS NEVES

MICROFÁCIES CARBONÁTICAS DA FORMAÇÃO ITAITUBA (CARBONÍFERO DA BACIA DO AMAZONAS), NA REGIÃO DO MUNICÍPIO DE ITAITUBA (PA)

Dissertação apresentada ao Programa de PósGraduação em Geociências da Universidade Federal do Amazonas, como requisito parcial para a obtenção do título de Mestre em Geociências, área de concentração em Geologia Sedimentar e Meio Ambiente.

Defesa em 29 de março de 2018

BANCA EXAMINADORA

Prof.^a Dr.^a Valquíria Porfírio Barbosa Universidade Federal do Amazonas

Prof.^a Dr.^a Rosemery Rocha da Silveira Universidade Federal do Amazonas

Prof. Dr. Roberto Cesar de Mendonça Barbosa Universidade Federal do Amazonas

Dedico este trabalho a minha mãe Maria, pai Luiz, avó Augusta, irmãos Wanderlan, César, Wanderley, Kelly, Sérgley, Luiz, Johannes e Deise, aos meus sobrinhos e cunhadas.

AGRADECIMENTOS

Foram difíceis os dias, mas me levaram a crescer, a aprender, a reconhecer os erros e a procurar fazer algo bom e melhor.

Foram difíceis os dias, mas passaria por todos eles novamente só para ter a oportunidade de conhecer e conviver com pessoas tãos especiais. Pessoas que me ensinaram, que me consolaram, que me deram a mão e chorou comigo, mas que também riu comigo e riu foi muito. Foram belas gargalhadas. São estas pessoas que fazem a nossa vida melhor, que tornam a vida um viver. E este viver é o que fica na memória para sempre.

São momentos em que tudo parece dar errado e param e falam: vamos tomar um café! São as risadas, os olhares e o sentimento de estarmos juntos, que fazem qualquer desânimo passar e nascer uma força para continuar.

Chegar até aqui hoje foi difícil, mas teria sido impossível sem vocês.

-Ao Carlos, Mônica, Mateus, Eliana, Pâmella, Johanna, Ericka, Patrícia, Janaína, Raissa, Alinne, Ana Elisa, Vanessa, Lilian e Elane.

Registro meus sinceros agradecimentos às pessoas e instituições que colaboraram de alguma maneira para a realização desta dissertação de mestrado, em especial:

 - À Universidade Federal do Amazonas (UFAM) que através do Programa de Pós-Graduação em Geociências, Faculdade de Geologia, proporcionou-me a oportunidade de desenvolver a pesquisa;

-Agradeço à CAPES pelo incentivo financeiro, o qual possibilitou a realização deste trabalho;

-À minha orientadora, Prof.^a Dr.^a Valquíria Porfírio Barbosa, pela paciência e dedicação em transmitir conhecimento e a imensa boa vontade em ajudar. E acima de tudo, pelo ser humano que é e pela oportunidade de conhecê-la;

-Aos professores Ingo, Rosemery, Paulo, Marcelo Almeida e Roberto, por terem apresentado com muita competência e didática os ensinamentos, contribuindo muito para a confecção da dissertação;

-À família Saraiva que me acolheu como filha e me proporcionou uma ajuda inestimável. Em especial ao Mateus Saraiva, que tem sido, além de um grande amigo, um companheiro de conquistas e aprendizado;

-À família Cortez (Gêh, Mônica e Roger) pelo carinho e apoio, principalmente durante a fase final deste trabalho;

-À equipe BKM por todo aprendizado e conquistas, as quais me ajudaram a me manter financeiramente na cidade.

-Ao Secretário do PPGGEO, Marcos, o qual está sempre disposto a nós ajudar e a proporcionar as melhores condições de trabalho para os discentes;

-À minha família, pai, mãe, irmãos, sobrinhos e cunhados, pela força que sempre me deram aos meus sonhos. Que embora a saudade seja imensa e que o desejo de estarmos juntos seja grande, o apoio é incondicional. Á minha mãe em especial, a qual sei que fica muito preocupada e com o coração apertado, mas sempre me coloca em suas orações e me abençoa nas decisões que tomo;

- E à Manaus, por ser palco de toda esta realização. Por me proporcionar sensações incríveis e me mostrar um Brasil especial, diferente e único. Uma cultura, culinária e natureza inigualáveis e maravilhosas.

"Por vezes sentimos que aquilo que fazemos

não é senão uma gota de água no mar.

Mas o mar seria menor se lhe faltasse uma gota".

(Madre Teresa de Calcutá)

RESUMO

Este trabalho foi realizado visando à interpretação e a inferência dos paleoambientes de uma sucessão carbonática pertencente à Formação Itaituba (Pensilvaniano da Bacia do Amazonas), que aflora às margens do Rio Tapajós, SW do estado do Pará, estudos petrográficos voltados à caracterização e identificação de microfáceis sedimentares foram realizados a partir da análise de 50 seções delgadas. A análise petrográfica foi desenvolvida de acordo com a metodologia padrão para estudos desta natureza, envolvendo, essencialmente, a classificação das rochas carbonáticas e a caracterização e a individualização de microfácies. Como resultado destas análises foram identificados cinco litótipos (mudstones, wackestones, packstones, graisntones e boundstones) e nove microfácies: Mudstone com evaporitos (Me), Wackstone com terrígenos (Wt), Wackstone com quartzo autigênico e fitoclastos (Wqf), Wackstone com braquiópodes e crinóides (Wbc), Packstone com braquiópodes (Pb), Grainstone com braquiópodes (Gb), Grainstone com fusulinídeos (Gf), Grainstone com aglutinantes (Ga) e Boundstone com intraclastos (Bi). Destas microfácies, foram distinguidas quatro biofácies (Biofácies 01, Biofácies 02, Biofácies 03 e Biofácies 04), baseadas nos trends e paleocologia dos bioclastos, e cinco associações de grãos não-esqueletais (Associação 01, Associação 02, Associação 03, Associação 04 e Associação 05), fundamentadas no significado sedimentológico destes grãos. A partir disto, foram interpretados cinco tipos de microfácies, representativos de cinco sistemas deposicionais distintos: MFT-01) sabhka costeira semi-restrita, MFT-02) planície de maré, MFT-03) laguna, MFT-04) canais de maré e MFT-05) barras bioclásticas. Estes tipos de microfácies compõem o modelo deposicional de plataforma carbonática em rampa, com o desenvolvimento de um sistema deposicional marinho raso, dominado por sedimentação carbonática, influenciado por maré, sob regime climático dominante de clima semiárido e temperatura da massa d'água variando de temperada a quente.

Palavras chaves: Petrografia, microfácies, paleoambientes, Formação Itaituba.

ABSTRACT

This work was carried out aiming at the interpretation and inference of the paleoenvironments of a carbonate succession belonging to the Itaituba Formation (Pensilvaniano of the Amazon Basin), which appears on the banks of the Tapajós River, SW of the state of Pará, petrographic studies focused at the characterization and identification of sedimentary microfacies were performed from the analysis of 50 thin sections. The petrographic analysis was developed according to the standard methodology for studies of this nature, essentially involving the classification of carbonate rocks and the characterization and individualization of microfacies. As a result of these analyzes, five lithotypes (mudstones, wackestones, packstones, grainstones and boundstones) and nine microfacies were identified: Mudstone with evaporites (Me), Wackstone with terrigenos (Wt), Wackstone with autigenic quartz and phytoclasts (Wqf), Wackstone (Wbc), Packstone with brachiopods (Pb), Grainstone with brachiopods (Gb), Grainstone with fusulinids (Gf), Grainstone with binders (Ga) and Boundstone with intraclasts (Bi). From these microfacies, four biofacies were distinguished (Biofacies 01, Biofacies 02, Biofacies 03 and Biofacies 04), based on the trends and paleocology of the bioclasts, and five associations of non-skeletal grains (Association 01, Association 02, Association 03, Association 04 and Association 05), based on the sedimentological significance of these grains. From this, five types of microfacies, representative of five distinct depositional systems were interpreted: MFT-01) semi-restricted coastal sabhka, MFT-02) tidal plain, MFT-03) lagoon, MFT-04) tidal channels and MFT -05) bioclastic bars. These types of microfacies indicate a depositional carbonaceous platform model in ramp, with the development of a shallow marine depositional system, dominated by carbonate sedimentation, influenced by tide, under the dominant regime of semiarid climatic and temperature of the water mass varying from temperate to hot.

Keywords: Petrography, microfacies, paleoenvironments, Itaituba Formation

LISTA DE FIGURAS

Figura 2.2: Esquema de contagem total por área da lâmina delgada em objetiva de 10x, onde os círculos representam as áreas definidas para a contagem.......14

Figura 3.1: Localização e limites da Bacia do Amazonas (CUNHA, 2000)18

Figura 3.2: Carta estratigráfica da Bacia do Amazonas (modificado de CUNHA et al., 2007). Em azul, a unidade litoestratigráfica que será abordada neste estudo20

Figura 4.23: A) Detalhe para solution seams (Sse) em nicóis cruzados com concentração de material insolúvel, B) solution seams contornando fragmento esqueletal de briozoário em nicóis cruzados, C e D) grande variedade granulométrica dos grãos, o que causa dúvida quanto a textura da microfácies53

Figura 4.25: A) Detalhe para foraminíferos fusulinídeos (Fu) com seu característico padrão de enrolamento espiral e seu elevado número de câmaras, além de fragmento esqueletal de gastrópode (Gt), B) fragmento esqueletal de crinóides (Cr) com contorno circular, fragmentos esqueletais de braquiópodes com conchas suavemente curvadas e cimento equicristalino preenchendo os espaços entre os

Figura 4.31: A) Fragmento esqueletal de braquiópode fortemente recristalizado e B) fragmentos esqueletais de braquiópodes recristalizados, de corais Rugosa coloniais e de gastrópodes com sua característica concha em espiral......61

Agradecimentos	v
RESUMO	viii
1.INTRODUÇÃO	1
1.1.APRESENTAÇÃO	1
1.1.JUSTIFICATIVAS	2
1.2.OBJETIVOS	3
1.3.ÁREA DE ESTUDO E BASE DE DADOS DO PROJETO	4
2.MATERIAIS E MÉTODOS	8
2.1. LEVANTAMENTO BIBLIOGRÁFICO	8
2.2. CONFECÇÃO DAS SEÇÕES DELGADAS	8
2.3. ANÁLISE PETROGRÁFICA	10
2.4. CLASSIFICAÇÃO LITOLÓGICA	14
2.5. MICROSCOPIA ELETRÔNICA DE VARREDURA (MEV)	15
2.6. CARACTERIZAÇÃO E INDIVIDUALIZAÇÃO DE MICROFÁCEIS	16
2.7. AQUISIÇÃO E ELABORAÇÃO DE FIGURAS TEMÁTICAS	16
2.8. INTEGRAÇÃO E INTERPRETAÇÃO DOS RESULTADOS	17
3.CONTEXTO GEOLÓGICO	18
3.1.BACIA DO AMAZONAS	18
3.2.FORMAÇÃO ITAITUBA	22
4. RESULTADOS	29
4.1. DESCRIÇÃO E INDIVIDUALIZAÇÃO DE MICROFÁCIES	29
5. SIGNIFICADO PALEOAMBIENTAL DAS MICROFÁCIES	67
5.1. ANÁLISE QUALITATIVA E SIGNIFICADO PALEOECOLÓGICO DOS BIOCLASTOS	69
5.2.ANÁLISE QUALITATIVA E SIGNIFICADO PALEOAMBIENTAL DOS GRÃ	OS
NÃO-ESQUELETAIS	76

SUMÁRIO

5.3. ÍNDICE DE ENERGIA	82
6. TIPOS DE MICROFÁCIES	84
6.1.PERFIL DEPOSICIONAL	89
7. CONCLUSÕES	95
8. REFERÊNCIAS BIBLIOGRÁFICAS	98
9. APÊNDICE 1	106
PREFERÊNCIAS PALEOECOLÓGICAS	106
10. APÊNDICE 2	115
PUBLICAÇÃO: Pesquisas em Geociências (UFRGS)	115

1.1. APRESENTAÇÃO

Análises sedimentológicas, paleontológicas e estratigráficas de sucessões de rochas são importantes elementos para recompor a evolução paleogeografica, paleoclimática e paleoambiental de uma bacia sedimentar.

Em síntese, a Sedimentologia possibilita o reconhecimento de parâmetros composicionais, texturais e estruturais de rochas, além dos processos físicos, químicos e biológicos referentes aos ambientes deposicionais (SUGUIO, 2003). A Paleontologia permite a caracterização da estrutura das populações e comunidades, auxiliando na reconstrução paleoambiental. A Estratigrafia, por sua vez, promove a integração, a interpretação dos fenômenos estratigráficos, o estabelecimento de correlações e de extrapolações laterais, importantes para o entendimento da organização estratigráfica na escala de bacia sedimentar (adaptado de MOUTINHO, 2006).

Segundo Boggs Jr. (2009), entre os diferentes estudos sedimentológicos, a petrografia sedimentar e, particularmente o estudo de microfácies, tem evoluído e se aprimorado, passando a ser considerado como uma ferramenta essencial em estudos de diagênese, petrofísica, sistemas e ambientes deposicionais pretéritos, pois auxilia enormemente na compreensão da origem e da história deposicional de bacias sedimentares em todo o mundo.

No que diz respeito à petrografia de rochas carbonáticas, objeto deste estudo, a análise de microfacies também é uma etapa essencial, pois além de ser um critério comumente considerado na classificação destas rochas, a adequada compreensão de seu significado pode fornecer importantes subsídios para a interpretação da história deposicional e diagenética de sucessões carbonáticas.

Neste contexto, Flügel (2010) define microfácies como o conjunto de todos os dados sedimentológicos e paleontólogicos que podem ser descritos e classificados a partir de seções delgadas e polidas. Em relação às microfácies carbonáticas, este autor ressalta ainda, a relevante participação de organismos na produção

carbonática e nos processos físicos, biológicos e químicos que caracterizam os ambientes carbonáticos, os quais, em sua maioria, ficam registrados nas rochas. Consequentemente, é notória a importância dos dados paleontológicos nas análises de microfácies destinadas à interpretação paleoambiental de rochas carbonáticas.

Na Bacia do Amazonas são reconhecidas duas sequências carbonáticas pertencentes às formações Itaituba (Bashkiriano–Moskoviano) e Nova Olinda (Kasimoviano–Gzheliano), ambas pertencentes ao Grupo Tapajós (Sequência Pensilvaniano-Permiana) (CUNHA *et al.*, 2007). Em termos litoestratigráficos e paleontológicos, Silva (1996) sugere que as rochas carbonáticas destas unidades diferenciam-se, essencialmente, pela maior espessura e expressividade dos pacotes carbonáticos da Formação Itaituba, os quais também apresentam o conteúdo fossilífero mais representativo do Grupo Tapajós.

Associadas a outros aspectos, estas características conferem à sucessão carbonática da Formação Itaituba um papel de destaque no Grupo Tapajós, pois figuram entre os de maior importância econômica, distinguindo-se três principais áreas de interesse: agricultura e pecuária (demandas de insumo do agronegócio como corretivos de solo, adubo de pastos, etc.), construção civil (matéria prima para a fabricação de cimentos) e indústria petrolífera (compõem o principal sistema petrolífero da Bacia do Amazonas) (ANP, 2015).

Assim, visando à ampliação do conhecimento geológico desta importante unidade litoestratigráficas, este trabalho foi proposto com o objetivo primário de inferir os paleoambientes de uma sucessão carbonática da Formação Itaituba que aflora às margens do Rio Tapajós, SW do estado do Pará, a partir do desenvolvimento de estudos petrográfico voltados à caracterização e individualização de microfáceis sedimentares.

1.2. JUSTIFICATIVAS

Embora a região amazônica tenha sido objeto de relevantes estudos de cunho geológico, o que sem dúvida tem favorecido muito a compreensão da evolução geológica da região, de um modo geral, ainda há muitas lacunas geológicas não elucidadas, o que em grande parte, se deve as dificuldades naturais da Amazônia, como a grande extensão territorial e a característica dificuldade de

acesso às exposições de rochas em decorrência da carência de estradas e da vasta cobertura vegetal, entre outros fatores.

Consequentemente, no que diz respeito à evolução estratigráfica da Bacia do Amazonas, ainda é notória a necessidade de ampliação do conhecimento das rochas que compõem a sucessão sedimentar da bacia para que seu arcabouço estratigráfico seja plenamente compreendido. Nesse contexto, as sucessões carbonáticas pertencentes à Formação Itaituba não são uma exceção, apesar de, reconhecidamente, terem sido objeto de importantes estudos geológicos (LEMOS, 1990; SILVA, 1996; LEMOS & MEDEIROS, 1996a; LEMOS & MEDEIROS, 1996b; MATSUDA *et al.*, 2004; SCOMAZZON & LEMOS, 2005; ALMEIDA *et al.*, 2007; NASCIMENTO, 2008; NEVES, 2009; LIMA, 2010; MATSUDA *et al.*, 2010; NASCIMENTO *et al.*, 2010; CARDOSO, 2010; SANTOS, 2010; SANTOS *et al.*, 2011; SILVA, 2014).

Por isso, acredita-se que o desenvolvimento de um estudo petrográfico voltado à interpretação dos paleoambientes deposicionais desta sucessão carbonática, através da caracterização e da identificação de microfácies, poderá trazer contribuições importantes no sentido de ampliar o conhecimento geológico da bacia e da região. Isso porque, a petrografia tem um importante papel na construção de arcabouços estratigráficos, pois sendo um método de reconhecimento de eventos e processos relativos à evolução sedimentar de rochas, também é um elemento de correlação estratigráfica (SUGUIO, 2003).

1.3. OBJETIVOS

Este trabalho tem como objetivo geral a análise petrográfica direcionada ao reconhecimento de microfáceis em uma sucessão de rochas carbonáticas pertencentes à Formação Itaituba (Grupo Tapajós), visando sua interpretação paleoambiental.

Em nível específico, este trabalho tem como metas:

1. Análises quantitativa e qualitativa dos componentes das rochas;

Classificação das rochas carbonáticas segundo o modelo de Dunham (1962);

3. Descrição, caracterização e identificação de microfácies;

 Construção de seções e perfis estratigráficos, representativos da sucessão estudada;

5. Reconhecimento de possíveis eventos e processos deposicionais,

6. Estabelecimento de correlações estratigráficas entre as seções estudadas com seções correlatas de outras localidades;

 Reconstrução e representação através de blocos-diagramas dos paleoambientes deposicionais.

1.4. ÁREA DE ESTUDO E BASE DE DADOS DO PROJETO

A área de estudo localiza-se no Munícipio de Itaituba, sudoeste do Estado do Pará (4º09'26" S 55º45'51" W) e corresponde a duas frentes de lavra de uma mina de calcário de propriedade da Mineradora CALREIS. Esta mina situa-se na margem direita do Rio Tapajós, à jusante em direção ao Munícipio de Santarém, em uma região que, geologicamente, corresponde à borda sul da Bacia do Amazonas (Figura 1.1).

A área foi visitada em novembro de 2012 em decorrência da realização dos trabalhos de campo do projeto de pesquisa CNPq/Universal *"Bioestratigrafia da Formação Itaituba (Grupo Tapajós), na região de Itaituba (PA), borda sul da Bacia do Amazonas"* (Edital Nº. 014/2011), desenvolvido sob coordenação da orientadora deste projeto. Na ocasião, o acesso à mina CALREIS foi feito por via aérea entre o trecho Manaus–Itaituba e, por via fluvial entre o Município de Itaituba e a sede da mineradora à margem do Rio Tapajós.

Figura 1.1: Mapa geológico e de localização da área de estudo (Fonte: CPRM, 2016).

Durante estes trabalhos, foram levantados quatro perfis estratigráficos representativos da sucessão sedimentar da área aflorante e coletadas 50 amostras. Este material representa uma sucessão aflorante de rochas carbonáticas com intercalações milimétricas a centimétricas de rochas clásticas (folhelhos) que compõem um pacote sedimentar de aproximadamente 16 m de espessura (Figuras 1.2 e 1.3). Em trabalhos anteriores (*e. g.*, LEMOS & MEDEIROS, 1996a; LEMOS & MEDEIROS, 1996b; MATSUDA *et al.*, 2004; SOMAZZON & LEMOS, 2005; NEVES, 2009; LIMA, 2010; MATSUDA *et al.*, 2010; NASCIMENTO *et al.*, 2010) essas rochas foram associadas à Formação Itaituba (Grupo Tapajós), representativa da sedimentação marinha pensilvaniana da Bacia do Amazonas.

Figura 1.2: Vista panorâmica de uma das frentes de lavra da área de estudo (Mina CALREIS) com indicação dos perfis A, B e C, levantados
durantearealizaçãodostrabalhosdecampo.

Figura 1.3: Vista panorâmica da segunda frente de lavra da área de estudo (Mina CALREIS) com indicação do perfil D, levantado durante a realização dos trabalhos de campo.

O material utilizado neste trabalho compreende um montante de 50 lâminas delgadas, confeccionadas a partir de amostras de rochas carbonáticas provenientes de afloramentos que constituem frentes de lavra de calcário da Mineradora CALREIS, Munícipio de Itaituba – PA. Estas amostras foram laminadas pelo Laboratório de Sedimentologia e Estratigrafia da Petrobrás, Unidade de Manaus (UO/AM) e atualmente encontram-se armazenadas no Laboratório de Paleontologia do Departamento de Geociências da Universidade Federal do Amazonas.

Os métodos de estudo previstos para a realização deste trabalho envolveram o cumprimento de oito etapas e métodos fundamentais:

2.1. LEVANTAMENTO BIBLIOGRÁFICO

Esta etapa foi voltada à obtenção de material bibliográfico especializado (*e. g.*, livros, artigos, dissertações e teses) sobre a geologia regional da área e da unidade litoestratigráfica a ser estudada, assim como, sobre conceitos, definições e fundamentação teórica das áreas de conhecimento abordadas durante o desenvolvimento deste trabalho (*e. g.*, Sedimentologia, Petrografia, Paleontologia e Paleogeografia).

Além disto, visando à correlação dos resultados obtidos com dados da literatura, foi também realizada uma revisão bibliográfica de trabalhos metodologicamente similares a este realizados na Formação Itaituba.

2.2. CONFECÇÃO DAS SEÇÕES DELGADAS

A confecção das lâminas foi realizada no Laboratório de Sedimentologia e Estratigrafia da Petrobrás, Unidade de Manaus (UO/AM) e cumpriu, essencialmente, as seguintes etapas:

1. Obtenção de tijolos: os tijolos correspondem a porções da amostra que serão submetidas a desgaste para confecção das seções delgadas. São obtidos a partir da delimitação e corte de áreas representativas da amostra e, no citado

laboratório, as dimensões padronizadas são 3 cm de comprimento, 2 cm de largura e 1 cm de espessura.

2. Lavagem e retirada de fluidos dos tijolos: visando a retirada de impurezas em geral (poeira, microorganismos, fluidos orgânicos, etc.) os tijolos foram lavados com álcool etílico e postos para secar em estufa a 60°C por 24 horas.

3. Impregnação dos tijolos: os tijolos foram impregnados com 10 ml de resina, 3 ml de catalisador ARADUR – 3741 CH e 0,1 ml de corante Azul de Ceres, para maior resistência das amostras e discriminação da porosidade, respectivamente. Em seguida, foram submergidas em um béquer que foi colocado em uma bomba de vácuo, onde permaneceu por dois intervalos de tempo de 10 e 15 minutos, respectivamente, para que a ocorrência de possíveis reações químicas prejudiciais à integridade das amostras pudesse ser observada. Cumpridos os intervalos, as amostras foram postas para secar por 12 horas.

4. Polimento dos tijolos: foi realizado com auxílio do abrasivo 3000 com óleo mineral (abrasivo empregado em amostras de rochas carbonáticas) em aparelho de polimento dimensionado (microtriz) Struers Rotopol-35, dotado de uma plataforma com um cilindro de 12 polegadas de diâmetro e acessório para oito tijolos. O polimento foi feito seguindo dois intervalos consecutivos de 2 minutos, com rotação contrária para cada intervalo.

5. Verificação de perdas: concluído o polimento as amostras foram examinadas e avaliadas detalhadamente com o intuito de observar possíveis perdas de informação e a consequente necessidade de reimpregnação. Não havendo necessidade de repetir o procedimento, as amostras foram novamente postas para secar.

6. Colagem dos tilojos às lâminas: nesta etapa as amostras são aderidas a lâminas através de uma mistura de proporção de 2 ml de catalisador ARADUR-837 e 5 ml de resina Araldite-GY-360. Para a colagem as amostras foram apoiadas em um vidro de relógio e a cola foi aplicada em um dos lados da amostra e no lado fosco da lâmina (o que deve ser feito de forma rápida, com movimentos subcirculares e com pressão homogênea, visando evitar a formação de bolhas de ar). Em seguida as lâminas foram submetidas à nova fase de secagem por cerca de 8 horas.

7. Desgaste dos tijolos na microtriz: uma vez concluída a colagem, as amostras foram novamente levadas para a microtriz, na foram rezlizadas duas etapas de desgaste. Na primeira as amostras são desgastadas consecutivamente até atingirem a espessura padrão de 60 μm, identificada através de um nível delimitado nos acessórios de encaixe da lâmina na microtriz. A segunda fase de desgaste foi realizada em intervalos consecutivos de 2 e 3 minutos, tendo como objetivo alcançar a espessura padrão de 30μm. A aferição da espessura das lâminas durante a segunda etapa de desgaste é feita através da utilização de um micrômetro.

8. Polimento das lâminas: visando dar acabamento final às lâminas, estas são levadas novamente para a microtriz, desta vez em um disco destinado a este fim, sobre o qual a lâmina é apoiada e recoberta por um abrasivo de solução de diamante e recoberto por um pano de polimento.

2.3. ANÁLISE PETROGRÁFICA

Foi desenvolvida com o auxílio de um microscópio ótico petrográfico Olympus modelo BX51 com objetivas de 5x, 10x, 20x, 40x, pertencente ao Laboratório de Microscópia Petrográfica do Programa de Pós-Graduação em Geociências (PPGGEO) da Universidade Federal do Amazonas, e compreendeu quatro etapas fundamentais:

1.DESCRIÇÃO DAS AMOSTRAS: por corresponder à caracterização e identificação dos constituintes das rochas, sua realização foi fundamentada no reconhecimento das propriedades óticas (hábito, relevo, cor, birrefringência, sinal de elongação e tipo de extinção, dentre outras), físicas e texturais destes elementos. Bem como, através do reconhecimento e da identificação de microestruturas sedimentares e diagenéticas.

De acordo com Scholle & Ulmer-Scholle (2003) e Flügel (2010), os constituintes primários das rochas carbonáticas são matriz (todo material menor que 62 µm), cimento (material que se precipita e preenche o espaço poroso da rocha, como aragonita, calcita e dolomita), grãos carbonáticos (esqueletais e não esqueletais) e, ocasionalmente, grãos não carbonáticos (*e. g.*, terrígenos, autigênicos e evaporíticos), Neste trabalho, estes constituintes foram identificados e descritos considerando as seguintes definições:

Matriz: material intersticial entre os grãos maiores, incluindo aqueles de granulometria fina (micrita) e material cristalino grosseiro (*e. g.*, microesparita formada por cimentação ou processos neomorficos), conforme definido por Flügel (2010). De acordo com este autor, podem ser diferenciadas três categorias distintas – <u>micrita</u> (caracterizada por cristais cripto e microcristalino com granulometria menor que 4 µm), <u>microesparita</u> (cristais de calcita com granulometria entre 5 e 30 µm) e <u>calcisiltito</u> (partículas detríticas de calcita com granulometria tamanho silte – 2 a 62 µm).

Neste estudo, a descrição do tipo de matriz baseou-se na mineralogia e nos intervalos granulométricos referentes a micrita, microesparita e calsiltito, conforme é apresentado por Flügel (2010).

Cimento: segundo Flügel (2010), é um precipitado químico de soluções em espaços intergranulares ou intragranulares, cuja formação ocorre, em geral, pela precipitação nos poros de fluidos supersaturados em determinados elementos que irão formar os minerias cimentantes. Conforme este autor, nas rochas carbonáticas o cimento é constituido principalmente por aragonita, calcita magnesiana, calcita de baixo teor de magnésio e dolomita.

Neste estudo, a descrição e a identificação do cimento nas amostras analisadas enfocou a morfologia e o arranjo dos cristais, considerando como atributos distintivos dos demais constituintes da rocha, aspectos como: aparência clara e limpa; frequência de limites e bordas retas dos cristais; contato estreito entre mineral cimentante e grãos; não penetração e corte de grãos; ocorrência frequente de junções triplas (≅180°); e cristais com eixos geralmente normais às superfícies dos grãos (FLÜGEL, 2010).

Grãos: segundo Horowitz & Potter (1971), Scholle & Ulmer-Scholle (2003) e Flügel (2010), grãos correspondem a todas as partículas granulometricamente maiores que a matriz (>62 μ m) e podem ser de natuza carbonática ou não. Conforme o adotado por estes autores, os grãos carbonáticos foram agrupados em <u>grãos esqueletais</u> ou <u>bioclastos</u> (*e. g.*, fósseis de braquiópodes, equinodermas, foraminíferos, entre outros) e <u>grãos não-esqueletais</u>, incluído entre estes grãos carbonáticos (*e. g.*, oncólitos, pelóides, pisóides, intraclastos, extraclastos, peletes) e grãos e minerais não carbonáticos (*e. g.*, intraclastos, extraclastos, peletes, grãos terrígenos, minerais opacos, evaporitos e minerais autigênicos). A descrição do tipo de grão, bem como dos minerais, baseou-se em aspectos caracteristicamente observáveis em seção delgada, como a forma, o contorno, o arranjo e propriedades óticas (*e. g.*, relevo, cor, birrefringência, sinal de elongação e tipo de extinção).

Microestruturas sedimentares e diagenéticas: a identificação das microestruturas obseráveis em seção delgada (*e. g.*, acamamento e laminação, bioturbação, moldes, contramoldes, *vugs* e estilólitos, variações composicionais laterais, dentre outros), foi desenvolvida a partir da consulta e comparação com descrições e ilustrações apresentadas em bibliografias especializadas (*e. g.* SCHOLLE & ULMER-SCHOLLE, 2003; FLÜGEL, 2010). Seu reconhecimento teve como intuito fornecer elementos complementares de interpretação sedimentológica para a inferência dos paleoambientes de sedimentação (*e. g.*, eventos e processos deposicionais e diagenéticos atuantes na formação das rochas).

2.ANÁLISE QUALITATIVA DOS CONSTITUINTES PRIMÁRIOS E DAS ESTRUTURAS: análise qualitativa pode ser definida como a análise exploratória de dados, que visa a obtenção de aspectos subjetivos empregados na interpretação de problemáticas e na concepção de modelos e/ou inferências almejados (adaptado de VERGARA, 2007).

Neste caso, portanto, correspondeu a avaliação do potencial e do significado dos constituintes da rocha como indicadores paleoambientais e vem sendo desenvolvida a partir de levantamentos bibliográficos direcionados, consequentemente, a este fim (*e. g.*, preferências paleoecológicas dos fósseis, significado genético dos grãos e das estruturas sedimentares e diagenéticas).

Segundo Scholle & Ulmer-Scholle (2003), a análise qualitativa é particularmente importante em rochas carbonáticas, porque ao contrário das rochas clásticas, os sedimentos são produzidos nas proximidades de seus ambientes deposicionais. Além disto, podem ser constituídos dominantemente por fósseis, os quais guardam informações paleoecológicas do ambiente de sedimentação, bem como, dados estratigráficos que podem levar a idade da rocha (SCHOLLE & ULMER-SCHOLLE, 2003).

3.ANÁLISE SEMI-QUANTITATIVA DA RAZÃO MATRIZ/GRÃOS: análises semiquantitativas correspondem, de um modo geral, a quantificação relativa de

elementos e/ou materiais, através da aplicação de métodos matemáticos e/ou empíricos. Fornecem, portanto, valores e/ou medidas aproximados de dados e são empregadas quando a obtenção de medidas ou valores absolutos não é viável.

Neste estudo, destinou-se a estimativa da razão entre as proporções de matriz e grãos nas amostras, visando sua classificação petrográfica de acordo com o modelo adotado. Foi realizada por meio da estimativa visual destes constituintes em campos selecionados das amostras, tomando-se como referência para as estimativas, ilustrações padrões fornecidas em bibliografias especializadas (*e. g.,* SCHOLLE & ULMER-SCHOLLE, 2003; FLÜGEL, 2010) (Figura 2.1).

Figura 2.1: Quadro de comparações visuais para estimar abundância de constituintes em lâminas delgadas (SCHOLLE & ULMER-SCHOLLE, 2003).

4.ANÁLISE QUANTITATIVA DOS GRÃOS: análise quantitativa pode ser definida como a explicação de fenômenos através da coleta de dados numéricos, mediante métodos matemáticos que forneçam valores numéricos absolutos (adaptado de HAMDAN, 2017). Nesse sentido, foi aqui empregada na obtenção da frequência por amostra dos diferentes tipos de grãos.

O método empregado foi o de contagem total de grãos por área, conforme o descrito por FLÜGEL (2010) e sua escolha é justificada por representar de forma mais fiel a frequência numérica das distintas categorias de grãos. Em síntese, o método prevê a quantificação de todos os diferentes tipos de grãos esqueletais (fósseis) e não esqueletais (*e. g.*, oncoides, peloides, entre outros) por campos consecutivos, os quais, neste estudo, corresponderam ao campo de aumento da objetiva de 10X, como esquematizado na Figura 2.1.

Figura 2.2: Esquema de contagem total por área da lâmina delgada em objetiva de 10x, onde os círculos representam as áreas definidas para a contagem.

2.4. CLASSIFICAÇÃO LITOLÓGICA

Embora haja diferentes propostas de classificação para as rochas carbonáticas, o modelo de Dunham (1962, *apud* FLÜGEL, 2010), adotada neste trabalho, é atualmente o mais empregado por especialistas em rochas carbonáticas, entre outros aspectos, pela definição dos litotipos fundamentar-se no significado genético das rochas.

A classificação de Dunham (1962, *apud* FLÜGEL, 2010) baseia-se na textura deposicional, distinguindo-se rochas com textura deposicional não reconhecível (carbonatos cristalinos) e rochas com textura deposicional reconhecível (*mudstone, wackstone, packstone, grainstone e boundstone*).

As rochas com textura deposicional reconhecível são subdivididas em dois grupos, um formado por rochas com componentes originais não-ligados durante a deposição (*mudstone, wackstone, packstone e grainstone*) e outro por rochas com componentes originais ligados organicamente durante a deposição (*boundstone*).

As rochas com componentes originais não-ligados durante a deposição, são, ainda, subdivididas em dois subgrupos, um formado por rochas matriz-suportadas (*mudstone* e *wackstone*) e outro por rochas grão-suportadas (*packstone* e *grainstone*). As rochas matriz-suportadas são diferenciadas segundo as proporções

de grãos presentes: *mudstone* (menos de 10% de grãos) e *wackstone* (mais de 10% de grãos); enquanto que as rochas grão-suportadas são diferenciadas pela presença de matriz (*packstone*) ou não (*grainstone*).

TEXT	Textura deposicional não- reconhecível				
Componentes originais não-ligados durante a deposição			;	Componentes	
Contém Matriz Partículas tamanho argila)		Contém Matriz tamanho argila/silte fino)		ligados durante a	
Suportado pela matriz		O arcabouço	Sem matriz,	Sem matriz, deposição	
Menos de 10% de grãos	Mais de 10% de grãos	é grão- suportado com matriz	suportado		
Mudstone	Wackestone	Packstone	Grainstone	Boundstone	Crystalline
and a	· · ·)			RA	

Figura 2.3: Classificação de rochas carbonáticas, adaptada de Dunham (1962) (TERRA *et al.*, 2010).

2.5. MICROSCOPIA ELETRÔNICA DE VARREDURA (MEV)

De acordo com Figueiredo (2000), esta técnica baseia-se na interação da matéria com elétrons excitados e destina-se principalmente à produção de imagens com aumento de até 500 mil vezes. Os elétrons são produzidos em uma fonte, que pode ser um filamento de tungstênio aquecido, e focalizados na amostra por meio de um sistema de lentes magnéticas. A amostra pode ser uma lâmina, seção polida ou mesmo uma superfície rugosa, que devem ser metalizadas antes da análise (Figueiredo, 2000).

Neste trabalho, a Microscopia eletrônica de varredura (MEV) foi utilizada com o intuito de complementar a caracterização petrográfica, sendo possível a identificação e detalhamento de feições e grãos muito pequenos, os quais são de difícil análise utilizando a microscópia ótica convencional. O aparelho utilizado para as análises é da marca QUANTA 250 do Laboratório de Técnicas Mineralógicas do Departamento de Geociências da Universidade Federal do Amazonas (DEGEO - UFAM).

As amostras foram metalizadas com ouro e as operações foram realizadas com voltagem de aceleração constante de 20 kv, obtendo imagens de raios X e de espalhamento de elétrons com resolução de alguns nanômetros (nm), o que permite a análise qualitativa rápida dos materiais geológicos analisados (Figueiredo, 2000).

2.6. CARACTERIZAÇÃO E INDIVIDUALIZAÇÃO DE MICROFÁCEIS

De acordo com Flügel (2010), o termo microfácies é empregado para agrupar todos os tipos de dados sedimentológicos e paleontológicos descritos em seções delgadas, os quais constituem uma importante ferramenta para a interpretação da história deposicional e dos processos diagenéticos das rochas carbonáticas. Sob este prisma, a individualização das microfácies foi desenvolvida a partir da caracterização de seus constituintes texturais, mineralógicos e paleontológicos e das estruturas sedimentares e diagenéticas.

Com relação à nomenclatura das microfácies, esta seguiu a proposta de fácies de Miall (1977), a qual, em síntese, prevê que a designação das microfácies seja composta pela litologia, acrescida da identificação da(s) característica(s) e/ou elemento(s) predominante(s) observados. Do mesmo modo, a codificação das microfácies seguiu esta proposta, segundo a qual o primeiro caractere (referente a litologia) deve ser escrito em maiúsculo, enquanto os demais caracteres (representativos dos dados qualificativos) devem ser escritos em minúsculo e em ordem crescente de representatividade.

2.7. AQUISIÇÃO E ELABORAÇÃO DE FIGURAS TEMÁTICAS

Neste trabalho, as figuras temáticas obtidas e confeccionadas compreenderam mapas, fotografias, carta estratigráfica da Bacia o Amazonas, ilustrações esquemáticas de métodos e modelos adotados e perfis estratigráficos.

Os mapas foram em parte obtidos em bibliografias e parte através do emprego do software ArcGIS 10.1, utilizando o banco de dados da CPRM de 2016 (*e. g.*, mapa de localização da área de estudo).

As fotografias ilustrativas da área de estudo foram obtidas através de uma câmera compacta modelo Sony DSC-W830 com zoom óptico 8x, enquanto as fotomicrografias foram capturadas através de uma câmera fotográfica SONY Cyber-Shot modelo DSC-WX50, acoplada a microscópio ótico petrográfico Olympus modelo BX51.

A carta estratigráfica da Bacia do Amazonas e as ilustrações esquemáticas foram obtidas de bibliografias especializadas. Todos os mapas, fotos e figuras, quando necessário, passaram por edição e digitalização através do software CorelDRAW X7, também empregado na confecção dos perfis estratigráficos.

2.8. INTEGRAÇÃO E INTERPRETAÇÃO DOS RESULTADOS

A interpretação paleoambiental da sucessão de rochas estudadas foi desenvolvida através da integração do significado sedimentológico, paleontológico e estratigráfico do material estudado (*e. g.*, características petrográficas indicativas de possíveis processos e eventos deposicionais; padrão de empilhamento e sucessão de fácies; reconhecimento de parâmetros bióticos e abióticos através dos fósseis).

O levantamento e a contextualização destes dados foram desenvolvidos a partir da correlação com clássicos modelos deposicionais descritos e ilustrados em bibliografias especializadas para ambientes carbonáticos, bem como, levando em consideração as propostas e interpretações de trabalhos anteriormente realizados em sucessões associadas à Formação Itaituba.

3.1. BACIA DO AMAZONAS

A Bacia do Amazonas é uma sinéclise intracratônica paleozoica, gerada por uma lenta subsidência durante o transcurso de vários períodos geológicos, do Ordoviciano ao Cenozóico (HASUI *et al.*, 2012). Localiza-se na porção setentrional da Plataforma Sul Americana, ocupando uma área total de 606.000 km² (CPRM, 2010), incluindo partes dos Estados do Amazonas, Pará e Amapá e possui um preenchimento sedimentar que pode alcançar até aproximadamente 5.000 m de espessura no depocentro (MILANI & THOMAZ FILHO, 2000).

Seus limites geológicos são o Escudo das Guianas ao norte e o Brasileiro a sul, o Arco de Purus (que a separa da Bacia do Solimões) a oeste e o Arco de Gurupá (que a separada da bacia trafogênica do Marajó) a leste (CUNHA *et al.,* 2007) (Figura 3.1).

Figura 3.1: Localização e limites da Bacia do Amazonas (CUNHA, 2000).

Seu embasamento é representado pelo Cráton Amazônico, formado por um conjunto de faixas móveis que foram acrescidas a um núcleo cratônico (Província Amazônica Central), em diferentes épocas (CORDANI *et al.*, 1984). Nesse contexto,
a instalação da Bacia do Amazonas é associada por diferentes autores a eventos distensivos relacionados aos esforços finais do Ciclo Brasiliano (e. g., ALMEIDA, 1967; NEVES, 1989; CUNHA *et al.*, 1994; ALMEIDA *et al.*, 2000; CUNHA, 2000; ZALÁN, 2004).

Com relação ao preenchimento sedimentar da bacia, Teixeira (2001, *apud* HASUI *et al.*, 2012) sugere que os depósitos sedimentares das formações Prosperança (arenitos aluviais e fluviais) e Acari (carbonatos de planícies de maré), que compõem o Grupo Purus, representam a sedimentação inicial da Bacia do Amazonas (fase rifte), possivelmente durante o Cambriano. Vale ressaltar, entretanto, que as idades destas unidades são ainda controversas, havendo sugestões de idades paleoproterozoicas, neoproterozoicas e paleozoicas (HASUI, *op. cit.*).

Para Cunha *et al.* (2007), estas unidades foram depositadas anteriormente a implantação da sinéclise, de modo que, consideram como sedimentação inicial da bacia as rochas glacio-marinhos neo-ordovicianos da Formação Autás-Mirim. Neste trabalho será adotado o arcabouço estratigráfico proposto por estes autores, de acordo com o qual o preenchimento sedimentar da bacia é composto por duas megassequências de primeira ordem: Paleozoica e Mesozoico-Cenozoica (Figura 3.2).

A Megassequência Paleozoica é constituída por rochas sedimentares, associadas a intrusões de diques e soleiras de diabásio mesozoicos e é dividida em quatro sequências de segunda ordem: Ordovício-Devoniana, Devono-Tournaisiana, Neoviseana e Pensilvaniano-Permiana. De acordo com Matsuda *et al.* (2010) todas estas sequências são delimitadas por significativos hiatos deposicionais, resultantes de eventos tectônicos que atuaram na borda oeste da placa Gondwânica (Figura 3.2).

A Megassequência Mesozoico-Cenozoica é constituída por rochas sedimentares de natureza continental, as quais caracterizam a implantação de novos ciclos deposicionais posteriores aos processos tectônicos e magmáticos póspaleozoicos. A sedimentação é representada pelo Grupo Javari, composto pelas formações Alter do Chão (arenitos e conglomerados de planícies e leques luviais do cretáceo) e Marajó (arenitos fluviais do Cenozoico).

19

Figura 3.2: Carta estratigráfica da Bacia do Amazonas (modificado de CUNHA *et al.*, 2007). Em azul, a unidade litoestratigráfica que será abordada neste estudo.

A Sequência Pensilvaniano-Permiana, objeto deste estudo, é interpretada como representativa de um ciclo transgressivo-regressivo ocorrido no Pensilvaniano (Cunha *et al.*, 2007). Sua sedimentação é representada pelo Grupo Tapajós, composto pelas formações Monte Alegre (arenitos eólicos, siltitos e folhelhos de interdunas do pensilvaniano), Itaituba (carbonatos, folhelhos e anidritas lagunares e marinhos do pensilvaniano), Nova Olinda (calcários, anidritas e halitas de inframaré e planície de *sabkha* do pensilvaniano) e Andirá (siltitos e arenitos fluviais e lacustrinos do permiano) (Cunha *et al.*, 2007).

A sedimentação do Grupo Tapajós foi precedida por uma significativa fase erosiva decorrente do rebaixamento do nível relativo do mar em resposta aos efeitos da Orogenia Eo-Herciniana (CUNHA, 2000). Esta orogenia se manifestou por esforços compressivos de direção NE-SW que resultaram durante o Carbonífero na colisão entre os paleocontinentes Gondwana e Laurússia e, na consequente formação do Cinturão Mauritanides (extensão do Cinturão Móvel Araguaia-Tocantins) (CUNHA, 2000).

A elevação do Cinturão Mauritanides ocasionou a separação das bacias do noroeste africano das bacias do norte brasileiro (Solimões, Amazonas e Parnaíba) e foi acompanhada pelo soerguimento do Arco de Gurupá e por uma leve inclinação da Bacia do Amazonas para oeste (SZATMARI & PORTO, 1982, *apud* CUNHA, 2000).

Estes eventos são reconhecidos como importantes fases colisionais de formação do Pangea e, segundo Cunha (2000), impactaram fortemente o clima global carbonífero, que durante o Pensilvaniano passou a ser dominantemente quente e árido. Consequentemente, a sedimentação do Grupo Tapajós, iniciada no Neocarbonífero, foi fortemente controlada por variações eustáticas do nível relativo do mar, favorecidas e/ou induzidas pela mudança climática global que se instala (CUNHA, 2000).

Nesse cenário, como a Bacia do Amazonas encontrava-se basculada para oeste, a transgressão marinha veio dessa direção, ultrapassando o Arco de Purus, afogando e retrabalhando o campo de dunas eólicas (Formação Monte Alegre) e depositando os carbonatos e pelitos marinhos da Formação Itaituba (Figura 3.3) (adaptado de CUNHA, 2000).

Figura 3.3: A) Modelo paleogeográfico para o norte do Brasil durante o Neocarbonífero, com a região intracratônica situada entre os escudos das Guianas e Brasil Central invadida pelo mar raso dominante durante esta época que inundou os sistemas desérticos da Bacia do Amazonas. B) Mapa da disposição atual da Bacia do Amazonas com a localização da região de Itaituba (modificado de MAPES *et al.*, 2004, *apud* LIMA, 2010).

3.2. FORMAÇÃO ITAITUBA

A Formação Itaituba possui ampla distribuição na Bacia do Amazonas ocupando cerca de 420 m de espessura na região de depocentro da bacia (CAPUTO *et al.*, 1971, *apud.* LIMA, 2010), estendendo-se, inclusive, pela Bacia do Solimões (CAPUTO, 1984). É composta por inúmeras sequências carbonáticoevaporíticas, intercaladas por delgadas camadas siliciclásticas que compõem um padrão de sedimentação cíclica constituída por vários litotipos como folhelhos, carbonatos e evaporitos, que foram associados a ambientes lagunar e marinho raso/inframaré de idade pensilvaniana (CUNHA *et al.*, 2007) (Figura 3.4).

Figura 3.4: Porção do perfil de referência do Grupo Tapajós, sendo possível observar os limites estratigráficos da Formação Itaituba (modificado de CUNHA *et al.*, 2007).

As rochas carbonáticas pertencentes a esta formação são interpretadas como evidências do estabelecimento de condições francamente marinhas, na Bacia do Amazonas (NASCIMENTO, 2008) e é marcadas pela sedimentação de diversos litotipos carbonáticos (*e. g., mudstones, wackestones, packstones*, e *grainstones*) e por um rico conteúdo fossilífero composto por táxons exclusivamente marinhos (e. g., foraminíferos bentônicos, conodontes, escolecodontes, ostracodes, briozoários, corais, gastropodes, bivalves, braquiópodes e trilobitas, entre outros) (SCOMAZZON & LEMOS, 2005; NASCIMENTO *et al.*, 2010).

Seu limite estratigráfico inferior é concordante com a Formação Monte Alegre, e, em subsuperfície, é posicionado na base da primeira camada de anidrita da seção (SILVA, 1996). Com a Formação Nova Olinda, sobreposta, seu limite é gradacional e marcado por um intervalo extremamente arenoso, espessos pacotes de halita e pela presença de sal de potássio em um dos seus ciclos, restritos à calha central da bacia (SILVA, 1996) (Figura 3.4).

Quanto à idade da Formação Itaituba, trabalhos bioestratigráficos baseados em associações de conodontes, fusilinídeos e palinomorfos posicionam a base da formação entre o Morrowano e o Atokano, praticamente toda a sequência sedimentar desta unidade no Atokano e o topo da formação entre o Atokano e o Eodesmoinesiano (*e. g.*, LEMOS, 1990; ALTINER & SAVINI, 1995; PLAYFORD & DINO, 2000; JOCKYMAN, 2002; SCOMAZZON, 2004; SCOMAZZON & LEMOS, 2005; NASCIMENTO, 2008; e CARDOSO, 2010).

Quanto aos estudos paleoambientais relacionados à Formação Itaituba, vários trabalhos descrevem fácies e microfácies siliciclásticas/carbonáticas e as associam a um ambiente marinho raso plataformal, sendo identificados vários subambientes (*e. g.*, CAROZZI *et al.*, 1972; FIGUEIRAS, 1983; SILVA, 1996; MATSUDA, 2002; MOUTINHO, 2006; NEVES, 2009; LIMA, 2010; SILVA, 2014; SILVA *et al.*, 2015; SOUZA; 2016; e TEIXEIRA, 2017).

Carozzi et al. (1972), através de análises petrográficas e estatísticas em amostras de testemunhos e de calha de 65 poços provenientes de diferentes localidades ao longo da área da Bacia do Amazonas, interpretaram quatro ambientes de sedimentação a partir da identificação de 20 microfácies: 1. Inframaré (microfácies biocalcarenito com arcabouço fechado e matriz bioclástica, biocalcarenito com arcabouço fechado e matriz calcissiltítica, biocalcissiltito com abudantes bioclastos e biocalcissiltito com raros bioclastos de tamanho areia); 2. Intermaré baixa (microfácies biocalcarenito com arcabouço fechado e matriz calcissiltítica, biocalcarenito a foraminíferos aglutinantes de micrita, calcarenito litoclástico com arcabouço fechado e cimento orto-espático e calcarenito oncolítico com arcabouço fechado, cimento orto-espático e matriz calcissiltítica); 3.Intermaré alta (microfácies calcarenito com arcabouco fechado, matriz calcissiltítica e cimento orto-espático, calcário a moluscos biocumulados com matriz calcissiltítica, calcissiltito espiculítico, calcarenito peletoidal com arcabouço fechado, matriz calcissiltítica e cimento orto-espático, calcissiltito fossilífero com restos de plantas, micrito laminado, calcissiltito fossilífero bioturbado, calcarenito oolítico, com arcabouço fechado e cimento de calsita drusiforma); e **4. Intermaré alta a baixa**.

24

Figueiras (1983) através de um estudo petrográfico em amostras provenientes de uma sucessão carbonática pertecente a Formação Itaituba, no município de Aveiro – PA, interpretou dois ambientes de sedimentação a partir da identificação de 7 microfácies: **1.Plataforma marinha aberta**, ambiente de água rasa com salinidade variável e energia moderada (microfácies: *mudstone*, biomicritos e biomicroesparitos (*packstone* e *wackstone*), biogênicos (*wackstone*) e biointrapelesparitos) e **2.Bancos de areias** com alta energia (microfácies: *grainstones* com bioclastos micritizados e *grainstones* oóides).

Silva (1996) através de um estudo petrográfico voltado ao entendimento da ciclicidade do Pensilvaniano da Bacia do Amazonas em amostras de calha e de testemunhos provenientes de diferentes localidades ao longo da área da Bacia do Amazonas, e de amostras coletadas em seções aflorantes da Formação Itaituba ao longo do Rio Tapajós, interpretou oito ambientes de sedimentação a partir da 11 microfácies: 1.Inframaré em condições disaeróbica identificação de (*mudstones* com foraminíferos), **2.Supramaré com exposição subárea** (*mudstones* brechoide), 3. Inframaré em áreas de retaguarda de bancos ou shoals na plataforma (wackstone com moluscos), 4.Inframaré (wackstone marinho normal), 5. Inframaré com orientação por correntes trativas, deposição acima do nível de base de ação de ondas (packstones a foraminíferos, packstones a braquiópodes e crinoides, packstones a braquiópodes e packstones a briozoários), 6. Ambiente freático marinho para as feições diagenéticas (grainstones bioclásticos com feição diagenética: dissolução e preenchimento por cimento de anidrita e/ou mosaico de calcita espática), 7.Sedimentação em ambiente com profundidade menor que 5 m e diagênese correspondente a ambiente freático de água doce (graisntone oolítico com feição diagenética: cimento de mosaico de calcita e silicoso), e 8. Ambiente abaixo da superfície de inundação máxima (boundstone).

Matsuda (2002) através de um estudo petrográfico em amostras de testemunhos de sondagem provenientes de diferentes localidades ao longo da área da Bacia do Amazonas e de sucessões de rochas carbonáticas pertecentes a Formação Itaituba, aflorantes na porção sul da Bacia do Amazonas ao longo do Rio Tapajós, interpretou dois ambientes de sedimentação a partir da identificação de 17 microfácies: **1.Plataforma externa**, relativamente mais profunda e de baixa energia (folhelho, *mudstone* bioclástico, *mudstone* bioclástico peloidal, *wackstone*

bioclástico, *packstone* bioclástico, *packstone* crinoidal, *packstone* braquioidal, *packstone* peloidal e *graisntone* peloidal) e **2.Laguna**, ambiente protegido (*mudstone* com grãos terrígenos, *mudstone* bioclástico peloidal, *mudstone* braquiodal, *wackstone* bioclástico, *wackstone* ostracoidal, *packstone* bioclástico, *packstone* crinoidal, *packstone* braquioidal, *packstone* braquioidal, *packstone* oolítico, *grainstone* bioclástico, laminação microbial, lama dolomítica).

Moutinho (2006) através de um estudo petrográfico voltado à análise paleoecológica e estratigráfica de uma sucessção de rochas pertecentes a Formação Itaituba proveniente de afloramentos ao longo das margens do Rio Tapajós e em pedreiras de calcários em Itaituba – PA, interpretou oito ambientes de sedimentação a partir da identificação de 13 microfácies: 1. Ambiente de sabkha de supramaré/intermaré de alta energia (dolomita lamosa), 2.Intermaré superior/supramaré (laminito microbial), 3.Laguna protegida de intermaré (mudstone bioclástico peloidal, mudstone bioclástico com terrígenos a ostracodes, wackstone bioclástico e packstone bioclástico a equinodermas), 4. Intermaré inferior/inframaré de baixa energia (packstone bioclástico a braquiópodes), 5. Intermaré de baixa energia, proximidades de barras bioclástica (packstone bioclástico peloidal e grainstone bioclástico peloidal a foraminíferos), 6. Intermaré de alta energia (grainstone bioclástico e grainstone oolítico), 7. Ambiente restrito de alta salinidade (calcário recristalizado), 8. Processos diagenéticos decorrentes de influência de água meteórica (dolomita recristalizada com dissolução e cimentação por calcita espática).

Neves (2009) através de análises petrográficas em amostras provenientes de uma sucessão carbonática pertecente a Formação Itaituba na região de Monte Alegre – PA, interpretou três ambientes de sedimentação a partir da identificação de 7 microfácies: **1.Ambiente lagunar com águas calmas e semi-restritas** (*mudstones* e *mudstones* com grãos terrígenos e poucos bioclastos), **2.Ambiente lagunar com ligação ao mar (plataforma interna aberta) e em condições mais energéticas** (*mudstone/wackestone* bioclástico, *wackestone* híbrido com grãos terrígenos e bioclastos e *packstone* híbrido com bioclastos e grãos terrígenos) e **4.Ambiente de barras de maré ou baixios deposicional em condições de alta energia na plataforma interna** (*grainstones* bioclásticos oolíticos e *grainstones* peloidais oolíticos)

Lima (2010) através de análises petrográficas em amostras provenientes de uma sucessão carbonática pertecente a Formação Itaituba ao longo da margem esquerda do Rio Tapajós e em pedreiras de calcários em Itaituba – PA, interpretou quatro ambientes de sedimentação a partir da identificação de 9 microfácies: **1.Ambiente lagunar de baixa energia** (*mudstone* bioclástico e *mudstone* bioclástico com grãos terrígenos), **2.Margem lagunar com correntes subaquosas relativamente fracas, marinho raso de baixa energia** (*wackstone* bioclástico), **3.Barras arenosas com alta energia** (*grainstone* bioclástico e *grainstone* bioclástico oolítico) e **4.Praia/planície de maré, zona de mistura de água doce e salgada com supersaturação em dolomita** (*dolomudstone* e *dolomudstone* poroso).

Silva (2014) e Silva *et al.* (2015) através de um estudo petrográfico de uma sucessão carbonática pertecente a Formação Itaituba proveniente de testemunho de sondagem da região de Uruará – PA, interpretaram quatro ambientes de sedimentação a partir da identificação de 10 fácies: **1.Planície de maré mista com ciclos de exposição subárea e sedimentação subaquosa** (dolomito fino laminado, *dolomudstone* com grãos terrígenos e dolomito fino silicificado), **2.Ambiente lagunar de baixa energia** (*mudstone* com fósseis e *floatstone* com braquiópodes), **3.Barras bioclásticas de alta energia com retrabalhamneto por ondas e/ou correntes de maré** (*grainstone* oolítico fossílífero e *grainstone* com grãos terrígenos) e **4.Plataforma externa de baixa energia com intensa precipitação de lama carbonática** (*wackstone* fossílífero, *wackstone* fossílífero com grãos terrígenos e *mudstone* maciço).

Souza (2016) através de análises petrográficas em amostras de duas sucessões carbonáticas provenientes de uma frente de lavra pertencente à mineradora CALREIS no município de Itaituba – PA, interpretou dois ambientes de sedimentação a partir de 8 microfácies: **1.Amibiente lagunar de baixa energia e salino, semi-restrito** (*mudstone* recristalizado, *mudstone* com terrígenos, *wackestone* com braquiópodes, e *wackestone* recristalizado) e **2.Ambiente de banco ou barreira bioclástica de alta energia** (*packstone* bioclástico com braquiópodes, *grainstone* bioclástico com braquiópodes, *grainstone* bioclástico com braquiópodes, *grainstone* peloidal oolítico).

Teixeira (2017) através de um estudo petrográfico de uma sucessão de rochas carbonáticas pertecente a Formação Itaituba proveniente de uma frente de lavra da mineradora Nassau ao longo do Rio Jatapú, no município de Urucará-AM, interpretou dois ambientes de sedimentação a partir de 7 microfácies: **1.Ambiente lagunar – intermaré** (*mudstone* recristalizado, *wackstone* com terrígenos e calcário cristalino) e **2.Ambiente de barras bioclásticas - intermaré inferior** (*grainstone* bioclástico com braquiópodes, *grainstone* oolítico, *grainstone* bioclástico oolítico e *grainstone* bioclástico com foraminíferos).

Considerando os objetivos previstos, foram obtidos os seguintes resultados: construção e correlação dos perfis estratigráficos representativos da sucessão estudada, descrição e individualização de microfácies, interpretação do significado paleoambiental das microfácies, inferência dos ambientes de sedimentação da seção estudada e elaboração de um modelo deposicional para a área de estudo.

4.1. DESCRIÇÃO E INDIVIDUALIZAÇÃO DE MICROFÁCIES

Foram caracterizadas e individualizadas 9 microfácies: *Mudstone* com evaporitos (Me), *Wackstone* com terrígenos (Wt), *Wackstone* com quartzo autigênico e fitoclastos (Wqf), *Wackstone* com braquiópodes e crinóides (Wbc), *Packstone* com braquiópodes (Pb), *Grainstone* com braquiópodes (Gb), *Grainstone* com fusulinídeos (Gf), *Grainstone* com aglutinantes (Ga) e *Boundstone* com intraclastos (Bi).

A disposição, sucessão e correlação destas microfácies nas seções estudadas estão representadas na figura 4.1, e a caracterização petrográfica destas microfácies está abaixo descrita.

Figura 4.1: Perfis estratigráficos com suas diferentes rochas e microfácies carbonáticas.

1. Mudstone com evaporitos (Me)

Considerando a relação matriz X grãos, a amostra foi classificada como *Mudstone* por apresentar um arcabouço matriz suportado, com cerca de 93% de matriz e 7% de grãos (\cong 130 grãos) (Figura 4.2). Apresenta coloração acinzentada, intensa recristalização, estrutura do tipo *vugs,* microfraturas e *solution seams*. A matriz é constituída por micrita (cristais < 4 µm de dimensão), embora seja observado a recristalização dessa micrita para microsparita (cristais entre 5 e 15 µm de dimensão). Localmente, observa-se ainda predomínio de matriz microsparita. Os grãos são representados por clastos não-esqueletais (95%) e bioclastos (5%).

Figura 4.2: Visão geral da microfácies *Mudstone* com evaporitos (Me), observa-se em A) a textura matriz suportada com a presença de alguns grãos disseminados na matriz e em B) a total recristalização da matriz para microsparita.

Apresenta poros aparentemente alargados, de tamanhos que variam desde microporos (< 1/16 mm) até mesoporos (< 16 mm e > 1/16 mm). Os tipos destes poros também são variados, encontrando-se poros do tipo interpartículas, interpartículas, fraturas, canais e vugs (Figura 4.3).

Os poros interpartículas correspondem a espaços vazios entre as partículas individuais e os grãos, possuindo formas irregulares ou arredondadas. Os poros intrapartículas correspondem aos espaços internos dos esqueletos, sendo observados, por exemplo, no interior de braquiópodes e de câmaras de foraminíferos. Os poros intercristalinos são observados principalmente entre as fases mais recristalizadas e o cimento. As fraturas e canais possuem formas alongadas e aparentemente alargadas, são parcialmente preenchidas por cimento do tipo calcita

espática com textura em mosaico, sílica microbotryoidal e por critais de halita. E, os *vugs* possuem formas irregulares e são preenchidos por material insolúvel, provavelmente óxidos e hidróxidos.

Figura 4.3: Tipos de poros encontrados na microfácies *Mudstone* com evaporitos (Me): **A**) intragranular (Itg) parcialmente preenchido com cristal de halita (Ha) e cimento calcítico espático com textura em mosaico (Cm), **B**) intrapartícula (Itp) no interior de câmera de foraminífero, **C**) intercristalino (Itc) entre os cristais de cimento, **D**) fratura (Fr) parcialmente preenchido por cimento calcítico espático com textura em mosaico, **E**) canal (Can) aparentemente alargado e preenchido com sílica microbotryoidal e **F**) *vugs* (VUG) de formas irregulares e preenchidos com material insolúvel.

O cimento é caracterizado por calcita microcristalina a qual preenche os espaços entre a matriz e os grãos, além do cimento calcítico em forma de mosaico que preenche as fraturas e canais (Figura 4.4). Este último é associado a evaporitos e sílica microbotryoidal, sendo observado resquícios de cimento no interior destes e contatos irregulares entre eles.

Figura 4.4: A e B) Imagem de MEV com detalhe para cimento microcristalino (Cmi), cimento formado por calcita espática com textura em mosaico (Cmo) preenchendo parcialmente C) poros e D) canais, E) halita (Ha) associada ao cimento espático e F) sílica microbotryoidal (Smb) associado ao cimento espático.

Os clastos não-esqueletais são constituídos por halita (80%), quartzo autigênico (14%) e por anidrita (1%). Os cristais de halita possuem forte reflectância, são isotrópicos e estão dispersos na matriz ou preenchem parcialmente os poros (Figura 4.5 A). Apresentam desde formas euédrais com cristais individuais bem formados até formas subarredondadas a irregulares, formando "massas" evaporíticas no interior dos canais e fraturas, as quais seguem os contornos dos poros que preenchem. Os quartzos autigênicos possuem formas que variam de irregulares a euédrais, apresentam resquícios de matriz carbonática em seu interior ou são bem cristalinos (Figura 4.5 B). Estes quartzos encontram-se dispersos na matriz. Os cristais de anidrita possuem forma tabular, cores de interferência de segunda ordem e estão dispersos na matriz.

Figura 4.5: A) Cristais de halita (Ha) com formas irregulares e forte reflectância e B) quartzo autigênico em nicóis cruzados.

Os bioclastos apresentam-se, no geral, fortemente recristalizados, dificultando a sua identificação e são representados por restos e fragmentos esqueletais de braquiópodes (2%), foraminíferos fusulinídeos (1%), crinóides (1%) e gastrópodes, foraminíferos miliolídeos, corais Rugosa coloniais e bivalves, os quais somados totalizam cerca de 1% dos grãos.

Os braquiópodes são representados por fragmentos de conchas suavemente curvados, onduladas e, embora estejam fortemente recristalizados, observa-se as fibras prismáticas diagnósticas da parede das conchas e a característica extinção ondulante (Figura 4.6 A). Os fusulínideos são identificados pelo padrão de enrolamento espiral, pelo característico número elevado de câmaras e pela estrutura

microgranular da parede da testa. Os crinóides apresentam-se como placas de contornos circulares a ovoides ou tabulares e possuem extinção única em nicóis cruzados (Figura 4.6 B).

Figura 4.6: A) Fragmento esqueletal de braquiópode (Bq) apresentando ondulações da concha e **B)** fragmento esqueletal tabular de crinóide (Cr).

Os miliolídeos são caracterizados pela estrutura de parede calcária porcelânica sem poros, disposição das câmaras com contornos escuros em luz transmitida, tonalidade leitosa e brilhante da testa em luz refletida e pequenas manchas coloridas em nicóis cruzados. Os corais Rugosa são representados por corallitos poligonais de ramificação irregular. Os bivalves são representados por conchas desarticuladas de pequena dimensão e alta curvatura.

Quanto às estruturas, as *solution seams* são caracterizadas por superfícies de dissolução, as quais em algumas porções dos perfis apresentam-se delgadas e incipientes, e, em outras, apresentam-se bem desenvolvidas, com alta amplitude, arranjo anostomosado e com concentração de material insolúvel em seus limites, provavelmente óxidos e hidróxidos (Figura 4.7).

Figura 4.7: A) Solution seams (Sse) bem desenvolvidas com arranjo anostomosado e com concentração de material insolúvel, halita (Ha) e quartzo autigênico (Qa) em seus limites, e **B)** detalhe para cristais de halita e quartzo autigênico nas solution seams.

2. Wackstone com terrígenos (Wt)

Considerando a relação matriz X grãos, a amostra foi classificada como *Wackstone* por apresentar um arcabouço matriz suportado e uma proporção de grãos maior do que 10%, ou seja, cerca de 60% de matriz e 40% de grãos (\cong 918 grãos) (Figura 4.8). Apresenta coloração acinzentada, forte recristalização da matriz (micrita para microsparita) e estruturas como *vugs*. A matriz é constituída por microsparita (cristais entre 5 e 15 µm de dimensão). Os grãos são representados por clastos não-esqueletais (99%) e bioclastos (1%), embora estejam bastante recristalizados, o que dificulta sua identificação.

Figura 4.8: A e B) Visão geral da microfácies *Wackstone* com terrígenos (Wt), sendo possível observar o arcabouço matriz suportado, os grãos detríticos de quartzo disseminados da matriz e a forte recristalização da microfácies.

Apresenta poros de tamanhos que variam desde microporos (< 1/16 mm) até mesoporos (< 1/2 mm e > 1/16 mm). Os poros são do tipo interpartículas, intercristalinos e *vugs* (Figura 4.9). Os poros interpartículas correspondem ao espaço poroso entre as partículas individuais e os grãos, possuindo formas irregulares. Os poros intercristalinos são observados entre a matriz microsparita. E, os vugs possuem formas irregulares com contornos bem marcados e são parcialmente preenchidos por pirita ou material insolúvel, provavelmente óxidos e hidróxidos. O cimento é representando por calcita microcristalina, a qual preenche os espaços entre a matriz e os grãos.

Os clastos não-esqueletais são constituídos por grãos detríticos de quartzo (54%), quartzo autigênico (26%), halita (17%), pirita (1%) e anidrita (<1%). Os quartzos detríticos possuem formas subarredondadas e em sua maioria apresentam extinção ondulante em nicóis cruzados. Os cristais de halita possuem formas irregulares a subarredondadas, forte reflectância, são isotrópicos e aparecem disseminados na matriz.

Os quatzos autigênicos apresentam contornos irregulares, resquícios de material carbonático em seu interior e estão disseminados na matriz. As piritas aparecem disseminadas na matriz, com cristais de aproximadamente 0,02 mm, ou preenchendo *vugs*, sendo observado alguns contornos retos. Os cristais de anidrita possuem forma tabular, cores de interferência de segunda ordem e estão dispersos na matriz.

Figura 4.9: A) Detalhe para os *vugs* (VUG) com preenchimento por pirita, quartzo autigênico (Qa) com resquícios de material carbonático em seu interior e grãos detríticos de quartzo arredondados (Qtz). Em **B)** pequenas esferas de pirita (Pi) disseminadas na matriz.

Os bioclastos são constituídos por foraminíferos aglutinantes (<1%), os quais são identificados pelas estruturas da parede, composta pela aglutininação de partículas de diferentes tamanhos, embora carbonáticos e de granulometria muito fina.

3. Wackstone com quartzo autigênico e fitoclastos (Wqf)

Considerando a relação matriz X grãos, a amostra foi classificada como *Wackstone* por apresentar um arcabouço matriz suportado e uma proporção de grãos maior do que 10%, ou seja, cerca de 82% de matriz e 18% de grãos (\cong 283 grãos) (Figura 4.10). Apresenta coloração acastanhada, forte recristalização da matriz (micrita para microsparita) e estrutura como microfraturas, *vugs* e *solution seams*. A matriz é constituída por microsparita (cristais entre 5 e 15 µm de dimensão). Os grãos são constituídos por clastos não-esqueletais (96%) e bioclastos (4%).

Figura 4.10: A) Visão geral da microfácies *Wackstone* com quartzo autigênico e fitoclasto (Wqf), sendo possível observar grãos disseminados na matriz e a forte recristalização que ocorre na rocha; e em B) detalhe para a recristalização da matriz micritíca para microsparita.

Apresenta poros com tamanhos que variam de microporos (<1/16 mm) a mesoporos (entre 1/2 mm e 1/16 mm). Os tipos destes poros correspondem ao tipo intercristalinos, móldicos, fraturas, canais e *vugs* (Figura 4.11).

Os poros intercristalinos são observados entre a matriz microsparita e entre o cimento. As fraturas e canais possuem formas alongadas e aparentemente alargadas, são parcialmente preenchidas por cimento do tipo calcita espática com textura em mosaico, sílica microbotryoidal e por critais de halita. Os poros móldicos possuem formas aciculares e são observados no interior das "massas" evaporíticas que preenchem os canais. Os *vugs* possuem formas irregulares e são preenchidos por pirita e por material insolúvel, provavelmente óxidos e hidróxidos.

Figura 4.11: Porosidades encontradas na microfácies *Wackstone* com quartzo autigênico e fitoclasto (Wqf): **A)** canal com preenchimento de cimento espático com textura em mosaico e evaporitos, **B)** moldes evaporíticos com formas aciculares no interior das massas evaporíticas, **C** e **D)** vugs com formas irregulares e preenchimento por material insolúvel.

O cimento corresponde a calcita microcristalina, a qual preenche o espaço entre a matriz e os grãos, e por calcita espática com textura em mosaico que preenche as fraturas e canais.

Os clastos não-esqueletais são representados por quartzo autigênico (30%), fitoclastos (20%), halita (18%), pirita (1%) e pelóides (1%). Os grãos de quartzo autigênico possuem formas que variam de irregulares a subarredondadas, apresentam resquícios de material carbonático em seu interior ou são bem

cristalinos. Os fitoclastos são fragmentos de tecidos derivados de vegetais superiores ou de fungos, possuem coloração acastanhada, formas tabulares, são isotrópicos e do tipo não-bioestruturados (Figura 4.12). Os cristais de halita possuem formas irregulares, forte reflectância, são isotrópicos e apresentam-se disseminados na matriz e preenchendo poros. A halita é observada, ainda, formando "massas" evaporíticas nos canais.

Figura 4.12: A e B) fitoclastos de coloração acastanhada, forma aproximadamente tabular.

As piritas são opacas em luz transmitida e apresentam coloração amarelo dourado em luz refletida, ela ocorre como massas de substituição anedral em poros, ora apresentando alguma face reta, ou como frambóides ou esferas compostas de pequenos cristais de pirita, os quais encontram-se dispersos na matriz (Figura 4.13 e 4.14). Os pelóides possuem formas arredondadas a subarredondadas, são fortemente micritizados e não apresentam estruturas internas.

Figura 4.13: A) Piritas (Pi) em agregados frambóidais e B) pequenas esferas de piritas.

Figura 4.14: Imagens do MEV com detalhe para as piritas frambóidais encontradas na microfácies: A) visão geral dos agregados framboidais, B) detalhe para os agregados framboidais, sendo possível observar a cimentação calcítica entre eles, C) detalhe para os cristais de pirita que formam a estrutura do agregado e D) detalhe para forma esférica aparente dos agregados.

Os bioclastos são constituídos por fragmentos esqueletais de braquiópodes (4%) e por foraminíferos aglutinantes (<1%). Os braquiópodes são caracterizados por fragmentos de conchas suavemente encurvadas, com paredes formadas por fibras prismáticas diagnósticas e a característica extinção ondulante, apresentam-se disseminados na matriz. Estes fragmentos de braquiópodes apresentam-se fortemente recristalziados, o que dificulta a identificação de suas características. Os foraminíferos aglutinantes são identificados pela estrutura da parede, composta pela aglutininação de partículas de diferentes tamanhos, embora carbonáticos e de granulometria muito fina.

Quanto às estruturas observadas, as *solution seams* são caracterizadas por delgadas superfícies de dissolução, as quais são aproximadamente paralelas, apresentam baixa amplitude e são preenchidas por material insolúvel, provavelmente óxidos ou hidróxidos, além do preenchimento por pirita.

4. Wackstone com braquiópodes e crinóides (Wbc)

Considerando a relação matriz X grãos, a amostra foi classificada como *Wackstone* por apresentar um arcabouço matriz suportado e mais de 10% de grãos, ou seja, cerca de 85% de matriz e 25% de grãos (\cong 926 grãos) (Figura 4.15). Apresenta coloração acastanhada, alta recristalização e micritização dos grãos (perda da estrutura original interna dos bioclastos), estruturas como *vugs* e fraturas. A matriz é constituída por micrita (cristais < 4 µm de dimensão). Os grãos são representados por bioclastos (91%) e clastos não-esqueletais (9%).

Figura 4.15: A e B) visões gerais da microfácies *Wackstone* com braquiópodes (Wb), sendo possível observar o arcabouço matriz suportado com alguns clastos disseminados (*e. g.*, braquiópodes (Bq) e crinóides (Cr)).

Apresenta poros com tamanhos que variam de microporos (<1/16 mm) a mesoporos (entre 16 mm e 1/16 mm). Os tipos destes poros correspondem ao tipo interpartículas, intercristalinos, móldicos, fraturas, canais e *vugs* (Figura 4.16).

Os poros interpartículas correspondem ao espaço poroso entre as partículas individuais e os grãos, apresentam-se dispersos na matriz e possuem formas irregulares. Os poros intercristalinos são observados principalmente entre as fases mais recristalizadas e o cimento. Os poros móldicos apresentam-se de variadas formas, desde formas de fragmentos esqueletais (*e. g.*, braquiópodes e

equinodermas) a formas aciculares no interior das "massas" evaporíticas que preenchem os canais.

As fraturas e canais possuem formas alongadas e aparentemente alargadas, são parcialmente preenchidas por cimento do tipo calcita espática com textura em mosaico e por critais de halita. Os *vugs* possuem formas irregulares e são preenchidos por material insolúvel, provavelmente óxidos e hidróxidos.

Figura 4.16: A) porosidade intercristalina (Itc) entre as fases recristalizadas da microfácies, e B) porosidade móldica (Mo) em formas aciculares no interior das massas evaporíticas e poros intercristalinos (Itc).

O cimento é representando por cristais de calcita microcristalinos, os quais ocupam os espaços entre a matriz e os grãos, e por calcita espática com textura em mosaico, a qual preenche fraturas e poros.

Os bioclastos são representados por restos e fragmentos esqueletais de braquiópodes (52%), crinóides (38%), foraminíferos fusulínideos (5%), corais Rugosa coloniais (2%), bivalves (1%), equinoides (1%), gastrópodes (1%) e corais Tabulata (1%) (Figura 4.17).

Os braquiópodes são caracterizados por fragmentos de conchas suavemente curvadas com paredes de fibras prismáticas diagnósticas e característica extinção ondulante, e por espinhos isolados (com centro oco característico, estrutura de parede concêntrica, radialmente orientada, com zona exterior fibrosa). Muitos dos braquiópodes são bem preservados, sendo possível observar bem suas características.

Figura 4.17: A) Bioclastos disseminados na matriz, como braquiópodes (Bq) e crinóides (Cr), **B)** detalhe para fragmento esqueletal de braquiópode com concha suavemente encurvada, **C)** fragmentos esqueletais de crinoides em nicóis cruzados, sendo possível observar as cores de interferência, e **D)** fragmento esqueletal de coral Tabulata com seu característico padrão de simetria dos coralítos.

Os crinóides apresentam-se como placas de contornos circulares a ovoides ou tabulares, e ainda, podem apresentar fragmentos do braço tipicamente em forma de "U", possuem extinção única em nicóis cruzados. Os foraminíferos fusulínideos são identificados pelo padrão de enrolamento espiral e pelo característico número elevado de câmaras e pela estrutura microgranular da parede da testa.

Os corais Rugosa são caracterizados por corallitos de forma poligonal e ramificação irregular. Os bivalves são representados por conchas desarticuladas de pequena dimensão e alta curvatura. Os equinóides são identificados principalmente pela sua característica simetria e espinhos, os quais possuem arranjos regulares e radiais, apresentando largos poros. Os gastrópodes possuem pequena dimensão e distinguem-se pela característica forma em espiral da concha. Os corais Tabulatas são identificados pelo seu característico padrão de simetria dos coralítos.

Os clastos não-esqueletais são constituídos por quartzo autigênico (6%) e halita (2%). Os quartzos autigênicos possuem formas subarredondadas, porém com

contornos irregulares, apresentam resquícios de material carbonático em seu interior e estão disseminados na matriz. Os cristais de halita possuem formas irregulares a subarredondadas, forte reflectância e são isotrópicos.

5. Packstone com braquiópodes (Pb)

Considerando a relação matriz X grãos, a amostra foi classificada como *Packstone* por apresentar arcabouço grão suportado, porém com ocorrência significativa de matriz, sendo cerca de 70% de grãos (\cong 1526 grãos) e 30% de matriz (Figura 4.18). Apresenta coloração acinzentada, mal selecionamento, estruturas como *solution seams*, *vugs* e fraturas, além de ser observada a orientação preferencial dos clastos e forte recristalização da matriz (micrita para microsparita) e dos grãos (perda da estrutura original interna dos bioclastos). A matriz é constituída por microsparita (cristais entre 5 e 15 µm de dimensão). Os grãos são representados por bioclastos (85%) e clastos não-esqueletais (15%).

Figura 4.18: A) Visão geral da microfácies *Packstone* com braquiópodes (Pb), com arcabouço grão suportado, e **B)** detalhe para textura grão suportada da microfácies, sendo possível observar os bioclastos se tocando.

Apresenta poros aparentemente alargados, de tamanhos que variam desde microporos (< 1/16 mm) até a mesoporos (< 1 mm e > 1/16 mm). Estes poros são do tipo interpartículas, intrapartículas, intercristalinos, fraturas e *vugs*.

Os poros interpartículas correspondem aos espaços vazios entre as partículas individuais e os grãos, possuindo formas irregulares. Os poros intrapartículas correspondem aos espaços internos dos esqueletos, sendo observados no interior de crinóides. Os poros intercristalinos são observados principalmente entre a matriz

microsparita. As fraturas possuem formas alongadas, cortam alguns grãos e não possuem preenchimento. E, os *vugs* possuem formas irregulares a arredondadas e são preenchidos por material insolúvel, provavelmente óxidos e hidróxidos.

O cimento é caracterizado por calcita microcristalina a qual preenche os espaços entre a matriz e os grãos. Enquanto, os bioclastos são constituídos por restos e fragmentos esqueletais de braquiópodes (48%), crinóides (22%), foraminíferos fusulinídeos (11%), bivalves (1%), briozoários (1%), gastrópodes (1%) e equinóides, foraminíferos aglutinantes, ostracodes, coral Rugosa e trilobitas, os quais perfazem cerca de 1%.

Os braquiópodes são caracterizados por fragmentos de conchas suavemente encurvadas com paredes de fibras prismáticas diagnósticas e característica extinção ondulante, e por espinhos isolados (com centro oco característico, estrutura de parede concêntrica, radialmente orientada, com zona exterior fibrosa) (Figura 4.19 A).

Os crinóides apresentam-se como placas de contornos circulares a ovoides ou tabulares, e ainda, podem apresentar fragmentos do braço tipicamente em forma de "U", possuem extinção única em nicóis cruzados (Figura 4.19 B). Os foraminíferos fusulínideos são identificados pelo padrão de enrolamento espiral e pelo característico número elevado de câmaras e pela estrutura microgranular da parede da testa. Os bivalves são representados por conchas desarticuladas de pequena dimensão e alta curvatura.

Figura 4.19: A) detalhe para fragmento esqueletal de braquiópodes (Bq) em nicóis cruzados, sendo possível observar a estrutura fibrosa do interior da concha e **B)** fragmento esqueletal de crinóide (Cr) com forma ovalar.

Os briozoários apresentam-se com formas ramificadas e arranjos aleatórios. Os gastrópodes distinguem-se pela característica forma em espiral da concha. Os equinóides são identificados principalmente pela sua característica simetria e espinhos, os quais possuem arranjos regulares e radiais, apresentando largos poros. Os foraminíferos aglutinantes são identificados pelas estruturas da parede, composta pela aglutininação de partículas de diferentes tamanhos, embora carbonáticos e de granulometria muito fina.

Os ostracodes são identificados pela forma e por seu par de conchas articuladas. Os corais Rugosa são caracterizados por corallitos de forma poligonal e ramificação irregular. Os trilobitas são representados por fragmentos esqueletais de sua carapaça, os quais são identificados pela natureza homogênea da parede, a extinção ondulante característica e forma semelhante a "boomerangs" de seus fragmentos.

Os clastos não-esqueletais são constituídos por quartzo autigênico (8%), intraclastos (3%), pelóides (1%) e halita (1%). Os quartzos autigênicos são caracterizados por formas e contornos irregulares, alta cristalinidade ou resquícios de material carbonático em seu interior. Os intraclastos possuem formas irregulares, com faces angulosas, tamanhos bem expressivos e aparentam ser de grainstone bioclástico, compostos principalmente por braquiópodes, fusilinídeos e crinóides. Os pelóides possuem formas arredondadas a subarredondadas e desprovidos de estruturas internas, sendo fortemente micritizados e dificultando a identificação de sua origem. Os cristais de halita possuem formas irregulares, forte reflectância, são isotrópicos e estão dispersos entre os clastos.

Quanto às estruturas observadas, as *solution seams* são caracterizadas por pequenas superfícies de dissolução com evolução ainda incipiente e concentração de material insolúvel em seus limites, provavelmente óxidos e hidróxidos. Além disso, é observada a variação composicional lateral, com diferenças de concentrações de matriz e grãos.

6. Grainstone com braquiópodes (Gb)

Considerando a relação matriz X grãos, a amostra foi classificada como *Grainstone* por apresentar um arcabouço grão suportado e baixo conteúdo de matriz, cerca de 97% de grãos (\cong 2276 grãos) e 3% de matriz (Figura 4.20). Apresenta coloração acastanhada, intensa fragmentação dos grãos, mal selecionamento, estruturas como *solution seams*, *vugs* e microfraturas. A matriz é constituída por micrita (cristais < 4 µm de dimensão). Os grãos são representados por bioclastos (91%) e clastos não-esqueletais (9%). Em alguns bioclastos é observada a recristalização dos grãos, com a substituição por sílica em alguns dos casos, como em alguns fragmentos esqueletais de braquiópodes e crinóides.

Figura 4.20: A e B) Visão geral da microfácies *Grainstone* com braquiópodes (Gb), sendo possível observar o arcabouço grão suportado, com grãos se tocando e grande variedade granulométrica destes.

Apresenta poros aparentemente alargados, de tamanhos que variam desde microporos (< 1/16 mm) até mesoporos (<1 mm e > 1/16 mm). Estes poros são do tipo interpartículas, intrapartículas, fraturas e *vugs*.

Os poros interpartículas correspondem ao espaço poroso entre as partículas individuais e os grãos, possuindo formas irregulares. Os poros intrapartículas correspondem aos espaços internos dos esqueletos, como no interior de fragmentos esqueletais de braquiópodes, crinoides e foraminíferos fusulinídeos. As fraturas possuem formas alongadas, são pouco desenvolvidas, cortam alguns grãos e não possuem preenchimento. E, os *vugs* possuem desde formas irregulares a alongadas e arredondadas e são preenchidos por material insolúvel, provavelmente óxidos e hidróxidos.

O cimento é caracterizado por calcita microcristalina, sendo observado no interior de bioclastos e contornando os grãos.

Os bioclastos são constituídos por restos e fragmentos esqueletais de braquiópodes (53%), crinóides (24%), foraminíferos fusulínideos (10%), bivalves (1%), gastrópodes (1%) e foraminíferos aglutinantes (1%). Briozoários, equinoides, ostracodes, trilobitas e corais Rugosa coloniais, perfazem somados cerca de 1%.

Os braquiópodes são caracterizados por fragmentos de conchas suavemente encurvadas com paredes de fibras prismáticas diagnósticas e característica extinção ondulante, e por espinhos isolados (com centro oco característico, estrutura de parede concêntrica, radialmente orientada, com zona exterior fibrosa) (Figura 4.21). Os fragmentos de braquiópodes, possuem uma grande variedade granulométrica e alto grau de preservação, sendo possível observar bem suas características, como as fibras prismáticas diagnósticas.

Figura 4.21: A e **B**) fragmentos esqueletais de braquiópodes (Bq) com conchas suavemente curvadas e com paredes de fibras prismáticas diagnósticas, além de fragmentos esqueletais de crinóides (Cr) e gastrópodes (Gt), **C**) detalhe para a estrutura fibrosa da parede da concha de braquiópodes e **D**) detalhe para fragmentos de espinhos de braquiópodes com centro preenchido por cimento, estrutura de parede concêntrica e radialmente orientada.

Os crinóides apresentam-se como placas de contornos circulares a ovoides ou tabulares, e ainda, podem apresentar fragmentos do braço tipicamente em forma de "U", possuem extinção única em nicóis cruzados. Os foraminíferos fusulínideos são identificados pelo padrão de enrolamento espiral e pelo característico número elevado de câmaras e pela estrutura microgranular da parede da testa (Figura 4.22 A e B).

Os bivalves são representados por conchas desarticuladas de pequena dimensão e alta curvatura. Os gastrópodes possuem pequena dimensão e distinguem-se pela característica forma em espiral da concha. Os aglutinantes são identificados pelas estruturas da parede, composta pela aglutininação de partículas de diferentes tamanhos, embora carbonáticos e de granulometria muito fina.

Os briozoários apresentam-se com arranjos aleatórios em formas ramificadas, desde padrões mais alongados a formas mais irregulares, observa-se também a cimentação calcítica no interior das estruturas dos briozoários (Figura 4.22 A e B). Os equinóides são identificados principalmente pela sua característica simetria e espinhos, os quais possuem arranjos regulares e radiais, apresentando microporos (Figura 4.22 C). Os ostracodes são identificados pelo seu par de conchas articuladas características, as quais apresentam-se fragmentadas e/ou preenchidas por cimento calcítico (Figura 4.22 D).

Figura 4.22: A e **B**) detalhe para fragmentos esqueletais de briozoários (Bz), crinóides (Cr), braquiópodes (Bq), bivalves (Bi) e para foraminíferos fusulinídeos (Fu) e aglutinantes (Ag), **C**) fragmento esqueletal de equinoide em nicóis cruzados, sendo possível observar sua característica simétria, e **D**) fragmentos esqueletais de ostracodes (Os) com seus pares de conchas articuladas características.

Os trilobitas são representados por fragmentos esqueletais de sua carapaça, os quais são identificados pela natureza homogênea da parede, a extinção ondulante característica e forma semelhante a "boomerangs" de seus fragmentos. Os corais Rugosa são caracterizados por corallitos de forma poligonal e ramificação irregular.

Os clastos não-esqueletais são constituídos por quartzo autigênico (5%), halita (1%), intraclastos (1%), pelóides (1%) e oncólitos (1%). Os grãos de quartzo autigênico possuem formas e contornos irregulares, apresentam alta cristalinidade ou possuem resquícios de material carbonático em seu interior e estão disseminados entre os bioclastos.

Os cristais de halita possuem formas subarredondadas, forte reflectância e são isotrópicos. Os intraclastos possuem formas irregulares, com faces angulosas,

bastante micritizados e aparentam ser produto de retrabalhamento da própria rocha que os hospeda.

Os pelóides possuem formas arredondadas a subarredondadas, são comumente desprovidos de estrutura interna e estão fortemente micritizados, dificultando a sua identificação. Os oncólitos possuem forma subesférica e estão intensamente micritizados, o que muitas vezes dificulta uma nítida observação do padrão de envelopamento ou produz uma aparência de descontinuidade das lâminas.

Quanto às estruturas observadas, as *solution seams* são caracterizadas por superfícies de dissolução, as quais possuem picos de baixa a intermediária amplitude e apresentam configurações anostomosadas (Figura 4.23 A e B). As concentrações de resíduos insolúveis ao longo das *solution seams* são comuns, sendo constituídas provavelmente por óxidos e hidróxidos. O mal selecionamento também é observado nas rochas desta microfácies, com a presença de grãos maiores imersos em uma massa com grãos de tamanhos inferiores (Figura 4.23 C e D).

Figura 4.23: A) Detalhe para *solution seams* (Sse) em nicóis cruzados com concentração de material insolúvel, B) *solution seams* contornando fragmento esqueletal de briozoário em nicóis cruzados, C e D) mal selecionamento (grande variedade granulométrica dos grãos).

7. Grainstone com fusulinídeos (Gf)

Considerando a relação matriz X grãos, a amostra foi classificada como *Grainstone* por apresentar arcabouço grão suportado e baixo conteúdo de matriz, cerca de 98% de grãos (\cong 2374 grãos) e 2% de matriz (Figura 4.24). Apresenta coloração acastanhada, estruturas de *solution seams* e *vugs*, além de variação composicional lateral. A matriz é constituída por micrita (cristais < 4 µm de dimensão). Os grãos são representados por bioclastos (92%) e clastos não-esqueletais (8%).

Apresenta microporos (< 1/16 mm), os quais são do tipo intergranular e correspondem ao espaço poroso entre as partículas individuais e os grãos, possuindo formas irregulares.

Figura 4.24: A) Visão geral da microfácies Grainstone com fusulinídeos (Gf) e **B)** detalhe para o arcabouço grão suportado da microfácies, a grande concentração de foraminíferos fusulinídeos (Fu) e a forte cimentação.

A cimentação é intensa na microfácies, sendo o cimento do tipo equicristalino constituído por cristais de calcita, os quais são observados interior dos fragmentos esqueletais e entre os grãos.

Os bioclastos são constituídos por fragmentos esqueletais e restos de foraminíferos fusulinídeos (66%), braquiópodes (14%), crinóides (6%), foraminíferos miliolídeos (2%) bivalves (2%), corais Rugosa coloniais (1%) e foraminíferos aglutinantes, equinóides, briozoários, gastrópodes e ostracodes, os quais somados perfazem cerca de 1% (Figura 4.25). Os foraminíferos fusulínideos são identificados pelo padrão de enrolamento espiral, pelo característico número elevado de câmaras, pela estrutura microgranular e coloração escura em luz transmitida da parede da testa (Figura 4.25 A). Estes fusulinídeos são observados tanto em seções axiais, quanto em seções equatoriais.

Os braquiópodes são caracterizados por fragmentos de conchas suavemente encurvadas com paredes formadas por fibras prismáticas diagnósticas e característica extinção ondulante, e por espinhos isolados (com centro oco característico, estrutura de parede concêntrica, radialmente orientada, com zona exterior fibrosa). Os crinóides apresentam-se como placas de contornos circulares a ovoides ou tabulares, e ainda, podem apresentar fragmentos do braço tipicamente em forma de "U", possuem extinção única em nicóis cruzados (Figura 4.25 B).

Figura 4.25: A) Detalhe para foraminíferos fusulinídeos (Fu) com seu característico padrão de enrolamento espiral e seu elevado número de câmaras, além de fragmento esqueletal de gastrópode (Gt), B) fragmento esqueletal de crinóides (Cr) com contorno circular, fragmentos esqueletais de braquiópodes com conchas suavemente curvadas e cimento equicristalino preenchendo os espaços entre os grãos, C) fragmento esqueletal de coral Rugosa colonial com suas ramificações irregulares e corallitos de formas poligonais, e D) fragmentos esqueletal de gastrópode com seu padrão espiral da concha, além de fragmentos esqueletais de braquiópodes (Bq), bivalves (Bi) e foraminíferos fusulinídeos.

Os foraminíferos miliolídeos estão fortemente micritizados, no entanto é observada a disposição das câmaras com contornos escuros e interiores com cristais de calcita, apresentando tonalidade leitosa em luz transmitida e pequenas manchas coloridas em nicóis cruzados. Os bivalves são representados por conchas desarticuladas de pequena dimensão e alta curvatura. Os corais Rugosa são caracterizados por corallitos de forma poligonal e ramificação irregular, os quais são claramente observados na microfácies (Figura 4.25 C).

Os foraminíferos aglutinantes são identificados pelas estruturas da parede, composta pela aglutininação de partículas de diferentes tamanhos, embora carbonáticos e de granulometria muito fina. Os equinóides são identificados principalmente pela sua característica simetria e espinhos, os quais possuem arranjos regulares e radiais, apresentando microporos. Os briozoários apresentamse com arranjos aleatórios em formas ramificadas. Os gastrópodes possuem pequena dimensão e distinguem-se pela característica forma em espiral da concha (Figura 4.25 D). Os ostracodes são identificados pelo seu par de conchas articuladas características. A problemática são bioclastos de difícil distinção de sua natureza.

Os clastos não-esqueletais são constituídos por pelóides (6%), quartzo autigênico (1%) e intraclastos (1%). Os pelóides possuem formas arredondadas a subarredondadas e desprovidos de estruturas internas, sendo fortemente micritizados e dificultando a identificação de sua origem. Os quartzos autigênicos possuem formas e contornos irregulares, possuem resquícios de material carbonático em seu interior e estão disseminados entre os bioclastos. Os intraclastos possuem formas irregulares, com faces angulosas e aparentam ser de mesma composição desta microfácies.

Quanto às estruturas observadas, as *solution seams* são caracterizadas por superfícies de dissolução, as quais são incipientes e preenchidas por material insolúvel, provavelmente óxidos e hidróxidos. É observado, ainda, a variação composicional lateral, a qual é diferenciada pelo aumento da micritização dos clastos (Figura 4.26).

Figura 4.26: A) Variação composicional lateral da microfácies, com diferenças na intensidade de micritização e cimentação, com porção superior esquerda mais micritizada e porção inferior direita com maior cimentação, **B)** detalhe para a variação composicional lateral.

8. Grainstone com aglutinantes (Ga)

Considerando a relação matriz X grãos, a amostra foi classificada como *Grainstone* por apresentar um arcabouço grão suportado e baixo conteúdo de matriz, cerca de 98% de grãos (\cong 1462 grãos) e 2% de matriz (Figura 4.27). Apresenta coloração acastanhada, intensa micritização e recristalização (perda da estrutura original interna dos bioclastos), além de estruturas do tipo *vugs,* microfraturas e *solution seams.* A matriz é constituída por micrita (cristais < 4 µm de dimensão). Os grãos são representados por bioclastos (73%) e clastos não-esqueletais (27%).

Figura 4.27: A) Visão geral da microfácies Grainstone com aglutinantes (Ga), sendo possível observar a grande concentração de bioclastos e o arcabouço grão suportado, e **B)** observa-se a forte recristalização de porções da microfácies, a qual dificulta a identificação dos grãos da mesma.

Apresenta poros de tamanhos que variam desde microporos (< 1/16 mm) até mesoporos (< 1/2 mm e > 1/16 mm). Os tipos destes poros variam de interpartículas, intercristalinos, fraturas e *vugs* (Figura 4.28).

Os poros interpartículas correspondem ao espaço poroso entre as partículas individuais e os grãos, possuindo formas irregulares. Os poros intrapartículas correspondem aos espaços internos dos esqueletos, sendo observados no interior de fragmentos esqueletais de corais Rugosa e equinodermas, além de câmaras de foraminíferos. Os poros intercristalinos são observados principalmente entre os cristais do cimento. As fraturas possuem formas alongadas, aparentemente alargadas e cortam os grãos. E, os *vugs* possuem formas irregulares e são preenchidos por material insolúvel, provavelmente óxidos e hidróxidos.

Figura 4.28: Porosidades encontradas na microfácies Grainstone com aglutinantes (Ga): **A)** intrapartículas (Itp) no interior de câmara de foraminífero, **B)** intrapartícula no interior de fragmento esqueletal de braquiópodes, **C** e **D)** porosidades intercristalinas (Itc) entre o cimento e as fases recristalizadas, **E)** fraturas (Fr) segregando grãos e **F)** pequenos *vugs* (VUG) de formas irregulares e preenchidos por material insolúvel.

A cimentação é intensa na microfácies, sendo o cimento do tipo equicristalino constituído por cristais de calcita, os quais são observados entre os grãos, contornando-os (Figura 4.29 A). O cimento espático com textura em mosaico também é observado em algumas porções das microfácies, o qual contorna os grãos (Figura 4.29 B).

Figura 4.29: A) cimento equicristalino preenchendo o espaço entre os grãos e **B)** cimento espático com textura me mosaico contornando os grãos.

Os bioclastos são constituídos por fragmentos esqueletais e restos de foraminíferos aglutinantes (58%), foraminíferos fusulínideos (5%), crinóides (2%), braquiópodes (1%), e equinóides, gastrópodes, corais Rugosa coloniais e bivalves, os quais somados perfazem cerca de 1% (Figura 4.30).

Os foraminíferos aglutinantes são identificados pelas estruturas da parede, composta pela aglutininação de partículas de diferentes tamanhos, embora carbonáticos e de granulometria muito fina. Em alguns destes aglutinantes é possível observar bem o padrão de enrolamento das câmaras e algumas partículas aglutinadas, porém em outros bioclastos se torna difícil a anaálise devido a forte micritização (Figura 4.30 C).

Os foraminíferos fusulínideos são identificados pelo padrão de enrolamento espiral e pelo característico número elevado de câmaras e pela estrutura microgranular da parede da testa (Figura 4.30 D). Os crinóides apresentam-se como placas de contornos circulares a ovoides ou tabulares, e ainda, podem apresentar fragmentos do braço tipicamente em forma de "U", possuem extinção única em nicóis cruzados.

Figura 4.30: A) foraminíferos aglutinantes e fusulinídeos bastante micritizados, porém ainda é possível observar certo padrão das cãmaras e distinguir a sua origem, B) foraminíferos aglutinantes (Ag) com estruturas da parede formada pela aglutinação de partículas muito finas e fragmento esqueletal de crinóide (Cr), C) detalhe para foraminífero aglutinante com o padrão de enrolamento da câmara e fragmento esqueletal de equinoide (Eq) com sua característica simetria, e D) detalhe para foraminíferos fusulinídeos e aglutinantes.

Os braquiópodes são caracterizados por fragmentos de conchas suavemente encurvadas com paredes de fibras prismáticas diagnósticas e característica extinção ondulante, embora apresentem-se bastante micritizados e recristalizados (Figura 4.31 A). Os equinóides são identificados principalmente pela sua característica simetria e espinhos, os quais possuem arranjos regulares e radiais, apresentando microporos.

Os gastrópodes possuem pequena dimensão e distinguem-se pela característica forma em espiral da concha. Os corais Rugosa são caracterizados por corallitos de forma poligonal e ramificação irregular (Figura 4.31 B). Os bivalves são representados por conchas desarticuladas de pequena dimensão e alta curvatura.

Figura 4.31: A) Fragmento esqueletal de braquiópode fortemente recristalizado e **B)** fragmentos esqueletais de braquiópodes recristalizados (perda da estrutura original interna), de corais Rugosa coloniais e de gastrópodes com sua característica concha em espiral.

Os clastos não-esqueletais são constituídos por pelóides (12 %), halita (8%), oncólitos (4%), intraclastos (2%), e quartzo autigênico (1%). Os pelóides possuem formas arredondadas a subarredondadas e desprovidos de estruturas internas, sendo fortemente micritizados e dificultando a identificação de sua origem. Os cristais de halita possuem formas irregulares, forte reflectância, são isotrópicos e estão dispersos entre os clastos, podendo preencher espaços poroso também (Figura 4.32 A).

Os oncólitos possuem forma subesférica e estão intensamente micritizados, o que muitas vezes dificulta uma nítida observação do padrão de envelopamento ou produz uma aparência de descontinuidade das lâminas. Os intraclastos possuem formas irregulares, com faces angulosas ou subarredondadas, possuem arcabouço grão suportado e aparentam ser de mesma composição desta microfácies, apresentando concentração expressiva de foraminíferos aglutinantes em sua constituição (Figura 4.32 B). Os quartzos autigênicos possuem formas e contornos irregulares, possuem resquícios de material carbonático em seu interior e estão disseminados entre os clastos.

Figura 4.32: A) Cristais de halita preenchendo ocupando espaços entre os grãos e associados ao cimento espático de textura em mosaico e B) intraclastos de formas irregulares, uns mais arredondados e outros mais angulosos, aparentemente são produto de retrabalhamento da própria rocha e encontrado principalmente no perfil B, na cota de 6,75 metros.

Quanto às estruturas observadas, as *solution seams* são caracterizadas por superfícies de dissolução, as quais são bem desenvolvidas, possuem alta amplitude e apresentam concentrações de resíduos insolúveis ao longo das superfícies, as quais provavelmente são constituídas por óxidos e hidróxidos (Figura 4.33).

Figura 4.33: A) Solution seams com alta amplitude e B) detalhe para concentração de resíduos insolúveis no interior das solution seams.

No perfil C, é possível observar a passagem gradacional da microfácies *grainstone* com aglutinantes (Ga) para a microfácies *grainstone* com braquiópodes (Gb). Deste modo, observa-se o incremento da concentração de fragmentos esqueletais de braquiópodes e foraminíferos fusulinídeos, embora as concentrações de foraminíferos aglutinantes ainda sejam superiores as demais (Figura 4.34).

Figura 4.34: A e **B)** observa-se o aumento da concentração de fragmentos esqueletais de braquiópodes e foraminíferos fusulinídeos em relação as outras porções do perfil, embora tenha-se ainda maior percentual de foraminíferos aglutinantes, **C)** detalhe foraminíferos fusulinídeos (Fu), aglutinantes (Ag) e grandes fragmentos esqueletais de braquiópodes, e **D)** desenvolvimento de solution seams com concentração de material insolúvel em seus limites e quartzo autigênico (Qa) nas proximidades destes.

9.Boundstone com intraclastos (Bi)

Embora não seja observada claramente a ligação orgânica sindeposicional nas rochas desta microfácies, a disposição dos grãos e a existência de material mais escuro (aparentemente matéria orgânica amorfa) sugerem esta ligação orgânica sindeposicional e o crescimento vertical que caracterizam as bioconstruções. Desta forma, a amostra foi classificada como *Boundstone*.

Considerando a relação matriz X grãos, apresenta cerca de 88% de matriz, 12% de grãos (\cong 275 grãos, os quais seguem a orientação da estrutura organosedimentar) e coloração acastanhada (Figura 4.35). A matriz é micrítica (cristais < 4 µm de dimensão). Os grãos são representados por clastos não-esqueletais (60%) e bioclastos (40%).

Figura 4.35: A e B) visão geral da microfácies Boundstone com intraclastos (Bi), sendo possível observar certa orientação da ligação organo-sedimentar e a disposição dos clastos segundo esta orientação.

Apresenta poros de tamanhos que variam desde microporos (< 1/16 mm) até mesoporos (< 1/2 mm e > 1/16 mm). Estes poros são do tipo fraturas e *vugs*. As fraturas possuem formas alongadas, aparentemente alargadas e não possuem preenchimento. E, os *vugs* possuem formas irregulares e são preenchidos por material insolúvel, provavelmente óxidos e hidróxidos.

O cimento é caracterizado por calcita microcristalina a qual preenche os espaços entre a matriz e os grãos, além de ser observado o cimento microcristalino no interior de alguns grãos.

Os grãos não-esqueletais são representados por intraclastos (47%), halita (9%), quartzo autigênico (3%) e pirita (1%). Os intraclastos possuem formas alongadas com terminações subangulosas a angulosas, assim, estruturalmente caracterizam grãos do tipo *rip-up clasts* (Figura 4.36 A). Estes intraclastos possuem a textura de um *grainstone* e são constituídos por fragmentos esqueletais de braquiópodes, fusulinídeos e crinóides.

Os cristais de halita possuem formas subarredondadas, forte reflectância, são isotrópicos e são encontrados dentro de poros e entre os clastos. Os quartzos autigênicos possuem formas e contornos irregulares, possuem resquícios de material carbonático em seu interior e estão disseminados entre os clastos e a matriz.

Os bioclastos são representados por restos e fragmentos esqueletais de braquiópodes (23%), crinóides (9%), fusilinídeos (7%), e bivalves, gastrópodes, coral Rugosa e trilobitas, os quais somados perfazem cerca de 1%. Os fragmentos esqueletais de braquiópodes são caracterizados por fragmentos de conchas (com curvas suaves, ora apresentando estrutura foliada ou duas camadas) e espinhos isolados (com centro oco característico, estrutura de parede concêntrica, radialmente orientada, com zona exterior fibrosa). Estes encontram-se fortemente recristalizados (perda da estrutura original interna) e acompanham a orientação da ligação organo-sedimentar (Figura 4.36 B).

Figura 4.36: A) Intraclastos alongados com terminações subangulosos, aparentemente caracterizam rip-up clast, e **B)** fragmentos esqueletais de braquiópodes (Bq) e foraminíferos fusulinídeos (Fu), os quais acompanham a orientação da ligação organo-sedimentar.

Os fragmentos de crinóides apresentam-se como placas de contornos circulares a ovoides ou tabulares, e ainda, podem apresentar fragmentos do braço tipicamente em forma de "U", possuem extinção única em nicóis cruzados. Os fragmentos esqueletais de bivalves são caracterizados por pequenos fragmentos de conchas de alta curvatura, normalmente observa-se apenas uma das conchas dos bivalves. Os foraminíferos fusulínideos são identificados pela sua característica forma em espiral e pelo elevado número de câmaras com paredes microgranulares, as quais apresentam tonalidade negra em luz transmitida.

Os fragmentos de gastrópodes são distinguidos pelas suas formas em espirais, onde são observadas os conjuntos de "corpos espiral (body whorl)". Os fragmentos esqueletais de corais Rugosa são caracterizados pela identificação de seus corallitos, os quais apresentam formas irregulares de ramificação e formas poligonais de contatos entre as superfícies.

Os trilobitas são representados por fragmentos esqueletais de sua carapaça, os quais são identificados pela natureza homogênea da parede, a extinção ondulante característica e forma semelhante a "*boomerangs*" de seus fragmentos.

CAPÍTULO 5 SIGNIFICADO PALEOAMBIENTAL DAS MICROFÁCIES

O emprego de microfácies na interpretação e inferência de paleoambientes de sedimentação passa, necessariamente, pela análise e caracterização de aspectos sedimentológicos e paleontológicos, uma vez que, reconhecidamente, estes refletem parâmetros e processos envolvidos na evolução ambiental e sedimentar de uma região.

Nesse sentido, a caracterização e a identificação de tipos de microfácies é uma etapa fundamental para o desenvolvimento de modelos de sedimentação carbonática, pois correspondem a critérios representativos de parâmetros ou conjuntos de parâmetros ambientais específicos, cuja evolução está ligada a configurações deposicionais específicas (FLÜGEL, 2010).

Entre alguns dos critérios básicos para definição de tipos de microfácies, Flügel (2010) considera a discriminação clara das categorias de grãos, a compreensão das classificações de rochas carbonáticas baseadas em critérios texturais, o reconhecimento das texturas deposicionais e a habilidade de atribuir a fósseis em seções delgadas grupos e unidades taxonômicas.

Para calcários recifais e microbianos (*componentes originais ligados durante a deposição*), os tipos de microfácies são definidos de acordo com o tipo de fósseis, geralmente combinados com a textura dominante (*boundstones*) e com o tipo de matriz (adaptado de FLÜGEL, 2010).

Nos demais calcários (componente originais não ligados durante a deposição), as definições de tipos de microfácies baseiam-se principalmente na integração de critérios como a textura e a fábrica deposicional da rocha e os dados qualitativos e quantitativos dos constituintes (adaptado de FLÜGEL, 2010).

No capítulo 4 foram apresentadas as classificações litológicas das rochas analisadas, as texturas e fábricas deposicionais destas rochas e a quantificação de seus constituintes, o que permitiu caracterizá-las como calcários com componentes originais não ligados durante a deposição, a exceção de dois níveis caracterizados como *boundstones*.

Para este tipo de rocha carbonática, como já mencionado anteriormente, além dos critérios sedimentológico, critérios paleontológicos são de suma importância tanto para a definição de microfácies quanto de tipos de microfácies.

Sob este prisma, Flügel (2010) afirma que, entre os constituintes de microfácies, os fósseis são um dos *proxies* mais significativos para a determinação de condições paleoambientais, graças à sensibilidade natural dos seres vivos às variações de parâmetros como temperatura, salinidade, luminosidade, balanço de CO₂, profundidade da lâmina d'água, natureza do regime de correntes locais, turbidez e natureza do substrato. Com isso, a qualificação e a quantificação dos padrões de frequência e distribuição dos bioclastos podem ser de grande auxílio na identificação de tipos de microfácies.

O mesmo se aplica a grãos não-esqueletais carbonáticos, uma vez que processos bióticos, que dependem de parâmetros ambientais físicos e químicos (*e. g.*, níveis de energia da água e taxas de sedimentação), podem controlar sua formação (FLÜGEL, 2010). Assim sua identificação e quantificação também permite caracterizar e diferenciar configurações deposicionais específicas.

Por sua vez, os constituintes não-carbonáticos permitem reconhecer processos erosivos, alterações climáticas, variações do nível relativo do mar e estimar o influxo de material siliciclástico em bacias carbonáticas. Os minerais autigênicos, por exemplo, são reconhecidos indicadores da trajetória diagenética de rochas e, portanto, de diferentes condições químicas e físicas (FLÜGEL, 2010).

Nesse contexto, critérios diagenéticos, combinados a critérios composicionais e texturais, podem auxiliar na determinação de tipo de microfácies, permitindo identificar condições iniciais específicas de determinados ambientes (FLÜGEL, 2010).

Por conseguinte, a identificação de tipos de microfácies passa também pela análise qualitativa e pela compreensão do significado paleoambiental dos diferentes tipos de grão presentes na rocha.

5.1. ANÁLISE QUALITATIVA E SIGNIFICADO PALEOECOLÓGICO DOS BIOCLASTOS

Para que os bioclastos sejam empregados como indicadores paleoambientais, é necessário fazer um levantamento das preferências paleoecológicas dos táxons que os representam (Apêndice 1) e integrar estes dados à análise quantitativa de seus padrões de distribuição e frequência nas seções estudadas.

Isto porque, seus *trends* de distribuição e frequência nos perfis refletem, de forma indireta, variações de parâmetros ambientais físicos, químicos e biológicos de pretéritos ecossistemas (*e. g.*, temperatura da massa d'água, paleobatimetria, salinidade, energia do meio, disponibilidade de nutrientes, aporte de terrígenos na bacia e oxigenação de fundo, entre outros) e, consequentemente, mudanças ambientais, as quais, por sua vez, podem refletir mudanças no padrão de sedimentação da bacia (FLÜGEL, 2010).

Entre os bioclastos presentes nas amostras predominam, em praticamente todas as seções, restos esqueletais de braquiópodes, crinoides e foraminíferos e, por isso, as discussões desenvolvidas neste estudo serão fundamentadas, prioritariamente, na análise qualitativa dos padrões de distribuição e frequência destes grupos.

A partir do levantamento paleoecológico e da análise dos padrões de distribuição e frequência dos grupos fósseis identificados nas seções estudadas, foi possível identificar 4 (quatro) associações ou biofácies representativas de quatro ambientes de sedimentação (Quadro 5.1).

Biofácies	Grãos	% da	Bioclastos	Bioclastos secundários	Microfácies	
	Totais	rocha	Predominantes			
Biofácies 01		97%	braquiópodes (≅50%),	briozoários (≅1%),		
	≅2276		crinóides (≅23%) e	bivalves (≅1%) e corais	Pb e Gb	
			fusulinídeos (≅11%)	Rugosa (≅1%)	ļ	
Biofácies 02	≅2374	98%	fusulinídeos (≅65%),	miliolídeos (≅2%),		
			braquiópodes (≅15%)	bivalves (≅2%) e corais	Gf	
			e crinóides (≅5%)	Rugosa (≅1%)		
Biofácies 03	≅1462	98%	aglutinantes (≅60%) braquiópodes (≅X%), crinóides (≅X%)	gastrópodes e ostracodes (<1%)	Ga	
Biofácies 04	≅926	25%	braquiópodes (≅50%),	corais Rugosa +		
			crinóides (≅40%) e	equinoides + corais	Wbc	
			fusulinídeos (≅5%)	Tabulata (<2%)		

Quadro 5.1: Biofácies.

Biofácies 01: caracteriza-se pelo predomínio de braquiópodes (\cong 50%), crinóides (\cong 23%) e fusulinídeos (\cong 11%) em um total de 97% da rocha (\cong 2276 grãos). Secundaria e localmente, briozoários (\cong 1%), bivalves (\cong 1%) e corais Rugosa (\cong 1%), embora com baixos valores de frequência, também apresentam *trends* significativos, por isso, a paleoecologia destes grupos também foi considerada nas interpretações.

Identificada nas **microfácies Pb e Gb**, foi interpretada como indicativa de ambiente nerítico raso de plataforma continental interna, com águas temperadas a quentes, euhalino, oxigenado, eutrófico e com energia hidrodinâmica alta.

Isso se justifica pelas preferências paleoecológicas destes organismos, pois braquiópodes, invertebrados exclusivamente marinhos, apesar de possuírem uma ampla gama de hábitos e *habitats*, durante o Carbonífero foram mais abundantes e diversificados em ambientes marinhos neríticos da plataforma continental caracterizados por águas moderadamente quentes, de salinidade estritamente marinha e pouco profundas (JAPUNDŽIĆ & SREMAC, 2016).

Do mesmo modo, crinóides apresentam maior abundância e diversidade em ambientes marinhos neríticos, geralmente associados a áreas abertas da plataforma interna, a ambientes recifais e, mais raramente, a zonas litorâneas sujeitas a forte influência das marés e em região de *back-reef* (DOMÍNGUEZ *et al.*, 2009).

Segundo Sánchez *et al.* (2008), no Carboníferos são associados principalmente a mares epicontinentais oxigenados e com presença de correntes moderadas, podendo ser relacionados ao contexto de ambientes de submaré.

Com relação aos fusulinídeos, um grupo extinto de foraminíferos bentônicos, Fadel (2008) sugere que seu registro é preferencialmente associado a paleoambientes marinhos neríticos rasos (< 80 m), quentes, fóticos, eutróficos, oxigenados e com baixo *input* de siliciclásticos.

Os briozoários, segundo Aguirre (2009), adaptam-se melhor a ambientes marinhos rasos, pois nestes ambientes há maior disponibilidade de substratos rígidos, necessários para sua fixação, além disso, são reconhecidos como invertebrados que possuem considerável resistência a alta energia do meio.

Os bivalves no Carbonífero predominavam em ambientes marinhos rasos (SCHOLLE & ULMER-SCHOLLE, 2003), sendo suas concentrações associadas a ambientes de intermaré e submaré (FLÜGEL, 2010). Corais Rugosa, por sua vez, podem ser indicativos em rochas do carbonífero de ambiente marinho com salinidade de cerca de 36-40 ppm (euhalino), alto nível de oxigenação e temperatura da água temperada a quente (SAID *et al.*, 2010).

O registro paleontológico destes grupos fósseis, mostra que outros parâmetros abióticos, reconhecidos como limites paleoecológicos, a exemplo do tipo de substrato, salinidade, luminosidade, oxigenação e temperatura da massa d'água, também são indicativos deste ambiente (FLÜGEL, 2010).

Nesse sentido, considerando que braquiópodes, crinoides, briozoários e corais Rugosa são bentônicos sésseis e suspensívoros (filtradores) (FLÜGEL, 2010; PEREIRA, 2011), para o pleno desempenho de suas atividades alimentares, estes organismos necessitariam fixar-se a substratos rígidos.

Quanto a salinidade, braquiópodes, crinóides, fusulinídeos e corais Rugosa são organismos estenoalinos, ou seja, não toleram grandes variações de salinidade (*e. g.*, ambientes marinhos marginais), o que, portanto, os restringe a ambientes exclusivamente marinhos (GAINEY Jr. & GREENBERG, 1977; FLÜGEL, 2010; KÜLTZ, 2015). Os briozoários e bivalves, por sua vez, embora sejam eurihalinos e tolerem diferentes taxas de salinidades, no carbonífero eram preferencialmente marinhos. Deste modo, a paleoecologia destes organismos corrobora para a adoção de ambiente euhalino para esta biofácies.

No que se refere ao nicho ecológico destes organismos, braquiópodes, crinoides e fusulinídeos, bem como bivalves, briozoários e corais Rugosa, por serem organismos bentônicos heterotróficos (consumidores), têm sua alimentação

diretamente relacionada à produção primária do meio, por isso, concentram-se preferencialmente em zonas fóticas litorâneas como supramaré, intermaré e partes da submaré (KLEMM *et al.*, 2008; NICHOLS, 2009; FLÜGEL, 2010).

Sob esse aspecto, os fusulinídeos, em particular, são interpretados como hospedeiros de algas fotossintetizantes, o que, considerando seu hábito de vida e seu diminuto tamanho, limita sua distribuição à águas rasas fóticas (MURRAY, 2007, *apud* FADEL, 2008). Deste modo, levando a interpretação de um ambiente fótico para esta biofácies.

A oxigenação, por sua vez, é um fator bio-limitante para invertebrados marinhos e um dos fatores de maior influência para a diversidade e abundância de espécies (FLÜGEL, 2010). Em geral, a zona aeróbica é a região com a presença de oxigênio livre e, consequentemente, com fauna bentônica mais diversa e abundante (CLARK & MOSIER, 1989; BOYER & DROSER, 2009; NICHOLS, 2009; FLÜGEL, 2010). Deste modo, corrobora a inferência de ambientes oxigenados para esta biofácies.

Quanto a temperatura, Flügel (2010) sugere que este é um dos fatores mais importantes no controle de processos vitais e, portanto, na distribuição dos organismos. Considerando que os invertebrados marinhos bentônicos desta biofácies possuíam maior preferência por ambientes de águas temperadas a quentes, sugere-se um ambiente carbonático nesta faixa de temperatura para esta biofácies.

Além disso, aspectos texturais das rochas representativas desta biofácies, como seu caráter grão suportado, forte fragmentação e mal seleção dos grãos, indicam condições hidrodinâmicas de alta energia.

Biofácies 02: caracteriza-se pelo predomínio de foraminíferos fusulinídeos ($\cong 65\%$), braquiópodes ($\cong 15\%$) e crinóides ($\cong 5\%$) em um total de 98% da rocha ($\cong 2374$ grãos). Secundaria e localmente, foraminíferos miliolídeos ($\cong 2\%$), bivalves ($\cong 2\%$) e corais Rugosa coloniais ($\cong 1\%$), embora com baixos valores de frequência, também apresentam *trends* significativos e, assim, sua paleoecologia também foi considerada nas interpretações.

Foi identificada nas **microfácies Gf** e interpretada como indicativa de ambiente de menor energia hidrodinâmica (em relação à Biofácies 01), águas temperadas a quentes, boa oxigenação, euhalino e ricas em nutrientes (eutrófico).

As interpretações desta biofáceis fundamentam-se principalmente na paleoecologia dos fusulinídeos, organismos que, segundo Fadel (2008), foram bastante sensíveis à variações hidrodinâmicas e que preferiam ambientes mais tranquilos em relação àquele indicado na Biofácies 01.

A dominância da morfologia alongada das testas das associações de fusulinídeos destes níveis é outro importante fator que reforça a ideia de um ambiente de menor energia e possivelmente mais restrito em relação à Biofácies 01.

De acordo com Fadel (2008), variações na forma das testas de foraminíferos fusulinídeos de alongadas a subesféricas, resultam de adaptações aos diferentes subambientes marinhos rasos, sendo as formas alongadas associadas a ambientes de menor energia (*e. g.*, lagunas, baías rasas *back reefs*), enquanto que testas subésfericas (geralmente mais espessas), por serem mais resistentes a abrasão e fragmentação, são mais comuns em ambientes de maior energia, como *fore reef* e barras bioclásticas.

Com relação à salinidade, oxigenação e disponibilidade de nutrientes, segundo Fadel (2008), foraminíferos fusulinídeos são organismos estritamente marinhos (estenoalinos) e melhor adaptados a ambientes oxigenados (zona aeróbica) e ricos em nutrientes (eutrófico). Além disso, pelos motivos já citados, habitam ambientes fóticos litorâneos de águas temperadas a quentes.

A frequência de braquiópodes, crinóides e corais Rugosa indicam condições abióticas de substratos rígidos, salinidade marinhas estritas (organismos estenoalinos), em zonas fóticas (organismos bentônicos heterotróficos), aeróbicas e de águas temperadas a quentes. Bivalves, conforme apresentado na biofácies 01, corrobora com a adoção de ambiente marinho raso.

Corais Rugosa, de acordo com Clarkson (2007), raramente são encontrados dentro dos limites da ação de ondas fortes, onde a energia hidrodinâmica é muito elevada. Deste modo, a presença de fragmentos esqueletais de corais Rugosa menos fragmentados e melhor preservados do que na Biofácies 01, também corrobora para a adoção de ambiente relativamente menos energético e mais protegido.

No Paleozóico, os foraminíferos miliolídeos são geralmente restritos a águas marinhas rasas (até profundidades de 80 m), oxigenadas, ricas em nutrientes, tropicais e subtropicais (FADEL, 2008). Segundo Murray (1970), são também

comuns em ambientes mais restritos com salinidade tendendo a hiperhalina. Deste modo, a ocorrência de miliolídeos corrobora a ideia de um ambiente mais protegido e com energia hidrodinâmica relativamente menor para esta biofácies.

O arcabouço grão suportado da rocha, somado a aspectos como fragmentação menos intensa e maior selecionamento dos grãos, é outro aspecto que suporta a interpretação de um ambiente com condições hidrodinâmicas menos energéticas do que as da biofácies 01.

Biofácies 03: caracteriza-se pelo predomínio de foraminíferos aglutinantes ($\cong 60\%$) em um total de 98% da rocha ($\cong 1462$ grãos). Secundaria e localmente, gastrópodes e ostracodes, embora com baixos valores de frequência (<1%), apresentam tendências semelhantes à dos aglutinantes, por isso, a paleoecologia destes grupos também foi considerada aqui.

Foi identificada na **microfácies Ga** e interpretada como indicativa de ambiente marinho marginal influenciado por maré, com maior variação de salinidade, tendendo de mixohalino a hiperhalino, e alta energia hidrodinâmica.

A interpretação paleoambiental se justifica pelas preferências paleoecológicas dos aglutinantes, os quais, segundo Flügel (2010), são frequentemente dominantes em ambientes de transição de salinidade, como em condições salobras e em profundidades abissais. Wightman *et al.* (1994) afirma que são geralmente encontrados em ambientes marinhos marginais influenciados por maré, tais como pântanos, canais de maré e baías interdistributárias.

Os gastrópodes, segundo Gili & Martinell (2009), embora sejam encontrados em todas as latitudes e em variados ambientes (águas marinhas, salobras, hipersalinas e doce, além de ambiente subaéreo), são predominantes em ambientes hipersalinos ou de água doce. Os ostracodes, por sua vez, também são distribuídos em todas as latitudes e são comuns em águas marinhas, doce, salobras e hipersalinas, porém são mais abundantes em águas salobras, hipersalinas e doces (POSADA *et al.*, 2009).

Deste modo, as tendências observadas nas rochas e as preferências paleoecológicas destes organismos, sugerem um ambiente marinho marginal com maior variação de salinidade para esta biofácies.

Como observado na biofácies 01, o levantamento paleoecológico da biota que compõe está biofácies em relação a parâmetros abióticos como luminosidade,

oxigenação e temperatura da massa d'água, também sugerem zona fótica, aeróbica e de águas temperadas a quentes e, o que vem de encontro às interpretações.

Quanto a salinidade, observa-se que tanto foraminíferos aglutinantes, quanto gastrópodes e ostracodes são organismos eurialinos e, deste modo, toleram grandes flutuações de salinidade (GAINEY Jr. & GREENBERG, 1977; FLÜGEL, 2010; KÜLTZ, 2015). Assim, a interpretação de ambiente marinho marginal influenciado por marés, com salinidade mixohalina a hiperhalina, são condizentes com este parâmetro.

A textura grão suportada das rochas desta biofácies indica condições hidrodinâmicas de elevada energia, deste modo, corroborando com a adoção de ambientes possivelmente influenciados por correntes de maré.

Biofácies 04: caracteriza-se pelo predomínio de braquiópodes (\cong 50%), crinóides (\cong 40%) e fusulinídeos (\cong 5%) em um total de 25% da rocha (\cong 926 grãos). Secundaria e localmente, corais Rugosa, bivalves, equinoides e corais Tabulata, embora com baixos valores de frequência (<2%), também apresentam *trends* significativos, por isso, a paleoecologia destes grupos também foi considerada nas interpretações.

Foi identificada na **microfácies Wbc** e interpretada como indicativa de ambiente marinho caracterizado por baixa energia hidrodinâmica, águas temperadas a quentes, euhalino, fótico, oxigenado e eutrófico.

O que é justificado pela maior representatividade de braquiópodes e crinóides, os quais são melhor adaptados a ambientes marinhos neríticos da plataforma continental, com águas moderadamente quentes, de salinidade exclusivamente marinha (euhalina) e pouco profundas.

Conforme citado para a Biofáceis 01, o predomínio de braquiópodes, crinóides, fusulinídeos e corais Rugosa indicam condições abióticas de substratos rígidos, salinidade marinhas estritas (organismos estenoalinos), em zonas fóticas (organismos bentônicos heterotróficos), aeróbicas e de águas temperadas a quentes, o que corrobora para os parâmetros ambientais sugeridos para esta biofácies.

Os equinoides, segundo Villalba (2009), são mais frequentes e abundantes em ambientes rasos (< 100 m de profundidade) e em águas temperadas a quentes.

Assim, também contribuindo para as interpretações das condições ambientais desta biofácies.

Os corais Tabulata, por sua vez, são geralmente associados a profundidades marinhas rasas dentro da zona fótica, isso devido a suposta relação de simbiose com algas fotossintetizantes (SCHOLLE & ULMER-SCHOLLE, 2003). Segundo Braga *et al.* (2009), são estenohalinos, não suportando grandes variações de salinidade. Deste modo, corroborando a interpretação de um paleoambiente marinho raso, fótico e euhalino para a biofácies.

Além disso, segundo Clarkson (2007), corais Tabulata são raramente encontrados em ambientes de alta energia hidrodinâmica. Isto, somado ao arcabouço matriz suportado, sugere a adoção de paleoambiente caracterizado por condições de menor energia hidrodinâmica em relação às biofácies anteriormente analisadas.

5.2. ANÁLISE QUALITATIVA E SIGNIFICADO PALEOAMBIENTAL DOS GRÃOS NÃO-ESQUELETAIS

Para que os grãos não-esqueletais sejam empregados como indicadores paleoambientais, é necessário fazer um levantamento de seu significado sedimentológico e integrá-lo aos padrões de distribuição e frequência destes grãos identificados nas seções estudadas.

Isto porque, seus *trends* de distribuição e frequência nos perfis podem refletir, indiretamente, as variações de parâmetros físicos e químicos do ambiente de sedimentação. Deste modo, grãos não-esqueletais carbonáticos podem indicar, por exemplo, condições de energia hidrodinâmica, salinidade, temperatura da massa d'água e paleobatimetria. Os grãos não-esqueletais não carbonáticos, por sua vez, podem apontar para condições de transporte do sedimento, natureza e distância de áreas fontes, pH do meio e condições redox, por exemplo.

Entre os grãos não esqueletais, predominam nas seções cristais de halita, quartzo autigênico, pelóides, intraclastos, oncólitos e oóides. Exclusivamente no perfil A, observa-se o predomínio de pirita framboidal, quartzo detrítico e fitoclastos. Deste modo, as interpretações desenvolvidas neste trabalho serão fundamentadas, prioritariamente, na análise qualitativa dos padrões de distribuição e frequência destes constituintes nas seções estudadas, as quais permitiram o reconhecimento de 5 (cinco) associações principais (Quadro 5.2):

Associações	Grãos	% da	Grãos não-esqueletais	Microfácies
	Totais	rocha		
Associação 01	≅ 130	7%	halita (≅80%) e quartzo autigênico (≅15%)	Me
Associação 02	≅ 918	40%	grãos detríticos de quartzo (≅55%), quartzo autigênico (≅25%) e halita (≅20%)	Wt
Associação 03	≅ 283	 283 18% quartzo autigênico (≅30%), fitoclastos não opacos (≅20%), halita (≅20%) e pirita framboidal (≅2%) 		Wqf
Associação 04	Associação 04 $\cong 275$ 12% intraclastos ($\cong 50\%$) e halita ($\cong 10\%$)		Bi	
Associação 05	sociação 05 \cong 1462 98% pelóides (\cong 12%), halita (\cong 8%), oncólitos (\cong 4%), oóides (\cong 2%) e intraclastos (\cong 2%)		Ga	

Quadro 5.2: Associações de grãos não-esqueletais.

Associação 01: caracteriza-se pelo predomínio de halita ($\underline{\cong 8}0\%$) e quartzo autigênico ($\underline{\cong 15}\%$) em um total de 7% da rocha ($\underline{\cong}$ 130 grãos). Foi identificada na **microfácies Me** e interpretada como indicativa de um ambiente marinho semi-restrito, possivelmente mixohalino tendendo a hiperhalino, sob condições climáticas semi-áridas.

Isto se justifica pelo significado sedimentólogico destes grãos, uma vez que, sabe-se que a halita, por ser um mineral evaporítico, se forma principalmente por evaporação em condições de aridez climática (AQUILANO, 2016), sendo que cubos e formas esqueletais de halita em matriz carbonática podem ser indicativas de ambiente marginal do tipo sabkha (Silva *et al.*, 2000).

Sob este aspecto, Aquilano (2016), sugere que a formação de grandes depósitos de sais tem comumente sua origem na dessecação de mares, quando o influxo de água cessa ou é tão pequeno que não corresponde ao fluxo devido à evaporação (*e. g.*, influxo do Atlântico para o Mediterrâneo na crise messiniana, o Grande Lago Salgado (EUA) e o Mar Morto, entre a Jordânia e Israel).

Do mesmo modo, de acordo com Araújo (2012), a formação de evaporitos marinhos requer condições de extrema restrição de circulação de águas marinhas, aliada a condições climáticas específicas que possibilitem que a razão de

evaporação seja superior à taxa de influxo marinho, podendo a restrição ser devido a condições geomorfológicas, estruturais ou mesmo orgânicas (recifes).

O quartzo autigênico, por sua vez, tem como principais fontes: (1) restos esqueletais de organismos silicosos, (2) *input* fluvial de soluções de intemperismo continental em climas semi-áridos e (3) fornecimento de sílica através de soluções hidrotermais de sistemas vulcânicos (FLÜGEL, 2010). O que também corrobora a interpretação de um ambiente marinho restrito de baixa energia, sob regime climático de aridez.

A textura matriz suportada das rochas desta associação indica condições hidrodinâmicas de baixa energia, deste modo, corroborando com a adoção de ambientes restrito ou semi-restrito para esta associação.

Associação 02: caracteriza-se pelo predomínio de grãos detríticos de quartzo ($\cong 55\%$), quartzo autigênico ($\cong 25\%$) e halita ($\cong 20\%$) em um total de 40% da rocha (\cong 918 grãos). Foi identificada na **microfácie Wt** e interpretada como indicativa de um ambiente marinho proximal semi-restrito, com salinidade possivelmente mixohalina tendendo a hiperhalina, sob condições climáticas semi-áridas e com contribuição de sedimentos clásticos a partir de uma possível área fonte continental e/ou transicional.

Segundo Flügel (2010), em áreas marinhas pouco profundas, a entrada de sílica terrígena é uma fonte importante de sedimentos e sua gênese comumente deve-se ao intemperismo em áreas fontes continentais e/ou transicionais, seguidas do transporte eólico e/ou fluvial para o ambiente de sedimentação.

Neste sentido, Mount (1985) afirma que o estudo de sedimentos mistos, compostos por constituintes siliciclásticos e carbonáticos, podem dizer muito sobre a dinâmica e as interações entre os ambientes deposicionais, a paleoecologia de vários organismos que secretam carbonato de cálcio e a história tectônica das bacias deposicionais.

Deste modo, os grãos detríticos de quartzo sugerem a contribuição de ambientes continentais e/ou transicionais na bacia sedimentar, além disso, a forma preferencialmente subarredondada dos grãos indicam que houve transporte destes sedimentos, provavelmente relacionada com uma fonte eólica, a qual ocasionou o maior arredondamento devido ao transporte por rolamento.

Do mesmo modo, como já discutido na Associação 01, as significativas concentrações de halita e quartzo autigênico nesta associação, também indicam um ambiente com salinidade variando de mixohalina a hiperhalina, sob condições climáticas semi-áridas.

A textura matriz suportada da rocha também corrobora esta interpretação, indicando condições hidrodinâmicas de baixa energia, o que é condizente com ambiente marinho semi-restrito.

Associação 03: caracteriza-se pelo predomínio de quartzo autigênico ($\cong 30\%$), fitoclastos não opacos ($\cong 20\%$) e halita ($\cong 20\%$) em um total de 18% da rocha ($\cong 283$ grãos). Além destes grãos, outro importante constituinte desta associação é a presença de pirita framboidal, por isso, embora representada por baixos valores de frequência ($\cong 2\%$) também foi incluída na análise.

Esta associação foi identificada na **microfácies Wqf** e interpretada como indicativa de um ambiente marinho proximal semi-restrito, oxigenado, possivelmente com salinidade mixohalina tendendo a hiperhalina, sob condições climáticas semiáridas e de baixa energia hidrodinâmica.

Nesse contexto, os padrões de distribuição e frequência de quartzo autigênico e halita, conforme discutido anteriormente, justificam as condições mais restritas do ambiente e a tendência de aumento de salinidade (mixohalino a hiperhalino), sob regime de condições climáticas semi-áridas.

Somadas a isto, o significado sedimentológico dos fitoclastos e das piritas, infere-se porções mais proximais e zonas aeróbicas, sugestivas de um ambiente de supramaré/intermaré, em condições semi-restritas.

Com relação aos significativos valores de frequência de fitoclastos nãoopacos, os quais consistem em fragmentos de tecidos derivados de vegetais superiores ou de fungos e reconhecidos como do tipo não-bioestruturados nas amostras, segundo Mendes (2015), podem indicar uma alta contribuição continental e, segundo Menezes & Mendonça-Filho (2004), os fitoclastos não-opacos nãobioestruturados possuem tendências de distribuições em fácies mais proximais.

Quanto às piritas, segundo Kalliokoski & Cathles (1969), a estrutura framboidal corresponde a um agregado coloidal supermolecular de empacotamento cúbico, provavelmente formado por processos de coacervação devido à reação do ácido húmico ferruginoso com H₂S biogênico. Sweeney & Kaplan (1973) sugere que

a presença de framboides é indicativa de ambientes biogênicos durante a formação da pirita.

Segundo Suits & Wilkin (1998), em sedimentos depositados em colunas de águas oxigenadas, a pirita é formada exclusivamente dentro do sedimento (pirita diagenética), enquanto que em ambientes euxínicos, a pirita pode se formar na coluna de água, bem como abaixo da interface sedimento-água. Porém, a morfologia das piritas e o tamanho dos framboides são claramente diferentes em ambientes deposicionais oxigenados e euxínicos e, portanto, também podem ser úteis na determinação de condições redox durante a sedimentação (SUITS & WILKIN, 1998).

Segundo Wilkin *et al.* (1996, *apud* SUITS & WILKIN, 1998), os núcleos de pirita formados na coluna de água são afetados por condições químicas e hidrodinâmicas e, geralmente, tem menos tempo para crescer do que os formados em sedimentos. Desta maneira, as piritas framboidais e euedrais formadas na coluna de água em ambientes euxínicos são geralmente menores e menos variáveis em tamanho (diâmetro x = 4,7 µm, desvio padrão s = 2,1 µm) do que os encontrados nos sedimentos depositados em colunas de águas oxigenadas (x = 7,4 µm, s = 4,9 µm) (SUITS & WILKIN, 1998).

As piritas framboidais, observadas nesta associação, apresentam em média diâmetros com cerca de 10,03 µm. Deste modo, sugere-se que a pirita é diagenética e que os framboides foram desenvolvidos exclusivamente dentro do sedimento em condições paleoambientais de águas oxigenadas.

A textura matriz suportada da rocha, por sua vez, fortalece as interpretações de condições mais restritas do ambiente e sugerem ainda condições hidrodinâmicas de baixa energia. Além disso, poros móldicos aciculares observados nas amostras, sugerem moldes evaporíticos, possivelmente de anidrita, e corroboram com as condições de salinidades com tendências mixohalinas a hiperhalinas.

Associação 04: caracteriza-se pelo predomínio de intraclastos ($\cong 50\%$) e halita ($\cong 10\%$) em um total de 12% da rocha ($\cong 275$ grãos). Foi identificada nas **microfácies Bi** e interpretada como indicativa de um ambiente marinho proximal semi-restrito e com condições climáticas semi-áridas, possivelmente com salinidade tendendo de mixohalina a hiperhalina.

Os intraclastos, segundo Terra *et al.* (2010), correspondem a fragmentos penecontemporâneos de sedimentos carbonáticos, parcialmente litificados, que são erodidos e redepositados como um novo sedimento. Flügel (2010) afirma que são comuns em ambientes marinhos rasos dominados por ondas ou marés, sendo produtos de erosão e retrabalhamento carbonático, ou podem ser originados também pela dessecação de carbonatos em ambientes de supramaré (*rip-up clast*).

A forma alongada com terminações subangulosas a angulosas dos intraclastos desta associação, são indicativos de grãos do tipo *rip-up clasts*, conferindo a natureza de dessecação destes clastos e corroborando para a interpretação de ambiente marinho proximal para esta associação.

A significativa concentração de halita, por sua vez, denota o caráter de condições mais restritas do ambiente e o aumento de salinidade com tendências mixohalinas a hiperhalinas. Além disso, a estrutura primária que aparenta uma ligação orgânica sindeposicional, sugere condições de lâmina d'água bem reduzidas, corroborando também para a adoção de ambiente proximal para esta associação.

Associação 05: caracteriza-se por significativa ocorrência, embora não seja predominante, de pelóides ($\cong 12\%$), halita ($\cong 8\%$), oncólitos ($\cong 4\%$), oóides ($\cong 2\%$) e intraclastos ($\cong 2\%$), em um total de 98% da rocha ($\cong 1462$ grãos). Foi identificada na **microfácies Ga** e interpretada como indicativa de ambiente marinho raso semi-restrito, influenciado por correntes de maré e apresentando variações de salinidade com tendências mixohalina a hiperhalina.

Os pelóides são definidos como grãos micríticos subesféricos com ausência de estrutura interna, podendo ser grãos aloquímicos micritizados de origem desconhecida, clastos de lama ou, então, fragmentos de bioclastos naturalmente arredondados ainda reconhecíveis (TERRA *et al.*, 2010).

Segundo Flügel (2010), são comuns em plataformas marinhas rasas influenciadas por maré (intermaré e submaré) e em recifes, sendo abundantes em carbonatos marinhos rasos tropicais, porém raros ou ausentes em carbonatos de águas geladas não-tropicais. Deste modo, o predomínio de pelóides nesta associação sugere condições ambientais marinhas rasas com a influência de correntes de marés.

A significativa ocorrência de halita nesta associação, conforme já apresentando anteriormente, sugere condições ambientais semi-restritas e salinidade tendendo de mixohalina a hiperhalina.

Os oncólitos são grãos formados pela acreção organo-sedimentar de microorganismos bentônicos coloniais, caracterizando-se por envelopes descontínuos, geralmente pouco nítidos, frequentemente com sedimento interno preso entre os envelopes e forma subesférica a subelíptica (TERRA *et al.*, 2010).

Segundo Flügel (2010), os oncólitos se formam em variados ambientes, que vão desde lagos de água doce, córregos e pântanos até diferentes ambientes marinhos (*e. g.*, intermaré, submaré, laguna marinha aberta, *patch reefs, back-reef*, recifes de margem de plataforma e talude superior). Assim, o predomínio de oncólitos nesta associação, embora se origine em variados ambientes marinhos, pode corroborar a interpretação de ambiente influenciado por maré, ao considerar os outros grãos aos quais está associado.

Os oóides, por sua vez, são partículas envelopadas, esféricas a subesféricas, originadas por acreção físico-química em torno de um núcleo (TERRA *et al.*, 2010). Segundo Flügel (2010), são comuns em ambientes marinhos (intermaré e submaré superior) e não marinhos (sedimentos lacustres e terrestres), sendo formados tanto em função das condições hidrodinâmicas (ambientes marinhos de alta energia), quanto devido as variações de salinidade (ambientes não-marinhos e marinhos marginais de baixa energia).

Deste modo, a ocorrência de oóides nesta associação pode sugerir tanto condições de energia hidrodinâmica relativamente alta, quanto condições de variações de salinidade. As duas opções, portanto, corroboram com uma configuração ambiental influenciada por maré, onde tanto a energia do meio pode ser intensa devido as correntes, quanto a salinidade pode ser variável devido a influência de águas continentais.

Por sua vez, os intraclastos, conforme apresentando anteriormente, também são comuns em ambientes marinhos rasos dominados por ondas ou marés, sendo produtos de erosão e retrabalhamento carbonático. Deste modo, também corroboram para a adoção de ambiente influenciado por maré para esta associação.

5.3. ÍNDICE DE ENERGIA DO AMBIENTE

Como já foi mencionado, de acordo com Flügel (2010), entre alguns dos principais parâmetros abióticos dos ambientes marinhos carbonáticos, passíveis de inferências através da integração entre o significado paleoecológico dos bioclastos, da textura e da fábrica da rocha e do significado sedimentológico dos grãos não esqueletais, estão: energia hidrodinâmica, salinidade, oxigenação, tipo de substrato, batimetria, luminosidade e temperatura da massa d'água, os quais já foram abordados neste estudo nos itens anteriores.

Entretanto, no que se refere particularmente ao ÍNDICE DE ENERGIA DO AMBIENTE, a integração destes dados permite ainda inferir categorias de energia hidrodinâmica para o meio.

De acordo com Plumley *et al.* (1962, *apud* FLÜGEL, 2010) são reconhecidas cinco principais categorias de energia: Tipo I - águas calmas, Tipo II - agitado e intermitente, Tipo III - levemente agitado, Tipo IV - moderadamente agitado e Tipo V - fortemente agitado. Seguindo esta proposta, foram identificadas nas seções estudadas microfácies características de ambientes com índice de energia dos tipos I, IV e V (Quadro 5.3).

Categorias	Características	Microfácies	
	carência de grãos transportados	Me, Wt, Wqf, Wb e	
Tipo I – aguas califias	reconhecíveis e baixa diversidade de fósseis	Bi	
	influência tanto de águas calmas quanto		
Tipo II - agitado e	agitadas, possuem porções com > 50% de		
intermitente	matriz e outras com > 50% de grãos		
interniterite	transportados, evidenciando a energia		
	intermitente da água		
Tipo III - levemente agitado	grãos transportados de granulometria silte a		
	areia fina e teor de matriz inferior a 50%		
Tine IV - moderadamente	grãos de granulometria entre areia média a		
	muito grossa, bioclastos geralmente	Pb e Gf	
agitado	fragmentados		
	bioclastos e intraclastos de granulometria		
	grosseira (calcirruditos), inclui rochas		
Tipo V – fortemente agitado	compostas predominantemente por	Gb e Ga	
	bioclastos e intraclastos subarredondados a		
	arredondados, intraclastos conglomeráticos		
	ou brechóides e construções recifais in situ.		

Quadro 5.3: Classificação de índice de energia, segundo o modelo de Plumley *et al.* (1962, *apud* FLÜGEL, 2010).

A sedimentação em águas calmas se caracteriza pela agitação mínima da água e pela carência de grãos transportados reconhecíveis. As microfácies Me, Wt, Wqf, Wb e Bi foram relacionadas a este tipo de depósito, devido sua constituição, textura matriz suportada, escassez e baixa diversidade de fósseis e a pela ausência de evidências de transporte de grãos.

A sedimentação em águas moderadamente agitadas caracteriza-se pelo arcabouço grão suportado, pela predominância de grãos com granulometria de areia média a muito grossa (embora ocorra significativa contribuição de finos), pelo mal selecionamento e por evidências de transporte dos grãos. A microfácies Pb e Gf foi associada a este tipo de depósito por apresentar estas características.

A sedimentação em águas fortemente agitadas caracteriza-se pelo arcabouço grão suportado, pela predominância de bioclastos e intraclastos, o mal selecionamento e evidências de transporte dos grãos. As microfácies Gb e Ga foram relacionadas a este tipo de depósito com base na observação e ocorrência destes aspectos.

A partir da caracterização e individualização das preferências paleoecológicas dos principais grupos fósseis identificados nas microfácies, do significado sedimentológico dos grãos não-esqueletais e da determinação do índice de energia do meio, foi possível interpretar parâmetros ambientais bióticos e abióticos relacionados a estes elementos e, com isso, identificar cinco tipos de microfácies: MFT-01, MFT-02, MFT-03, MFT-04 e MFT-05, assim caracterizadas e interpretadas (Quadro 6.1):

Tipos de microfácies	Biofácies	Associações	Índice de Energia	Salinidade	Zona Geomorfológica	Ambiente de sedimentação
MFT-01	-	Associação 01	Tipo I	hiperhalina	Supramaré/ Intermaré Superior	<i>Sabhka</i> costeira semi- restrita
MFT-02	-	Associação 02, 03 e 04	Tipo I	mixohalina tendendo a hiperhalina	Supramaré/ Intermaré Superior	Planície de maré
MFT-03	Biofácies 04	-	Tipo I	euhalina	Intermaré Superior	Laguna semi- restrita
MFT-04	Biofácies 03	Associação 05	Tipo V	mixohalina tendendo a hiperhalina	Intermaré Inferior/ Inframaré	Canais de maré
MFT-05	Biofácies 01 e 02	-	Tipo IV e Tipo V	euhalina	Intermaré Inferior/ Inframaré	Barras bioclásticas

Quadro 6.1:	Tipos de	e micro	fácies.
-------------	----------	---------	---------

MFT-01 é representado pela microfácies *Mudstone* com evaporitos (Me) e caracterizada pela **Associação 01** (predomínio de evaporitos, seguido de quartzo autigênico, baixa diversidade e abundância de organismos bentônicos e textura matriz suportada) e índice de energia **Tipo I** (águas calmas), como indica a textura matriz suportada das rochas.

Seu significado paleoambiental foi interpretado principalmente com base na análise qualitativa dos grãos não-esqueletais e na textura das rochas, já que o conteúdo paleontológico das microfácies que o representam é escasso e pouco diversificado.

Entre estes grãos, os evaporitos (principalmente halita), corroboram a inferência de um ambiente marinho raso, possivelmente semi-restrito e tendendo a hipersalino, uma vez que sua formação ocorre preferencialmente em águas rasas proximais e de maior salinidade, sob regime climático semiárido. Do mesmo modo, a natureza do quartzo autigênico, outro importante constituinte, também sugere clima semiárido.

A sílica microbotryoidal (nódulos de sílica), também observada nas rochas de MFT-01, pode ser interpretada como produto da substituição de evaporitos (MOUTINHO, 2006), indicando também, indiretamente, a alta salinidade e a proximidade com a linha de costa. Do mesmo modo, os raros fósseis representados por esparsos fragmentos nestas rochas, contribuem para estas interpretações.

Conforme discussões anteriores, estas características, em conjunto, apontam para um ambiente marinho proximal, possivelmente semi-restrito, hiperhalino, aqui interpretado como **SABHKA COSTEIRA SEMI-RESTRITA** (Zona de Supramaré/Intermaré Superior), sob regime climático semiárido.

Segundo Barth & Böer (2002), *sabhka* é um termo árabe para as planícies salinas litorâneas (supramaré/intermaré), associadas a clima árido a semi-árido, sendo comum a associação de depósitos sedimentares evaporíticos, de inundações de intermarés e eólicos. Estes ambientes possuem limitado afluxo de material terrígeno e em seus depósitos sedimentares ocorrem diversos processos singenéticos e diagenéticos característicos, como dissolução de calcários e de níveis salinos e dolomitização.

MFT-02 é composto pelas microfácies W*ackstone* com terrígenos (Wt), W*ackstone* com quartzo autigênico e fitoclastos (Wqf) e B*oundstone* com intraclastos (Bi). Caracteriza-se por 3 (três) associações de grãos não esqueletais: *Associação 02* (predomínio de grãos detríticos de quartzo), *Associação 03* (predomínio de quartzo autigênico, seguido de fitoclastos e halita, além de ocorrência de piritas framboidais) e *Associação 04* (estrutura primária orgânica sindeposicional e predomínio de intraclastos do tipo *rip-up clast*).

No geral, estas associações apresentam baixa diversidade e abundância de organismos bentônicos, textura matriz suportada e concentrações significativas de halita e quartzo autigênico. O índice de energia *Tipo I* (águas calmas) foi inferido para estas associações com base na textura matriz suportada das rochas.

As inferências paleoambientais para este tipo de microfácies também se fundamentaram no significado sedimentológico dos grãos não-esqueletais e na textura das rochas, pelos mesmos motivos apontados na *MFT-01*.

Entre estes grãos, a presença significativa de quartzo detrítico foi associado a uma maior incursão de material siliciclástico de origem continental e/ou transicional, possivelmente em zonas de misturas mais próximas ao continente, a partir de uma provável fonte fluvial. O mesmo indicado pelos fitoclastos. Por sua vez, as piritas framboidais sugerem águas oxigenadas e os intraclastos do tipo "*rip-up clast*", indicam a natureza de dessecação de carbonatos em ambientes de supramaré.

A halita e o quartzo autigênico, pelos motivos já citados, também sugerem condições marinhas rasas proximais, semi-restritas, com salinidade tendendo a hipersalina e regime climático semi-árido.

Conforme discussões anteriores, a reunião destas características aponta para um ambiente marinho proximal, com contribuições continentais e/ou transicionais, salinidade possivelmente mixohalina tendendo a hiperhalina, sob condições climáticas semi-áridas, oxigenadas e com índice de energia típico de águas calmas, interpretado como **PLANÍCIE DE MARÉ** (Zona de Supramaré/Intermaré Superior).

De acordo com (DESJARDINS *et al.*, 2012), as planícies de marés desenvolvem-se em costas onde o principal condicionante é a ação de correntes pela subida e descida das marés. Segundo França *et al.* (2007), os baixos níveis de energia e os mecanismos de transporte carreiam sedimentos de granulometria fina (silte, argila e areia fina), que são depositados conforme a diminuição da competência das correntes e durante o estofo da maré.

Além disso, segundo Harris (2009) os sedimentos de planícies de maré (supramaré/intermaré), em climas áridos, incluem geralmente microbialitos, lamitos algais, evaporitos com formas irregulares e nodulares, intraclastos angulares e clastos fluvio-eólicos (HARRIS, 2009; FLÜGEL, 2010), o que é bem condizente com os dados levantados em MFT-02.

MFT-03 é representado pela microfácies W*ackstone* com braquiópodes e crinóides (Wbc) e caracterizado pela **Biofácies 04** (predomínio de braquiópodes, crinóides e fusulinídeos, além de bivalves, equinoides e corais Rugosa e Tabulata), textura matriz suportada e índice de energia **Tipo I** (águas calmas).

A paleoecologia dos principais grupos fósseis e a textura da rocha foram os principais aspectos utilizados para a interpretação paleoambiental deste tipo de microfácies.

Entre os bioclastos, braquiópodes, crinóides, fusulinídeos, corais Rugosa, bivalves, equinoides e corais Tabulata, conforme já discutido, sugerem ambientes marinhos neríticos, com águas temperadas a quentes, euhalinas, fóticas, eutróficas, pouco profundas e com energia hidrodinâmica característica de águas calmas, aqui interpretadas como *Laguna* semi-restrita (Zona de Intermaré Superior).

Segundo Harris (2009), os sedimentos das lagunas são geralmente formados *in situ* ou foram transportados de subambientes contíguos pela ação de ondas e/ou correntes. Em regiões áridas, a evaporação pode elevar a salinidade nas lagoas, podendo propiciar a precipitação de evaporitos subaquosos e diminuição da diversidade faunística (TURCKER & WRIGHT, 1990).

De acordo com Turcker & Wright (1990), Burchette & Wright (1992) e Walker & James (1992), as lagunas carbonáticas de intermaré podem ser protegidas do oceano e das tempestades por sistemas de ilhas barreiras, possuem geralmente salinidade variando de mixohalina a hiperhalina, comum ocorrência de esteiras microbianas, bem como de foraminíferos, gastrópodes, bivalves e ostracodes, entre a fauna caracterísitica. Na sedimentação geralmente predominam sedimentos de granulometria fina, cuja composição depende, entre outros fatores, da batimetria e do padrão circulação da laguna, o qual, por sua vez, é fortemente controlado pela frequência de canais de maré e pelo clima.

Deste modo, considerando a concentração relativamente baixa de evaporitos (~2%) em MFT-03, e a significativa frequência de bioclastos, o ambiente lagunar, aqui interpretado, seria semi-restrito, com teores de salinidade variando entre moderado a alto e circulação dinâmica em função da ocorrência de canais de maré (MTF-04), o que teria propiciado a contribuição de sedimentos de áreas contíguas e condições mixohalinas a hiperhalinas.

MFT-04 é representado pela microfácies G*rainstone* com aglutinantes (Ga) e caracterizada pela **Biofácies 04** (predomínio de foraminíferos aglutinantes, com significativa ocorrência de gastrópodes e ostracodes, além da textura grão suportada) e pela **Associação 05** (ocorrência representativa de pelóides, halita, oncólitos, oóides e intraclastos). O índice de energia **Tipo V** (fortemente agitado) foi

associado a este tipo de microfácies em função da textura grão suportada das rochas.

As inferências foram baseadas, principalmente, no significado paleoecológico dos grupos fósseis dominantes, o qual permitiu a identificação de aspectos abióticos que também auxiliam e suportam as interpretações.

Entre os bioclastos, os foraminíferos aglutinantes foram interpretados como indicativos de condições de transição de salinidade associados a um ambiente marinho marginal influenciado por maré. O que é sustentando pelo padrão de ocorrência similar de gastrópodes, ostracodes, pelóides, oncólitos e intraclastos, os quais também são comuns neste meio.

Conforme discussões anteriores, estas características, em conjunto, apontam para um ambiente de **CANAIS DE MARÉ** (Zona de Intermaré Inferior/Inframaré), caracterizado pela influência de correntes de maré, com energia hidrodinâmica fortemente agitada e salinidade tendendo de mixohalina a hiperhalina.

De acordo com Schwartz (2005), os canais de maré normalmente possuem tanto sedimentos finos quanto grosseiros (*e. g.*, conchas, intraclastos), estes últimos podendo formar barras arenosas em seu transcurso. Sob este prisma, considerando a textura e a composição das rochas que o representam, MFT-04 foi aqui relacionado às porções mais grosseiras dos canais de maré.

MFT-05 é composto pelas microfácies P*ackstone* com braquiópodes (Pb), Grainstone com braquiópodes (Gb) e Grainstone com fusulinídeos (Gf). Caracterizase por 2 (duas) biofácies: **Biofácies 01** (predomínio de braquiópodes, seguido de crinoides e foraminíferos fusulinídeos, além da textura grão suportada) e **Biofácies 02** (predomínio de fusulinídeos, seguido de braquiópodes e crinóides, além de textura grão suportada).

Em relação ao índice de energia, observa-se uma variação entre o *Tipo IV* (moderamente agitado) e o *Tipo V* (fortemente agitado), conforme indica a textura grão suportada das rochas e as preferências paleoecológicas dos organismos bentônicos associados.

As inferências paleoambientais para este tipo de microfácies também se fundamentaram no significado paleoecológico dos principais grupos fósseis, pelos mesmos motivos apontados na discussão do tipo *MFT-04*.

Entre os bioclastos, braquiópodes, crinoides, fusulinídeos (os dois primeiros predominantes na *Biofácies 01* e o terceiro na *Biofácies 02*), briozoários, bivalves, corais Rugosa e miliolídeos (em menor abundância, porém com frequência significativa nestas biofácies), sugerem um ambiente com salinidade exclusivamente euhalina, substrato rígido, eutrófico, fótico, com temperaturas de temperadas a quentes e condições hidrodinâmicas moderadas a elevadas.

Conforme discussões anteriores, estas características, em conjunto, apontam para um ambiente aqui interpretado como de **BARRAS BIOCLÁSTICAS** (Zona de Intermaré Inferior/Inframaré).

Leves diferenças no padrão hidrodinâmico do meio, observadas nas microfácies que compõem MFT-05, sugerem barras depositadas em porções distintas da plataforma continental interna. Neste sentido, as microfácies com maiores concentrações de braquiópodes e crinoides caracterizam condições hidrodinâmicas de elevada energia e teriam, possivelmente, sido depositadas em porções mais distais, enquanto as microfácies com maior concentração de fusulinídeos caracterizariam condições hidrodinâmicas mais amenas, associadas a barras mais proximais.

As formas de leitos do tipo barras bioclásticas formadas em ambientes dominados por marés são orientados aproximadamente paralelas ao fluxo de maré principal (*e. g.*, WALKER & JAMES, 1992; SCASSO *et al.*, 2012; DAIDU, 2013). Assim, levando em consideração esta premissa, as barras bioclástica foram aqui posicionadas com seu eixo de maior dimensão perpendicular à linha de costa e, consequentemente, paralelo com a direção das correntes de marés.

6.1. PERFIL DEPOSICIONAL

A partir da integração e da interpretação dos dados levantados e com base nos estudos geológicos prévios da Bacia do Amazonas (*e. g.*, CAPUTO, 1984; SILVA, 1996; MATSUDA, 2002; MOUTINHO, 2006), admite-se o desenvolvimento de uma plataforma carbonática intracratônica durante o Neopensilvaniano desta bacia. Segundo Ross & Ross (1990, *apud* MATSUDA, 2002), esta plataforma localizava-se em baixas a médias latitudes, entre aproximadamente 30º e 35ºS.
Estudos paleoambientais desenvolvidos em carbonatos pensilvanianos da Formação Itaituba (*e. g.*, CAROZZI *et al.*, 1972; SILVA, 1996; MATSUDA, 2002; MOUTINHO, 2006; NEVES, 2009; LIMA, 2010; SILVA, 2014; SILVA *et al.*, 2015; SOUZA; 2016; e TEIXEIRA, 2017), sugerem que esta sedimentação carbonática foi amplamente dominada por maré e comumente relacionada a três zonas deposicionais distintas: supramaré, intermaré e inframaré.

Quanto ao perfil deposicional, de acordo com Matsuda (2002), a plataforma carbonática Neopensilvaniana da Bacia do Amazonas seria do tipo rampa carbonática, similar aos documentados por Irwin (1965), Ahr (1973), Shin (1983), Read (1985) and Burchette & Wright (1992), tendo como exemplo recente a costa do Golfo Pérsico na região de Abu Dhabi.

Neste sentido, segundo Walker & James (1992), o termo rampa foi adotado para descrever uma superfície de deposição suavemente inclinada (geralmente <1°), que passa gradualmente para *offshore*, sem quebra da inclinação, de um ambiente raso e de alta energia para um ambiente de águas mais profundas e de baixa energia.

De acordo com Burchette & Wright (1992), as rampas carbonáticas ocorrem na maioria dos tipos de bacias sedimentares, mas desenvolvem-se melhor onde a subsidência é flexural e os gradientes são baixos em grandes áreas, como nas bacias *foreland*, cratônicas e ao longo de margens passivas.

Matsuda (2002), baseado em analogias e nos resultados das associações de microfácies, construiu um modelo idealizado do perfil deposicional do tipo rampa, o qual inclui sete domínios deposicionais para a sequência carbonática pensilvaniana da Bacia do Amazonas, sendo elas:

- 1 plataforma externa (inframaré);
- 2 barra bioclástica de intermaré e inframaré;
- 3 laguna protegida de intermaré;
- 4 planície de intermaré e supramaré;
- 5 sabhkas de supramaré;
- 6 planície de supramaré e
- 7 continental.

Neste trabalho foram identificados quatro destes domínios: barras bioclástica, laguna, planície de maré e *sabhkas*. Estes domínios foram identificados

principalmente pelos padrões de frequências dos fósseis e dos grãos nãoesqueletais, somados às texturas das rochas.

O domínio de barras bioclástica, identificado por Matsuda (2002), possui como microfácies diagnósticas *grainstones* oolíticos, *grainstones* peloidais e *grainstones* bioclásticos, sendo considerada a área de maior produção carbonática. Aqui foram relacionadas a este domínio as microfácies *packstones* com braquiópodes, *grainstones* com braquiópodes e *grainstones* com aglutinantes, as quais caracterizam tanto as barras bioclástica quanto os canais de marés que as cortam.

Outros autores (*e. g.*, Carozzi *et al.*, 1972; Figueiras, 1983; Silva, 1996; Neves, 2009; Lima, 2010; Silva, 2014; Souza, 2016 e Teixeira, 2017) associam a estes ambientes as microfácies *packstones* a foraminíferos, *packstones* a briozoários, packstones a braquiópodes e crinoides, packstones a braquiópodes, *grainstone* bioclástico com braquiópodes, *grainstone* bioclástico com foraminíferos, *grainstone* bioclástico oolíticos, *grainstones* peloidais oolíticos, *grainstone* oolíticos e *grainstones* com oóides.

Neste contexto, Moutinho (2006) diferencia porções dentro deste ambiente de intermaré/inframaré, as quais se distinguem pela energia hidrodinâmica do meio. Deste modo, ela associa as microfácies *packstone* bioclástico peloidal e *grainstone* bioclástico peloidal a foraminíferos com as porções de energia hidrodinâmica mais baixa, enquanto que as microfácies *grainstone* bioclástico e *grainstone* oolítico são associadas a porções de alta energia.

Aqui, a diferença na energia hidrodinâmica das barras bioclástica de zonas de intermaré/inframaré foi feita com base na paleoecologia dos fósseis e na textura das rochas, diferenciando-se barras proximais com energia hidrodinâmica moderada a alta (predominância de fusulinídeos) e barras distais com energia hidrodinâmica alta (predominância de braquiópodes e crinóides).

O domínio de laguna protegida de intermaré, identificado por Matsuda (2002) e também descrito por Moutinho (2006), Neves (2009), Lima (2010), Silva (2014), Souza (2016) e Teixeira (2017), associa aos ambientes lagunares de baixa energia e semi-restritos as microfácies *wackstone* bioclástico, *mudstone* bioclástico peloidal, *mudstone* bioclástico com terrígenos a ostracodes, *wackstone* bioclástico, *packstone* bioclástico a equinodermas, *floatstone* com braquiópodes, *wackestone* com braquiópodes e *wackestone* recristalizado. Neste trabalho, a microfácies interpretada como deste domínio foi a *wackstone* com braquiópodes e crinóides.

O domínio de planície de maré possui como características diagnósticas, segundo Matsuda (2002), microbialitos, evaporitos, grãos terrígenos, bioclastos transportados por correntes de maré e tempestade. Do mesmo modo, Carozzi *et al.* (1972) afirmam que nestes ambientes são comuns evaporitos, brechas, feições de ressecamento, microbialitos, pseudomorfos de evaporitos, quartzo detrítico e restos de plantas.

Do mesmo modo, Moutinho (2006), Lima (2010) e Silva (2014) associam a este domínio as microfácies laminito microbial, *dolomudstone* e *dolomudstone* poroso, dolomito fino laminado, *dolomudstone* com grãos terrígenos e dolomito fino silicificado. Neste trabalho, as microfácies associadas a este domínio de planície de intermaré/supramaré foram as *wackstones* com terrígenos, *wackstone* com quartzo autigênico e fitoclastos e *boundstone* com intraclastos.

O domínio de sabhka, identificado por Matsuda (2002), possui como microfácies diagnóstica o dolomito laminado. De acordo com este autor, este domínio é considerado como uma planície de maré marinha marginal evaporítica, sendo as condições de hipersalinidade predominantes. Do mesmo modo, Moutinho (2006) associa aos ambientes de *sabhkas* a microfácies dolomita lamosa.

Neste trabalho, a microfácies *mudstone* com evaporitos foi associada ao domínio de *sabhka*. Embora, por motivos logísticos e operacionais, não tenha sido identificado os dolomitos, observa-se nesta microfácies forte recristalização e semelhança com os dolomitos característicos deste domínio. Além disso, evaporitos e sílica microbotryoidal (produto da substituição de evaporitos) fortalecem as interpretações de hipersalinidade relacionadas a este ambiente.

Assim, com base nas correlações acima descritas, corrobora-se neste trabalho, o modelo deposicional de plataforma carbonática em rampa sugerido por estes autores, inferindo-se, neste contexto, para a área estudada, o desenvolvimento de um sistema deposicional marinho raso, dominado por sedimentação carbonática, influenciado por maré, sob regime climático dominante de clima semiárido e temperatura da massa d'água variando de temperada a quente (Figura 6.1).

Figura

.

Considerando os dados obtidos no estudo petrográfico direcionado ao reconhecimento de microfáceis na sucessão de rochas carbonáticas pertencentes à Formação Itaituba (Grupo Tapajós) analisadas neste trabalho, foi possível definir um modelo de sedimentação carbonática em plataforma interna marinha rasa sob condições climáticas semiáridas para esta sucessão. Em nível específico, foram obtidas as seguintes conclusões:

1) Foram caracterizadas e individualizadas 9 microfácies: *Mudstone* com evaporitos (Me), *Wackstone* com terrígenos (Wt), *Wackstone* com quartzo autigênico e fitoclastos (Wqf), *Wackstone* com braquiópodes e crinóides (Wbc), *Packstone* com braquiópodes (Pb), *Grainstone* com braquiópodes (Gb), *Grainstone* com fusulinídeos (Gf), *Grainstone* com aglutinantes (Ga) e *Boundstone* com intraclastos (Bi).

2) Destas microfácies, foram distinguidos 4 biofácies fundamentadas no significado paleoecológico dos bioclastos: **Biofácies 01** (predomínio de braquiópodes, seguido de crinoides e fusulinídeos, apresentando textura grão suportada), **Biofácies 02** (predomínio de fusulinídeos, seguido de braquiópodes e crinoides, apresentando textura grão suportada), **Biofácies 03** (predomínio de foraminíferos aglutinantes, com significativos *trends* de gastrópodes e ostracodes, além da textura grão suportada) e **Biofácies 04** (predomínio de braquiópodes, crinóides e fusulinídeos, com *trends* significativos de corais Rugosa, bivalves, equinoides e corais Tabulata, além da textura matriz suportada).

3) Assim como 5 associações de grãos não-esqueletais, baseadas no significado sedimentológico destes grãos, sendo elas: Associação 01 (predomínio de evaporitos, seguido de quartzo autigênico, baixa diversidade e abundância de organismos bentônicos e textura matriz suportada), Associação 02 (predomínio de grãos detríticos de quartzo), Associação 03 (predomínio de quartzo autigênico, seguido de fitoclastos e halita, além de ocorrência de piritas framboidais,), Associação 04 (estrutura primária orgânica sindeposicional e predomínio de intraclastos do tipo *rip-up clast*) e Associação 05 (significativa ocorrência de pelóides, halita, oncólitos, oóides e intraclastos).

4) A partir da integração das análises qualitativas e quantitativas das biofácies e associações de grãos não-esqueletais, foram interpretados 5 tipos de microfácies representativos de 5 sistemas deposicionais distintos: MFT-01) *sabhka* costeira semi-restrita, MFT-02) planície de maré, MFT-03) laguna, MFT-04) canais de maré e MFT-05) barras bioclástica.

MFT-01 é representado pela microfácies *Mudstone* com evaporitos (Me), caracterizada pela *Associação 01* e índice de energia *Tipo I* (águas calmas). Foi interpretada como de um ambiente marinho proximal, possivelmente semi-restrito, mixohalino a hiperhalino, aqui associado a ambiente de **SABHKA COSTEIRA SEMI-RESTRITA** sob regime climático semiárido.

MFT-02 é composto pelas microfácies Wackstone com terrígenos (Wt), Wackstone com quartzo autigênico e fitoclastos (Wqf) e Boundstone com intraclastos (Bi). Caracteriza-se pelas **Associações 02**, **03** e **04** e índice de energia **Tipo I** (águas calmas). Foi interpretado como representativo de ambiente marinho proximal, com contribuições continentais e/ou transicionais, salinidade possivelmente mixohalina tendendo a hiperhalina, sob condições climáticas semiáridas, oxigenadas e com índice de energia típico de águas calmas, indicativos de ambiente de **PLANÍCIE DE MARÉ**.

MFT-03 é representado pela microfácies W*ackstone* com braquiópodes e crinóides (Wbc) e caracterizado pela *Biofácies 04* e índice de energia *Tipo I* (águas calmas). Foi interpretado como de ambiente de LAGUNA, caracterizado por águas temperadas a quentes, euhalino, fótico, bem oxigenado e ricos em nutrientes (eutrófico).

MFT-04 é representado pela microfácies G*rainstone* com aglutinantes (Ga) e caracterizada pela *Biofácies 04*, pela *Associação 05* e pelo índice de energia *Tipo* V (fortemente agitado). Foi interpretado como de ambiente de CANAIS DE MARÉ, caracterizado pela influência de correntes de maré, com energia hidrodinâmica fortemente agitada e salinidade tendendo de mixohalino a hiperhalino.

MFT-05 é composto pelas microfácies P*ackstone* com braquiópodes (Pb), G*rainstone* com braquiópodes (Gb) e G*rainstone* com fusulinídeos (Gf). Caracterizase pela *Biofácies 01*, *Biofácies 02* e índices de energia *Tipo IV* (moderadamente agitado) e *Tipo V* (fortemente agitado). Foi interpretado como de ambiente de BARRAS BIOCLÁSTICAS, caracterizado por ambiente nerítico raso de plataforma continental interna (intermaré/submaré), com águas temperadas a quentes, oxigenado, com substrato rígido, fótico, euhalino e eutrófico.

5) Observou-se, ainda, que as amostras apresentam muitas feições diagenéticas, incluindo recristalização, porosidades secundárias, compactação, dissolução, dentre outros. Deste modo, um trabalho de diagênese seria bastante interessante e recomendado, pois este contribuiria para o entendimento dos processos pós-deposicionais que atuaram nas rochas. Assim, mudanças nas condições de pressão, temperatura, Eh, pH e pressão de água, processos de dissoluções e precipitações a partir das soluções aquosas existentes nos poros, poderiam ser identificadas.

- AGUIRRE, J. Briozoos. In: CHACÓN, M. L. M. & RIVAS, P. (Org.) 2009. Paleontologia de Invertebrados. Sociedad Española de Paleontología, Instituto Geológico y Minero de España, Universidad de Oviedo e Universidad de Granada. 2009. 524 p.
- ALMEIDA, F. F. M. 1967. Origem e evolução da Plataforma Brasileira. Boletim da Divisão de Geologia e Mineralogia, Rio de Janeiro, n. 241, 1967. 36 p.
- ALMEIDA, F. F. M.; BRITO-NEVES, B. B. & CARNEIRO, C. D. R. 2000. The origin and evolution of the South American Plataform. Earth-Science Reviews, 50 (1-2): 2000. p. 77-111.
- ALMEIDA, S. H. M.; MACAMBIRA, M. J. B. E MCREATH, I. 2007. Catodoluminescência como instrumento petrográfico de calcários da Formação Itaituba (PA), Bacia do Amazonas. 4º PDPETRO, Campinas, SP, 21-24 de outubro de 2007.
- ALTINER, D.; SAVINI, R. 1995. Pennsylvanian foraminifera and biostratigraphy of the Amazonas and Solimões Basin (North Brazil). Revue de Paleobiologie, v.14, n.2, p. 417 453.
- ANP, Agência Nacional de Petróleo, Gás Natural e Biocombustíveis 2015. Bacia do Amazonas, Sumário Geológico e Setores em Oferta. Décima terceira rodada de licitações, 2015.
- AQUILANO, D., OTÁLORA, F., PASTERO, L. & GARCÍA-RUIZ, J. M. 2016. Three study cases of growth morphology in minerals: Halite, calcite and gypsum. Progress in Crystal Growth and Characterization of Materials, Elsevier, 62 (2016). p. 227–251.
- ARAÚJO, N. G. C., SOUZA, D. S. & MUSSE, N. S. 2012. Sal marinho: o ouro branco do Rio Grande do Norte. Congresso Norte Nordeste de Pesquisa e Inovação, Palmas (TO), 2012.
- BARTH, H.J. & BÖER, B. 2002. Sabkha Ecosystems. Volume I: The Arabian Peninsula and Adjacent Countries. Kluwer Academic Publishers, 2002.
- BOGGS JR., S. 2009. Petrology of sedimentary rocks. Cambridge University Press, 2 ed., 2009. 596 p.
- BOYER, D. L. & DROSER, M. L. 2009. Palaeoecological patterns within the dysaerobic biofacies: Examples from Devonian black shales of New York state. Palaeogeography, Palaeoclimatology, Palaeoecology. Elsevier, 276 (2009). p. 206–216.
- BRAGA, J. C., FERNÁNDEZ-MARTÍNEZ, E., GARCIA-BELLIDO, D., MÉNDEZ-BEDIA, I., MORENO-EIRIS, E., PEREJÓN, A., RODRÍGUEZ, S. & SOTO, F.

2009. Poríferos e cnidários. In: CHACÓN, M. L. M. & RIVAS, P. (Org.) 2009. Paleontologia de Invertebrados. Sociedad Española de Paleontología, Instituto Geológico y Minero de España, Universidad de Oviedo e Universidad de Granada. 2009. 524 p.

- BURCHETTE, T. P. & WRIGHT, V. P. 1992. Carbonate ramp depositional systems. Sedimentary Geology, Elsevier Science Publishers B.V., Amsterdam, 79 (1992). p. 3-57.
- CAPUTO, M. V. 1984. Stratigraphy, tectonics, paleoclimatology and paleogeography of northern basins of Brazil. 1984. 586 f. Tese (Doutorado) – University of Califórnia, Santa Bárbara, 1984.
- CARDOSO, C. N. 2010. Análise cronoestratigráfica baseada em conodontes da Formação Itaituba (Pedreira Calminas) Atokano da Bacia do Amazonas – Brasil. Dissertação (Mestrado em Geociências) – Universidade Federal do Rio Grande do Sul, Porto Alegre, 2010.
- CAROZZI, A. V., ALVES, R. J & CASTRO, J. C. 1972. Controle tectônico sinsedimentar dos carbonatos permocarboníferos das Formações Itaituba e Nova Olinda da bacia do Amazonas, Brasil. *In:* Congresso Brasileiro de Geologia, 26, Belém, Anais, 1972.
- CLARK, S. H. B. & MOSIER, E. L. 1989. Barita nodules in Devonian shale and mudstone of western Virginia. U.S. Geological Survey Bulletin, 1989.
- CLARKSON, E. N. K. 2007. Invertebrate palaeontology and evolution. Blackwell Science, 4 ed., 2007.
- CORDANI, U.G.; NEVES, B.B.B.; FUCK, R.A.; PORTO, R.; THOMAZ FILHO, A.; CUNHA, F.M.B. 1984. Estudo preliminar de integração do pré-cambriano com os eventos tectônicos das bacias sedimentares brasileiras. Rio de Janeiro: PETROBRAS, 1984. 70p., (Ciência Técnica Petróleo. Seção: Exploração de petróleo, n.15).
- CPRM, Serviço Geológico do Brasil, 2016. GEOBANK Download de arquivos vetoriais. Disponível em: http://geobank.cprm.gov.br/. Acesso em: 23 de fevereiro de 2016.
- CPRM, Serviço Geológico do Brasil, 2010. Geodiversidade do Estado do Amazonas. Programa de Geologia do Brasil do Estado do Amazonas, Manaus, 2010. p.147-148.
- CUNHA, P.R.C.; GONZAGA, F.G.; COUTINHO, L.F.C. 1994. Bacia do Amazonas. Boletim de Geociências da Petrobras. Rio de Janeiro, v.8, n. 1, p. 47-55, jan./mar. 1994.
- CUNHA, P.R.C. 2000. Análise estratigráfica dos sedimentos eo-mesodevonianos da porção ocidental da Bacia do Amazonas sob a ótica da estratigrafia de

sequências no interior cratônico. Dissertação (Mestrado) – Universidade Federal do Rio Grande do Sul, Porto Alegre, 2000. 263 p.

- CUNHA, P.R.; MELO, J.H.G.; SILVA, O.B. 2007. Bacia do Amazonas. Boletim Geociências Petrobrás, Rio de janeiro, v. 15, n.2, p. 227-251, maio/nov. 2007.
- DAIDU, F. 2013. Classifications, sedimentary features and facies associations of tidal flats. Journal of Palaeogeography, 2013, 2(1). p. 66-80.
- DESJARDINS, P. R., BUATOIS, L. A. & MÁNGANO, M. G. 2012. Tidal flats and subtidal sand bodies. Developments in Sedimentology, vol. 64. Elsiever, 2012.
- DOMÍNGUEZ, P., MENN, J. L., MUS, M. M.& VILLALBA, M. P. 2009. Equinodermos. In: CHACÓN, M. L. M. & RIVAS, P. (Org.) 2009. Paleontologia de Invertebrados. Sociedad Española de Paleontología, Instituto Geológico y Minero de España, Universidad de Oviedo e Universidad de Granada. 2009. 524 p.
- FADEL, M. K. B. 2008. Evolution and geological significance of larger benthic foraminifera. Developments in Palaeontology & Stratigraphy, 21. Elsevier, 5 ed., 2008. 571 p.
- FIGUEIRAS, A. J. M. 1983. Petrologia dos carbonatos da Formação Itaituba, na região de Aveiro-PA. Dissertação (Mestrado) Universidade Federal do Pará, 1983. 135 p.
- FIGUEIREDO, B. R. 2000. Minérios e Ambiente. Editora Unicamp Universidade Estadual de Campinas, Campinas (SP), 2000. 400 p.
- FLÜGEL, E. 2010. Microfaceis of carbonate rocks. Analysis, Interpretation and Application. Springer, 2 ed., 2010. 996 p.
- FRANÇA, F., SOUZA FILHO, P. W. M. & EL-ROBRINI, M. 2007. Análise faciológica e estratigráfica da planície costeira de Soure (margem leste da ilha de Marajó-PA), no trecho compreendido entre o canal do Cajuúna e o estuário Paracauari. Acta Amazonica, Universidade Federal do Pará, Belém – PA, v 37(2) 2007. p. 261 – 268.
- GAINEY Jr., L. F. & GREENBERG, M. J. 1997. *Physiological Basis of the Species Abundance-Salinity Relationship in Molluscs: A Speculation. Marine Biology*, 1997. p. 41-49.
- GILI, C. & MARTINELL, J. 2009. Clase gastropoda. In: CHACÓN, M. L. M. & RIVAS, P. (Org.) 2009. Paleontologia de Invertebrados. Sociedad Española de Paleontología, Instituto Geológico y Minero de España, Universidad de Oviedo e Universidad de Granada. 2009. 524 p.
- HAMDAM, A. C. 2017. Análise Quantitativa de Dados: Conceitos Básicos. Disponível em: <https://amerhamdan.com/analise-quantitativa-de-dados/>. Acesso em 23 de março de 2017.

- HARRIS, P. M. 2009. Depositional Environments of Carbonate Platforms. Search and Discovery Article #60032 (2009).
- HASUI, Y.; CARNEIRO, C.D.R.; ALMEIDA, F.F.M.; BARTORELLI, A. 2012. Geologia do Brasil. São Paulo: Ed. Beca. 900 p.
- HOROWITZ, A. S. & POTTER, P. E. 1971. Introductory Petrography of Fossils. Springer – Verlag, Berlin, Heidelberg and New York, 1971.
- JAPUNDŽIĆ, M. & SREMAC, J. 2016. Palaeobiogeography of the Late Carboniferous brachiopoda from Velebit Mt. (Croatia). Journal of the Croatian Geological Survey and the Croatian Geological Society. p. 177-185.
- JOCKYMAN, K. 2002. Estudos Biocronoestratigráficos, Paleoecológicos, de Índice de Alteração de Cor e Microfácies Carbonáticas em Calcários da Região do Tapajós, Bacia do Amazonas, com Base em Microfósseis Conodontes. Trabalho de Conclusão de Curso (Geologia) – Universidade Federal do Rio Grande do Sul, Porto Alegre (RS), 2002.
- KALLIOKOSKI, J. & CATHLES, L. 1969. Morphology, mode of formation, and diagenetic changes in framboids. Bulletin of the Geological Society of Finland 41, 1969. p. 152-133.
- KLEMM, E. B., REED, S. A., POTTENGER III, F. M., PORTER, C. & SPEITEL, T. W. 2008. *The living ocean. Biology and technology of the marine environment. University of Hawai'i*, 2008.
- KÜLTZ, D. 2015. Physiological mechanisms used by fish to cope with salinity stress. The Journal of Experimental Biology, v. 218, 2015.
- LEMOS, V. B. & MEDEIROS, R. A. 1996a. Conodontes do Carbonífero Inferior da Bacia do Amazonas. Boletim de Geociências da Petrobras, Rio de Janeiro, 10(1/4): p. 55-60, jan/dez. 1996a.
- LEMOS, V. B. & MEDEIROS, R. A. 1996b. O limite Morrowano/Atokano na Bacia do Amazonas, Brasil, com base em conodontes. Boletim de Geociências da Petrobras, Rio de Janeiro, 10(1/4): p. 165-173, jan/dez. 1996b.
- LEMOS, V. B. 1990. Assembléias de conodontes do carbonífero da Bacia do Amazonas. Tese (Doutorado) Universidade Federal do Rio Grande do Sul, Porto Alegre (RS), 1990.
- LIMA, H. P. 2010. A sucessão siliclástica-carbonática Neocarbonáfera da Bacia do Amazonas, regiões de Monte Alegre e Itaituba (PA). Dissertação (Mestrado em Geociências) – Universidade do Pará, Belém (PA), 2010.
- MATSUDA, N. S. 2002. Carbonate sedimentation cycle and origin of dolomite in the Lower Pensylvanian intracratonic Amazon Basin, Northern Brazil. Master

Thesis – University of Tokyo, Departament of Earth and Planetary Science, Tokyo, Japan, 2002. 223 p.

- MATSUDA, N. S.; DINO, R.; WANDERLEY FILHO, J. R. 2004. Revisão litoestratigráfica do Grupo Tapajós, Carbonífero Médio-Permiano da Bacia do Amazonas. Boletim de Geociências. PETROBRÁS, v. 12, n. 2, 2004. p. 435-441.
- MATSUDA, N. S.; WINTER, W. R.; WANDERLEY FILHO, J. R. e CACELA, A. S. M. 2010. O Paleozoico da borda sul da Bacia do Amazonas, Rio Tapajós Estado do Pará. Boletim Geociências da Petrobras, Rio de Janeiro, v. 18, n. 1, p. 123-152, nov 2009/maio 2010.
- MENDES, M. C. S. Estudo de Palinofácies e Biomarcadores de uma sondagem realizada na região de Alcobaça (Bacia Lusitânica). Dissertação (mestrado) Universidade do Porto, 2015.
- MENEZES, T. R. & MENDONÇA-FILHO, J. G. 2004. Aplicação de fácies orgânica na análise paleoceanográfica do talude continental superior recente da Bacia de Campos, RJ, BRASIL. Revista Brasileira de Paleontologia, v. 7, n. 2. p. 177-188, jul./ago. 2004.
- MIALL, A. D. 1977. A review of the braided-river depositional environment. Earth-Science Reviews, v. 13, n.1, 1977.
- MILANI, E.J.; THOMAZ FILHO, A. 2000. Sedimentary Basins of South America. In: CORADANI, U.G.; MILANI, E.J.; FILHO, A.T.; CAMPOS, D.A. (Ed.) Tectonic Evolution of South America. Rio de Janeiro, [s.n.]: 2000. p. 389-452. International Geological Congress, 31, 2000, Rio de Janeiro.
- MOUNT, J. 1985. *Mixed siliciclastic and carbonate sediments: a proposed first-order textural and compositional classification. Sedimentology*, v.32, 1985. p. 435-442.
- MOUTINHO, L. P. 2006. Assinaturas tafonômicas dos invertebrados da Formação Itaituba – aplicação como ferramenta de análise estratigráfica e paleoecológica na seção pensilvaniana aflorante na porção sul da Bacia do Amazonas, Brasil. Tese (Doutorado) – Universidade Federal do Rio Grande do Sul, Porto Alegre (RS), 2006. 325 p.
- MURRAY, J. W. 1970. The foraminifera of the hypersaline Abu Dhabi Lagoon, Persian Gulf. Lethaia, vol. 3, p. 51-68. Oslo, janeiro de 1970.
- NASCIMENTO, S. 2008. Conodontes e a cronoestratigrafia da base da seção pensilvaniana, na região de Itaituba, porção sul da Bacia do Amazonas, Brasil. Tese (Doutorado em Geociências) – Universidade Federal do Rio Grande do Sul, Porto Alegre (RS), 2008.
- NASCIMENTO, S., LEMOS, V. B., SCOMAZZON, A. K., MATSUDA, N. S. e SILVA, C. P. 2010. *First occurrence of Ellisonia, Gondolella and Ubinates*

(Conodonts) in Itaituba Formation, Pensylvanian of Amazonas Basin, Brazil. Gaea – Journal of Geoscience, vol. 6, n. 2, p. 56-62, jul/dez 2010.

- NEVES, C.A.O. 1989. O estado da arte: prospectos potenciais e áreas prioritárias para exploração na Bacia do Amazonas. *In:* Semin. Interpr. Explor., 1, Rio de Janeiro, 1989. Anais. Rio de Janeiro: Petrobras/ Depex, 1989. p. 13-24.
- NEVES, M. P. 2009. Petrografia de carbonatos da Formação Itaituba (Carbonífero Superior), Bacia do Amazonas, região de Monte Alegre, PA. Trabalho de conclusão de curso (Bacharel em Geologia) – Faculdade de Geologia, Universidade do Pará, Belém (PA), 2009.
- NICHOLS, G. 2009. Sedimentology and Stratigraphy. Wiley-Blackwell, 2 ed., 2009.
- PEREIRA, P. A. 2011. Aspectos taxonômicos e paleoecológicos dos braquiópodes e moluscos (bivalves) da Formação Inajá (Devoniano), Bacia do Jatobá (PE). Dissertação (mestrado) – Universidade Federal de Pernambuco, Recife (PE), 2011.
- PLAYFORD, G.; DINO, R. 2000. Palynostratigraphy of upper Palaeozoic strata (Tapajós Group), Amazonas Basin, Brazil. Palaeontographica. Abt. B. Palaeophytologie, Stuttgart, n. 255, 2000. p. 1-46.
- POSADA, L. C. S., ARBIZU, M., DELCLÒS, X., GOZALO, R., LIÑÁN, E., PEÑALVER, E., RÁBANO, I. & RODRÍGUEZ-LÁZARO, J. 2009. Artrópodos. In: CHACÓN, M. L. M. & RIVAS, P. (Org.) 2009. Paleontologia de Invertebrados. Sociedad Española de Paleontología, Instituto Geológico y Minero de España, Universidad de Oviedo e Universidad de Granada. 2009. 524 p.
- SAID, I., RODRÍGUEZ, S., BERKHLI, M., CÓZAR, P. & GÓMEZ-HERGUEDAS, A. 2010. Environmental parameters of a coral assemblage from the Akerchi Formation (Carboniferous), Adarouch Area, central Morocco. Journal of Iberian Geology, v. 36, n. 1, 2010. p. 7-19.
- SÁNCHEZ, B. E. B., GÓMES ESPINOSA, C., AQLMAZÁN VÁZQUEZ, E. & VACHARD, D. 2008. A review of the crinoid columnals (Echinodermata-Crinoidea) from the Carboniferous of Mexico. Revista de Biologia Tropical, Vol. 56, dezembro de 2008.
- SANTOS, T. B. 2010. Análise estrutural da Bacia do Amazonas, Região de Itaituba PA. Dissertação (Mestrado em Geologia) – Universidade Federal do Paraná, Curitiba (PR), 2010.
- SCASSO, R. A., DOZO, M. T., CUITIÑO, J. I. & BOUZA, P. 2012. Meandering tidalfluvial channels and lag concentration of terrestrial vertebrates in the fluvialtidal transition of an ancient estuary in Patagonia. Latin American Journal of Sedimentology and Basin Analysis, v. 19, n. 1, 2012. p. 27-45.

- SCHOLLE, P. A. & ULMER-SCHOLLE, D. S. 2003. A Color Guide to the Petrography of Carbonate Rocks: Grains, textures, porosity, diagenesis. The American Association of Petroleum Geologists Tulsa, Oklahoma, U.S.A. AAPG Memoir 77, 2003.
- SCHWARTZ, M. L. 2005. Encyclopedia of coastal science. Encyclopedia of earth science series. Springer, 2005.
- SCOMAZZON, A. K. & LEMOS, V. B. 2005. Diplognathodus occurrence in the Itaituba Formation, Amazonas Basin, Brazil. Revista Brasileira de Paleontologia 8(3):203-208, set./dez. 2005.
- SCOMAZZON, A. K. 2004. Conodont biostratigraphy and paleoecology of the marine sequence of the Tapajós Group (Pennsylvanian), Amazonas Basin, Brazil. Tese (Doutorado) - Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre (RS), 2004. 293 p.
- SILVA, O. B. 1996. Ciclicidade sedimentar no Pensilvaniano da Bacia do Amazonas e o controle dos ciclos de sedimentação na distribuição estratigráfica dos conodontes, fusulinídeos e palinomorfos. 1996. 331 f. Tese (Doutorado) – Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre (RS), 1996.
- SILVA, M. A. M., SCHREIBER, B. C. & SANTOS, C. L. 2000. Evaporitos como recursos minerais. Brazilian Journal of Geophysics, Vol. 18(3), 2000.
- SILVA, P. A. S. 2014. Paleoambiente e diagênese da Formação Itaituba, Carbonífero da Bacia do Amazonas, com base em testemunho de sondagem, região de Uruará, Pará. Dissertação (Mestrado em Geociências) – Universidade Federal do Pará, Belém (PA), 2014.
- SILVA, P. A. S., AFONSO, J. W. L., SOARES, J. L. e NOGUEIRA, A. C. R. 2015. Depósitos de plataforma mista, Neocarbonífero da Bacia do Amazonas, região de Uruará, estado do Pará. Geol. USP, Sér. cient., São Paulo, v. 15, n. 2, p. 7-98, Junho 2015.
- SOUZA, E. S. 2016. Microfácies e interpretação paleoambiental dos carbonatos da Formação Itaituba (Grupo Tapajós) na região do Município de Itaituba – PA. Trabalho de conclusão de curso (Bacharel em Geologia) – Universidade Federal do Amazonas, Manaus (AM), 2016.
- SUGUIO, K. 2003. Geologia Sedimentar. Ed. Blucher Universidade de São Paulo, São Paulo.
- SUITS, N. S. & WILKIN, R. T. 1998. Pyrite formation in the water column and sediments of a meromictic lake. Geology, v. 26; n. 12; p. 1099–1102, dezembro de 1998.
- SWEENEY, R. E. & KAPLAN, I. R. 1973. Pyrite Framboid Formation: Laboratory Synthesis and Marine Sediments. Institute of Geophysics and Planetary

Physics, University of California at Los Angeles, Los Angeles, California. *Economic Geology*, v. 68, 1973. p. 618-634.

- TEIXEIRA, V. M. 2017. Microfácies carbonáticas da Formação Itaituba (Grupo Tapajós, Bacia do Amazonas) na região do Rio Jatapú, AM. Trabalho de conclusão de curso (Bacharel em Geologia) – Universidade Federal do Amazonas, Manaus (AM), 2017.
- TERRA, G. J. S.; SPADINI, A. R.; FRANÇA, A. B.; SOMBRA C. L.; ZAMBONATO, E. E.; JUSCHAKS, L. C. S.; ARIENTI, L. M.; ERTHAL, M. M.; BLAUTH, M.; FRANCO, M. P.; MATSUDA, N. S.; SILVA, N. G. C.; MORETTI JUNIOR, P. A.; D'AVILA, R. S. F.; SOUZA, R. S.; TONIETTO, S. N.; ANJOS, S. M. C. dos; CAMPINHO, V. S.; WINTER, W. R. 2010. Classificação de rochas carbonáticas aplicável às bacias sedimentares brasileiras. Boletim de Geociências da Petrobras, Rio de Janeiro, v. 18, n. 1, 2010. p. 9-29.
- TURCKER, M. E. & WRIGHT, V. P. 1990. *Carbonate sedimentology*. Blackwell Science, 1990.
- VERGARA, S. C. 2007. Projetos e relatórios de pesquisa em administração.9^a ed. São Paulo: Atlas, 2007.
- VILLALBA, M. P. 2009. Clase Echinoidea. In: CHACÓN, M. L. M. & RIVAS, P. (Org.) 2009. Paleontologia de Invertebrados. Sociedad Española de Paleontología, Instituto Geológico y Minero de España, Universidad de Oviedo e Universidad de Granada. 2009. 524 p.
- WALKER, R. G. & JAMES, N. P. 1992. Facies models Response to sea level change. Geological Association of Canada, junho de1992.
- WIGHTMAN, W. G., SCOTT, D. B., MEDIOLI, F. S. & GIBLING, M. R. 1994. Agglutinated foraminifera and thecamoebians from the Late Carboniferous Sydney coalfield, Nova Scotia: paleoecology, paleoenvironments and paleogeographical implications. Palaeogeography, Palaeoclimatology, Palaeoecology, Elsevier Science B.V., Amsterdam, v. 106, 1994. p. 187-202.
- ZALÁN, P. V. 2004. Evolução fanerozóica das bacias sedimentares brasileiras. *In:* Geologia do continente sul-americano: evolução da obra de Fernando Flávio Marques de Almeida. São Paulo: Beca, 2004. p. 595-612.

Braquiópodes: Segundo Alvarez & Chacón (2009), os braquiópodes são animais bentônicos exclusivamente marinhos, sésseis, suspensívoros, solitários e, em sua maioria, epifaunais. São dotados de uma concha carbonática bivalve e entre as formas viventes praticamente todos são estenoalinos.

Distribuem-se do Cambriano ao Recente, habitam diversos ambientes marinhos, desde a plataforma rasa até ambientes abissais, e ocorrem em diferentes faixas latitudinais, desde águas tropicais a polares (SCHOLLE & ULMER-SCHOLLE, 2003).

Apresentam variadas adaptações aos ambientes bentônicos, havendo formas que se fixam a distintos tipos de substratos, tanto rígidos como inconsolidados (PEREIRA, 2011). Segundo Alexander (1977), alguns braquiópodes possuíam geometrias que facilitava a estabilização em substratos lamacentos e respiração sob tensão reduzida de oxigênio.

De acordo com Alvarez & Chacón (2009) a temperatura da massa d'água é reconhecida como um fator determinante na distribuição dos braquiópodes e se reflete também na composição das conchas, de modo que, aqueles dotados de conchas carbonáticas são mais abundantes em águas temperadas, enquanto os de concha organo-fosfática são mais comumente relacionados a ambientes tropicais e subtropicais.

Apesar da ampla gama de hábitos e *habitats*, ocorrem em maior abundância na plataforma continental e no talude superior (~entre 50 e 500 m de profundidade) (SCHOLLE & ULMER-SCHOLLE, 2003; CLARKSON, 2007 e ALVAREZ & CHACÓN, 2009).

De acordo com Alvarez & Chacón (2009), no Paleozoico superior há uma diminuição da diversidade de braquiópodes, devido ao desaparecimento de alguns grupos dominantes no Paleozoico Médio, porém no Carbonífero se inicia uma nova fase de irradiação do grupo, marcada, em especial, pelo surgimento de formas semi-infaunais, que passaram a ocupar ambientes recifais e sub-recifais.

Segundo Japundžić & Sremac (2016), no Carbonífero os braquiópodes foram adaptados a variados ambientes marinhos, no entanto, a maior abundância e diversidade do grupo é associada a ambiente marinho proximal, com águas moderadamente quentes de salinidade normal e pouco profunda. Flügel (2010) afirma que acumulações de braquiópodes podem ser resultados do transporte por correntes para regiões de depressões ou acumulações em barras bioclástica (intermaré/submaré).

Crinóides: Os crinóides são invertebrados bentônicos estritamente marinhos, sésseis, suspensívoros, estenoalinos, com simetria radial pentâmera, também conhecidos como "lírios do mar" (SCHOLLE & ULMER-SCHOLLE, 2003).

Distribuem-se do Cambriano ao Recente e as formas atuais vivem em todas as profundidades (nerítico ao abissal) e, latitudinalmente, se estendem do Ártico a Antártida (CLARKSON, 2007).

As formas fósseis são associadas a uma grande diversidade de ambientes do domínio nerítico, encontrando-se em áreas abertas da plataforma interna e, mais raramente, em zonas litorais sujeitas a influência das marés (DOMÍNGUEZ *et al.*, 2009). Além disso, apresentam, segundo Meyer *et al.* (2002), diferenças morfológicas e de eficiência alimentar que permitem reconhecer táxons melhor adaptados a ambientes de águas mais profundas e menor energia (associações morfotípicas de crinóides pequenos e delgados) e outros associados a configurações de águas mais rasas e de maior energia (associações morfotípicas de crinóides pequenos e delgados) e outros associados a

Apresentam boa diversidade e abundância em fácies recifais, principalmente em zonas de bioconstruções, porém sua frequência diminui na região de *back-reef* (DOMÍNGUEZ *et al.*, 2009).

De acordo com Scholle & Ulmer-Scholle (2003), embora também tenham vivido em águas mais profundas, as formas paleozoicas ocorreram principalmente entre ambientes plataformais e de talude superior. Segundo Sánchez *et al.* (2008) no Carboníferos são associados principalmente a mares epicontinentais moderadamente rasos, oxigenados e com a presença de correntes moderadas (organismos reófilos), podendo ser relacionados ao contexto de ambientes de intermaré/submaré.

Equinóides: São invertebrados bentônicos, estenoalinos, móveis (embora alguns realizem pequenos deslocamentos), possuem simetria pentameral, forma subesférica e são constituídos por testas globulares a discoides (SCHOLLE & ULMER-SCHOLLE, 2003; CLARKSON, 2007; VILLALBA, 2009).

Distribuem-se do Ordoviciano ao Recente e encontram-se em diferentes profundidades, desde a zona de intermaré até a zona hadal, no entanto sendo mais abundantes nos primeiros 100 m de profundidade (VILLALBA, 2009). Quanto a latitude, a maioria vive em águas tropicais e subtropicais, porém são encontrados também em regiões polares (VILLALBA, 2009).

Sua morfologia é dependente da temperatura, sendo as formas de crescimento lento e mais calcificadas associadas a água fria, enquanto as de águas mais quentes possuem esqueleto mais delicado (SCHOLLE & ULMER-SCHOLLE, 2003).

De acordo com Scholle & Ulmer-Scholle (2003), não costumam ser formas predominantes nas rochas, ou seja, raramente excedem 10-15% do total de bioclastos.

Segundo Thompson & Ausich (2016), os equinoides paleozoicos são excepcionalmente raros e pouco se sabe sobre sua distribuição paleoambiental. Atingiram seu pico de diversidade no Mississipiano e provavelmente foram importantes membros dos ecossistemas Permo-Carboníferos, onde ocorrem em diversos ambientes marinhos (SCHNEIDER, 2008, *apud* THOMPSON & AUSICH, 2016).

Fusulinídeos: Os fusulinídeos são protistas marinhos, bentônicos, estenoalinos, composto por um esqueleto calcítico microgranular com baixo teor de magnésio (ARMSTRONG & BRASIER, 2005; FADEL, 2008).

Segundo Fadel (2008), os fusulinídeos distribuem-se do Siluriano ao Permiano e podem ser o principal grupo fóssil em muitas rochas carbonáticas de ambientes marinhos rasos do Paleozoico Superior. Durante o Permo-Carbonífero tornaram-se cosmopolitas, colonizando as águas rasas e quentes desse intervalo de tempo, durante o qual superaram em número qualquer outro grupo de invertebrado marinho (FADEL, 2008).

Como os fusulinídeos são um grupo extinto, sua paleoecologia é inferida a partir de associações faunísticas do Cenozóico morfologicamente semelhantes. De acordo com Fadel (2008), estas associações bentônicas ocorrem preferencialmente em ambientes pouco profundos, quentes, fóticos, com entrada mínima de siliciclásticos e em batimetrias máximas de 25 a 30m.

Segundo Fadel (2008), eram melhor adaptados a águas rasas, quentes, bem oxigenadas e ricas em nutrientes, sendo comuns em ambientes de barras arenosas

carbonáticas, caracterizadas por alta energia hidrodinâmica. Possuíam conchas mais grossas como adaptação a estes ambientes mais energéticos, onde resistência à abrasão, esmagamento e quebra seria um fator de seleção positivo (FADEL, 2008).

Aglutinantes: Segundo Armstrong & Brasier (2005), os foraminíferos aglutinantes são protistas marinhos, bentônicos, eurialinos, com parede da testa constituída por partículas detríticas, como grãos de areia, fragmentos calcários de outras carapaças ou conchas, as quais são consolidadas por cimento orgânico, calcário ou de óxido de ferro.

Distribuem-se do Cambriano ao Recente e permaneceram como o grupo dominante no Paleozoico Inferior (SCHOLLE & ULMER-SCHOLLE, 2003). Segundo Flügel (2010), são frequentemente dominantes em ambientes de transição de salinidade, como em condições salobras e em profundidades abissais.

Wightman *et al.* (1994) afirma que foraminíferos aglutinantes modernos são frequentemente encontrados em ambientes marinhos marginais influenciados por maré, tais como pântanos, canais de maré e baías interdistributárias. Segundo Armstrong & Brasier (2005), havendo condições disaeróbicas, podem ser muito abundantes e dominar a biota.

Segundo Wightman *et al.* (1994), a determinação da paleoecologia de foraminíferos aglutinantes do Carbonífero é feita através da comparação direta com a distribuição ecológica atual, uma vez que as espécies parecem ter mudado pouco desde o Carbonífero.

MIliolídeos: são protistas marinhos, bentônicos, de testa porcelânica composta por três camadas de calcita com alto teor de magnésio (ARMSTRONG & BRASIER, 2005; FADEL, 2008).

Distribuem-se do Carbonífero ao Recente, permanecendo morfologicamente pequenos e primitivos até o Triássico, quando evoluíram e tornaram-se importantes formadores de rocha (FADEL, 2008).

Os miliolídeos são geralmente restritos a águas marinhas rasas (até profundidades de 80 m), oxigenadas, ricas em nutrientes, tropicais e subtropicais (FADEL, 2008). Segundo Armstrong & Brasier (2005) são mais abundantes em águas marinhas rasas, com temperatura entre 24 °C e 30 °C e em latitudes tropicais.

De acordo com Murray (1970), são comuns em ambientes mais restritos com salinidade tendendo a hiperhalina (*e. g.*, lagunas). Do mesmo modo, Armstrong &

Brasier (2005) afirmam que águas hipersalinas, com salinidade acima de 40%, favorece a ocorrência de miliolídeos.

Bivalve: São moluscos, bentônicos, ocupam grande variedade de habitats, são eurihalinos e constituídos por um par de valvas calcárias bilateralmente simétricas (SCHOLLE & ULMER-SCHOLLE, 2003; CLARKSON, 2007; CHECA & DOMÈNECH, 2009). Quanto a locomoção podem ser sésseis, sedentários, móveis ou nadadores ativos, e quanto a alimentação, podem ser suspensívoros ou se alimentar de detritos (CHECA & DOMÈNECH, 2009).

Distribuem-se do Cambriano ao Recente, são euribatas, ocupam uma ampla variedade de profundidades (águas rasas a abissais), e ocorrem em diferentes faixas latidudinais, desde o Equador até regiões polares (SCHOLLE & ULMER-SCHOLLE, 2003). Segundo Domènech (2009), são também euritermos, tendo a temperatura um papel importante no desenvolvimento das conchas (*e. g.*, populações com espécimes de menor tamanho e concha mais fina estão associadas a águas frias, pela falta de saturação em carbonato de cálcio, enquanto formas dotadas de conchas maiores e mais espessas são mais frequentes em águas temperadas e quentes).

A maioria dos bivalves atuais são infaunais e vivem em fundos marinhos, porém existem também formas epifaunais e alguns táxons que habitam rios e lagos. As conchas dos infaunais são predominantemente aragoníticas, enquanto que as dos epifaunais são dominantemente calcíticas (CHECA & Domènech, 2009).

De acordo com Scholle & Ulmer-Scholle (2003), no Carbonífero os bivalves predominavam em ambientes marinhos rasos. Flügel (2010) afirma que concentrações de bioclastos *in-situ* de bivalves podem ser diagnósticas de ambientes de intermaré e submaré.

Coral Rugosa: Grupo de corais paleozoicos exclusivamente marinhos, estenohalinos, suspensívoros em sua maioria, solitários ou coloniais, dotados de um exoesqueleto de calcita (SCHOLLE & ULMER-SCHOLLE, 2003; CLARKSON, 2007; BRAGA *et al.*, 2009).

Distribuem-se do Ordoviciano Médio ao Permiano e são associados a ambientes de águas quentes e rasas, embora algumas formas, aparentemente, tenham se adaptado a ambientes abissais, lamacentos e com baixa oxigenação (SCHOLLE & ULMER-SCHOLLE, 2003).

Não possuem representantes modernos e por isso seu modo de vida é deduzido por meio de suas características morfológicas, pelos fósseis associados e pelas características sedimentológicas das rochas em que são encontrados (BRAGA *et al.*, 2009).

Segundo Scholle & Ulmer-Scholle (2003), foram comuns em ambientes de plataformas carbonáticas de águas cristalinas e de substrato rígido. São raramente encontrados dentro dos limites da ação de ondas fortes e nunca estão realmente envolvidos na construção de recifes do Paleozoico (CLARKSON, 2007).

Segundo Said *et al.* (2010), a presença de corais Rugosa em rochas do Carbonífero pode ser indicativa de ambiente marinho com salinidade de cerca de 36-40 ppm (euhalino), alto nível de oxigenação e temperatura temperada a quente.

Coral Tabulata: Grupo de corais paleozoicos exclusivamente marinhos e coloniais, estenohalinos, bentônicos sésseis, suspensívoros, em sua maioria, e dotados de um exoesqueleto preferencialmente calcítico (SCHOLLE & ULMER-SCHOLLE, 2003; BRAGA *et al.*, 2009).

Distribuem-se do Ordoviciano ao Permiano e são associados a ambientes marinhos rasos, dentro da zona fótica, sendo possível que estes organismos possuíam relações simbióticas com algas fotossintetizantes (SCHOLLE & ULMER-SCHOLLE, 2003).

Segundo Clarkson (2007), corais Tabulata possuem habitat semelhante ao de corais Rugosa, e provavelmente viveram em condições similares aos corais atuais, sendo raramente encontrados em ambientes com alta energia hidrodinâmica.

Grandes Corais Tabulata eram importantes na formação de recifes em profundidades da lâmina d'água inferior a 30 m, enquanto que formas menores tendiam a ocorrer em ambientes mais profundos (< 50 - 60 m) com energia hidrodinâmica reduzida, sendo associados à mudstones (CLARKSON, 2007).

Gastrópode: são uma das classes de invertebrados mais diversificadas que se conhecem, sendo apenas superados pela classe dos insetos (GILI & MARTINELL, 2009). Em sua maioria são espécies marinhas bentônicas móveis (epifaunais), embora haja espécies infaunais, plactônicas e continentais, vivem tanto em substrato rígido quanto mole e podem possuir hábito alimentar sedimentívoro, detritívoro, planctófago, carnívoro ou saprófago (necrófago) (GILI & MARTINELL, 2009).

Distribuem-se do Cambriano ao recente, sendo encontrados em todas as latitudes e em variados ambientes, como em marinhos, salobros, hipersalinos, água doce e subaereos (SCHOLLE & ULMER-SCHOLLE, 2003).

Segundo Gili & Martinell (2009), a morfologia da concha está estritamente ligada à forma de vida destes organismos e a adaptações as condições físicas do meio. Deste modo, o tamanho da concha, a espessura, o índice de calcificação e a ornamentação estão inversamente relacionados com o grau de exposição, ou diretamente com o grau de proteção contra ondas.

O clima controla fortemente tanto a distribuição quanto a diversidade destes invertebrados, ocorrendo o decréscimo da biodiversidade desde o equador até os polos. Deste modo, o estudo de gastrópodes marinhos fósseis pode proporcionar o reconhecimento de gradientes climáticos (GILI & MARTINELL, 2009).

De acordo com Clarkson (2007), no Carbonífero a fauna de gastrópodes era abundante e altamente diversificada, ocupando, aproximadamente, a variedade de habitats atuais. No entanto, Scholle & Ulmer-Scholle (2003) afirma que a sua predominância é relacionada a ambientes hipersalinos e de água doce.

Ostracodes: conjunto de crustáceos microscópicos, o qual possui como principal característica uma carapaça bivalve que envolve totalmente seu corpo, em sua maioria são bentônicos, estenohalinos ou eurihalinos e, quanto ao hábito alimentar, são herbívoros ou saprófagos (POSADA *et al.*, 2009).

Distribuem-se do Cambriano ao Recente, encontra-se em todas as latitudes e são comuns tanto em águas marinhas, quanto doce, salobras e hipersalinas (SCHOLLE & ULMER-SCHOLLE, 2003; ARMSTRONG & BRASIER, 2005).

De acordo com Armstrong & Brasier (2005), a alta diversidade de ostracodes ocorre em ambientes marinhos rasos, sendo a abundância observada em ambientes marinhos marginais e/ou transicionais. Neste sentido, Posada *et al.* (2009) afirmam que a maior abundância ocorre em águas salobras, hipersalinas e doce.

REFERÊNCIAS BIBLIOGRÁFICAS

- ALEXANDER, R. R. 1977. Growth, morphology and ecology of paleozoic and mesozoic opportunistic species of brachiopods from Idaho-Utah. Journal of Paleontology, vol. 5, p. 1133-1149, nov. de 1977.
- ALVAREZ, F. & CHACÓN, M. L. M. Braquiópodos. In: CHACÓN, M. L. M. & RIVAS, P. (Org.) 2009. Paleontologia de Invertebrados. Sociedad Española de Paleontología, Instituto Geológico y Minero de España, Universidad de Oviedo e Universidad de Granada. 2009. 524 p.

ARMSTRONG, H. A. & BRASIER, M. D. 2005. *Microfossils*. Blackwell, 2 ed., 2005.

- BRAGA, J. C., FERNÁNDEZ-MARTÍNEZ, E., GARCIA-BELLIDO, D., MÉNDEZ-BEDIA, I., MORENO-EIRIS, E., PEREJÓN, A., RODRÍGUEZ, S. & SOTO, F. 2009. Poríferos e cnidários. In: CHACÓN, M. L. M. & RIVAS, P. (Org.) 2009. Paleontologia de Invertebrados. Sociedad Española de Paleontología, Instituto Geológico y Minero de España, Universidad de Oviedo e Universidad de Granada. 2009. 524 p.
- CHECA, A. & DOMÈNECH, R. 2009. Clase bivalvia. In: CHACÓN, M. L. M. & RIVAS, P. (Org.) 2009. Paleontologia de Invertebrados. Sociedad Española de Paleontología, Instituto Geológico y Minero de España, Universidad de Oviedo e Universidad de Granada. 2009. 524 p.
- CLARKSON, E. N. K. 2007. Invertebrate palaeontology and evolution. Blackwell Science, 4 ed., 2007.
- DOMÍNGUEZ, P., MENN, J. L., MUS, M. M.& VILLALBA, M. P. Equinodermos, in: CHACÓN, M. L. M. & RIVAS, P. Paleontologia de Invertebrados. Sociedad Española de Paleontología, Instituto Geológico y Minero de España, Universidad de Oviedo e Universidad de Granada, 2009.
- FADEL, M. K. B. 2008. Evolution and geological significance of larger benthic foraminifera. Developments in Palaeontology & Stratigraphy, 21. Elsevier, 5 ed., 2008. 571 p.
- FIGUEIRAS, A. J. M. 1983. Petrologia dos carbonatos da Formação Itaituba, na região de Aveiro-PA. Dissertação (Mestrado) Universidade Federal do Pará, 1983. 135 p.
- GILI, C. & MARTINELL, J. 2009. Clase gastropoda. In: CHACÓN, M. L. M. & RIVAS, P. (Org.) 2009. Paleontologia de Invertebrados. Sociedad Española de Paleontología, Instituto Geológico y Minero de España, Universidad de Oviedo e Universidad de Granada. 2009. 524 p.
- JAPUNDŽIĆ, M. & SREMAC, J. 2016. Palaeobiogeography of the Late Carboniferous brachiopoda from Velebit Mt. (Croatia). Journal of the Croatian Geological Survey and the Croatian Geological Society. p. 177-185.

- MEYER, D. L., MILLER, A. I., HOLLAND, S. M. & DATTILO, B. F. 2002. Crinoid distribution and feeding morphology through a depositional sequence: Kope and Fairview Formations, Upper Ordovician, Cincinnati Arch Region. Journal of Paleontology, v. 76, n. 4, 2002.
- MURRAY, J. W. 1970. The foraminifera of the hypersaline Abu Dhabi Lagoon, Persian Gulf. Lethaia, vol. 3, pp. 51-68. Oslo, janeiro de 1970.
- PEREIRA, P. A. 2011. Aspectos taxonômicos e paleoecológicos dos braquiópodes e moluscos (bivalves) da Formação Inajá (Devoniano), Bacia do Jatobá (PE). Dissertação (mestrado) – Universidade Federal de Pernambuco, Recife (PE), 2011.
- POSADA, L. C. S., ARBIZU, M., DELCLÒS, X., GOZALO, R., LIÑÁN, E., PEÑALVER, E., RÁBANO, I. & RODRÍGUEZ-LÁZARO, J. 2009. Artrópodos. In: CHACÓN, M. L. M. & RIVAS, P. (Org.) 2009. Paleontologia de Invertebrados. Sociedad Española de Paleontología, Instituto Geológico y Minero de España, Universidad de Oviedo e Universidad de Granada. 2009. 524 p.
- SAID, I., RODRÍGUEZ, S., BERKHLI, M., CÓZAR, P. & GÓMEZ-HERGUEDAS, A. 2010. Environmental parameters of a coral assemblage from the Akerchi Formation (Carboniferous), Adarouch Area, central Morocco. Journal of Iberian Geology, v. 36, n. 1, 2010. p. 7-19.
- SÁNCHEZ, B. E. B., GÓMES ESPINOSA, C., AQLMAZÁN VÁZQUEZ, E. & VACHARD, D. 2008. A review of the crinoid columnals (Echinodermata-Crinoidea) from the Carboniferous of Mexico. Revista de Biologia Tropical, Vol. 56, dezembro de 2008.
- SCHOLLE, P. A. & ULMER-SCHOLLE, D. S. 2003. A Color Guide to the Petrography of Carbonate Rocks: Grains, textures, porosity, diagenesis. The American Association of Petroleum Geologists Tulsa, Oklahoma, U.S.A. AAPG Memoir 77, 2003.
- THOMPSON, J. R. & AUSICH, W. I. 2016. Facies distribution and taphonomy of echinoids from the Fort Payne Formation (late Osagean, early Viséan, Mississippian) of Kentucky. Journal of Paleontology, vol. 90, n. 2, 2016. p. 239–249.
- VILLALBA, M. P. 2009. Clase Echinoidea. In: CHACÓN, M. L. M. & RIVAS, P. (Org.) 2009. Paleontologia de Invertebrados. Sociedad Española de Paleontología, Instituto Geológico y Minero de España, Universidad de Oviedo e Universidad de Granada. 2009. 524 p.
- WIGHTMAN, W. G., SCOTT, D. B., MEDIOLI, F. S. & GIBLING, M. R. 1994. Agglutinated foraminifera and thecamoebians from the Late Carboniferous Sydney coalfield, Nova Scotia: paleoecology, paleoenvironments and paleogeographical implications. Palaeogeography, Palaeoclimatology, Palaeoecology, Elsevier Science B.V., Amsterdam, v. 106, 1994. p. 187-202.

- Significado paleoambiental de microfácies carbonáticas da Formação 1
- Itaituba (Carbonífero da Bacia do Amazonas), no município de Itaituba 2

3 (\mathbf{PA})

4

Paleoenvironmental significance of carbonate microfacies of the Itaituba 5

Formation (Carboniferous of the Amazon Basin), in the municipality of 6

Itaituba (PA) 7

8

Katy Marilym de Matos NEVES¹ & Valquíria Porfírio BARBOSA¹ 9

10 11

13 14

(1) Programa de Pós-graduação em Geociências, Universidade Federal do Amazonas. Av. General 12 Rodrigo Octavio Jordão Ramos, 1200, CEP 69067-005, Manaus, Brasil. E-mail: katy.matosneves@gmail.com e pbvalquiria@gmail.com.

- 15 Resumo. Visando a interpretação e a inferência dos paleoambientes de uma sucessão 16 carbonática pertencente à Formação Itaituba (Pensilvaniano da Bacia do Amazonas), que aflora às margens do Rio Tapajós, SW do estado do Pará, estudos petrográficos voltados 17 18 à caracterização e identificação de microfáceis sedimentares foram realizados a partir da análise de 50 seções delgadas. A análise petrográfica foi desenvolvida de acordo com a 19 metodologia padrão para estudos desta natureza, envolvendo, essencialmente, a 20 classificação das rochas carbonáticas, a caracterização e a individualização de 21 22 microfácies. Como resultado destas análises foram identificados nove microfácies: 23 Mudstone com evaporitos (Me), Wackstone com terrígenos (Wt), Wackstone com quartzo autigênico e fitoclastos (Wqf), Wackstone com braquiópodes e crinóides (Wbc), 24 25 Packstone com braquiópodes (Pb), Grainstone com braquiópodes (Gb), Grainstone com 26 fusulinídeos (Gf), Grainstone com aglutinantes (Ga) e Boundstone com intraclastos (Bi). 27 Destas microfácies, foram distinguidos quatro biofácies (Biofácies 01, 02, 03 e 04), 28 baseadas nos trends e paleocologia dos bioclastos, e cinco associações de grãos não-29 esqueletais (Associação 01, 02, 03, 04 e 05), fundamentadas no significado sedimentológico destes grãos. A partir disto, foram interpretados cinco tipos de 30 31 microfácies representativos de sistemas deposicionais distintos: MFT-01) sabka, MFT-32 02) planície de maré, MFT-03) laguna, MFT-04) canais de maré e MFT-05) barras 33 bioclásticas. Estes tipos de microfácies indicam um modelo deposicional de plataforma carbonática em rampa, com o desenvolvimento de um sistema deposicional marinho raso, 34 dominado por sedimentação carbonática, influenciado por maré, sob regime climático 35 dominante de clima semiárido e temperatura da massa d'água variando de temperada a 36 37 auente.
- Palavras-chave. Petrografia, microfácies, paleoambientes, Formação Itaituba 38 39

40 Abstract. Aiming at the interpretation and inference of the paleoenvironments of a 41 carbonate succession belonging to the Itaituba Formation (Pennsylvanian of the Amazon Basin), which appears on the banks of the Tapajós River, SW of the state of Pará, 42 43 petrographic studies focused at the characterization and identification of sedimentary 44 microfacies were performed from the analysis of 50 thin sections. The petrographic 45 analysis was developed according to the standard methodology for studies of this nature, essentially involving the classification of carbonate rocks, the characterization and 46

47 individualization of microfacies. As a result of these analyzes, nine microfacies were 48 identified: Mudstone with evaporites (Me), Wackstone with terrígenos (Wt), Wackstone with autigenic quartz and fitoclasts (Wqf), Wackstone with brachiopods and crinoids 49 50 (Wbc), Packstone with brachiopods (Pb), Grainstone (Gb), Grainstone with fusulinids 51 (Gf), Grainstone with binders (Ga) and Boundstone with intraclasts (Bi). From these microfacies, four biofacies (Biofacies 01, 02, 03 and 04), based on the bioclastic trends 52 and paleocology, and five associations of non-skeletal grains (Association 01, 02, 03, 04 53 54 and 05), based on the meaning of these grains. From this, five types of microfacies representative of different depositional systems were interpreted: MFT-01) sabka, MFT-55 56 02) tidal plain, MFT-03) lagoon, MFT-04) types of microfacies indicate a depositional carbonaceous platform model in ramp, with the development of a shallow marine 57 58 depositional system, dominated by carbonate sedimentation, influenced by tide, under the 59 dominant regime of semiarid climatic and temperature of the water mass varying from 60 temperate to hot.

61 62 Keywords. Petrography, microfacies, paleoenvironments, Itaituba Formation

63 1 Introdução

64

A identificação de tipos de microfácies é uma etapa fundamental para o
desenvolvimento de modelos de sedimentação carbonática, pois correspondem a critérios
representativos de parâmetros ou conjuntos de parâmetros ambientais específicos, cuja
evolução está ligada a configurações deposicionais específicas (Flügel, 2010).

A caracterização de tipos de microfácies passa pela análise qualitativa e pela
compreensão do significado paleoambiental dos diferentes tipos de grão presentes nas rochas,
bem como pela análise quantitativa de seus padrões de distribuição e frequência nas seções,
pois esta reflete, de forma indireta, variações de parâmetros ambientais físicos, químicos e
biológicos de paleoambientes de sedimentação.

Sob este prisma, Flügel (2010) afirma que, entre os constituintes de microfácies, os fósseis são um dos *proxies* mais significativos para a determinação de condições paleoambientais, graças à sensibilidade natural dos seres vivos às variações de parâmetros como temperatura, salinidade, luminosidade, balanço de CO₂, profundidade da lâmina d'água, natureza do regime de correntes locais, turbidez e natureza do substrato.

O mesmo se aplica a grãos não-esqueletais carbonáticos, uma vez que processos bióticos, que dependem de parâmetros ambientais físicos e químicos (*e. g.*, níveis de energia da água e taxas de sedimentação), podem controlar sua formação (Flügel, 2010). Por sua vez, os constituintes não-carbonáticos permitem reconhecer processos erosivos, alterações climáticas, variações do nível relativo do mar e estimar o influxo de material siliciclástico em bacias carbonáticas.

Com isso, a qualificação e a quantificação dos padrões de frequência e distribuição dos bioclastos e grãs não-esqueletais carbonáticos e não-carbonáticos podem ser de grande auxílio na identificação de tipos de microfácies e, consequentemente, na caracterização e individualização de configurações deposicionais específicas.

Neste sentido, esta pesquisa foi proposta com o objetivo de inferir os paleoambientes
de uma sucessão carbonática da Formação Itaituba (Grupo Tapajós, Pensilvaniano da Bacia
do Amazonas). Assim, são apresentados neste trabalho os resultados de estudos petrográficos,
destacando-se aqueles relacionados à caracterização e individualização das microfáceis
sedimentares, do significado paleoecológico dos táxons fósseis identificados e do significado
sedimentológico dos grãos não-esqueletais.

- 95
- 96 2 Área, materiais e métodos
- 97

98 2.1 Localização da área

99

A área de estudo localiza-se no Munícipio de Itaituba, sudoeste do Estado do Pará e corresponde a duas frentes de lavra de uma mina de calcário de propriedade da Mineradora CALREIS (4°09'26'' S 55°45'51'' W), situada na margem direita do Rio Tapajós, à jusante em direção ao Munícipio de Santarém, em uma região que, geologicamente, corresponde à borda sul da Bacia do Amazonas (Fig. 1). Foi visitada em novembro de 2012 em trabalhos de campo, nos quais foram levantados quatro perfis estratigráficos que compõem um pacote sedimentar de aproximadamente 16 m de espessura (Fig. 2).

108

109 Figura 1. Àrea de estudo: A) Mapa geológico com a distribuição das unidades estratigráficas

- na região do município de Itaituba-PA e B) localização da área de estudo. (Fonte: CPRM,
 2016).
- 112 Figure 1. Area of study: A) Geological map with the distribution of stratigraphic units in the
- 113 region of Itaituba-PA and B) location of the study area. (Source: CPRM, 2016).
- 114

Figura 2. Perfis estratigráficos de sucessão carbonática da Formação Itaituba (Grupo Tapajós,
Pensilvaniano da Bacia do Amazonas), referentes a duas frentes de lavra da Mineradora
CALREIS, localizada no município de Itaituba-PA e que compõem um pacote sedimentar de

- aproximadamente 16 m de espessura.
- Figure 2. Stratigraphic profiles of carbonate succession of the Itaituba Formation (Tapajós
 Group, Pensilvaniano da Amazonas Basin), referring to two mining fronts of the CALREIS
- 122 Mining, located in the municipality of Itaituba-PA, which compose a sedimentary package
- 123 *approximately 16 m thick.*
- 124
- 125 2.2 Aspectos geológicos
- 126

120

A Bacia do Amazonas é uma sinéclise intracratônica paleozoica, gerada por uma lenta
subsidência durante o transcurso de vários períodos geológicos, do Ordoviciano ao Cenozóico
(Hasui *et al.*, 2012). Localiza-se na porção setentrional da Plataforma Sul Americana,
ocupando uma área total de 606.000 km² (CPRM, 2010) e espessura aproximada de 5.000 m
no depocentro (Milani & Thomaz Filho, 2000).

De acordo com Cunha *et al.* (2007) o preenchimento sedimentar da bacia é composto por duas megassequências de primeira ordem: Paleozoica e Mesozoico-Cenozoica, sendo a primeira dividida em quatro sequências de segunda ordem: Ordovício-Devoniana, Devono-Tournaisiana, Neoviseana e Pensilvaniano-Permiana. De acordo com Cunha (2000), a sedimentação desta última sequência, objeto deste estudo, é representada pelo Grupo Tapajós, composto pelas formações Monte Alegre, Itaituba, Nova Olinda e Andirá e é interpretada como representativa de um ciclo transgressivo-regressivo ocorrido no Pensilvaniano.

139 Entre as unidades litoestratigráficas que compõem o grupo Tapajós, a Formação Itaituba destaca-se, entre outros aspectos pela representativa espessura do pacote carbonático 140 141 e por seu rico conteúdo fossilífero. Esta unidade possui ampla distribuição na Bacia do Amazonas ocupando cerca de 420 m de espessura na região de depocentro da bacia, 142 estendendo-se, inclusive, pela Bacia do Solimões (Caputo, 1984). É composta por inúmeras 143 sequências carbonático-evaporíticas, intercaladas por delgadas camadas siliciclásticas que 144 compõem um padrão de sedimentação cíclica constituída por vários litotipos como folhelhos, 145 carbonatos e evaporitos, que foram associados a ambiente lagunar e marinho raso/inframaré 146 de idade pensilvaniana (Cunha et al., 2007). 147

148 Neste contexto, as rochas carbonáticas pertencentes a esta formação são interpretadas 149 como evidências do estabelecimento de condições francamente marinhas na Bacia do 150 Amazonas, são marcadas pela sedimentação de diversos litotipos carbonáticos (*e. g.*, 151 *mudstones, wackestones, packstones,* e *grainstones*) e por um rico conteúdo fossilífero 152 composto por táxons exclusivamente marinhos (*e. g.*, foraminíferos bentônicos, conodontes, 153 escolecodontes, ostracodes, briozoários, corais, gastropodes, bivalves, braquiópodes e 154 trilobitas, entre outros) (Scomazzon & Lemos, 2005; Nascimento *et al.*, 2010).

155

156 2.2 Materiais e Métodos

157

Foram utilizadas neste trabalho 50 lâminas delgadas de amostras de rochas carbonáticas provenientes dos afloramentos estudados, as quais foram laminadas pelo Laboratório de Sedimentologia e Estratigrafia da Petrobrás, Unidade de Manaus (UO/AM) e
atualmente encontram-se armazenadas na Universidade Federal do Amazonas.

A análise petrográfica foi desenvolvida com o auxílio de um microscópio ótico 162 petrográfico Olympus modelo BX51 com objetivas de 5x, 10x, 20x, 40x pertencente ao 163 Departamento de Geociências da Universidade Federal do Amazonas (DEGEO - UFAM). 164 Visando complementar a caracterização petrográfica das rochas, em algumas seções foi 165 também empregada Microscopia Eletrônica de Varredura (MEV). O aparelho utilizado foi um 166 MEV QUANTA 250 pertencente ao DEGEO – UFAM e a metodologia empregada envolveu, 167 168 essencialmente, a metalização com ouro e a subsequente captura de imagens de raios X e de 169 espalhamento de elétrons com resolução nanométrica.

Durante a análise petrográfica foram desenvolvidas quatro etapas fundamentais: descrição das amostras, análise qualitativa e quantitativa dos grãos, identificação de estruturas e análise semi-quantitativa da razão matriz/grãos. A partir do desenvolvimento destas etapas, foram realizadas análises e inferências destinadas a: classificação litológica das rochas carbonáticas, caracterização e individualização de microfácies, inferência do índice de energia do ambiente e levantamento paleoecológico dos fósseis e do significado sedimentar dos grãos não-esqueletais.

A classificação das rochas carbonáticas seguiu o modelo de Dunham (1962), a caracterização e a individualização de microfácies foi feita segundo a proposta de Flügel (2010) e a nomenclatura e codificação das microfácies seguiu a proposta de fácies de Miall (1977). O levantamento paleoecológico foi feito a partir da análise bibliográfica das preferências paleoecológicas dos principais táxons no período geológico correspondente as amostras analisadas (Carbonífero).

O levantamento do significado sedimentológico dos grãos não-esqueletais foi realizado a partir da pesquisa bibliográfica por indícios de parâmetros físicos e químicos do ambiente de sedimentação apontados por estes clastos. A inferência do índice de energia do ambiente seguiu a proposta de classificação de Plumley *et al.* (1962, *apud* Flügel, 2010).

187 Da integração dos resultados obtidos destas análises foram caracterizados e
188 identificados cinco tipos de microfácies, de acordo com os critérios considerados por Flügel
189 (2010).

190

191 **3 Resultados**

- 192
- 193 3.1 Microfácies

- 194 Foram caracterizadas e individualizadas nove microfácies, as quais são ilustradas (Fig.
- 195 3 e 4) e descritas a seguir.

Figura 3. Microfácies Mudstone com evaporitos (Me): A) arcabouço matriz suportado, 198 grãos de halita (Ha) e cimento do tipo calcita espática com textura em mosaico (Cmo) 199 preenchendo poros; B) grão de halita e cimento (Cm) em poro intergranular (Itg) e C) sílica 200 microbotryoidal (Smb) substituindo cimento; Wackstone com terrígenos (Wt): D e E) 201 202 arcabouço matriz suportado, grãos detríticos de quartzo (Qtz) e intensa recristalização e F) vugs (VUG), quartzo autigênico (Qa) e pequenas esferas de pirita (Pi); Wackstone com 203 quartzo autigênico e fitoclasto (Wqf): G) arcabouço matriz suportado, forte recristalização, 204 quartzo autigênico (Qa) e fitoclasto não-opaco não- bioestruturado, acastanhado e tabular 205 206 (Ftc); H) canal (Can) preenchido por cimento espático com textura em mosaico e evaporitos, 207 os quais possuem moldes evaporíticos aciculares e I) piritas frambóidais com cimentação 208 calcítica entre os agregados (imagem do MEV); Wackstone com braquiópodes e crinóides 209 (Wbc): J) arcabouco matriz suportado, fragmentos esqueletais de braquiópodes (Bq) e 210 crinóides (Cr) e grãos de halita (Ha); K) fragmento esqueletal de coral Tabulata com seu característico padrão de simetria dos coralítos e L) moldes evaporíticos aciculares (Mo) e 211 212 poros intercristalinos (Itc) e Packstone com braquiópodes (Pb): M) arcabouço grão suportado e fragmentos esqueletais de braquiópodes (Bq) e crinóides (Cr); N) detalhe para 213 214 fragmentos esqueletais de braquiópodes e crinóides em nicóis cruzados e O) fragmento esqueletal de crinóide (Cr). 215

Figure 3. Microfacies Mudstone with evaporites (Me): A) supported matrix framework, 216 halite grains (Ha) and mosaic textured calcite cement (Cmo) filling pores, B) halite grain and 217 cement (Cm) in intergranular pore Itg) and C) microbotryoidal silica (Smb) replacing 218 cement; Wackstone with terrigenous (Wt): D and E) supported matrix framework, quartz 219 detrital grains (Qtz) and intense recrystallization and F) vugs (VUG), autigenic quartz (Qa) 220 and small pyrite spheres (Pi); Wackstone with autigenic quartz and phytoplast (Wqf): G) 221 222 supported matrix framework, strong recrystallization, autigenic quartz (Oa) and nonbiostructured non-opaque phytoplast, brownish and tabular (Ftc); H) channel (Can) filled 223 with mosaic textured spit cement and evaporites, which have acicular evaporite molds and I) 224 225 framboid pyrite with calcitic cementation between the aggregates (SEM image); Wackstone with brachiopods and crinoids (Wbc): J) supported matrix framework, skeletal fragments of 226 227 brachiopods (Bq) and crinoids (Cr) and halite grains (Ha); K) skeletal fragment of Tabulata 228 coral with its characteristic pattern of symmetry of corallites and L) acicular evaporitic molds (Mo) and intercrystalline pores (Itc); and **Packstone with brachiopods (Pb)**: M) 229 supported grain framework and skeletal fragments of brachiopods (Bq) and crinoids (Cr); N) 230

- 231 detail for skeletal fragments of brachiopods and crinoids in crossed nicoles and O) crinoid
- 232 skeletal fragment (Cr).
- 233

Figura 4. Microfácies *Grainstone* com braquiópodes (Gb): A) arcabouço grão suportado,
mal selecionamento, fragmentos esqueletais de braquuiópodes (Bq), crinóides (Cr), bivalves
(Bi), briozoários (Bz), fusulinídeos (Fu) e aglutinantes (Ag); B) fragmentos esqueletais de
ostracodes (Os) com seus pares de conchas articuladas características, braquiópodes (Bq) e
microfratura (Fr) e C) fragmentos esqueletais de braquiópodes (Bq) e gastrópodes (Gt); *Grainstone* com fusulinídeos (Gf): D) arcabouço grão suportado, foraminíferos fusulinídeos
(Fu), aglutinantes (Ag) e fragmentos esqueletais de braquiópodes (Bq); E) detalhe para

foraminíferos fusulinídeos (Fu) e forte cimentação e F) fragmento esqueletal de coral Rugosa 242 243 colonial com suas ramificações irregulares e corallitos de formas poligonais; Grainstone com aglutinantes (Ga): G) arcabouço grão suportado, forte recristalização e micritização, 244 foraminíferos aglutinantes (Ag) e fragmento esqueletal de crinóide (Cr); H) foraminíferos 245 aglutinantes com o padrão de enrolamento da câmara e fragmento esqueletal de equinoide 246 (Eq) com sua característica simetria e I) braquiópodes (Bq), crinóides (Cr), fusulinídeos (Fu) 247 e aglutinantes (Ag); e Boundstone com intraclastos (Bi): J) ligação organo-sedimentar e 248 249 clastos dispostos segundo a orientação desta ligação; K) intraclastos alongados com 250 terminações subangulosos, aparentemente caracterizam "rip-up clast" e L) braquiópodes (Bq) 251 e fusulinídeos (Fu).

252 Figure 4. Microfacies Grainstone with brachiopods (Gb): A) supported grain framework, 253 poor selection, skeletal fragments of braquuiopodes (Bq), crinoids (Cr), bivalves (Bi), 254 bryozoans (Bz), fusulinids (Fu) and agglutinants (Ag); B) skeletal fragments of ostracods (Os) with their characteristic pairs of articulated shells, brachyopores (Bq) and microfracture (Fr) 255 256 and C) skeletal fragments of brachiopods (Bq) and gastropods (Gt); Grainstone with 257 *fusulinids* (*Gf*): *D*) *supported grain framework, fusulinid foraminifers (Fu), agglutinants (Ag)* 258 and skeletal fragments of brachiopods (Bq); E) detail for fusininid foraminifera (Fu) and strong cementation and F) coral skeletal fragment of colonial rugosa with its irregular 259 ramifications and corallitos of polygonal forms; Grainstone with binders (Ga): G) supported 260 grain framework, strong recrystallization and micritization, foraminifera agglutinating (Ag) 261 and skeletal crinoid fragment (Cr); H) foraminifera binders with chamber winding pattern 262 and equinoid skeletal fragment (Eq) with their characteristic symmetry and I) brachiopod 263 (Bq), crinoid (Cr), fusulinid (Fu) and agglutinating (Ag); and **Boundstone with intraclasts** 264 (Bi): J) organo-sedimentary bond and clasts arranged according to the orientation of this 265 bond; K) elongate intraclastos with subangulo terminations, apparently characterize "rip-up 266 clast" and L) brachiopods (Bq) and fusulinid (Fu). 267

268

Mudstone com evaporitos (Me) (Fig. 3A-C): caracterizado por cerca de 93% de matriz micrítica e 7% de grãos (\cong 130 grãos), dos quais 95% são representados por clastos não-esqueletais e 5% por bioclastos. Os clastos não-esqueletais são constituídos por halita (80%), quartzo autigênico (14%) e por anidrita (1%), e os bioclastos por restos e fragmentos esqueletais de braquiópodes (2%), fusulinídeos (1%), crinóides (1%) e gastrópodes, miliolídeos, corais Rugosa coloniais e bivalves, os quais somados totalizam cerca de 1% dos grãos. Apresenta coloração acinzentada, intensa recristalização, estrutura do tipo *solution*

seams e poros intergranulares, intrapartículas, intercristalinos, além de microfraturas, canais e *vugs*.

Wackstone com terrígenos (Wt) (Fig. 3D-F): caracterizado por cerca de 60% de matriz microsparita e 40% de grãos (\cong 918 grãos), dos quais 99% são representados por clastos não-esqueletais e 1% por bioclastos. Os clastos não-esqueletais são constituídos por grãos detríticos de quartzo (54%), quartzo autigênico (26%), halita (17%), pirita (1%) e anidrita (<1%), e os bioclastos por foraminíferos aglutinantes (<1%). Apresenta coloração acinzentada, forte recristalização e poros intergranulares, intercristalinos e *vugs*.

Wackstone com quartzo autigênico e fitoclastos (Wqf) (Fig. 3G-I): caracterizado 284 por cerca de 82% de matriz microsparita e 18% de grãos (≅ 283 grãos), dos quais 96% são 285 constituídos por clastos não-esqueletais e 4% por bioclastos. Os clastos não-esqueletais são 286 287 representados por quartzo autigênico (30%), fitoclastos não-opacos não-bioestruturados (20%), halita (18%), pirita framboidal (1%) e pelóides (1%), e os bioclastos por fragmentos 288 esqueletais de braquiópodes (4%) e por foraminíferos aglutinantes (<1%). Apresenta 289 coloração acastanhada, forte recristalização, estrutura do tipo solution seams e poros 290 intercristalinos, moldes evaporíticos, microfraturas, canais e vugs. 291

292 Wackstone com braquiópodes e crinóides (Wbc) (Fig. 3J-L): caracterizado por 293 cerca de 75% de matriz micrítica e 25% de grãos (≅926 grãos), dos quais 91% são representados por bioclastos e 9% por clastos não-esqueletais. Os bioclastos são representados 294 295 por restos e fragmentos esqueletais de braquiópodes (52%), crinóides (38%), foraminíferos fusulínideos (5%), corais Rugosa coloniais (2%), bivalves (1%), equinoides (1%), 296 297 gastrópodes (1%) e corais Tabulata (1%), e os clastos não-esqueletais são constituídos por 298 quartzo autigênico (6%) e halita (2%). Apresenta coloração acastanhada, alta recristalização e 299 micritização, poros intergranulares, intercristalinos, moldes evaporíticos e de fragmentos esqueletais, microfraturas, canais e vugs. 300

301 Packstone com braquiópodes (Pb) (Fig. 3M-O): caracterizado por cerca de 30% de matriz microsparita e 70% de grãos (≅1526 grãos), dos quais 85% são representados por 302 303 bioclastos e 15% por clastos não-esqueletais. Os bioclastos são constituídos por restos e 304 fragmentos esqueletais de braquiópodes (48%), crinóides (22%), foraminíferos fusulinídeos (11%), bivalves (1%), briozoários (1%), gastrópodes (1%) e equinóides, foraminíferos 305 aglutinantes, ostracodes, coral Rugosa e trilobitas, os quais perfazem cerca de 1%. Os clastos 306 não-esqueletais são constituídos por quartzo autigênico (8%), intraclastos (3%), pelóides (1%) 307 308 e halita (1%). Apresenta coloração acinzentada, forte recristalização, estruturas como solution seams, poros intergranulares, intrapartículas, intercristalinos, microfraturas e vugs. 309
Grainstone com braquiópodes (Gb) (Fig. 4A-C): caracterizado por cerca de 3% de 310 matriz micrítica e 97% de grãos (≅2276 grãos), dos quais 91% são representados por 311 bioclastos e 9% por clastos não-esqueletais. Os bioclastos são constituídos por restos e 312 fragmentos esqueletais de braquiópodes (53%), crinóides (24%), foraminíferos fusulínideos 313 (10%), bivalves (1%), gastrópodes (1%) e foraminíferos aglutinantes (1%). Briozoários, 314 equinoides, ostracodes, trilobitas e corais Rugosa coloniais, perfazem somados cerca de 1%. 315 316 Os clastos não-esqueletais são constituídos por quartzo autigênico (5%), halita (1%), 317 intraclastos (1%), pelóides (1%) e oncólitos (1%). Apresenta coloração acastanhada, estruturas como solution seams, poros intergranulares, intrapartículas, microfraturas e vugs. 318 Em alguns bioclastos é observada a recristalização dos grãos, com a substituição por sílica. 319

Grainstone com fusulinídeos (Gf) (Fig. 4D-F): caracterizado por cerca de 2% de 320 321 matriz micrítica e 98% de grãos (≅2374 grãos), dos quais 92% são representados por bioclastos e 8% por clastos não-esqueletais. Os bioclastos são constituídos por fragmentos 322 esqueletais e restos de foraminíferos fusulinídeos (66%), braquiópodes (14%), crinóides (6%), 323 foraminíferos miliolídeos (2%) bivalves (2%), corais Rugosa coloniais (1%) e foraminíferos 324 aglutinantes, equinóides, briozoários, gastrópodes, ostracodes e problemática, os quais 325 somados perfazem cerca de 1%. Os clastos não-esqueletais são constituídos por pelóides 326 327 (6%), quartzo autigênico (1%) e intraclastos (1%). Apresenta coloração acastanhada, 328 estruturas do tipo *solution seams*, poros intergranulares e *vugs*.

329 Grainstone com aglutinantes (Ga) (Fig. 4G-I): caracterizado por cerca de 2% de matriz micrítica e 98% de grãos (≅1462 grãos), dos quais 73% são representados por 330 331 bioclastos e 27% por clastos não-esqueletais. Os bioclastos são constituídos por fragmentos esqueletais e restos de foraminíferos aglutinantes (58%), foraminíferos fusulínideos (5%), 332 333 crinóides (2%), braquiópodes (1%), e equinóides, gastrópodes, corais Rugosa coloniais e bivalves, os quais somados perfazem cerca de 1%. Os clastos não-esqueletais são constituídos 334 335 por pelóides (12 %), halita (8%), oncólitos (4%), intraclastos (2%), e quartzo autigênico (1%). Apresenta coloração acastanhada, intensa micritização e recristalização, além de estruturas do 336 337 tipo solution seams, poros intergranulares, intrapartículas, intercristalinos, microfraturas e 338 vugs.

Boundstone com intraclastos (Bi) (Fig. 4J-L): caracterizado por estrutura primária
que aparenta ligação orgânica sindeposicional, apresentando cerca de 88% de matriz micrítica
e 12% de grãos (≅ 275 grãos, os quais seguem a orientação da estrutura organo-sedimentar).
Dentre os grãos, 60% são representados por clastos não-esqueletais e 40% por bioclastos. Os
grãos não-esqueletais são representados por intraclastos do tipo "*rip up clast*" (47%), halita

(9%), quartzo autigênico (3%) e pirita (1%), e os bioclastos por restos e fragmentos
esqueletais de braquiópodes (23%), crinóides (9%), fusulinídeos (7%), e bivalves,
gastrópodes, coral Rugosa e trilobitas, os quais somados perfazem cerca de 1%. Apresenta
coloração acastanhada, microfraturas e *vugs*.

3.2 Índice de energia

A integração dos dados paleoecológicos com a caracterização do arcabouço das rochas permitiu o estabelecimento das seguintes categorias de energia hidrodinâmica para as microfácies (Quadro 1):

Quadro 1. Classificação do índice de energia de acordo com Plumley *et al.* (1962, *apud*Flügel, 2010).

357 Chart 1. Classification of the energy index according to Plumley et al. (1962, apud Flügel,
358 2010).

Categorias	Características	Microfácies	
Tipo I	águas calmas	Me, Wt, Wqf, Wb e Bi	
Tipo II	agitado e intermitente	-	
Tipo III	levemente agitado	-	
Tipo IV	moderadamente agitado	Pb e Gf	
Tipo V	fortemente agitado	Gb e Ga	

3.3 Biofácies e Associações de Grãos não esqueletais

A partir do levantamento paleoecológico e da análise dos padrões de distribuição e frequência dos grupos fósseis identificados nas seções estudadas, foi possível identificar quatro biofácies, as quais são sumarizados no Quadro 2.

- 371 Quadro 2. Características das biofácies, com ênfase para os bioclastos predominantes e
 372 secundários e para as microfácies em que são reconhecidas.
- 373 Chart 2. Characteristics of the biofacies, with emphasis on the predominant and secondary
- bioclasts and the microfacies in which they are recognized.
- 375

Biofácies	Grãos	% da	Bioclastos	Bioclastos secundários	Microfácies	
	Totais	rocha	Predominantes			
Biofácies 01	≅2276	97%	braquiópodes (≅50%),	briozoários (≅1%),	Pb e Gb	
			crinóides (≅23%) e	bivalves (≅1%) e corais		
			fusulinídeos (≅11%)	Rugosa (≅1%)		
Biofácies 02	≅2374	98%	fusulinídeos (≅65%),	miliolídeos (≅2%),		
			braquiópodes (≅15%)	bivalves (≅2%) e corais	Gf	
			e crinóides (≅5%)	Rugosa (≅1%)		
Biofácies 03	≅1462	98%	aglutinantes (≅60%)	astránodos o ostracodos		
			braquiópodes (≅X%),	gastropodes e ostracodes	Ga	
			crinóides (≅X%)	(<1%)		
Biofácies 04	≅926	≅926 25%	braquiópodes (≅50%),	corais Rugosa +		
			crinóides (≅40%) e	equinoides + corais	Wbc	
			fusulinídeos (≅5%)	Tabulata (<2%)		

377 Do mesmo modo, a partir do levantamento do significado sedimentológico e da
378 análise dos padrões de distribuição e frequência dos grãos não-esqueletais, foi possível
379 reconhecer cinco associações principais, as quais são sumarizadas no Quadro 3.

380

381 Quadro 3. Associações de grãos não-esqueletais com as microfácies em que são reconhecidas.

382 Chart 3. Non-Skeletal Grain Associations with the microfacies in which they are recognized.

383

Associações	Grãos	% da	Grãos não-esqueletais	Microfácies
	Totais	rocha		
Associação 01	≅ 130	7%	halita (≅80%) e quartzo autigênico (≅15%)	Me
Associação 02	≅ 918	40%	grãos detríticos de quartzo (≅55%), quartzo autigênico (≅25%) e halita (≅20%)	Wt
Associação 03	≅ 283	18%	quartzo autigênico (≅30%), fitoclastos não opacos (≅20%), halita (≅20%) e pirita framboidal (≅2%)	Wqf
Associação 04	≅ 275	12%	intraclastos (≅50%) e halita (≅10%)	Bi
Associação 05	≅1462	98%	pelóides (\cong 12%), halita (\cong 8%), oncólitos (\cong 4%), oóides (\cong 2%) e intraclastos (\cong 2%)	Ga

384

Da integração entre as microfácies identificadas, o índice de energia do meio, a
individualização de biofáceis e associações de grãos não esqueletais, foram interpretados
conjuntos de parâmetros ambientais específicos, cuja evolução está ligada à configurações
deposicionais específicas e, com isso, foram identificados cinco tipos de microfácies: MFT01, MFT-02, MFT-03, MFT-04 e MFT-05, assim caracterizadas e interpretadas (Quadro 4):

392

Quadro 4. Tipos de microfácies com as biofácies e associações que os compõem, bem como
com o índice de energia hidrodinâmica do meio, a salinidade e a zona geomorfológica
interpretados e representativos dos ambientes de sedimentação inferidos para as sucessões
estudadas.

Chart 4. Types of microfacies with the biofacies and associations that compose them, as well
as the hydrodynamic energy index of the medium, the salinity and the geomorphological zone
interpreted and representative of the sedimentation environments inferred for the studied

400 sequences.

401

Tipos de microfácies	Biofácies	Associações	Índice de Energia	Salinidade	Zona Geomorfológica	Ambiente de sedimentação
MFT-01	-	Associação 01	Tipo I	hiperhalina	Supramaré/ Intermaré Superior	<i>Sabhka</i> costeira semi- restrita
MFT-02	-	Associação 02, 03 e 04	Tipo I	mixohalina tendendo a hiperhalina	Supramaré/ Intermaré Superior	Planície de maré
MFT-03	Biofácies 04	-	Tipo I	euhalina	Intermaré Superior	Laguna semi- restrita
MFT-04	Biofácies 03	Associação 05	Tipo V	mixohalina tendendo a hiperhalina	Intermaré Inferior/ Inframaré	Canais de maré
MFT-05	Biofácies 01 e 02	-	Tipo IV e Tipo V	euhalina	Intermaré Inferior/ Inframaré	Barras bioclásticas

402

403 4 Discussão dos resultados

404

A partir da integração e da interpretação dos dados levantados e com base nos estudos
geológicos prévios da Bacia do Amazonas (*e. g.*, Caputo, 1984; Silva, 1996; Matsuda, 2002;
Moutinho, 2006), admite-se o desenvolvimento de uma plataforma carbonática intracratônica

durante o Neopensilvaniano desta bacia. Segundo Ross & Ross (1990, *apud* Matsuda, 2002),
esta plataforma localizava-se em baixas a médias latitudes, entre aproximadamente 30° e
35°S.

Estudos paleoambientais desenvolvidos em carbonatos pensilvanianos da Formação Itaituba (*e. g.*, Carozzi *et al.*, 1972; Silva, 1996; Matsuda, 2002; Moutinho, 2006; Neves, 2009; Lima, 2010; Silva, 2014; Silva *et al.*, 2015; Souza; 2016; e Teixeira, 2017), sugerem que esta sedimentação carbonática foi amplamente dominada por maré e comumente relacionada a três zonas deposicionais distintas: supramaré, intermaré e inframaré.

416 Quanto ao perfil deposicional, de acordo com Matsuda (2002), a plataforma
417 carbonática Neopensilvaniana da Bacia do Amazonas seria do tipo rampa carbonática, similar
418 aos documentados por Irwin (1965), Ahr (1973), Shin (1983), Read (1985) e Burchette &
419 Wright (1992), tendo como exemplo recente a costa do Golfo Pérsico na região de Abu
420 Dhabi.

421 Matsuda (2002), baseado em analogias e nos resultados das associações de 422 microfácies, construiu um modelo idealizado do perfil deposicional do tipo rampa, o qual 423 inclui sete domínios deposicionais para a sequência carbonática pensilvaniana da Bacia do 424 Amazonas, sendo elas: plataforma externa (inframaré), barra bioclástica de intermaré e 425 inframaré, laguna protegida de intermaré, planície de intermaré e supramaré, *sabhkas* de 426 supramaré, planície de supramaré e continental.

427 Neste trabalho foram identificados quatro domínios equivalentes: barras bioclástica de
428 intermaré e inframaré, laguna semi-restrita de intermaré, planície de maré e *sabhka* de
429 supramaré/intermaré superior. Estes domínios são representados pelos tipos de microfácies
430 MFT-01, MFT-02, MFT-03, MFT-04 e MFT-05.

MFT-01 é caracterizado por um ambiente marinho proximal e hiperhalino, aqui
interpretado como SABHKA COSTEIRA SEMI-RESTRITA (Zona de Supramaré/Intermaré
Superior), sob regime climático semiárido. Entre outros aspectos, esta interpretação baseia-se
no significado sedimentológico da halita e do quartzo autigênico (Associação 01), na baixa
diversidade e abundância de organismos bentônicos e na textura matriz suportada na
microfácies Me.

A formação de halita é relacionada a condições de elevada salinidade e aridez
climática, associadas a restrições de circulação de águas (Aquilano, 2016), sendo que cubos e
formas esqueletais de halita em matriz carbonática podem ser indicativas de ambiente
marginal do tipo *sabkha* (Silva *et al.*, 2000). O quartzo autigênico tem sua formação
relacionada ao *input* fluvial de soluções de intemperismo continental em climas semi-áridos

(FlügeL, 2010). A sílica microbotryoidal (nódulos de sílica), também observada, pode ser
interpretada como produto da substituição de evaporitos (Moutinho, 2006). Isto, somado ao
arcabouço matriz suportada da rocha, indicativo de condições hidrodinâmicas de baixa
energia, sustenta as interpretações.

O domínio de sabhka, identificado por Matsuda (2002) e Moutinho (2006), possui 446 como microfácies diagnósticas os dolomitos laminados e dolomitos lamosos, sendo 447 considerado como uma planície de maré marinha marginal evaporítica com condições de 448 hipersalinidade predominantes. Embora neste trabalho não tenha sido possível empregar 449 450 técnicas de reconhecimento de dolomitos, observa-se na microfácies mudstone com 451 evaporitos forte recristalização e semelhança com os dolomitos característicos deste domínio, 452 além da ocorrência de evaporitos e sílica microbotryoidal (produto da substituição de 453 evaporitos), o que fortalece as interpretações de hipersalinidade relacionadas a este ambiente.

454 MFT-02 é caracterizado por um ambiente marinho proximal, com contribuições continentais e/ou transicionais, salinidade possivelmente mixohalina tendendo a hiperhalina, 455 456 sob condições climáticas semi-áridas, oxigenadas e com índice de energia típico de águas calmas, interpretado como PLANÍCIE DE MARÉ (Zona de Supramaré/Intermaré Superior). 457 458 Esta interpretação baseia-se, principalmente, no significado sedimentológico do quartzo 459 detrítico, fitoclasto não-opaco, pirita framboidal e "rip up clast" (Associações 02, 03 e 04), na baixa diversidade e abundância de organismos bentônicos e na textura matriz suportada nas 460 microfácies Wt, Wqf e Bi. 461

O predomínio de grãos detríticos de quartzo na Associação 02 sugere a contribuição de ambientes continentais e/ou transicionais na bacia sedimentar, pois, segundo Flügel (2010), em áreas marinhas pouco profundas, a entrada de sílica terrígena é uma fonte importante de sedimentos e sua gênese comumente deve-se ao intemperismo em áreas fontes continentais e/ou transicionais, seguidas do transporte eólico e/ou fluvial para o ambiente de sedimentação.

Na Associação 03, a significativa concentração de fitoclastos não-opacos nãobioestruturados é indicativa de porções mais proximais e de contribuição continental
(Menezes & Mendonça-Filho, 2004; Mendes, 2015). As piritas framboidais, por possuírem,
em média, diâmetros com cerca de 10,03 μm, sugerem sua formação dentro do sedimento em
condições paleoambientais de águas oxigenadas, o que leva a interpretação de uma origem
diagenética, de acordo com Suits & Wilkin (1998).

Já o predomínio de intraclastos do tipo "*rip-up clasts*" na Associação 04 sugere um
ambiente marinho proximal para esta associação, pois, segundo Flügel (2010), a origem
destes grãos é comumente associada a dessecação de carbonatos em ambientes de supramaré.

Segundo Carozzi et al. (1972), Matsuda (2002), Moutinho (2006), Lima (2010) e Silva 476 (2014), o domínio de planície de maré é associado a microbialitos, evaporitos, grãos 477 terrígenos, bioclastos transportados por correntes de maré e tempestade, feições de 478 ressecamento, pseudomorfos de evaporitos, quartzo detrítico e restos de plantas. Associando a 479 este domínio as microfácies laminito microbial, dolomudstone e dolomudstone poroso, 480 dolomito fino laminado, dolomudstone com grãos terrígenos e dolomito fino silicificado. As 481 feições e microfácies, relacionadas por estes autores ao domínio de planície de maré, 482 correlacionam-se bem com as encontradas neste trabalho (wackstone com terrígenos, 483 484 wackstone com braquiópodes e fitoclastos e Boundstone com intraclastos).

485 **MFT-03** é caracterizado por ambientes marinhos neríticos, com águas temperadas a 486 quentes, euhalinas, fóticas, eutróficas, pouco profundas e com energia hidrodinâmica 487 característica de águas calmas, aqui interpretadas como Laguna semi-restrita (Zona de 488 Intermaré Superior). Dentre outros aspectos, esta interpretação baseia-se, principalmente, na 489 paleoecologia de braquiópodes, crinoides, fusulinídeos, corais Rugosa, equinoides e corais 490 Tabulata (Biofáceis 04) e no arcabouço matriz suportado das rochas da microfácies Wbc.

A frequência de braquiópodes, crinóides, fusulinídeos e corais Rugosa sugerem ambiente euhalino, fótico, aeróbico e de águas temperadas a quentes (Scholle & Ulmer-Scholle, 2003; Flügel, 2010). Os equinoides, por sua vez, indicam ambientes rasos (< 100 m de profundidade) com águas temperadas a quentes (Villalba, 2009). Já os corais Tabulata reforçam a ideia de ambiente euhalino e fótico, devido a suposta relação de simbiose com algas fotossintetizantes (Scholle & Ulmer-Scholle, 2003; Braga *et al.* 2009).

497 Quanto a energia hidrodinâmica do meio, os corais Tabulata sugerem baixa energia, já
498 que são raramente encontrados em ambientes de alta energia (Clarkson, 2007), o que é
499 sustentando pelo arcabouço matriz suportado observado.

500 O domínio de laguna protegida de intermaré, identificado por Matsuda (2002) e 501 também descrito por Moutinho (2006), Neves (2009), Lima (2010), Silva (2014), Souza (2016) e Teixeira (2017), associa aos ambientes lagunares de baixa energia e semi-restritos as 502 503 microfácies wackstone bioclástico, mudstone bioclástico peloidal, mudstone bioclástico com terrígenos a ostracodes, wackstone bioclástico, packstone bioclástico a equinodermas, 504 505 floatstone com braquiópodes, wackestone com braquiópodes e wackestone recristalizado. Neste trabalho a microfácies wackstone com braquiópodes e crinoides, conforme observado 506 507 acima, apresenta características comuns às microfácies relacionadas ao domínio de lagunas 508 por estes autores.

509 **MFT-04** é caracterizado pela influência de correntes de maré, com energia 510 hidrodinâmica fortemente agitada e salinidade tendendo de mixohalina a hiperhalina, o que 511 aponta para um ambiente de CANAIS DE MARÉ (Zona de Intermaré Inferior/Inframaré). 512 Esta interpretação baseia-se, principalmente, no significado paleoecológico dos foraminíferos 513 aglutinantes, gastrópodes e ostracodes (Biofáceis 03), no significado sedimentológico de 514 pelóides, oncólitos, oóides e intraclastos (Associação 05) e na textura grão suportada das 515 rochas da microfácies Ga.

Foraminíferos aglutinantes neríticos são em geral eurialinos e comumente encontrados em ambientes marinhos marginais influenciados por maré, tais como pântanos, canais de maré e baías interdistributárias (Wightman *et al.*,1994). A associação com gastrópodes e ostracodes, também considerados eurialinos e comuns em ambientes em que há flutuações de salinidade neste domínio (Gainey Jr. & Greenberg, 1977; Gili & Martinell, 2009; Posada *et al.*, 2009, Kültz, 2015), reforçam essa ideia. Assim, quanto a salinidade, sugere-se um ambiente variando de mixohalino a hiperhalino.

523 Segundo Flügel (2010), a ocorrência de pelóides e oncólitos pode estar relacionada a 524 influência de correntes de marés, enquanto que os oóides podem estar relacionados tanto a 525 condições hidrodinâmicas quanto a variações de salinidade e, os intraclastos, por sua vez, 526 podem ter sua natureza na erosão e retrabalhamento carbonático por correntes de maré. Deste 527 modo, a interpretação de um ambiente influenciado por maré para a associação destes grãos é 528 condizente com o significado sedimentólogico associado a eles.

Na literatura analisada sobre os modelos paleoambientais das sucessões de rochas associadas a Formação Itaituba, não se observa o detalhamento de fácies e/ou microfácies relacionadas ao domínio de canais de maré. Porém, em vista da paleoecologia dos táxons e do significado sedimentológicos dos grãos não-esqueletais identificados neste trabalho, sugere-se a especificação deste ambiente de sedimentação. Além disso, o posicionamento deste ambiente dentro da zona de intermaré inferior/inframaré corresponde a zona comumente relacionada ao domínio de barras bioclástica.

Deste modo, este trabalho vem propor uma configuração de canais de maré que segmentam os depósitos de barras bioclástica nas zonas de intermaré inferior/inframaré. O que, de acordo com Carozzi *et al.* (1972), Figueiras (1983), Silva (1996), Matsuda (2002), Neves (2009), Lima (2010), Silva (2014), Souza (2016) e Teixeira (2017), condiz com as microfácies relacionadas a este domínio paleoambiental (*e. g., packstone* a foraminíferos, *grainstone* bioclástico com foraminíferos, *grainstone* bioclástico oolítico, *grainstone* peloidal oolítico, *grainstone* oolítico e *grainstone* com oóides). 543 **MFT-05** é caracterizado por ambiente com salinidade exclusivamente euhalina, 544 substrato rígido, eutrófico, fótico, com águas temperadas a quentes e condições 545 hidrodinâmicas moderadas a elevadas, aqui interpretado como BARRAS BIOCLÁSTICAS 546 (Zona de Intermaré Inferior/Inframaré). Esta interpretação baseia-se, principalmente, na 547 paleoecologia de braquiópodes, crinoides, fusulinídeos, briozoários, bivalves, corais Rugosa e 548 foraminíferos miliolídeos (Biofáceis 01 e 02) e na textura grão suportada das rochas da 549 microfácies Gb, Pb e Gf.

Braquiópodes, crinoides, briozoários e corais Rugosa sugerem substratos rígidos, por serem bentônicos sésseis e suspensívoros (Flügel, 2010; Pereira, 2011). Quanto à salinidade, braquiópodes, crinóides, foraminíferos fusulinídeos e corais Rugosa sugerem um ambiente euhalino, pois são organismos estenoalinos, assim como briozoários e bivalves, que embora sejam eurihalinos, no carbonífero foram preferencialmente euhalinos (Gainey Jr. & Greenberg, 1977; Kültz, 2015).

No que se refere à inferência da zona fótica, a associação destes organismos é interpretada como característica destas condições de luminosidade (Klemm *et al.*, 2008; Nichols, 2009; Flügel, 2010). O que é reforçado, particularmente, pela representativa frequência de fusulinídeos, organismos que, de acordo com Fadel (2008), são comumente associados a águas rasas fóticas em função de seu diminuto tamanho e por serem interpretados como hospedeiros de algas fotossintetizantes, com as quais desenvolvem relação de simbiose.

Quanto à oxigenação, a fauna bentônica diversa e abundante sugere um paleoambiente dentro da zona aeróbica (região com a presença de oxigênio livre), já que a oxigenação é um fator bio-limitante para invertebrados marinhos (Clark & Mosier, 1988; Boyer & Droser, 2009; Nichols, 2009; Flügel, 2010). Quanto à temperatura da massa d'água (um dos fatores mais importantes no controle de processos vitais e, portanto, na distribuição dos organismos), estes invertebrados marinhos bentônicos sugerem paleoambientes de águas temperadas a quentes de acordo com suas preferências paleoecologicas no Carbonífero (Flügel, 2010).

Quanto à energia hidrodinâmica do meio, leves diferenças são observadas entre as microfácies que compõem MFT-05, distinguindo-se porções mais distais e outras mais proximais, porém ambas dentro do mesmo domínio ambiental. Neste sentido, a paleoecologia de braquiópodes e crinoides predominantes nas microfácies Pb e Gb (Biofáceis 01), somada a textura grão suportada, intensa fragmentação e mal selecionamento destas rochas, caracterizam condições hidrodinâmicas de elevada energia e teriam, possivelmente, sido depositadas em porções mais distais. Por sua vez, a paleoecologia dos fusulinídeos e a morfologia alongada das testas (indicativa de um ambiente de menor energia e possivelmente
mais restrito, segundo Fadel, 2008), a paleoecologia de miliolídeos (comuns em ambientes
mais restritos, segundo Murray, 1970), a menor fragmentação de bioclastos (*e. g.*, fragmentos
de corais Rugosa mais preservados) e o maior selecionamento dos grãos na microfácies Gf
(Biofáceis 02), caracterizariam condições hidrodinâmicas mais amenas, associadas a barras
mais proximais.

De acordo com Carozzi et al. (1972), Figueiras (1983), Silva (1996), Matsuda (2002), 583 Neves (2009), Lima (2010), Silva (2014), Souza (2016) e Teixeira (2017), o domínio de 584 585 barras bioclástica é considerado a área de maior produção carbonática, tendo como microfácies características os packstone a foraminíferos, packstone a briozoários, packstone a 586 587 braquiópodes e crinoides, packstone a braquiópodes, grainstone bioclástico com braquiópodes, grainstone bioclástico com foraminíferos, grainstone bioclástico oolítico, 588 589 grainstone peloidal oolítico, grainstone oolítico e grainstone com oóides. Neste trabalho a microfácies packstone com braquiópodes, grainstone com braquiópodes e grainstone com 590 591 fusulinídeos se enquadra bem nas características e microfácies relacionadas ao domínio de 592 barras bioclásticas por estes autores.

Quanto às diferenças hidrodinâmicas em porções do domínio de barras bioclásticas, Moutinho (2006) associa as microfácies *grainstone* bioclástico peloidal a foraminíferos e *packstone* bioclástico peloidal com porções de energia hidrodinâmica mais baixa, enquanto que as microfácies *grainstone* bioclástico e *grainstone* oolítico com porções de alta energia. As características destas microfácies são condizentes com as interpretações e diferenciações relacionadas ao índice de energia do meio dentro do domínio de barras bioclástica feitas neste trabalho.

Assim, com base nas correlações acima descritas, corrobora-se neste trabalho, o modelo deposicional de plataforma carbonática em rampa sugerido por estes autores, inferindo-se, neste contexto, para a área estudada, o desenvolvimento de um sistema deposicional marinho raso, dominado por sedimentação carbonática, influenciado por maré, sob regime climático dominante de clima semiárido e temperatura da massa d'água variando de temperada a quente (Fig. 5).

608 Figura 5. Modelo paleoambiental das seções estudadas baseados nos tipos de microfácies

Figure 5. Paleoenvironmental model of the sections studied based on the types of microfacies.

Considerando os dados obtidos neste estudo, foi possível definir um modelo de
sedimentação carbonática em plataforma interna marinha rasa sob condições climáticas
semiáridas para esta sucessão e a identificação de cinco paleoambientes de sedimentação: *sabhka* costeira semi-restrita, planície de maré, laguna, canais de maré e barras bioclásticas.

O ambiente de SABHKA COSTEIRA SEMI-RESTRITA foi caracterizado como um
ambiente marinho proximal, sob regime climático semiárido, possivelmente semi-restrito e
mixohalino a hiperhalino. Sendo identificado a partir das interpretações do tipo de
microfácies MFT-01, o qual é representado pela microfácies *Mudstone* com evaporitos (Me),
caracterizada pela Associação 01 e índice de energia Tipo I (águas calmas).

O ambiente de PLANÍCIE DE MARÉ foi caracterizado como ambiente marinho 621 622 proximal, com contribuições continentais e/ou transicionais, salinidade possivelmente mixohalina tendendo a hiperhalina, sob condições climáticas semi-áridas, oxigenadas e com 623 624 índice de energia típico de águas calmas. Sendo identificado a partir das interpretações do tipo de microfácies MFT-02, o qual é representado pelas microfácies Wackstone com terrígenos 625 (Wt), Wackstone com quartzo autigênico e fitoclastos (Wqf) e Boundstone com intraclastos 626 627 (Bi). Caracteriza-se, ainda, pelas Associações 02, 03 e 04 e índice de energia Tipo I (águas calmas). 628

O ambiente de LAGUNA foi caracterizado como ambiente com águas temperadas a quentes, euhalino, fótico, bem oxigenado e ricos em nutrientes (eutrófico). Sendo identificado a partir das interpretações do tipo de microfácies MFT-03, o qual é representado pela microfácies *Wackstone* com braquiópodes e crinóides (Wbc) e caracterizado pela Biofácies 04 e índice de energia Tipo I (águas calmas).

O ambiente de CANAIS DE MARÉ foi caracterizado como ambiente influenciado por correntes de maré, com energia hidrodinâmica fortemente agitada e salinidade tendendo de mixohalino a hiperhalino. Sendo identificado a partir das interpretações do tipo de microfácies MFT-04, o qual é representado pela microfácies *Grainstone* com aglutinantes (Ga) e caracterizada pela Biofácies 04, pela Associação 05 e pelo índice de energia Tipo V (fortemente agitado).

O ambiente de BARRAS BIOCLÁSTICAS foi caracterizado como ambiente nerítico
raso de plataforma continental interna (intermaré/submaré), com águas temperadas a quentes,
oxigenado, com substrato rígido, fótico, euhalino e eutrófico. Sendo identificado a partir das
interpretações do tipo de microfácies MFT-05, o qual é composto pelas microfácies

Packstone com braquiópodes (Pb), *Grainstone* com braquiópodes (Gb) e *Grainstone* com
fusulinídeos (Gf). Caracterizando-se pela Biofácies 01, Biofácies 02 e índices de energia Tipo
IV (moderadamente agitado) e Tipo V (fortemente agitado).

Estes resultados foram possíveis graças à identificação de parâmetros físicos, químicos e biológicos e processos envolvidos na evolução ambiental e sedimentar dos paleoambientes de sedimentação através da definição das microfácies, biofácies, associações não esqueletais e tipos de microfácies, os quais, reconhecidamente, refletem parâmetros físicos, químicos e biológicos que caracterizaram estes ambientes, assim como os processos sedimentares que atuaram durante a história deposicional da sucessão de rochas analisadas, assim como, da evolução sedimentar da unidade litoestratigráfica estudada.

Observou-se, ainda, que as amostras apresentam muitas feições diagenéticas, incluindo recristalização, porosidades secundárias, compactação, dissolução, dentre outros. Deste modo, um trabalho de diagênese seria bastante interessante e recomendado, pois este contribuiria para o entendimento dos processos pós-deposicionais que atuaram nas rochas. Assim, mudanças nas condições de pressão, temperatura, Eh, pH e pressão de água, processos de dissoluções e precipitações a partir das soluções aquosas existentes nos poros, poderiam ser identificadas.

661

Agradecimentos. Agradecemos à CAPES pelo incentivo financeiro, o qual possibilitou a realização
deste trabalho. Ao Laboratório de Sedimentologia e Estratigrafia da Petrobrás, Unidade de Manaus
(UO/AM), pela confecção das lâminas petrográficas.

- 665
- 666 Referências bibliográficas

667

BOYER, D. L. & DROSER, M. L. 2009. Palaeoecological patterns within the dysaerobic
biofacies: Examples from Devonian black shales of New York state. *Palaeogeography, Palaeoclimatology, Palaeoecology*. Elsevier, 276 (2009), p. 206–
216.

<sup>AQUILANO, D., OTÁLORA, F., PASTERO, L. & GARCÍA-RUIZ, J. M. 2016. Three study
cases of growth morphology in minerals: Halite, calcite and gypsum.</sup> *Progress in Crystal Growth and Characterization of Materials*, Elsevier, 62 (2016), p. 227–251.

<sup>BRAGA, J. C., FERNÁNDEZ-MARTÍNEZ, E., GARCIA-BELLIDO, D., MÉNDEZBEDIA, I., MORENO-EIRIS, E., PEREJÓN, A., RODRÍGUEZ, S. & SOTO, F. 2009.
Poríferos e cnidários.</sup> *In*: CHACÓN, M. L. M. & RIVAS, P. (Org.) 2009.

- 678 Paleontologia de Invertebrados. Sociedad Española de Paleontología, Instituto
 679 Geológico y Minero de España, Universidad de Oviedo e Universidad de Granada,
 680 524 p.
- 681 CAPUTO, M. V. 1984. Stratigraphy, tectonics, paleoclimatology and paleogeography of
 682 northern basins of Brazil. Tese (Doutorado) University of Califórnia, Santa Bárbara,
 683 586 p.
- 684 CAROZZI, A. V., ALVES, R. J & CASTRO, J. C. 1972. Controle tectônico sinsedimentar
 685 dos carbonatos permocarboníferos das Formações Itaituba e Nova Olinda da bacia do
 686 Amazonas, Brasil. In: Congresso Brasileiro de Geologia, 26, Belém, Anais, 1972.
- 687 CLARK, S. H. B. & MOSIER, E. L. 1989. Barita nodules in Devonian shale and mudstone of
 688 western Virginia. U.S. Geological Survey Bulletin, 1989.
- 689 CLARKSON, E. N. K. 2007. *Invertebrate palaeontology and evolution*. Blackwell Science, 4
 690 ed., 2007.
- 691 CPRM, Serviço Geológico do Brasil, 2016. GEOBANK Download de arquivos vetoriais.
 692 Disponível em: br/>http://geobank.cprm.gov.br/>http://geobank.cprm.gov.br/>http://geobank.cprm.gov.br/>http://geobank.cprm.gov.br/>http://geobank.cprm.gov.br/>http://geobank.cprm.gov.br/. Acesso em: 23 de fevereiro de 2016.
- 693 CPRM, Serviço Geológico do Brasil, 2010. Geodiversidade do Estado do Amazonas.
 694 Programa de Geologia do Brasil do Estado do Amazonas, Manaus, 2010. p.147-148.
- 695 CUNHA, P.R.C. 2000. Análise estratigráfica dos sedimentos eo-mesodevonianos da porção
 696 ocidental da Bacia do Amazonas sob a ótica da estratigrafia de sequências no interior
 697 cratônico. Dissertação (Mestrado) Universidade Federal do Rio Grande do Sul, Porto
 698 Alegre, 263 p.
- CUNHA, P.R.; MELO, J.H.G.; SILVA, O.B. 2007. Bacia do Amazonas. Boletim Geociências
 Petrobrás, Rio de janeiro, v. 15, n.2, p. 227-251, maio/nov. 2007.
- DUNHAM, R. J. 1962. Classification of carbonate rocks according to depositional texture. *In*:
 Ham, W.E. (Ed.). *Classification of carbonate rocks*. Tulsa. American Association of
 Petroleum Geologists, Memoir 1, p. 108-122.

- FADEL, M. K. B. 2008. Evolution and geological significance of larger benthic foraminifera.
 Developments in Palaeontology & Stratigraphy, 21. Elsevier, 5 ed., 2008, 571 p.
- FLÜGEL, E. 2010. Microfaceis of carbonate rocks. *Analysis, Interpretation and Application*.
 Springer, 2 ed., 996 p.
- GAINEY Jr., L. F. & GREENBERG, M. J. 1997. Physiological Basis of the Species
 Abundance-Salinity Relationship in Molluscs: A Speculation. *Marine Biology*, 1997.
 p. 41-49.
- GILI, C. & MARTINELL, J. 2009. Clase gastropoda. *In*: CHACÓN, M. L. M. & RIVAS, P.
 (Org.) 2009. *Paleontologia de Invertebrados*. Sociedad Española de Paleontología,
 Instituto Geológico y Minero de España, Universidad de Oviedo e Universidad de
 Granada. 2009. 524 p.
- HASUI, Y.; CARNEIRO, C.D.R.; ALMEIDA, F.F.M.; BARTORELLI, A. 2012. Geologia do
 Brasil. São Paulo: Ed. Beca. 900 p.
- KLEMM, E. B., REED, S. A., POTTENGER III, F. M., PORTER, C. & SPEITEL, T. W.
 2008. The living ocean. *Biology and technology of the marine environment*. University
 of Hawai'i, 2008.
- KÜLTZ, D. 2015. Physiological mechanisms used by fish to cope with salinity stress. *The Journal of Experimental Biology*, v. 218, 2015.
- LIMA, H. P. 2010. A sucessão siliclástica-carbonática Neocarbonáfera da Bacia do
 Amazonas, regiões de Monte Alegre e Itaituba (PA). Dissertação (Mestrado em
 Geociências) Universidade do Pará, Belém (PA), 2010.
- MATSUDA, N. S. 2002. Carbonate sedimentation cycle and origin of dolomite in the Lower
 Pensylvanian intracratonic Amazon Basin, Northern Brazil. Master Thesis –
 University of Tokyo, Departament of Earth and Planetary Science, Tokyo, Japan,
 2002. 223 p.
- MENDES, M. C. S. 2015. Estudo de Palinofácies e Biomarcadores de uma sondagem
 realizada na região de Alcobaça (Bacia Lusitânica). Dissertação (mestrado) –
 Universidade do Porto, 2015.

- MENEZES, T. R. & MENDONÇA-FILHO, J. G. 2004. Aplicação de fácies orgânica na análise paleoceanográfica do talude continental superior recente da Bacia de Campos,
 RJ, BRASIL. Revista Brasileira de Paleontologia, v. 7, n. 2. p. 177-188, jul./ago. 2004.
- MIALL, A. D. 1977. A review of the braided-river depositional environment. *Earth-Science Reviews*, v. 13, n.1, 1977.
- MILANI, E.J.; THOMAZ FILHO, A. 2000. Sedimentary Basins of South America. In:
 CORADANI, U.G.; MILANI, E.J.; FILHO, A.T.; CAMPOS, D.A. (Ed.) Tectonic
 Evolution of South America. Rio de Janeiro, [s.n.]: 2000. p. 389-452. International
 Geological Congress, 31, 2000, Rio de Janeiro.
- MOUNT, J. 1985. Mixed siliciclastic and carbonate sediments: a proposed first-order textural
 and compositional classification. *Sedimentology*, v.32, 1985. p. 435-442.
- MOUTINHO, L. P. 2006. Assinaturas tafonômicas dos invertebrados da Formação Itaituba –
 aplicação como ferramenta de análise estratigráfica e paleoecológica na seção
 pensilvaniana aflorante na porção sul da Bacia do Amazonas, Brasil. Tese (Doutorado)
 Universidade Federal do Rio Grande do Sul, Porto Alegre (RS), 2006. 325 p.
- MURRAY, J. W. 1970. The foraminifera of the hypersaline Abu Dhabi Lagoon, Persian Gulf.
 Lethaia, vol. 3, p. 51-68. Oslo, janeiro de 1970.
- NASCIMENTO, S., LEMOS, V. B., SCOMAZZON, A. K., MATSUDA, N. S. e SILVA, C.
 P. 2010. First occurrence of Ellisonia, Gondolella and Ubinates (Conodonts) in
 Itaituba Formation, Pensylvanian of Amazonas Basin, Brazil. Gaea *Journal of Geoscience*, vol. 6, n. 2, p. 56-62, jul/dez 2010.
- NEVES, M. P. 2009. Petrografia de carbonatos da Formação Itaituba (Carbonífero Superior),
 Bacia do Amazonas, região de Monte Alegre, PA. Trabalho de conclusão de curso
 (Bacharel em Geologia) Faculdade de Geologia, Universidade do Pará, Belém (PA),
 2009.
- 757 NICHOLS, G. 2009. *Sedimentology and Stratigraphy*. Wiley-Blackwell, 2 ed., 2009.

- PEREIRA, P. A. 2011. Aspectos taxonômicos e paleoecológicos dos braquiópodes e moluscos (bivalves) da Formação Inajá (Devoniano), Bacia do Jatobá (PE).
 Dissertação (mestrado) Universidade Federal de Pernambuco, Recife (PE), 2011.
- 761 POSADA, L. C. S., ARBIZU, M., DELCLÒS, X., GOZALO, R., LIÑÁN, E., PEÑALVER,
- 762 E., RÁBANO, I. & RODRÍGUEZ-LÁZARO, J. 2009. Artrópodos. In: CHACÓN, M.
- 763 L. M. & RIVAS, P. (Org.) 2009. Paleontologia de Invertebrados. Sociedad Española
- de Paleontología, Instituto Geológico y Minero de España, Universidad de Oviedo e
- 765 Universidad de Granada. 2009. 524 p.
- SCHOLLE, P. A. & ULMER-SCHOLLE, D. S. 2003. A Color Guide to the Petrography of
 Carbonate Rocks: Grains, textures, porosity, diagenesis. The American Association of
 Petroleum Geologists Tulsa, Oklahoma, U.S.A. AAPG Memoir 77, 2003.
- SCOMAZZON, A. K. & LEMOS, V. B. 2005. Diplognathodus occurrence in the Itaituba
 Formation, Amazonas Basin, Brazil. Revista Brasileira de Paleontologia 8(3):203-208,
 set./dez. 2005.
- SILVA, O. B. 1996. Ciclicidade sedimentar no Pensilvaniano da Bacia do Amazonas e o
 controle dos ciclos de sedimentação na distribuição estratigráfica dos conodontes,
 fusulinídeos e palinomorfos. 1996. 331 f. Tese (Doutorado) Instituto de Geociências,
 Universidade Federal do Rio Grande do Sul, Porto Alegre (RS), 1996.
- SILVA, M. A. M., SCHREIBER, B. C. & SANTOS, C. L. 2000. Evaporitos como recursos
 minerais. Brazilian Journal of Geophysics, Vol. 18(3), 2000.
- SILVA, P. A. S. 2014. Paleoambiente e diagênese da Formação Itaituba, Carbonífero da
 Bacia do Amazonas, com base em testemunho de sondagem, região de Uruará, Pará.
 Dissertação (Mestrado em Geociências) Universidade Federal do Pará, Belém (PA),
 2014.
- SILVA, P. A. S., AFONSO, J. W. L., SOARES, J. L. e NOGUEIRA, A. C. R. 2015.
 Depósitos de plataforma mista, Neocarbonífero da Bacia do Amazonas, região de
 Uruará, estado do Pará. Geol. USP, Sér. cient., São Paulo, v. 15, n. 2, p. 7-98, Junho
 2015.

- SOUZA, E. S. 2016. Microfácies e interpretação paleoambiental dos carbonatos da Formação
 Itaituba (Grupo Tapajós) na região do Município de Itaituba PA. Trabalho de
 conclusão de curso (Bacharel em Geologia) Universidade Federal do Amazonas,
 Manaus (AM), 2016.
- SUITS, N. S. & WILKIN, R. T. 1998. Pyrite formation in the water column and sediments of
 a meromictic lake. *Geology*, v. 26; n. 12; p. 1099–1102, dezembro de 1998.
- SWEENEY, R. E. & KAPLAN, I. R. 1973. Pyrite Framboid Formation: Laboratory Synthesis
 and Marine Sediments. Institute of Geophysics and Planetary Physics, University of
 California at Los Angeles, Los Angeles, California. Economic Geology, v. 68, 1973.
 p. 618-634.
- TEIXEIRA, V. M. 2017. Microfácies carbonáticas da Formação Itaituba (Grupo Tapajós,
 Bacia do Amazonas) na região do Rio Jatapú, AM. Trabalho de conclusão de curso
 (Bacharel em Geologia) Universidade Federal do Amazonas, Manaus (AM), 2017.
- VILLALBA, M. P. 2009. Clase Echinoidea. *In:* CHACÓN, M. L. M. & RIVAS, P. (Org.)
 2009. *Paleontologia de Invertebrados*. Sociedad Española de Paleontología, Instituto
 Geológico y Minero de España, Universidad de Oviedo e Universidad de Granada.
 2009. 524 p.
- WIGHTMAN, W. G., SCOTT, D. B., MEDIOLI, F. S. & GIBLING, M. R. 1994.
 Agglutinated foraminifera and thecamoebians from the Late Carboniferous Sydney
 coalfield, Nova Scotia: paleoecology, paleoenvironments and paleogeographical
 implications. *Palaeogeography, Palaeoclimatology, Palaeoecology*. Elsevier Science
 B.V., Amsterdam, v. 106, 1994. p. 187-202.