
FORMAL VERIFICATION TO ENSURING THE

MEMORY SAFETY OF C++ PROGRAMS

A DISSERTATION

SUBMITTED TO THE POSTGRADUATE PROGRAM IN INFORMATICS

OF FEDERAL UNIVERSITY OF AMAZONAS

IN FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

Felipe R. Monteiro

April 2020

© Copyright by Felipe R. Monteiro 2020

All Rights Reserved

ii

Ficha Catalográfica

S725v Formal Verification to Ensuring the Memory Safety of C++
Programs / Felipe Rodrigues Monteiro Sousa . 2020
 71 f.: il. color; 31 cm.

 Orientador: Lucas Carvalho Cordeiro
 Dissertação (Mestrado em Informática) - Universidade Federal do
Amazonas.

 1. Software Verification. 2. Model Checking. 3. c++. 4. Memory
Safety. 5. Engenharia de Software. I. Cordeiro, Lucas Carvalho. II.
Universidade Federal do Amazonas III. Título

Ficha catalográfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

Sousa, Felipe Rodrigues Monteiro

Abstract

In the last three decades, memory safety issues in low-level programming languages such as C or

C++ have been one of the significant sources of security vulnerabilities; however, there exist only

a few attempts with limited success to cope with the complexity of C++ program verification.

This work describes and evaluates a novel verification approach based on bounded model checking

(BMC) and satisfiability modulo theories (SMT) to verify C++ programs formally. This verification

approach analyzes bounded C++ programs by encoding various sophisticated features that the C++

programming language o↵ers into SMT, such as templates, sequential and associative containers,

inheritance, polymorphism, and exception handling. We formalize these sophisticated features within

our formal verification framework using a decidable fragment of first-order logic and then show how

state-of-the-art SMT solvers can e�ciently handle that. We implemented this verification approach

on top of the E�cient SMT-Based Context-Bounded Model Checker (ESBMC). We compare ESBMC

to LLBMC and DIVINE, which are state-of-the-art verifiers to check C++ programs directly from

LLVM bitcode. The experimental evaluation contains a set of over 1, 500 benchmarks from several

sources (e.g., Deitel & Deitel, NEC Corporation, and GCC test suite), which covers several C++

features. Experimental results show that ESBMC can handle a wide range of C++ programs,

presenting a higher number of correct verification results, and at the same time, it reduces the

verification time if compared to LLBMC and DIVINE tools.

Keywords: Software Verification, Model Checking, C++, Memory Safety.

iv

Acknowledgments

I would like to thank my supervisor, Dr. Cordeiro, for his support, guidance, encouragement, and

friendship during the last seven years. His support helped me to become a better professional and a

better researcher throughout my academic life. Thanks for allowing me to be part of your research

group. Many thanks to my colleagues from the Federal University of Amazonas for helping me with

many valuable insights in my research, and for always encouraged me to not give up during the hard

times. In fact, I would also like to thank all my friends for always being there for me. Thanks for

the fun moments, and to remind me to put the best of me in every situation. Most importantly, I

would especially like to thank my family for the love, support, and constant encouragement I have

gotten over the years. In particular, I would like to thank my parents and my grandma for their

help in my education and for having always believed in me. I dedicate this dissertation to them. I

also dedicate this work to my Gabriel, for giving me all the love I need to keep ongoing.

v

Publications

i. Felipe R. Monteiro, Erickson H. da S. Alves, Isabela S. Silva, Hussama I. Ismail, Lucas

C. Cordeiro, and Eddie B. de Lima Filho. 2018. ESBMC-GPU – A Context-Bounded Model

Checking Tool to Verify CUDA Programs. Sci. Comput. Program. 152, C, 63-69, 2018. DOI:

https://doi.org/10.1016/j.scico.2017.09.005.

ii. Felipe R. Monteiro, Mario A. P. Garcia, Lucas C. Cordeiro, and Eddie B. de Lima Filho.

Bounded Model Checking of C++ Programs based on the Qt Cross-Platform Framework (Journal-

First Abstract). In Proceedings of the 33rd ACM/IEEE International Conference on Auto-

mated Software Engineering (ASE’18). ACM, New York, NY, USA, 954–954, 2018. DOI:

https://doi.org/10.1145/3238147.3241981.

iii. Mikhail R. Gadelha, Felipe R. Monteiro, Jeremy Morse, Lucas C. Cordeiro, Bernd Fischer,

and Denis A. Nicole. ESBMC 5.0: An Industrial-Strength C Model Checker. In Proceed-

ings of the 33rd ACM/IEEE International Conference on Automated Software Engineering

(ASE’18). ACM, New York, NY, USA, 888-891, 2018. DOI: https://doi.org/10.1145/

3238147.3240481.

iv. Mikhail R. Gadelha, Felipe R. Monteiro, Lucas C. Cordeiro, and Denis A. Nicole. Towards

Counterexample-Guided k-Induction for Fast Bug Detection. In Proceedings of the 2018 26th

ACM Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE’18). ACM, New York, NY, USA, 765-769,

2018. DOI: https://doi.org/10.1145/3236024.3264840.

v. Felipe R. Monteiro, Mikhail R. Gadelha, and Lucas C. Cordeiro. Continuous Formal Verifi-

cation at Scale. In 10th Workshop on Tools for Automatic Program Analysis (TAPAS’19).

Online proceedings, Porto, Portugal, 2019.

vi. Mikhail R. Gadelha, Felipe R. Monteiro, Lucas C. Cordeiro, and Denis A. Nicole. Scalable

and Precise Verification based on k-Induction and Floating-Point Theory. In Proceedings

of the 23rd International Conference on Fundamental Approaches to Software Engineering

(FASE’20). Springer International Publishing, 2020.

vi

vii. Nathan Chong, Byron Cook, Konstantinos Kallas, Kareem Khazem, Felipe R. Monteiro,

Daniel Schwartz-Narbonne, Serdar Tasiran, Michael Tautschnig, and Mark R. Tuttle. Code-

Level Model Checking in the Software Development Workflow. In Proceedings of the 42nd

International Conference on Software Engineering (ICSE’20). ACM, New York, NY, USA,

2020.

Media

viii Felipe R. Monteiro. Verificação Formal e seu Papel no Desenvolvimento de Sistemas

Cyber-F́ısicos Cŕıticos. Eldorado, 2018. Available at Blog Instituto Eldorado1.

1https://bit.ly/35k79AT

vii

Contents

Abstract iv

Acknowledgments v

Publications vi

1 Introduction 1

1.1 Problem & Motivation . 1

1.2 Objectives . 2

1.3 Contributions . 2

1.4 Outline . 3

2 Background Theory 4

2.1 Satisfiability Modulo Theories . 4

2.1.1 Arrays and Tuples . 4

2.2 Bounded Model Checking . 5

2.3 ESBMC Architecture . 6

3 Related Work 8

4 SMT-based Bounded Model Checking of C++ Programs 12

4.1 Templates . 12

4.2 Standard C++ Libraries . 17

4.2.1 Core Language for Standard Containers . 18

4.2.2 Sequential Containers . 19

4.2.3 Associative Containers . 23

4.2.4 Correctness . 26

4.3 Inheritance & Polymorphism . 26

4.4 Exception Handling . 30

viii

5 Experimental Evaluation 36

5.1 Objectives . 36

5.2 Description of the Benchmarks . 36

5.3 Experimental Setup . 37

5.4 Experimental Results . 38

5.5 Discussion . 41

6 Conclusions 44

Bibliography 47

A Experimental Data 56

ix

List of Tables

3.1 Related work comparison. 8

4.1 Overview of the C++ Operational Model. 18

4.2 Rules to connect throw expressions and catch blocks. 35

A.1 ESBMC v2.0 experimental data. 57

A.2 DIVINE v4.0.22 experimental data. 58

A.3 LLBMC v2013.1 experimental data. 59

x

List of Figures

2.1 ESBMC architectural overview. 6

4.1 Function template example. 15

4.2 Example of IR creation. 16

4.3 The program of Fig. 4.1 in SSA form. 17

4.4 Operational model illustration of the STL sequential containers. 20

4.5 Operational model illustration of the STL associative containers. 23

4.6 Vehicle class hierarchy UML diagram. 27

4.7 C++ program using a simplified version of the UML diagram in Fig. 4.6. The program

nondeterministically cast derived class to a base class (either Vehicle or Motorcycle

to Car). The goal is to check if the correct number of wheels() is called, from the

base class. 28

4.8 GOTO instructions generated for the program in Fig. 4.7. 29

4.9 The program of Fig. 4.7 in SSA form. 30

4.10 Try-catch example of throwing an integer exception. 31

4.11 Try-catch conversion to GOTO instructions. 32

4.12 The program of Fig. 4.10 in SSA form. 32

5.1 Comparison of verification results between ESBMC v2.0, DIVINE v4.0.22, and LLBMC

v2013.1. 38

5.2 Comparison of verification results between ESBMC v2.0, DIVINE v4.0.22, and LLBMC

v2013.1 regarding general-purpose benchmarks in C++03. 41

5.3 Comparison of accumulative verification time and accumulative memory consumption

among ESBMC v2.0, DIVINE v4.0.22, and LLBMC v2013.1 throughout the verifi-

cation process of all benchmarks. 42

xi

Chapter 1

Introduction

In this work, we describe and evaluate a novel SMT-based BMC approach to verify C++ programs

using an operational model, an abstract representation of the Standard C++ Libraries (SCL) that

reflects their semantics. We integrate this approach into the E�cient SMT-Based Context-Bounded

Model Checker (ESBMC) [29,43–45] and formalize how ESBMC handles templates, sequential and

associative containers, inheritance, polymorphism, and exception handling using a decidable frag-

ment of the first-order logic [16].

1.1 Problem & Motivation

The main problem this work aims to solve is how to verify the memory safety properties of C++

programs automatically. For more than 30 years now, memory safety issues in low-level programming

languages such as C or C++ have been one of the major sources of security vulnerabilities [90]. For

instance, the Microsoft Security Response Center reported that approximately 70% of their security

vulnerabilities each year are due to memory safety issues in their C and C++ code [66]. Beyond

memory safety, undefined behavior (e.g., signed integer overflow) also represents another crucial

source of errors in C and C++ programs that could potentially lead to security issues [53].

Software verification plays a vital role in ensuring the overall product reliability. Over the last

15 years, formal techniques have been dramatically evolved [26], its adoption in industry has been

growing [22, 27, 36, 83], and several tools to formally verify C programs have been proposed [12];

however, there exist only a few attempts with limited success to cope with the complexity of C++

program verification [4, 15, 40, 50, 69–71, 78, 87, 91–93, 99]. The main challenge here is to support

sophisticated features that the C++ programming language o↵ers, such as templates, sequential

and associative template-based containers, inheritance, polymorphism, and exception handling. At

the same time, to be attractive for mainstream software development, C++ verifiers must handle

large programs, maintain high speed and soundness, in addition to supporting legacy designs.

1

CHAPTER 1. INTRODUCTION 2

1.2 Objectives

This work aims to demonstrate the e�ciency and e↵ectiveness of formal verification techniques to

prove the absence of memory safety and undefined behavior issues in C++ programs. This general

goal is correlated with the following specific ones:

i. Provide a logical formalization of essential features that the C++ programming language

o↵ers, such as templates, sequential and associative containers, inheritance, polymorphism,

and exception handling.

ii. Provide a set of abstractions to the Standard C++ Libraries (SCL) that reflects their semantics,

in order to enable the verification of functional properties related to the use of these libraries.

iii. Extend an existing verifier to handle the verification of C++ programs based on (i) and (ii) and

evaluate its e�ciency and e↵ectiveness in comparison to similar state-of-the-art approaches.

1.3 Contributions

In an attempt to cope with ever-growing system complexity, bounded model checking (BMC) based

on satisfiability modulo theories (SMT) has been introduced as a complementary technique to

Boolean satisfiability (SAT) for alleviating the state explosion problem [14]. Formal verification

of source code can have a significant positive impact on the quality of code. In particular, formally

verified specifications of code provide precise, machine-checked documentation for developers and

consumers of a codebase. They improve code quality by ensuring that the program’s implementation

reflects the developer’s intent. Unlike testing/fuzzing, which can only validate code against a set

of concrete inputs, formal proof can assure that the code is both secure and correct for all possible

inputs [13,97]; however, it is important to highlight that one does not invalidate the other and both

approaches are fundamental to achieve higher levels of software quality.

In this context, R. Gadelha et al. [42,80] initiated the support of the formal verification of C++

programs in ESBMC. The previous work focused on the support for templates (partially), sequential

containers, and the implementation of exception handling in ESBMC. We describe and evaluate

novel approaches to handle sequential and associative containers, in addition to the formalization

of ESBMC’s mechanisms to handle inheritance, polymorphism, and all its throw & catch exception

rules. ESBMC can check for undefined behaviors and memory safety issues such as under- and

overflow arithmetic, division-by-zero, pointer safety, array out-of-bounds violations, and user-defined

assertions. In addition to these properties, the combination of ESBMC and the C++ operational

models enables us to verify specific properties related to C++ structures (e.g., functional properties

of standard containers), via pre- and postconditions. ESBMC also provides specific strategies to

handle exceptions in C++ programs (e.g., exception specification for functions and methods), which

previous approaches could not handle [15, 40,78].

CHAPTER 1. INTRODUCTION 3

Precisely, the major contributions of this work are:

1. the formal description of how ESBMC handles primary template, explicit-template specializa-

tion, and partial-template specialization;

2. the operational model structure to handle new features from the SCL (e.g., sequential and

associative template-based containers);

3. the formalization of the ESBMC’s engine to handle inheritance & polymorphism;

4. the formalization of all throw & catch exception rules supported by ESBMC;

5. the expressive set of publicly available benchmarks designed specifically to evaluate software

verifiers that target the C++ programming language;

6. the comparative evaluation of state-of-the-art software model checkers on the verification of

C++ programs. We compare the proposed approach against the LLBMC [40], a bounded

model checker based on SMT solvers, and DIVINE [4], an explicit-state model checker, both for

ANSI-C and C++ programs. Our experimental evaluation contains a broad set of over 1, 500

benchmarks, where ESBMC reaches a success rate of 84.27%, which significantly outperforms

both LLBMC and DIVINE.

1.4 Outline

The remainder of this document is organized as follows. Section 2 gives a brief introduction to BMC

and the ESBMC architecture and describes the essential background theories of the SMT solvers.

Section 3 discusses the related work. In Section 4, we describe the main contributions: Section 4.1

presents the proposed approach to support templates; Section 4.2 presents the operational model

to replace the SCL in the verification process; Section 4.3 presents the formalization of ESBMC’s

mechanism to support inheritance & polymorphism features, respectively; and Section 4.4 formally

describes the exception handling approach in ESBMC. Furthermore, in Section 5, we present the

results of the experimental evaluation using over 1, 500 C++ benchmarks and extra data is presented

in Appendix A. The evaluation also compares the experimental results to other state-of-the-art C++

model checkers. Finally, Section 6 contains the conclusion and future directions.

Chapter 2

Background Theory

ESBMC is a bounded model checker built on an improved version of the front-end of CBMC to

generate the VCs for a given ANSI-C/C++ program, and encode them using di↵erent background

theories (i.e., linear integer and real arithmetic, and bitvectors) and SMT solvers (i.e., Boolector [75],

Z3 [33], Yices [38], MathSAT [23], and CVC4 [5]). ESBMC represents one of the most prominent

BMC tools for software verification according to the last editions of the Intl. Competition on Software

Verification (SV-COMP) [6–12,86]; in particular, it was recently ranked at the top three verifiers in

the overall ranking of SV-COMP 2018.1

2.1 Satisfiability Modulo Theories

SMT decides the satisfiability of a fragment of quantifier-free first-order formulae using a combina-

tion of di↵erent background theories and, thus, generalizes propositional satisfiability by supporting

uninterpreted functions, linear and non-linear arithmetic, bit-vectors, tuples, arrays, and other de-

cidable first-order theories. Given a theory ⌧ and a quantifier-free formula , we say that is

⌧ -satisfiable if and only if there exists a structure that satisfies both the formula and the sentences

of ⌧ , or equivalently, if ⌧ [{ } is satisfiable [17]. Given a set �[{ } of formulae over ⌧ , we say that

 is a ⌧ -consequence of �, and write � |=⌧ , if and only if every model of ⌧ [� is also a model of

 . Checking � |=⌧ can be reduced in the usual way to checking the ⌧ -satisfiability of � [{¬ }.

2.1.1 Arrays and Tuples

The most important theories for ESBMC are the array and tuple theories, which are used to model

the sequential container data structures and objects, respectively. The array theories of SMT solvers

are typically based on the McCarthy axioms [62]. The function select(a, i) denotes the value of an

1https://sv-comp.sosy-lab.org/2018/results/results-verified/

4

CHAPTER 2. BACKGROUND THEORY 5

array a at index position i and store(a, i, v) denotes an array that is exactly the same as array a

except that the value at index position i is v. Formally, the functions select and store can then be

characterized by the following two axioms [5, 18, 33]:

i = j) select(store(a, i, v), j) = v

i 6= j) select(store(a, i, v), j) = select(a, j)

Array bounds checks need to be encoded separately, as the array theories assume arrays of

unbounded size. However, arrays in software are of bounded size.

Tuples provide store and select operations similar to those in arrays, but work on the tuple

elements. Each field of the tuple is represented by an integer constant. Hence, the expression

select(t, f) denotes the field f of tuple t while the expression store(t, f, v) denotes a tuple t that at

field f has the value v and all other fields remain the same.

2.2 Bounded Model Checking

In BMC, the program to be analyzed is modeled as a state transition system, which is extracted

from the control-flow graph (CFG) [72]. This graph is built as part of a translation process from

program code to static single assignment (SSA) form. A node in the CFG represents either a (non-)

deterministic assignment or a conditional statement, while an edge in the CFG represents a possible

change in the program’s control location.

Given a transition system M, a property �, and a bound k, BMC unrolls the system k times and

translates it into a VC , such that is satisfiable if and only if � has a counterexample of length

k or less [14]. The associated model checking problem is formulated by constructing the following

logical formula:

 k = I(s0) ^
k�1̂

i=0

T (si, si+1) ^
k_

i=0

¬�(si), (2.1)

given that � is a safety property, I is the set of initial states of M and T (sj , sj+1) is the transition

relation of M between steps j and j + 1. Hence, I(s0) ^
V

i�1
j=0 T (sj , sj+1) represents the executions

of M of length i and the formula 2.1 can be satisfied if and only if, for some i k, there exists a

reachable state at step i in which � is violated. If the formula 2.1 is satisfiable, then the SMT solver

provides a satisfying assignment, from which we can extract the values of the program variables to

construct a counterexample. A counterexample for a property � is a sequence of states s0, s1, · · · , sk

with s0 2 S0 and T (si, si+1) with 0 i < k.

If the formula 2.1 is unsatisfiable, we can conclude that no error state is reachable in k steps or

less. In this case, BMC techniques are not complete because there might still be a counterexample

that is longer than k. Completeness can only be ensured if we know an upper bound on the depth

of the state space, i.e., if we can ensure that we have already explored all the relevant behavior of

CHAPTER 2. BACKGROUND THEORY 6

the system, and searching any deeper only exhibits states that have already been verified [58].

2.3 ESBMC Architecture

ESBMC is a mature, permissively licensed open-source context-bounded model checker for the verifi-

cation of C++, single- and multi-threaded C programs [28, 68, 77]. It can verify both predefined

safety properties (e.g., bounds check, pointer safety, overflow) and user-defined program assertions

automatically. Its development started in 2008 on top of the CProver framework [24], but almost all

components have been re-designed and re-implemented in subsequent years, including the basic data

structures, front-end, symbolic execution, memory model, and back-end. By default, ESBMC takes

a ANSI-C or C++ program and checks for array bounds violations, divisions by zero, pointer safety

(incl. alignment), and all user-defined properties. It has options to check for overflows, memory

leaks, deadlocks and data-races, and to choose between a fixed- or (IEEE) floating-point arithmetic.

ESBMC has also been extended to localize faults in single- and multi-threaded programs [31, 32].

Fig. 2.1 shows the ESBMC architecture [29, 43, 48]. White rectangles represent input and output;

gray rectangles represent the steps of the verification.

Counterexample

Verification Successful

SMT
Solver

Convert Properties

Convert Constraints

Logical
Context

Symbolic
Engine

GOTO
Converter

C++
Type-check

C++ Parse
Tree

C++
Source

Property
holds up
to bound k

Property
violation

ScanC++ IRIR Type-checked

GOTO
Program

(CFG)

SSA Form

Operational
Model

ANSI-C
Source

AST
Converter clang

clang IR Scan

Front-end

Logical Formula

Logical Properties

Logical Constraints

Figure 2.1: ESBMC architectural overview.

Front-end. The first steps are the source code parser and the type-check, which are language-

specific. The parser for C++ is heavily based on the GNU C++ Compiler (GCC) [41], which allows

CHAPTER 2. BACKGROUND THEORY 7

ESBMC to find most of the syntax errors already reported by GCC. For ANSI-C, ESBMC now uses

clang [60], a state-of-the-art compiler suite for C/C++/ObjectiveC/ObjectiveC++ widely used in

industry [65], as its front-end. As developers, we thus avoid the need to maintain a separate front-

end, but this approach also brings many advantages for users: (i) ESBMC provides compilation

error messages as expected from an industrial-strength tool; (ii) ESBMC leverages clang’s powerful

static analyzer to provide meaningful warnings when parsing the program; (iii) clang can simplify

the input program (e.g., calculate sizeof expressions, evaluate static asserts), which simplifies the

analysis of the code. Note that ESBMC uses clang’s API to access and traverse the program abstract

syntax tree (AST), without having details of the input program compiled away, which di↵ers from

other verifiers (e.g., LLBMC [40]) that rely on the LLVM bitcode.

Control-flow Graph (CFG) Generator. On type-checking for C++ programs, the code is

statically analyzed, which includes assignment checks, type-cast checks, pointer initialization checks,

function call checks and template instantiation. By the end of the type-check, the Intermediate

Representation (IR) creation is completed and will be used by the GOTO converter to generate

the GOTO program. For ANSI-C, the CFG generator takes the program AST from clang and

transforms it into an equivalent GOTO program: a simplified representation that consists only of

assignments, conditional and unconditional branches, assumes, and assertions. In particular, this

step eliminates all for, while, do-while and switch statements. It also adds checks for division by

zero and out-of-bounds access (and for integer and floating-point overflow [46], if enabled).

Symbolic Execution Engine. ESBMC then symbolically executes the GOTO program: it

unrolls loops k times, generates the static single assignments (SSA) form of the unrolled program,

and derives all the safety properties to be checked by the SMT solver. This step also inserts pointer

safety checks for dynamically allocated memory, if they are enabled. Note that this can only be

done after unrolling because the pointer analysis needs to know the maximum set of dynamically

allocated structures. ESBMC aggressively simplifies the program to generate small SSA sets, using

constant folding and various arithmetic (including floating-point) simplifications.

SMT back-end. ESBMC’s SMT back-end supports five solvers: Boolector (default), Z3, Math-

SAT, CVC4 and Yices. The back-end is highly configurable and allows the encoding of quantifier-

free formulas with support for bitvectors, arrays, tuple, fixed-point and floating-point arithmetic (all

solvers), and linear integer and real arithmetic (all solvers but Boolector). We use the back-end to

encode the SSA form of the program into a quantifier-free formula and check satisfiability of C^¬P ,

where C is the set of constraints and P is the set of properties. If the formula is SAT, the program

contains a bug: ESBMC will generate a counterexample with the set of assignments that lead to the

property violation.

Chapter 3

Related Work

Conversion of C++ programs into another language makes the verification process easier since C++

model checkers are still in the early development stages and there exist more stable verification

tools written for other programming languages, such as C [12]. This conversion, however, can

unintentionally introduce or hide errors in the original program; in particular, the verification of the

converted program may present di↵erent results if compared to the verification of the original C++

program, unless we check the equivalence of both the original and the modified program [52], which

can become undecidable in the presence of unbounded memory usage.

When it comes to the verification of C++ programs, most of the model checkers available in

the literature focus their verification approach on specific C++ features, such as templates, and

end up neglecting other features of equal importance, such as the verification of the STL [82,88] or

exceptions [64]. Table 3.1 shows a comparison among other studies available in the literature and

our proposed approach.

Table 3.1: Related work comparison.

Related work

Conversion
to interme-

diate
languages

C++ Programming Language

Templates
Standard
Template
Libraries

Inheritance &
Polymorphism

Exception Handling

Merz et al. [40] LLVM Yes Yes Yes No

Blanc et al. [15] No Yes Yes No No

Prabhu et al. [78] ANSI-C Yes Not mentioned Yes Yes

Clarke et al. [24] No Yes No No No

Baranová et al. [4] LLVM Yes Yes Yes Yes

ESBMC v2.0 [80] No Yes Yes Yes Yes

Merz, Falke, and Sinz [40,64] describe LLBMC, a tool that uses BMC to verify C++ programs.

8

CHAPTER 3. RELATED WORK 9

The tool first converts the program into LLVM intermediate representation, using clang [59] as

an o↵-the-shelf frontend. This conversion removes high-level information about the structure of

C++ programs (e.g., the relationship between classes), but the code fragments that use the STL

are inlined, which simplifies the verification process. From the LLVM intermediate representation,

LLBMC generates a quantifier-free logical formula based on bit-vectors. This formula is further

simplified before bit-blasting and passed to an SMT solver for verification. The tool does not verify

programs with exception handling, which makes it di�cult to realistically verify C++ programs,

since exceptions must be disabled during the generation of the LLVM intermediate representation.

The biggest di↵erence between the tool described by the authors and the purpose of this work is

related to the beginning of the verification process. In LLBMC, the conversion of the source program

into an intermediate representation LLVM is required. The biggest obstacle to this approach is the

need for a constant tool adjustment to new versions of the LLVM intermediate representation that

clang generates. For instance, a symbolic virtual machine built on top of the LLVM compiler, named

as KLEE [20], still uses an old version of LLVM (v3.4) due to the major e↵ort to update its internal

structure.

Blanc, Groce, and Kroening [15] describe the verification of C++ programs using containers

via predicate abstraction. A simplified operational model using Hoare logic is proposed to support

C++ programs that make use of the STL. The purpose of the operational model is to simplify

the verification process using the SATABS tool [25]. SATABS is a verification tool for C and

C++ programs that supports classes, operator overloading, references, and templates (but without

supporting partial specification). The authors show that, in order to verify the correctness of a

program, it is su�cient to use an operational model by proving that, if the pre- and postconditions

hold, the implementation model also holds. The approach is e�cient in finding trivial errors in

C++ programs. The preconditions are modeled to verify the library containers using an operational

model similar to the model used by the ESBMC tool for the same purpose. Regarding the operational

model, the authors present only the preconditions, while our operational model verifies preconditions

and replicates the behavior of the STL, which increases the range of applications that can be properly

verified by the tool (i.e., postconditions).

Prabhu, Maeda, and Balakrishnan [78] present an inter-procedural exception analysis and trans-

formation framework for C++ programs, which records the flow of the program created by exceptions

and creates an exception free C program. The creation of exception-free programs starts with the

generation of a control-flow graph, called Inter-procedural Exception Control-Flow Graph (IECFG).

The IECFG is then analyzed by an algorithm developed by the authors that models all possible

exceptions, which can connect the catch blocks using a compressed representation, called signed-

typeset. The result of the modeling is then used to generate the exception-free C program, which

simulates the behavior of throwing and catching exceptions by assigning the thrown object to a

local object (i.e., assigned to the object of the declaration of the catch block), and by the use of

CHAPTER 3. RELATED WORK 10

GOTO instructions. At the end of the conversion process, the C program is checked using the

F-SOFT [56] tool. For the experimental evaluation, 18 C++ programs and 4 commercial applica-

tions were used. The verification of these benchmarks focuses on only two properties: “no throw”

(the percentage of code that does not generate exceptions) and “no leak” (the number of memory

leaks in try blocks) [78]. The authors do not indicate whether this approach is able to verify other

types of errors in addition to the two described properties. Connection rules and formal verification

using exception handling are also presented. The technique described by the authors is similar to

ours, including the use of GOTO instructions to model jumps to catch blocks. The di↵erence is

the number of properties our tool can verify: we can not only check the paths that throw excep-

tions and memory leaks in try blocks, but we also check for property violations in the paths where

exceptions were thrown. Futhermore, the authors make no mention of exception specialization or

terminate/unexpected handling.

Clarke, Kroening, and Lerda [24] present CBMC, which implements BMC for C/C++ programs

using SAT/SMT solvers. CBMC uses its own parser, based on Flex/Bison [29], to build an AST.

The type-checker of CBMC’s front-end annotates this AST with types and generates a language-

independent intermediate representation of the original source code. The intermediate representation

is then converted into an equivalent GOTO-program (i.e., control-flow graphs) that will be processed

by the symbolic execution engine. ESBMC improves the front-end, the GOTO conversion and the

symbolic execution engine to handle the C++03 standard. CBMC and ESBMC use two functions

C and P that compute the constraints (i.e., assumptions and variable assignments) and properties

(i.e., safety conditions and user-defined assertions), respectively. Both tools automatically generate

safety conditions that check for arithmetic overflow and underflow, array bounds violations, and null

pointer dereferences, in the spirit of Sites’ clean termination [85]. Both functions accumulate the

control-flow predicates to each program point and use these predicates to guard both the constraints

and the properties, so that they properly reflect the semantics of the program. A VC generator

(VCG) then derives the verification conditions from them. CBMC is a well-known model checker

for C programs, but its support for C++ is rather incomplete (cf. Chapter 5). In particular, CBMC

has problems instantiating template correctly, and lacks support for exception specialization and

terminate/unexpected functions.

Baranová et al. [4] present DIVINE, an explicit-state model checker to verify single- and multi-

threaded programs written in C/C++ (and other input formats, such as UPPAAL1 and DVE2).

Another language supported by DIVINE is the LLVM intermediate representation; for this reason,

the base of its verification process is the translation of C++ programs into that representation.

Using clang [59] as front-end, DIVINE translates C++ programs into the LLVM intermediate rep-

resentation, thereby applying its own implementation of the C and C++ standard libraries, in order

1
http://www.uppaal.org

2
http://divine.fi.muni.cz/index.html

CHAPTER 3. RELATED WORK 11

to ensure a consistent translation. Nonetheless this translation process might cause some irregu-

larities to the verification process, once it looses high-level information about the C++ program

structure (i.e., the relationship between the classes). To tackle such issues in the verification process

of exception handling structures, Štill, Ročkai and Barnat [88] propose a new API for DIVINE to

properly map and deal with exception handling in C++ programs, based on a study about the

C++ and LLVM exception handling mechanisms [82]. The authors also claim DIVINE as the first

model checker that is able to verify exception handling in C++ programs, as opposed to what has

been stated by Ramalho et al. [80]. However, ESBMC v1.23 (i.e., the version used by Ramalho et

al. [80]) is able to correctly verify the example presented by Ročkai, Barnat and Brim [88], gen-

erating and verifying 10 VCs in less than one second. In fact, our experimental evaluation shows

that ESBMC outperforms DIVINE in handling exception as well as for the support of standard

containers, inheritance, and polymorphism (cf. Chapter 5).

Marjamäki [61] developed Cppcheck, a static analyzer for C/C++ primarily focuses on detecting

undefined behaviors using multiple checkers for specific violations, e.g., dead pointers, division by

zero, invalid bit shift operands, invalid conversions, null pointer dereferences, out of bounds viola-

tions, uninitialized variables, among others. Firstly, it preprocesses the source files and produces a

token list, which is then converted into a syntax tree. The analyzer also keeps a symbol database

with additional information about the source code. Cppcheck performs a data-flow analysis before

running specific checkers, in order to assign each token a list of possible values for all variables.

Finally, each checker uses the information from previous steps to look for a particular vulnerability

(e.g., integer overflows). Even though the major goal of the tool is to report as few false positive

as possible, Ågren [79] points that the tool could still lead to false positives due to lack of sup-

port for function pointers, macro expansion, or inheritance. The prime di↵erence between ESBMC

and Cppcheck is that Cppcheck is a bug-finding tool, and ESBMC can not only find bugs but can

also be used to prove correctness, either by fully unrolling all loops in the program or by using

k -induction [47,48]. Additionally, ESBMC uses a bit-accurate verification engine to check for arith-

metic under- and overflow while Cppcheck is unable to precisely check for such properties [3,67,73].

Nevertheless, Cppcheck was applied to major projects including Debian Automated Code Analysis

(DACA) [51] and OpenO�ce.org [57].

Chapter 4

SMT-based Bounded Model

Checking of C++ Programs

In this chapter, we start by describing the formalization behind the support for C++ templates, its

application, and how ESBMC handles them. Importantly, the current support of templates is the

base for the STL. We then describe our operational model, a simplified version of the SCL, specially

developed for verification purposes. We focus on the description of the containers provided by STL,

presenting the basic operations that reproduce the behavior of the standard. We also describe how

ESBMC deals with inheritance and polymorphism in C++ programs. Lastly, we formally define

the exception handling in ESBMC, including the description of the connection between throw and

catch statements, exception specification and, terminate and unexpected handlers.

4.1 Templates

The concept of templates in the C++ programming language is more than twenty years old [96], and

represents one of its most essential features; in the early 1990s, templates were already documented

in the literature [39], and their usage has grown ever since. Templates are generally used to define

functions or classes of generic types, which can be later instantiated with a specific data type.

Reusability is the main advantage of the usage of templates since it is not necessary to write a

di↵erent version of classes or functions for each type used in the C++ program. In addition to the

primary templates, C++ allows explicit template specialization as an alternative implementation

to specialize a (class or function) template to a specific data type [55]. Similarly, partial template

specialization is also allowed, i.e., where only some of its template arguments are specialized while

others remain generic [55]. ESBMC is currently able to handle the verification of C++ programs with

template functions, class templates, and (partial and explicit) template specialization, according to

12

CHAPTER 4. SMT-BASED BOUNDED MODEL CHECKING OF C++ PROGRAMS 13

the C++03 standard [55]. Indeed, the current support for C++ templates in ESBMC is one of

the key features that enable it to properly verify STL, SCL, and real-world C++ programs (cf.,

Chapter 5), even though it is still a work-in-progress.

Templates are not run-time objects [89] when a C++ program is compiled, classes and functions

are generated from templates, and those templates are removed from the final executable. ESBMC

has a similar process in which templates are only used until the type-checking phase, where all

templates are instantiated, and the classes and functions are generated. Any instantiated function

or class is no longer a template. Hence, at the end of the type-checking phase, all templates are

entirely discarded. In ESBMC, the entire verification process of C++ programs, which make use of

templates, is essentially split into two steps: creation of templates and template instantiation. The

creation of templates is more straightforward and happens during the parsing step when all generic

data types of the generated C++ IR are properly marked as generic and each specialization is

paired with its corresponding primary template. No instantiated function or class is created during

parsing because ESBMC does not know which template types will be instantiated.

Regarding template instantiation, the implementation in ESBMC is based on the formalization

previously presented by Siek and Taha [84] who introduced the first proof of type safety of the

template instantiation process for C++03 programs. To properly describe the template instantiation

process in ESBMC, we formally define the syntactic domains ⇧, T , S, A, N , and K as follows:

⇧ := ⇡

T := ⌧

S := s | se | sp

A := a | A

N := name | I.name |G.name

K := k | I.k |G.k | class | func

In this context, ⇡, ⌧ , and s are classes of variables of type template instantiations ⇧, templates

T , and template specializations S, respectively. We abuse the notation se to denote an explicit

template specialization and sp to indicate a partial template specialization. Here, ⌧ is also referred

to as the primary template. The static domain A represents the set of all template arguments, which

consists of two specific subsets G ✓ A for generic tokens and D ✓ A for data types. Each template

instantiation in the program is represented by a tuple ⇡ = hN ,K,A⇡i, whereN is the template name,

K is the kind of template (i.e., either class for class templates or func for function templates), and

A⇡ = {a1, ..., am|a 2 D} is the set ofm template arguments used on a certain instantiation. Similarly,

each template definition in the program is represented by a tuple ⌧ = hN ,K,A⌧ , S⌧ i, where N is the

template name, K is the kind of template (i.e., either class or func), A⌧ = {a1, ..., an | a 2 G} is

the set of n template arguments, and S⌧ = {s1, ..., sk | s 2 S} is the set of k template specializations

for the primary template ⌧ . Each s1, ..., sk represents a template specialization, which is defined

by the tuple s = hK,Asi, where K is the kind of template (i.e., either class or func) and As is

CHAPTER 4. SMT-BASED BOUNDED MODEL CHECKING OF C++ PROGRAMS 14

defined di↵erently for each specialization. For explicit function specialization se = hfunc,Afunc
se

i,

the set of template arguments is defined as Afunc
se

= {a1, ..., an | a 2 D}; since C++ does not allow

partial template specialization of function templates, all arguments must be data types. Similarly,

for explicit class specialization se = hclass,Aclass
se

i, the set of template arguments is defined as

Aclass
se

= {a1, ..., an | a 2 D}. For partial template specialization sp = hclass,Aclass
sp

i, the set of

template arguments is defined as Aclass
sp

= {a1, ..., an |9!a 2 G^9!a 2 D}, since there must be at least

one remaining generic token and at least one specialized data type. Template specializations do not

carry on extra information (e.g., name) because they are already linked to their primary template

definitions during the template creation process. Furthermore, the implementation of classes and

functions are omitted from this formalization, because they are not relevant for the instantiation

process.

Based on such domains, we must define a 2-arity predicate M(⇡, ⌧), which evaluates whether a

given template instantiation matches a template definition based on its name and type k, as described

by Eq. (4.1). Furthermore, we declare the 2-arity function � : T ⇤
⇥⇧ 7�! S, which selects the most

specialized template in ⌧ given a template instantiation ⇡ as described by Eq. (4.2). The case where

there is no template specialization suitable for ⇡ (i.e., ?) is an indication to select the primary

template definition. To read function �, we must introduce the notion of “most specialized”, which

is represented by the operator ⌫. In this case, given a template instantiation ⇡ and two template

specializations sM and s, the expression (sM,A⇡) ⌫ (s,A⇡) indicates that the template specialization

sM is more specialized for ⇡ than s, based on the set of arguments A⇡, i.e., AsM
matches more template

arguments in A⇡ than the set of template arguments As. Function � is crucial to ESBMC, since it

must select the most specialized template, which matches the given template arguments A⇡ [55,84].

M(⇡, ⌧)
def
=

(
>, ⇡.name = ⌧.name ^ ⇡.k = ⌧.k

?, otherwise
(4.1)

�(⇡, ⌧)
def
=

(
sM, 8s 2 S⌧ · (sM,A⇡) ⌫ (s,A⇡)

?, otherwise
(4.2)

L(⇡, ⌧1, ..., ⌧q) := ite(M(⇡, ⌧1), ⌧⇡ = ⌧1,

ite(M(⇡, ⌧2), ⌧⇡ = ⌧2,

. . .

ite(M(⇡, ⌧q), ⌧⇡ = ⌧q, ⌧⇡ = ?) . . .)

^ ⌧⇡ 6= ?
^ s = �(⇡, S⌧⇡)

^ ite(s = ?, ⌧⇡, s)

(4.3)

A template instantiation happens when a template is used, instantiated with data types (e.g.,

int, float, or string). ESBMC performs an in-depth search in the C++ IR during the type-

checking process to trigger all instantiations. When a template instantiation ⇡ is found, ESBMC

firstly identifies which type of template k it is dealing with (i.e., either class or func) and which

CHAPTER 4. SMT-BASED BOUNDED MODEL CHECKING OF C++ PROGRAMS 15

template arguments A⇡ is used, setting the tuple ⇡ = hname, k,A⇡i. It then searches whether an IR

of that type was already created, i.e., whether ⇡ has been previously instantiated. If so, no new IR is

created; this avoids duplicating the IR, thus reducing the memory requirements of ESBMC. If there

exists no IR of that type, a new IR is created, used in the instantiation process, and saved for possible

future searches. In order to create a new IR, ESBMC must select the most specialized template

for ⇡; therefore, ESBMC performs another search in the IR to select the proper template definition

⌧⇡ = hname, k,A⌧⇡ , S⌧⇡ i based on the predicate M(⇡, ⌧). ESBMC then checks whether there exists

a (partial or explicit) template specialization in S⌧⇡ , which matches the set of data types in the

instantiation. If ESBMC does not find any template specialization s, which matches the template

arguments, it will select the primary template definition ⌧ , as described by Eq. (4.3). Once the most

specialized template is selected from L(⇡, g1, ..., gq), ESBMC performs a transformation to replace

all generic types for the data types specified in the instantiation A⇡; this transformation is necessary

because, as stated previously, at the end of the C++ type-checking phase all templates are removed.

1 #include<ca s s e r t>
2 using namespace std ;
3

4 // template creat ion
5 template <typename T>
6 bool qCompare (const T a , const T b) {
7 return (a > b) ? true : fa l se ;
8 }
9

10 template <typename T>
11 bool qCompare (T a , T b) {
12 return (a > b) ? true : fa l se ;
13 }
14

15 // template s p e c i a l i z a t i on
16 template<>
17 bool qCompare (f loat a , f loat b) {
18 return (b > a) ? true : fa l se ;
19 }
20

21 int main () {
22 // template i n s t an t i a t i on
23 assert ((qCompare (1 . 5 f , 2 . 5 f))) ;
24 assert ((qCompare<int >(1 , 2) == f a l se)) ;
25 return 0 ;
26 }

Figure 4.1: Function template example.

In order to concretely demonstrate the instantiation process in ESBMC, Fig. 4.1 shows an exam-

ple of function templates usage, which is based on the example spec29 extracted from the GCC test

suite1. First, the template creation happens when the declaration of a template function (lines 5–19)

is parsed. At this point, the generic IR of the template is created with a generic type. Template

instantiation happens when the template is used. In Fig. 4.1, the template is instantiated twice

(lines 23 and 24). In fact, it is also possible to determine the type implicitly (line 23) or explicitly

1
https://github.com/nds32/gcc/

CHAPTER 4. SMT-BASED BOUNDED MODEL CHECKING OF C++ PROGRAMS 16

(line 24). In implicit instantiation, the data type is determined by the types of the used parameters,

while in the explicit instantiation, the data type is determined by the value passed between the <

and > symbols.

qCompare

arguments

generic a

generic b

return

bool r

specialization

arguments

float r

float r

return

bool r

(a) Generic IR generated from

the qCompare function template

with generic type in Fig. 4.1.

qCompare

arguments

float a

float b

return

bool r

qCompare

arguments

int a

int b

return

bool r

(b) Instantiated IRs gen-

erated from the template

instantiation with types

float and int in Fig. 4.1.

Figure 4.2: Example of IR creation.

Fig. 4.2 shows the generic IR and the instantiated IRs generated from the code in Fig. 4.1.

Fig. 4.2a shows the generic IR generated from the qCompare function template and its specialization,

while Fig. 4.2b shows the IRs created from instantiating this template with data type float (line 23)

and int (line 24). The function body is omitted in this figure, but it follows the same instantiation

pattern. The generic IR is built with the function name, which is used as a key for future searches,

the IR’s arguments, and return type, as can be seen in Fig. 4.2a. Note that the data type is

labeled as generic, which means that the type is generic. In Fig. 4.2b, the data types that were

previously labeled as generic are now labeled as float for the first instantiation and int for the

second instantiation, which means that these instantiated IRs are not templates anymore and will

not be removed at the end of the type-check phase. Finally, as described earlier, at the end of the

type-check phase, the generic IR (see Fig. 4.2a) is discarded.

After the template instantiation, the verification process resumes, as described by Cordeiro et

al. [30]. As an illustrative example, for the program in Fig. 4.1, ESBMC generates the SSAs shown

CHAPTER 4. SMT-BASED BOUNDED MODEL CHECKING OF C++ PROGRAMS 17

1 a1 = 1 .5 f
2 b1 = 2 .5 f
3 return qcompare1 = (b1 > a1)? TRUE : FALSE
4 a2 = 1
5 b2 = 2
6 return qcompare2 = (a2 > b2)? TRUE : FALSE

Figure 4.3: The program of Fig. 4.1 in SSA form.

in Fig. 4.3. Note that variable declarations and return statements are removed. The SSA form only

consists of conditional and unconditional assignments; in addition, assertions are removed. After

this transformation, ESBMC builds the constraints and properties, as shown in Eqs. (4.4) and (4.5)

in terms of background theories of the SMT solvers. Then, ESBMC performs simplifications on

C and P formulae, in order to remove functionally redundant expressions and redundant literals.

Finally, the formula C ^ ¬P is given to an SMT solver to verify satisfiability.

C :=

2

66664

a1 = 1.5f ^ b1 = 2.5f

^ return qcompare1 = ite (b1 > a1, 1, 0)

^ a2 = 1 ^ b2 = 2

^ return qcompare2 = ite (a2 > b2, 1, 0)

3

77775
(4.4)

P :=

"
return qcompare1 = >

^ return qcompare2 = ?

#
(4.5)

4.2 Standard C++ Libraries

The C++ programming language o↵ers a collection of powerful libraries, called SCL, to provide

most of the functionalities required by the programmer [89]. In particular, a significant set of this

collection of libraries, called STL, relies on templates to provide flexibility for the development of a

C++ program. However, the direct verification of the SCL unnecessarily complicates the verification

of a C++ program, as it contains code fragments irrelevant for verification (e.g., code fragments to

write messages on the screen and optimized assembly code) [70, 80].

To reduce verification complexity, ESBMC uses a simplified Standard C++ Library called the

C++ Operational Model (COM), which covers the essential behaviors of the SCL [55]. A similar

technique, proposed by Blanc, Groce, and Kroening [15], has been used to verify preconditions on

programs. However, ESBMC extends that approach by checking the preconditions and simulating

the behavior of the SCL (i.e., checking postconditions), which improves the e↵ectiveness of the

model checker, as shown in our experimental evaluation (cf., Chapter 5). Our COM removes all the

irrelevant code for verification, while adding checks, e.g., if the iterators are valid before performing

the operation.

In order to be a genuine representation of the SCL, the COM presented shares the same structure

of the standard, as can be seen in Table 4.1. The COM consists of eight groups of libraries: (i) C

CHAPTER 4. SMT-BASED BOUNDED MODEL CHECKING OF C++ PROGRAMS 18

Standard Library, which consists of C libraries with the following di↵erences: the headers have no

extension and every element of the library is defined within the std namespace; importantly, since

ESBMC uses a di↵erent front-end (as shown in Fig. 2.1), we have to build a representation of the

C libraries into the COM; otherwise, ESBMC would not recognize the library methods and fail to

parse the C++ programs; (ii) Streams and Input/Output, which consists of libraries that provide

input and output functionality using streams; (iii) Numeric, which o↵ers mechanisms to perform

numerical operations; (iv) Language support, which consists of types and functions for exception

handling (e.g., exception), functions to manage dynamic allocation (e.g., new) among other base

functionalities; (v) Strings, which provide string types and character traits (e.g., string); (vi)

Localization, which o↵ers functions related to basic localization routines; (vii)General, which consists

of general purpose libraries that provide, for instance, functions designed to be used on ranges of

elements (e.g., algorithm); and (viii) Containers, which provide types used to store objects that

can be accessed sequentially (e.g., vector) or are sorted in order to be quickly searched (e.g., map),

among other types known as associative containers. Note that most of the aforementioned groups

rely on templates to provide their functionalities.

Table 4.1: Overview of the C++ Operational Model.

Standard C++03 Libraries – Operational Model

C Standard
Library

General
Streams &
Input/Out-

put
Containers

Language
Support

Numeric Strings Localization

<cassert> <algorithm> <ios> <bitset> <exception> <complex> <string> <locale>

<cctype> <functional> <iomanip> <deque> <limits> <random>

<cerrno> <iterator> <iosfwd> <list> <new> <valarray>

<cfloat> <memory> <iostream> <map> <typeinfo> <numeric>

<ciso646> <stdexcept> <istream> <multimap>

<climits> <utility> <ostream> <set>

<clocale> <streambuf> <multiset>

<cmath> <sstream> <vector>

<complex> <fstream> <stack>

<csetjmp> <queue>

<csignal>

<cstdarg>

<cstddef>

<cstdio>

<cstdlib>

<cstring>

<ctime>

4.2.1 Core Language for Standard Containers

One of the most challenging part of the COM is the support for the STL. This part is split into

four categories: algorithms, containers, functors, and iterators [54]. In this work, we focus on the

operational model of the sequential and associative containers along with their iterators, and how

they are used to verify real-world C++ programs. Particularly, libraries list, bitset, deque,

CHAPTER 4. SMT-BASED BOUNDED MODEL CHECKING OF C++ PROGRAMS 19

vector, stack, and queue belong to the sequential group, while libraries map, multimap, set,

and multiset belong to the associative group. Containers map naturally into SMT array theory;

however, the C++03 container implementation is based on a pointer structure that degrades the

verification performance [15]. To tackle such a problem, ESBMC applies COM to reduce verification

complexity and insert assertions that check for pre- and postconditions related to containers usage.

In order to properly formalize the verification of both sequential and associative containers, we

extend the previous core container language presented by Ramalho et al. [80]. The core language

defines six syntactic domains, including values V , keys K , iterators I , pointers P , container C

and integers N. Here v, k, p, i, c and n are classes of variables of type V , K , P , I , C and N,
respectively. We abuse the notation ⇤i to denote the value stored in the underlying container at the

position pointed to by the iterator i , ⇤p is the value stored in the p position of the memory. C .begin

and C .end are methods that return iterators, which point to the beginning and the ending of a

container, respectively. Based on such domains, we also define P (+ |�)P as valid pointer operations

and N(+ | ⇤ | . . .)N as valid integer operations. Thus, the complete container language is defined as

follow:
V := v | ⇤p | ⇤i

K := k

I := i | C .begin() | C .end()

| C .insert(I ,V) | C .insert(K ,V)

| C .search(K) | C .search(V)

| C .erase(I)

P := p | P (+ |�)P | C.array

C := c

N := n | N(+ | ⇤ | . . .)N

Each operation shown in the core container syntax (e.g., C.insert(I, V)) is explained in Sections

4.2.2 and 4.2.3.

4.2.2 Sequential Containers

Sequential containers are built into a structure to store elements with a sequential order [35]. In our

model, a container c consists of a pointer cv that points to the underlying container and an integer

size that stores the quantity of elements in the container. Similarly, iterators are modeled using two

variables: an integer pos, which contains the index value pointed by the iterator in the container

and a pointer iv, which points to the underlying container. In our model, the defined notation ⇤i is

equivalent to (i .iv)[i .pos]. Fig. 4.4 gives an overview of our operational model for the STL sequential

containers.

All methods from the STL can be expressed as simplified variations of three main operations:

insertion (C .insert(I ,V)), deletion (C .erase(I)), and search (C .search(V)). As part of the SSA

CHAPTER 4. SMT-BASED BOUNDED MODEL CHECKING OF C++ PROGRAMS 20

Sequential	Containers

!"#$

%& %' ... %()'

Iterator

"%

*+!

,-

Figure 4.4: Operational model illustration of the STL sequential containers.

transformation, side e↵ects on iterators and containers are made explicit, so that operations return

new iterators and containers with the same contents, except for the field that has just been updated.

Thus, the translation function C describes constraints relating the “before” and “after” versions of

the respective model variables. Indeed, notations with apostrophe (e.g., c0 and i0) represent the state

of model variables after the respective operation, and simplified notations (e.g., c and i) represent

their previous states. Since ESBMC generates quantifier-free formulas, all loops (such as for and

while) are always unrolled and the respective expressions (i.e., C ^¬P) are thus encoded into SMT.

Therefore,
8 n · (lowerbound n upperbound))

select(store(p, n, v), n) = v
(4.6)

represents a loop expression, where each value of an array p (i.e., v), from lowerbound to upperbound

positions, will be selected. As we deal with quantifier-free formulae, Eq. 4.6 actually is a short

representation of
select(store(p, lowerbound, v), lowerbound) = v

. . .

select(store(p, upperbound, v), upperbound) = v

(4.7)

Similarly,
8 n1 · (lowerbound n1 upperbound))

p02 = store(p2, n1, select(store(p1, n1, v), n1))
(4.8)

also represents a loop expression, where each value of p1 (i.e., v), from lowerbound to upperbound

positions, will be stored into p02. Eq. 4.8 is a short representation of

p02 = store(p2, lowerbound,

select(store(p1, lowerbound, v), lowerbound))

. . .

p02 = store(p2, upperbound,

select(store(p1, upperbound, v), upperbound))

(4.9)

The statement c.insert(i, v) becomes (c0, i0) = c.insert(i, v), which has explicit side e↵ects. Here,

we increase the container size, move all elements from position i.pos one memory position forward,

CHAPTER 4. SMT-BASED BOUNDED MODEL CHECKING OF C++ PROGRAMS 21

and then insert v into the specified position. Therefore2,

C((c0, i0) = c.insert(i, v)) :=

c0.size = c.size+ 1

^ 8 n1 · (i.pos n1 c.size))

c0.cv = store(c.cv, n1 + 1,

select(store(c.cv, n1, v1), n1))

^ c0.cv = store(c.cv, i.pos, v)

^ i0.iv = c0.cv

^ i0.pos = i.pos

(4.10)

that induces the following properties,

P((c0, i0) = c.insert(i, v)) :=

v 6= null

^ c.cv 6= null

^ i.iv 6= null

^ 0 i.pos < c0.size

^ select(i0.iv, i
0.pos) = v

(4.11)

where null represents an uninitialized pointer/object. Thus, we define as preconditions that v and i

can not be uninitialized objects as well as i.pos must be within c0.cv bounds; similarly, we define as

postconditions that v was correctly inserted in the position specified by i as well as c0.cv and i0.iv are

equivalent, i.e., both point to the same memory location. Importantly, we implement the memory

model for containers essentially as arrays; therefore, the range to select elements from memory varies

from 0 to c.size�1. In addition, the main e↵ect of the insert method is thus captured by the second

equality that describes the contents of the container array c0.cv after the insertion in terms of update

operations to the container array c.cv before the insertion.

The erase method works similarly to the insert method. It also uses iterator positions, integer

values, and pointers, but it does not use values since the exclusion is made by a given position,

regardless of the value. It also returns an iterator position (i.e., i0), pointing to the position imme-

diately after the erased part of the container [55]. Therefore,

C((c0, i0) = c.erase(i)) :=

8 n1 · (i.pos+ 1 n1 c.size� 1))

c0.cv = store(c.cv, n1 + 1,

select(store(c.cv, n1, v1), n1))

^ c0.size = c.size� 1

^ i0.iv = c0.cv

^ i0.pos = i.pos+ 1

(4.12)

2
Note that SMT theories only have a single equality predicate (for each sort). However, here we abuse the notation

“:=” to indicate an assignment of nested equality predicates on the right hand side of the formula.

CHAPTER 4. SMT-BASED BOUNDED MODEL CHECKING OF C++ PROGRAMS 22

that implicitly induces the following properties,

P((c0, i0) = c.erase(i)) :=

i.iv 6= null

^ c.cv 6= null

^ c.size 6= 0

^ 0 i.pos < c.size

^ select(c0.cv, i
0.pos) = select(c.cv, i.pos+ 1)

(4.13)

where we assume as preconditions that i must be a valid iterator that points to a position within

the array c.cv bounds and c must be non-empty; similarly, we assume as postconditions that i0 must

point to the element immediately after the erased one and c0.cv and i0.iv point to the same memory

location. Finally, a container c with a call c.search(v) performs a search for an element v in the

container. Then, if such an element is found, it returns an iterator that points to the respective

element; otherwise, it returns an iterator that points to the position immediately after the last

container’s element (i.e., select(c0.cv , c0.size)). Hence,

C((c0, i0) = c.search(v)) :=

c0.cv = c.cv

^ c0.size = c.size

^ i0.pos = 0

^ i0.iv = c0.cv

^ 8 n · (0 n c0.size� 1))
�
i0.pos = ite(select(c0.cv, n) = v, n, c0.size)

�

(4.14)

that implicitly induces the following properties,

P((c0, i0) = c.search(v)) :=

v 6= null

^ c.cv 6= null

^ i0.iv 6= null

^ ite
�
select(i0.iv, i

0.pos) = select(c0.cv, i
0.pos),

select(i0.iv, i
0.pos) = v,

select(i0.iv, i
0.pos) = select(c0.cv, c

0.size)
�

(4.15)

where v can not be an uninitialized object, c must be non-empty, i0 must point to the found element

or must point to select(c0.cv , c0.size), and c0.cv and i0.iv are equivalent.

CHAPTER 4. SMT-BASED BOUNDED MODEL CHECKING OF C++ PROGRAMS 23

Associative	Containers

!" !# ... !$

%&'(

)")# ...)$

Iterator

&!

&)

*+%

,-

,.

Figure 4.5: Operational model illustration of the STL associative containers.

4.2.3 Associative Containers

The associative container group consists of four classes: map, multimap, set, and multiset. The map

class implements an associative container, where all elements are a combination of a key (i.e., k 2 K)

and a value (i.e., v 2 V), where each value is associated with a unique key. On the one hand, elements

are internally sorted by their keys based on a strict weak ordering rule [55]. On the other hand, set

class presents a single-valued container that stores elements also following a strict weak ordering

rule. Importantly, each value in a set must be unique, once the value is itself the key [55]. Finally,

multimap and multiset classes behave similarly to map and set classes, respectively; however, both

implement containers where multiple keys can be associated with multiple values. Fig. 4.5 gives an

overview of our operational model for the STL associative containers.

In order to implement associative containers, the model consists of a pointer c.cv, for the con-

tainer’s values, a pointer c.ck, for the container’s keys, and an integer c.size, for the container’s

size. Particularly, c.ck and c.cv are connected by an index, thus, an element in a given position n

in c.ck (i.e., select(c.ck, n)) is the key associated with the value in the same position n in c.cv (i.e.,

select(c.cv, n)). Similarly, iterators for associative containers consist of a pointer i .ik that points to

the same memory location as c.ck, a pointer i .iv that points to the same memory location as c.cv

and an integer i .pos that indexes both i .ik and i .iv . Once again, all operations in those libraries

can be expressed as a simplified variation of the three main ones, i.e., insertion (C .insert(K ,V)),

deletion (C .erase(I)), and search (C .search(K)).

Firstly, the order of keys matters in the insertion operation for associative containers. Therefore,

given a container c, the method call c.insert(k, v) inserts the value v associated with the key k into

the right order and it returns an iterator that points to the inserted position; however, if k already

exists, the insertion is not performed and the method returns an iterator that points to the existing

CHAPTER 4. SMT-BASED BOUNDED MODEL CHECKING OF C++ PROGRAMS 24

element. Thus,
C((c0, i0) = c.insert(k, v)) :=

ite(exists(k, c.ck),�
i0.pos = selectPosition(k, c.ck)

^ c0.ck = c.ck

^ c0.cv = c.cv

^ c0.size = c.size
�
,

�
i0.pos = selectOrder(k, c.ck)

^ 8n2 · (i
0.pos n2 c.size))

c0.ck = store(c.ck, n2 + 1,

select(store(c.ck, n2, k2), n2))

^ 8n3 · (i
0.pos n3 c.size))

c0.cv = store(c.cv, n3 + 1,

select(store(c.cv, n3, v2), n3))

^ c0.ck = store(c0.ck, i
0.pos, k)

^ c0.cv = store(c0.cv, i
0.pos, v)

^ c0.size = c.size+ 1
�
,

^ i0.ik = c0.ck

^ i0.iv = c0.cv

(4.16)

note the side-e↵ects exists(k, c.ck) that checks whether k exists in c.ck, selectPosition(k, c.ck) that

returns the position of k in c.ck, and selectOrder(k, c.ck) that returns the position in which k must

be inserted in c.ck. The model in Eq. 4.16 induces the following properties,

P((c0, i0) = c.insert(k, v)) :=

k 6= null

v 6= null

^ c.ck 6= null

^ c.cv 6= null

^ 8n · (0 n c.size))
�
k 6= select(c.ck, n)

�

(4.17)

where we define as preconditions that v and k can not be uninitialized objects as well as k must be

di↵erent from all keys within the c container (i.e., 8 n · (0 n c.size)) (k 6= select(c.ck, n))).

Importantly, the comparison to check whether there exists already an element with the specified key

is bypassed for containers that allow multiple keys.

Delete operations are represented by c.erase(i), where i is an iterator that points to the element

to be removed. Similarly to sequential containers (cf., Section 4.2.2), the model for such operation

CHAPTER 4. SMT-BASED BOUNDED MODEL CHECKING OF C++ PROGRAMS 25

basically shifts backwards all elements followed by that specific position i. Thus,

C((c0, i0) = c.erase(i)) :=

8 n1 · (i.pos+ 1 n1 c.size))

c0.ck = store(c.ck, n1 + 1,

select(store(c.ck, n1, k), n1))
�

^ 8 n2 · (i.pos+ 1 n2 c.size))

c0.cv = store(c.cv, n2 + 1,

select(store(c.cv, n2, v), n2))
�

^ c0.size = c.size� 1

^ i0.ik = c0k

^ i0.iv = c0v

^ i0.pos = i.pos+ 1

(4.18)

that implicitly induces the following properties,

P((c0, i0) = c.erase(i)) :=

i.ik 6= null

i.iv 6= null

^ 0 i.pos c.size

^ c.size 6= 0

^ select(c0.ck, i
0.pos) = select(c.ck, i.pos+ 1)

^ select(c0.cv, i
0.pos) = select(c.cv, i.pos+ 1)

(4.19)

which are similar to the properties held by the erase method from sequential containers, except

that i0.ik must point to the position immediately after the erased one and the equivalency of c0.ck

and i0.ik. Finally, search operations over associative containers are modeled by a container c with

a method call c.search(k). Then, if an element with key k is found, the method returns an iterator

that points to the respective element; otherwise, it returns an iterator that points to the position

immediately after the last container’s element (i.e., c.end()). Importantly, this search operation is

implemented as a binary search algorithm [35], which implicitly produces the following properties,

P((c0, i0) = c.search(k)) :=

k 6= null

^ c.ck 6= null

^ c.cv 6= null

^ i0.iv 6= null

^ i0.ik 6= null

^ ite
�
select(i0.ik, i

0.pos) = select(c0.ck, i
0.pos),

select(i0.ik, i
0.pos) = k,

select(i0.ik, i
0.pos) = select(c0.ck, c

0.size)
�

(4.20)

that are also similar to the properties held by the search method from sequential containers, except

that i0.ik must point to the found element’s key or i0 must be equal to c.end() as well as c0.ck and

i0.ik must point to the same memory location.

CHAPTER 4. SMT-BASED BOUNDED MODEL CHECKING OF C++ PROGRAMS 26

4.2.4 Correctness

Our verification method depends on the fact that COM correctly represents the original SCL. Indeed,

the correctness of such model to trust in the verification results is actually a major concern [50,68–70,

77,94,95]. In order to achieve that, the entire operational model was manually verified by checking

the input/output relation through our test suite according to the original SCL specification [55]

with the goal of ensuring the same behavior. Importantly, the operational model contains pre-

and postconditions to guarantee that a (given) predicate holds before and after the execution of a

(given) operation, respectively [70]. Although COM is a completely new implementation, it consists

in (reliably) building a simplified model of the related SCL, using the C/C++ programming language

through the ESBMC intrinsic functions (e.g., assert and assume) and the original documentation,

which thus tend to reduce the number of programming errors. In addition, Cordeiro et al. [28, 29]

presented the soundness for such native functions already supported by ESBMC. Although proofs

regarding the soundness of the entire operational model could be carried out, it represents a laborious

task due to the (adopted) memory model [63]. Conformance testing with respect to operational

models would be a suitable approach [21, 70], but this option is not available in the present case;

however, it would represent an exciting approach for future research.

4.3 Inheritance & Polymorphism

C++ features as inheritance and polymorphism make static analysis di�cult to implement. In

contrast to Java, which only allows single inheritance [34], where derived classes have only one base

class, C++ also allows multiple inheritance, where a class may inherit from one or more unrelated

base classes [35]. This particular feature makes C++ programs harder to model check than programs

in other object-oriented programming languages (e.g., Java) since it disallows the direct transfer of

techniques developed for other, simpler programming languages [2,76]. Indeed, multiple inheritance

in C++ includes repeated and shared inheritance of base classes, object identity distinction, dynamic

dispatch among other features that raise interesting challenges for model checking [81].

In C++, if a class inherits from a base class that does not contain virtual methods, then we call

this replicated inheritance. If there exists a path from class X to class Y whose first edge is virtual,

then we call this shared inheritance. In ESBMC, inheritance is handled by replicating the methods

and attributes of the base classes to the derived class, obeying the rules of inheritance defined in the

C++03 standard [55]. In particular, we follow these specifications to handle multiple inheritance,

and to avoid issues such as name clashing when replicating the methods and attributes, e.g., if two

or more base classes implement a method that is not overridden by the derived class, every call to

this method must specify which “version” inherited it is referring to. The rules are checked in the

type-check step of the verification (cf., Section 2.3).

A formal description to represent the relationship between classes can be described by a class

CHAPTER 4. SMT-BASED BOUNDED MODEL CHECKING OF C++ PROGRAMS 27

hierarchy graph (CHG). This graph is represented by a triple hC ,�s,�ri, where C is the set of

classes, �s✓ C ⇥ C refers to shared inheritance edges, and �r✓ C ⇥ C are replicated inheritance

edges. We also define the set of all inheritance edges �sr=�s [�r. (C ,sr) is then a partially

ordered set [74] and sr is anti-symmetric (i.e., if one element A of the set precedes B, the opposite

relation cannot exist). Importantly, during the replication process of all methods and attributes from

the base classes to the derived ones, the inheritance model considers the access specifiers related to

each component (i.e., public, protected, and private) and its friendship [35]; therefore, we define

two rules to deal with such restrictions: (i) only public and protected class members from base

classes are joined in the derived class and (ii) if class X 2 C is a friend of class Y 2 C, all private

members in class X are joined in class Y .

As an example, Fig. 4.6 shows an UML diagram that represents the Vehicle class hierarchy,

which contains multiple inheritance. The replicated inheritance in the JetCar class relation can be

formalized by hC, ;, {(JetCar, Car), (JetCar, Jet)}i.

Vehicle

+ number_of_wheels()

Car

+ number_of_wheels()

Motorcycle

+ number_of_wheels()

Jet

+ propulse()

JetCar

+ number_of_wheels()

+ propulse()

Figure 4.6: Vehicle class hierarchy UML diagram.

ESBMC creates an intermediate model for single and multiple inheritance, handling replicated

and shared inheritance where all classes are converted into structures and all methods and attributes

of its parent classes are joined. On the one hand, this approach has the advantage of having direct

access to the attributes and methods of the derived class. It thus allows a more accessible validation,

as the tool does not search for attributes or methods from base classes on each access. On the other

hand, we replicate information to any new class, thus wasting memory resources.

In addition, we also support indirect inheritance, where a class inherits features from a derived

class with one or more classes not directly connected. Indirect inheritance is automatically handled

due to our replication method: any derived class will already contain all methods and attributes

from their base classes, which will be replicated to any class that derives from them. In Fig. 4.6, we

have JetCar sr Car and Car sr Vehicle. Thus, the JetCar class can access features from the

Vehicle class, but they are not directly connected.

In object-oriented programming, the use of shared inheritance is very common [35]. In contrast

CHAPTER 4. SMT-BASED BOUNDED MODEL CHECKING OF C++ PROGRAMS 28

1 class Vehic l e
2 {
3 public :
4 Vehic l e () {} ;
5 virtual int number of wheels () = 0 ;
6 } ;
7

8 class Motorcycle : public Vehic l e
9 {

10 public :
11 Motorcycle () : Veh ic l e () {} ;
12 virtual int number of wheels () { return 2 ; } ;
13 } ;
14

15 class Car : public Vehic l e
16 {
17 public :
18 Car () : Veh ic l e () {} ;
19 virtual int number of wheels () { return 4 ; } ;
20 } ;
21

22 int main ()
23 {
24 bool f oo = nondet () ;
25

26 Vehic l e ∗ v ;
27 i f (foo)
28 v = new Motorcycle () ;
29 else
30 v = new Car () ;
31

32 bool r e s ;
33 i f (foo)
34 r e s = (v�>number of wheels () == 2) ;
35 else
36 r e s = (v�>number of wheels () == 4) ;
37 assert (r e s) ;
38 return 0 ;
39 }

Figure 4.7: C++ program using a simplified version of the UML diagram in Fig. 4.6. The program
nondeterministically cast derived class to a base class (either Vehicle or Motorcycle to Car). The
goal is to check if the correct number of wheels() is called, from the base class.

to other approaches (e.g., the one proposed by Blanc, Groce, and Kroening [15]), ESBMC is able

to verify this kind of inheritance. A pure virtual class does not implement any method and, if an

object tries to create an instance of a pure virtual class, ESBMC will fail with a CONVERSION ERROR

message.

In order to handle polymorphism, i.e., allowing variable instances to be bound to references

of di↵erent types, related by inheritance [1], ESBMC implements a virtual table (i.e., vtable)

mechanism [37]. When a class defines a virtual method, ESBMC creates a virtual table, which

contains one pointer to each virtual method in the class. On the one hand, if a derived class does

not override a virtual method, then the pointers are simply copied to the virtual table of the derived

class. On the other hand, if a derived class overrides a virtual method, then the pointers in the

virtual table of the derived class will point to the overridden method. Whenever a virtual method

is called, ESBMC executes the method pointed in the virtual table.

CHAPTER 4. SMT-BASED BOUNDED MODEL CHECKING OF C++ PROGRAMS 29

Consider the program in Fig. 4.7, which contains a simplified version of the class hierarchy

presented in Fig. 4.6. In the program, a class Vehicle is base for two classes, Motorcycle and Car.

The class Vehicle defines a pure virtual method number of wheel(), and both classes Motorcycle

and Car implement the method, returning 2 and 4, respectively. The program creates an instance of

Motorcycle or Car, depending on a nondeterministic choice, and assigns the instance to a Vehicle

pointer object v. Finally, through the polymorphic object v, the program calls number of wheel()

and checks the returned value. We omit a call to delete in order to free the pointer v to simplify

the GOTO instructions.

1 main () (c : : main) :
2 FUNCTION CALL: re turn va lue nondet$1=nondet ()
3 bool f oo ;
4 f oo = re turn va lue nondet$1 ;
5

6 class Vehic l e ∗ v ;
7 IF ! foo THEN GOTO 1
8 new value1 = new class Motorcycle ;
9 new value1�>vtable�>number of wheels =

10 &Vehic l e : : number of wheel () ;
11 new value1�>vtable�>number of wheels =
12 &Motorcycle : : number of wheel () ;
13 v = (class Vehic l e ∗) new value ;
14 GOTO 2
15 1 : new value2 = new class Car ;
16 new value2�>vtable�>number of wheels =
17 &Vehic l e : : number of wheel () ;
18 new value2�>vtable�>number of wheels =
19 &Car : : number of wheel () ;
20 v = (class Vehic l e ∗) new value ;
21 bool r e s ;
22 2 : IF ! foo THEN GOTO 3
23 FUNCTION CALL: r e tu rn va lue number o f whee l s =
24 ∗v�>vtable�>number of wheel ()
25 r e s = wheels == 2
26 GOTO 4
27 3 : FUNCTION CALL: r e tu rn va lue number o f whee l s =
28 ∗v�>vtable�>number of wheel ()
29 r e s = wheels == 4
30 4 : ASERT re s
31 RETURN: 0
32 END FUNCTION

Figure 4.8: GOTO instructions generated for the program in Fig. 4.7.

Fig. 4.8 shows the GOTO program generated for the program in Fig. 4.7. Note that, when

building the polymorphic object v, the virtual table pointer for the method number of wheel()

in the GOTO program is first assigned with a pointer to the method number of wheel() in class

Vehicle (see lines 10 and 17 in Fig. 4.8); this happens because the constructor for both Car and

Motorcycle first call the base constructor in the original program (see lines 11 and 18 in Fig. 4.7).

They are then assigned the correct method address (see lines 12 and 19 in Fig. 4.8) in the constructors

of the derived classes, i.e., Motorcycle and Car, respectively.

In the SSA form shown in Fig. 4.9, every branch creates a separate variable, which are then

CHAPTER 4. SMT-BASED BOUNDED MODEL CHECKING OF C++ PROGRAMS 30

1 r e tu rn va lue nondet1 = nondet symbol (symex : : 0)
2 foo1 = re turn va lue nondet1
3 new value11 = new value10
4 WITH [vtab l e = new value10 . v tab l e
5 WITH [number of wheel =
6 &Motorcycle : : number of wheels ()]]
7 new value12 = new value11
8 WITH [vtab l e = new value11 . v tab l e
9 WITH [number of wheel =

10 &Motorcycle : : number of wheels ()]]
11 v1 = new value12
12 new value21 = new value20
13 WITH [vtab l e = new value20 . v tab l e
14 WITH [number of wheel =
15 &Motorcycle : : number of wheels ()]]
16 new value22 = new value21
17 WITH [vtab l e = new value21 . v tab l e
18 WITH [number of wheel =
19 &Motorcycle : : number of wheels ()]]
20 v2 = new value22
21 v3 = (foo1 ? v1 : v2) ;
22 r e tu rn va lue number o f whee l s1 = 2
23 r e s1 = (re tu rn va lue number o f whee l s1 == 2)
24 r e tu rn va lue number o f whee l s2 = 4
25 r e s2 = (re tu rn va lue number o f whee l s2 == 4)
26 r e s3 = (foo1 ? r e s1 : r e s2)

Figure 4.9: The program of Fig. 4.7 in SSA form.

merged when the control-flow merges. Here, we generate two branches (i.e., v1 and v2) and a �-

node (i.e., v3) to merge both branches. For instance, the variable v1 represents the branch, where the

polymorphic variable v gets assigned an object of type Motorcycle, while v2 represents the branch,

where v gets assigned an object of type Car. They are then merged into v3, depending on the initial

nondeterministic choice (see line 21 in Fig. 4.9). There exists no side-e↵ect in the SSA form, as the

result of the number of wheels() is propagated. Note that the asserts are not presented in the SSA

form, but will be converted into SMT formulae. ESBMC builds the constraints and properties, as

shown in Eqs. (4.21) and (4.22), respectively, based on the SSA and the assertions.

C :=

2

66666664

return value number of wheels1 = 2

^ res1 = (return value number of wheels1 = 2)

^ return value number of wheels2 = 4

^ res2 = (return value number of wheels2 = 4)

^ res3 = ite (foo1, res1, res2)

3

77777775

(4.21)

P :=
h

res3 = 1
i

(4.22)

4.4 Exception Handling

Exceptions are unexpected circumstances that arise during the execution of a program, e.g., runtime

errors [35]. In C++, the exception handling is split into three (basic) elements: a try block, where a

thrown exception can be directed to a catch statement; a set of catch statements, where a thrown

CHAPTER 4. SMT-BASED BOUNDED MODEL CHECKING OF C++ PROGRAMS 31

exception can be handled; and a throw statement that raises an exception. Fig. 4.10 shows an

example of C++ program where an exception is thrown inside a try block.

1 int main ()
2 {
3 try {
4 i f (nondet ())
5 throw 20 ;

// throw statement

)
try block

6 else
7 throw 10 .0 f ;
8 }
9 catch (int i) {

10 assert (i == 20) ;
11 } catch (f loat f) {

�
catch statements

12 assert (f == 1 0 . 0) ;
13 }
14

15 return 0 ;
16 }

Figure 4.10: Try-catch example of throwing an integer exception.

In order to support exception handling in ESBMC, we extended our GOTO conversion code and

the symbolic engine; in the former, we had to define new instructions and model the throw expression

as jumps, while in the latter we implemented the rules for throwing and catching an exception, as

well as the control flows for the unexpected and terminate handlers.

The GOTO conversion slightly modifies the exception handling blocks: a try block is repre-

sented using several instructions: a CATCH instruction to represent the start of the try block, the

instructions representing the code inside the try block, a CATCH instruction to represent the end

of the try block and a GOTO instruction targeting the instructions after the try block. Each catch

statement is represented using a label, the instructions representing the exception handling and a

GOTO instruction targeting the instructions after the catch block.

We use the same CATCH instruction to mark the begin and end of the try block, however, they

di↵er by the information they hold; the CATCH instruction that marks the beginning of a try block

has a map from the types of the catch statements and their labels in the GOTO program, while the

second CATCH instruction has an empty map. The GOTO instruction targeting the instructions

after the catch block shall be called in case no exception is thrown. The GOTO instructions at the

end of each catch are called so that only the instructions of the current catch is executed. Fig. 4.11

shows the GOTO instructions generated from the code shown in Fig. 4.10.

During the SSA generation, when the first CATCH instruction is found, the map is stacked

because there might be nested try blocks. If an exception is thrown, ESBMC encodes the jump to

a catch statement according to the rules defined in Section 4.4, including a jump to an invalid catch

that triggers a verification error, i.e., it represents an exception thrown that can not be caught. If a

suitable exception handler is found, then the thrown value is assigned to the catch variable (if any);

otherwise, if there exists no valid exception, an error is reported. If the second CATCH instruction

CHAPTER 4. SMT-BASED BOUNDED MODEL CHECKING OF C++ PROGRAMS 32

1 main () (c : : main) :
2 CATCH s i gned in t �>3, f loat�>4
3 FUNCTION CALL: re turn va lue nondet$1=nondet ()
4 IF ! r e turn va lue nondet$1 THEN GOTO 1
5 THROW s i gn ed i n t : 20
6 GOTO 2
7 1 : THROW f loat : 10 f
8 2 : CATCH
9 GOTO 5

10 3 : signed int i ;
11 ASSERT i == 20
12 GOTO 5
13 4 : f loat f ;
14 ASSERT f == 10 f
15 5 : RETURN: 0
16 END FUNCTION

Figure 4.11: Try-catch conversion to GOTO instructions.

is reached and no exception was thrown, the map is freed for memory e�ciency. The try block is

handled as any other block in a C++ program, and destructors of variables in the stack are called by

the end of the scope. Furthermore, by encoding throws as jumps, we also correctly encode memory

leaks, e.g., if an object is allocated inside a try block, and an exception is thrown and handled, it

will leak unless the reference to the allocated memory is somehow tracked and freed.

Our symbolic engine also keeps track of function frames, i.e., several pieces of information about

the function it is currently evaluating, including arguments, recursion depth, local variables and

others. These pieces of information are not only important because we want to handle recursion or

find memory leaks, but also allows us to connect exception thrown outside the scope of a function,

and to handle exception specification [42].

1 r e tu rn va lue nondet1 = nondet symbol (symex : : 0)
2 i 1 = 20
3 f 1 = 10 .0 f
4 f 2 = (re turn va lue nondet1 ? f0 : f 1)
5 i 2 = (re tu rn va lue nondet1 ? i 1 : i 0)

Figure 4.12: The program of Fig. 4.10 in SSA form.

As an illustrative example, for the program in Fig. 4.10, ESBMC generates the SSAs shown in

Fig. 4.12. The SSA form only contains conditional and unconditional assignments. Note the use of

free variables f0 and i0, and they are used to model paths where no values are assigned to f or i

(in this case, however, these paths are never reachable). ESBMC then builds the constraints and

properties as shown in Eqs. (4.23) and (4.24), and the formula C ^¬P is given to an SMT solver to

check for satisfiability.

C :=

2

664

i1 = 20 ^ f1 = 10.0f

^ f2 = ite (return value nondet1, f0, f1)

^ i2 = ite (return value nondet1, i1, i0)

3

775 (4.23)

CHAPTER 4. SMT-BASED BOUNDED MODEL CHECKING OF C++ PROGRAMS 33

P :=

"
i2 = 20

^ f2 = 10.0f

#
, (4.24)

where Eq. (4.24) is always evaluated to false, i.e., the program is safe. Note that since the program

can not be statically determined because of the nondeterministic call (line 4 in Fig. 4.10), the

program is symbolic encoded and all jumps to catch statements are encoded.

A C++ program can throw an exception in several situations other than the usage of explicit

throw expression (e.g., an exception of type bad alloc can be thrown by operator new, an exception

of the type bad cast can be thrown by the dynamic cast operator or even the function typeid can

throw an exception of type bad typeid). Those exceptions are built into the C++ language and

are supposed to be handled by the program. In order to properly define the verification of exception

handling in C++, we formally define two syntactic domains, including exceptions E and handlers

H as follows:

E := e | e[] | ef () | e⇤ | enull

H := h | h[] | hf () | h⇤ | hv | h... | hnull

In this context, e and h are classes of variables of type E and H , respectively. We abuse the

notation e[] to denote a thrown exception of type array, ef () is a thrown exception of type function,

e⇤ is a thrown exception of type pointer, and enull is an empty exception used to track when a

throw expression does not throw anything. Similarly, we abuse the notation h[] to denote a catch

statement of type array, hf () is a catch statement of type function, h⇤ is a catch statement of type

pointer, hv is a catch statement of type void pointer (i.e., void⇤), h... is a catch statement of type

ellipsis [55], and hnull is an invalid catch statement used to track when a thrown exception does not

have a valid handler.

Based on such domains, we must define a 2-arity predicate M(e, h), which evaluates whether the

type of thrown exception e is compatible to the type of a given handler h as shown in Eq. (4.25).

Furthermore, we declare the 1-arity function ⇣ : H⇤
7�! H that removes qualifiers const, volatile,

and restrict from the type of a catch statement c. We also define the 2-arity predicates unambigu-

ous base U(e, h) and implicit conversion Q(e, h). On one hand, U(e, h) determines whether the type

of a catch statement h is an unambiguous base [55] for the type of a thrown exception e as shown in

Eq. (4.26). On the other hand, Q(e, h) determines whether a thrown exception e can be converted

to the type of the catch statement h, either by qualification or standard pointer conversion [55] as

shown in Eq. (4.27).

M(e, h)
def
=

(
>, type of e is matches to the type of h

?, otherwise
(4.25)

U(e, h)
def
=

(
>, c is an unambiguous base of e

?, otherwise
(4.26)

CHAPTER 4. SMT-BASED BOUNDED MODEL CHECKING OF C++ PROGRAMS 34

Q(e, h)
def
=

(
>, e can be implicit converted to h

?, otherwise
(4.27)

The C++ language standard defines rules to connect throw expressions and catch statements [55],

which are all described in Table 4.2. Each rule represents a function rk : E 7�! H for k = [1 .. 9],

where a thrown exception e is mapped to a valid catch statement h. ESBMC evaluates every thrown

exception e against all rules and all catch statements in the program through the (n+1)-arity func-

tion handler H. As shown in Eq. (4.28), after the evaluation of all rules (i.e., hr1 , ..., hr9), ESBMC

returns the first handler hrk that matched the thrown exception e.

H(e, h1, ..., hn) :=

hr1 = r1(e, h1, ..., hn)

^ . . .

^ hr9 = r9(e, h1, ..., hn)

^ ite(hr1 6= hnull, hr1 ,

ite(hr2 6= hnull, hr2 ,

. . .

ite(hr9 6= hnull, hr9 , hnull) . . .)

(4.28)

CHAPTER 4. SMT-BASED BOUNDED MODEL CHECKING OF C++ PROGRAMS 35

Table 4.2: Rules to connect throw expressions and catch blocks.

Rule Behavior Formalization

r1 Catches an exception if the type of
the thrown exception e is equal to
the type of the catch h.

ite(9h · M(e, h), hr1 = h, hr1 = hnull)

r2 Catches an exception if the type of
the thrown exception e is equal to
the type of the catch h, ignoring
the qualifiers const, volatile, and
restrict.

ite(9h · M(e, ⇣(h)), hr2 = h, hr2 = hnull)

r3 Catches an exception if its type is
a pointer of a given type x and the
type of the thrown exception is an
array of the same type x.

ite(9h · e = e[] ^ h = h⇤ ^M(e[], h⇤), hr3 = h⇤, hr3 = hnull)

r4 Catches an exception if its type is
a pointer to function that returns
a given type x and the type of the
thrown exception is a function that
returns the same type x.

ite(9h · e = ef() ^ h = hf() ^M(ef(), hf()), hr4 = hf(), hr4 = hnull)

r5 Catches an exception if its type is
an unambiguous base type for the
type of the thrown exception.

ite(9h · U(e, h), hr5 = h, hr5 = hnull)

r6 Catches an exception if the type of
the thrown exception e can be con-
verted to the type of the catch h,
either by qualification or standard
pointer conversion [55].

ite(9h · e = e⇤ ^ h = h⇤ ^Q(e⇤, h⇤), hr6 = h⇤, hr6 = hnull)

r7 Catches an exception if its type is a
void pointer hv and the type of the
thrown exception e is a pointer of
any given type.

ite(9h · e = e⇤ ^ h = hv, hr7 = hv, hr7 = hnull)

r8 Catches any thrown exception if its
type is ellipsis.

ite(8e · 9h · h = h..., hr8 = h..., hr8 = hnull)

r9 If the throw expression does not
throw anything, it should re-throw
the last thrown exception e�1, if it
exists.

ite(e = enull ^ e�1 6= enull,

h0
r1 = r1(e�1, h1, ..., hn)

^ . . .

^ h0
r9 = r9(e�1, h1, ..., hn),

hr9 = hnull)

Chapter 5

Experimental Evaluation

The experimental evaluation compares ESBMC against LLBMC and DIVINE regarding correctness

and performance in the verification process of C++ programs; DIVINE was developed by Bara-

nová et al. [4], and LLBMC was developed by Merz, Falke, and Sinz [40]. Section 5.2 shows a

detailed description of all tools, scripts, and benchmark dataset, while Section 5.4 presents the re-

sults and our evaluation. Our experiments are based on a set of publicly available benchmarks. All

tools, scripts, benchmarks, and the results of our evaluation are available on a supplementary web

page at http://esbmc.org/.

5.1 Objectives

Experiments aim at answering two questions regarding correctness and performance of ESBMC:

(EQ-I) How accurate is ESBMC when verifying the chosen C++03 programs?

(EQ-II) How does ESBMC performance compare to other existing model checkers?

To answer both questions, we evaluate all benchmarks with ESBMC v2.0, DIVINE v4.0.22, and

LLBMC v2013.1. Our experimental evaluation does not include CBMC v5.8 [24], because its C++

support is still very rudimentary and it fails during the verification of 99% of all benchmarks (mostly

during the parser step), as already reported by Merz et al. [40], Monteiro et al. [70], and Ramalho

et al. [80].

5.2 Description of the Benchmarks

To tackle modern aspects of the C++ language, the comparison is based on a benchmark dataset

that consists of 1,513 C++03 programs. In particular, 290 programs were extracted from Deitel

36

CHAPTER 5. EXPERIMENTAL EVALUATION 37

& Deitel [35], 432 were extracted from C++ Resources Network [19], 16 were extracted from NEC

Corporation [98], 16 programs were obtained from LLBMC [40], 39 programs were obtained from

CBMC [24], 55 programs were obtained from the GCC test suite [41], and the others were developed

to check several features of the C++ programming language [80]. The benchmarks are split into

18 test suites: algorithm contains 144 benchmarks to check the Algorithm library functionalities;

cpp contains 357 general benchmarks, which involves C++03 libraries for general use, such as I/O

streams and templates; this category also contains the LLBMC benchmarks and most NEC bench-

marks. The test suites deque (43), list (72), queue (14), stack (14), priority queue (15), stream (66),

string (233), vector (146), map (47), multimap (45), set (48), and multiset (43) contain benchmarks

related to the standard template containers. The category try catch contains 81 benchmarks to the

exception handling and the category inheritance contains 51 benchmarks to check inheritance and

polymorphism mechanisms. Finally, the test suites cbmc (39), templates (23) and gcc-template (32)

contain benchmarks from the GCC1 and CBMC2 test suite, which are specific to templates.

5.3 Experimental Setup

All experiments were conducted on a computer with an i7-4790 processor, 3.60GHz clock, with

16GB RAM memory and Ubuntu 14.04 64-bit OS. ESBMC, LLBMC, and DIVINE were set to a

time limit of 900 seconds (i.e., 15 minutes) and a memory limit of 14GB. All presented execution

times are actually CPU times, i.e., only the elapsed time periods spent in the allocated CPUs.

Furthermore, memory consumption is the amount of memory that belongs to the verification process

and is currently present in RAM (i.e., not swapped or otherwise not-resident). Both CPU time and

memory consumption were measured with the times system call (POSIX system). Neither swapping

nor turbo boost was enabled during experiments and all executed tools were restricted to a single

process.

The tools were executed using three scripts: the first one for ESBMC,3 which reads its parameters

from a file and executes the tool; the second one for LLBMC, which first compiles the program to

bitcode, using clang,4 [59] then it reads the parameters from a file and executes the tool;5 and the

last one for DIVINE, which also first pre-compiles the C++ program to bitcode, then performs the

verification on it6. All parameters were based on previous publications and confirmed by developers.

The loop unrolling defined for ESBMC and LLBMC (i.e., the B value) depends on each benchmark.

In order to achieve a fair comparison with ESBMC, an option from LLBMC had to be disabled.

LLBMC does not support exception handling and all bitcodes were generated without exceptions

1https://github.com/nds32/gcc/tree/master/gcc/testsuite/
2https://github.com/diffblue/cbmc/tree/develop/regression
3
esbmc *.cpp –unwind B –no-unwinding-assertions -I /libraries/

4
clang++ -c -g -emit-llvm *.cpp -fno-exceptions -o main.bc

5
llbmc *.o -o main.bc –ignore-missing-function-bodies –max-loop-iterations=B –no-max-loop-iterations-checks

6
divine verify *.cpp

CHAPTER 5. EXPERIMENTAL EVALUATION 38

(i.e., with the �fno� exceptions flag of the compiler). If exception handling is enabled, then

LLBMC always aborts the verification process.

5.4 Experimental Results

65.96%

82.98% 80.85% 78.45%

42.95%

70.36%

84.32%

31.37%

68.63%

87.66%

51.85%

1.06%
2.54%

2.85%

3.70%

4.94%

6.38%

8.51% 11.71%
8.87%

53.25%

17.60%

15.68%

47.06%

5.88%

2.46%

30.86%

27.66%

8.51% 6.38% 10.14%
3.80%

9.19%

21.57%
25.49%

6.17%
12.35%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ESBMC DIVINE LLBMC ESBMC DIVINE LLBMC ESBMC DIVINE LLBMC ESBMC DIVINE

Templates Standard Containers Inheritance & Polymorphism Exception Handling

Correct False Positives False Negatives Unknown

Figure 5.1: Comparison of verification results between ESBMC v2.0, DIVINE v4.0.22, and LLBMC
v2013.1.

In this section, we present the results using percentages (in relation to the 1,513 C++ bench-

marks), as shown in Fig. 5.1. The data used to generate these percentages is available at the Ap-

pendix A. Correct represents the positive results, i.e., percentage of benchmarks with and without

bugs correctly verified. False positives represent the percentage of benchmarks reported as correct,

but they are incorrect; similarly, False negatives represent the percentage of benchmarks reported as

incorrect, but that is correct. Finally, Unknown represents the benchmarks where each tool aborted

the verification process due to internal errors, timeout (i.e., the tool was killed after 900 seconds) or

memory out (i.e., exhausted the maximum memory allowed of 14GB). In the Exception Handling

category, LLBMC is excluded since it does not support this feature; if exception handling is enabled,

then LLBMC always aborts the verification process. Furthermore, to better present the results of

our experimental evaluation, the test suites were grouped into five categories:

Templates – formed by the cbmc, gcc-templates and templates test suites (94 benchmarks);

CHAPTER 5. EXPERIMENTAL EVALUATION 39

Standard Containers – formed by algorithm, deque, vector, list, queue, priority queue, stack,

map, multimap, set and multiset test suites (631 benchmarks);

Inheritance & Polymorphism – formed by the inheritance test suite (51 benchmarks).

Exception Handling – formed by the try catch test suite (81 benchmarks);

C++03 – formed by cpp, string, and stream test suites (656 benchmarks).

On the Templates category (see Fig. 5.1), DIVINE presented the best results and reached a

successful verification rate of 82.98%, while LLBMC reported 79.79% and ESBMC 65.96%. DIVINE

does not report any timeout, memory out, or false-positive results for this category, but it reports

false-negative results in 8.51% of the benchmarks due to false claims of uncaught exceptions, and

a bug related to the naming convention adopted by LLVM for the macro PRETTY FUNCTION in

template methods. It also reports unknown in 8.51% of the benchmarks due to either not supporting

friends template declarations [55] or due to errors when verifying template specialization. LLBMC

reports a false-negative rate of 11.71% and a false-positive rate of 1.06%, which are related to

problems with invalid data members from nested templates or specialized template classes, handling

parameters of template functions, and errors with operator overloading. Furthermore, LLBMC

presents problems to deal with template specialization that leads to an unknown rate of 6.38%.

ESBMC does not report any timeout, memory out, or false-positive results in this category, but a

false-negative rate of 6.38% and an unknown rate of 27.66%, both due to problems instantiating

nested templates, where the tool wrongly chooses the instantiated template to be used during the

verification or the lack of support for friends template declarations (cf., Section 4.1).

Although the current support of templates was su�cient to verify real-world C++ applications,

as shown in Fig. 5.2, it is still work-in-progress. For instance, the handling of SFINAE [55] in

ESBMC is limited, and limitations on the support of nested templates, as shown in the experiments,

directly a↵ect the verification process. Furthermore, our custom front-end for C++ in ESBMC o↵ers

support only to C++03 templates; template features from newer standards (e.g., variadic templates)

are not supported. This limitation is due to the fact that template instantiation is notoriously hard,

especially if we consider more recent standards and, although our front-end can handle a number of

real-world C++ programs, maintaining the C++ front-end in ESBMC is a herculean task. We plan

to develop a new C++ front-end based on clang’s AST, similar to the C front-end already in place

(see Section 6).

On the Standard Containers category (see Fig. 5.1), ESBMC presented the best results and

reached a successful verification rate of 78.45%, while LLBMC reported 70.36% and DIVINE 42.95%.

ESBMC’s noticeable results for containers are directly related to its COM. The majority of the

benchmarks for this category contain assertions checking functional aspects of the containers and its

operations, e.g., to check whether the operator[] from a vector object is called with an argument

out of range, which would lead to undefined behavior (cf., Section 4.2). In this context, pre- and

CHAPTER 5. EXPERIMENTAL EVALUATION 40

postconditions embedded into COM extend the capabilities of ESBMC to not only check for memory-

safety properties (e.g., null pointer dereferences or arithmetic overflows), but also to reason about the

aforementioned functional aspects of the containers. ESBMC reports a false-positive rate of 2.54%

and a false-negative rate of 8.87%, which is due to internal implementation issues during pointer

encoding; we are currently working to address them in future versions. ESBMC also reported 10.14%

of unknown results due to the aforementioned template limitations. LLBMC reports a false-positive

rate of 2.85% and a false-negative rate of 17.60%, which is mostly related to functional properties

(e.g., assertions to check whether the container is empty or it has a particular size). It also reports

an unknown rate of 9.19% regarding timeouts, memory outs, and crashes when performing formula

transformation [40]. DIVINE does not report any timeout, memory out, or false-positive results for

this category, but an expressive false-negative rate of 53.25%, which is a result of errors to check

assertions regarding functional properties (similar to LLBMC). DIVINE also reports an unknown

rate of 3.80% due to errors with pointer handling, probably due to imprecise (internal) encoding, or

errors to check assertions regarding functional properties.

On the Inheritance & Polymorphism category (see Fig. 5.1), ESBMC presented the best results

and reached a successful verification rate of 84.32% while LLBMC reported 68.63% and DIVINE

31.37%. ESBMC does not report any timeout or memory out, but it reports a false-negative rate of

15.68%, which is due to implementation issues to handle pointer encoding. LLBMC does not report

any false positives, timeouts, or memory outs results. However, it reports a false-negative rate of

5.88%, which is related to failed assertions representing functional aspects of inherited classes. It also

reported an unknown rate of 25.49% regarding multiple inheritance. DIVINE does not report any

timeout, memory out, or false-positive results for this category, but an expressive false-negative rate

of 47.06% and an unknown rate of 21.57%, which is a result of errors when handling dynamic casting,

virtual inheritance, multiple inheritance, and even basic cases of inheritance and polymorphism.

On the Exception Handling category (see Fig. 5.1), ESBMC presented the best results and

reached a successful verification rate of 87.66% while DIVINE reported 51.85%. ESBMC does not

report any timeout or memory out, but it reports a false-positive rate of 3.70% and a false-negative

rate of 2.47%. These bugs are related to the implementation of rule r6 from Table 4.2 in ESBMC,

i.e., “catches an exception if the type of the thrown exception e can be converted to the type of the

catch h, either by qualification or standard pointer conversion”; we are currently working on fixing

these issues. ESBMC also presents an unknown rate of 3.70% due to previously mentioned template

limitations. DIVINE does not report any timeout or memory out, but it reports a false-positive rate

of 4.94% and an expressive false-negative rate of 30.86%, where it incorrectly handles re-throws,

exception specification and the unexpected as well as terminate function handlers. DIVINE also

presents an unknown rate of 12.35% due to errors when dealing with exceptions thrown by derived

classes instantiated as base classes.

CHAPTER 5. EXPERIMENTAL EVALUATION 41

5.5 Discussion

92.54%

33.23%

59.60%

1.37%

0.15%

1.83%

2.28%

56.25%

28.05%

3.81%
10.37% 10.52%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ESBMC DIVINE LLBMC

C++03

Correct False Positives False Negatives Unknown

Figure 5.2: Comparison of verification results between ESBMC v2.0, DIVINE v4.0.22, and LLBMC
v2013.1 regarding general-purpose benchmarks in C++03.

To evaluate how these model checkers perform when applied to general C++03 benchmarks, we

evaluate them against the category C++03. The category covers programs up to the 2013 standard

because ESBMC front-end does not fully support newer versions yet [80]. In this category, model

checkers deal with benchmarks that not only make use of an specific feature of the C++ language

(e.g., exception handling and containers), but how they deal with programs that make use of multiple

object-oriented features (e.g., inheritance and exceptions), that contain a wider range of libraries

from the STL, or manipulation of strings and streams, among other C++03 features. ESBMC

presented the highest successful verification rate, 92.54%, followed by LLBMC 59.60% and DIVINE

33.23%. The successful expressive rate of ESBMC in this category not only correlate to its support

for core C++03 features (i.e., templates, inheritance, polymorphism, and exception handling) or

its ability to check functional aspects of the standard containers, but also because COM contains

abstractions for all standard libraries shown in Table 4.1. For instance, the operational model

for the string library enables ESBMC to achieve a success rate of 99.14% in the string test suite,

which contains benchmarks that target all methods provided in C++03 for string objects. Note

that running ESBMC without COM over the benchmarks, 98.08% fail since the majority makes

CHAPTER 5. EXPERIMENTAL EVALUATION 42

use of at least one standard template library. ESBMC does not report any memory out, but it

reports a false-positive rate of 1.37%, a false-negative rate of 2.28%, and an unknown rate of 3.81%,

which are all due to the same issues pointed by the previous experiments. LLBMC reports a false-

positive rate of 1.83% and a false-negative rate of 28.05%, which is related to errors when checking

assertions that represent functional properties of objects (e.g., asserting the size of a string object

after an operation) or dealing with stream objects in general. It also reported an unknown rate of

10.52% mostly regarding errors with operator overloading and the ones mentioned in the previous

categories. DIVINE does not report any timeout or memory out, but an expressive false-negative rate

of 56.25%, which is a result of errors when checking assertions that represent functional properties

of objects across all STL (similar to LLBMC). DIVINE also reports one false positive regarding the

instantiation of function template specialization, and an unknown rate of 10.37% due to crashes

when handling pointers.

A small number of counterexamples generated by the three tools were manually checked, but we

understand that this is far from ideal. The best approach is to use an automated method to validate

the counterexample, such as the witness format proposed by Beyer et al. [9]; however, the available

witness checkers do not support the validation of C++ programs. Implementing such a witness

checker for C++ would represent a significant development e↵ort, which we leave it for future work.

0 2 4 6 8 10 12 14 16 18
CPU Time [s]

×104

103

104

105

106

107

108

109

1010

M
e
m

o
ry

 [
K

b
]

ESBMC
LLBMC
DIVINE

Figure 5.3: Comparison of accumulative verification time and accumulative memory consumption
among ESBMC v2.0, DIVINE v4.0.22, and LLBMC v2013.1 throughout the verification process of
all benchmarks.

CHAPTER 5. EXPERIMENTAL EVALUATION 43

Fig. 5.3 shows the accumulative verification time and accumulative memory consumption for the

tools under evaluation. All the tools take more time to verify the test suites algorithm, string, and

cpp, due to the large number of test cases and the presence of pointers and iterators. ESBMC is the

fastest of the three tools, being 1.7 times faster than LLBMC and 7 times faster than DIVINE. In

terms of verification time, DIVINE is the only tool that did not use more than the defined limit of 900

seconds, while ESBMC and LLBMC aborted due to timeout in 7 and 39 benchmarks, respectively.

In terms of memory consumption, DIVINE is the only tool that did not use more than the defined

limit of 14GB per benchmark, while ESBMC and LLBMC aborted due to exhaustion of the memory

resources in 3 and 17 of them, respectively. Even so, LLBMC consumes less memory overall (i.e.,

571.71GB) when compared to DIVINE (i.e., 1, 017.19GB) and ESBMC (i.e., 2, 204.11GB).

Based on the entire experimental set (see Appendix A), ESBMC achieved the highest success rate

of 84.27% in 25251 seconds (approximately 7 hours), faster than both LLBMC and DIVINE, which

positively answers our experimental questions EQ-I and EQ-II. LLBMC correctly verified 62.52%

in 44438 seconds (approximately 12.34 hours) and is only able to verify the programs if exception

handling is disabled, which is not a problem for both ESBMC and DIVINE. DIVINE correctly verified

41.31% in 176957 seconds (approximately 49.15 hours). Regarding memory usage, ESBMC has the

highest usage among the three tools, which is 2.16 and 3.85 times higher than DIVINE and LLBMC,

respectively; this high consumption is due to the generation process of SSA forms (cf., Sec. 4);

however, its optimization is under development and will be available in future versions. In conclusion,

our experimental evaluation indicates that ESBMC outperforms two state-of-the-art model checkers,

DIVINE and LLBMC, regarding the verification of inheritance, polymorphism, exception handling,

and standard containers. The support for templates in ESBMC needs improvements, but the current

work-in-progress clang frontend will not only cover this gap (because clang will instantiate all the

templates in the program), but will also allow ESBMC to handle new versions of the language (e.g.,

C++11). Even with its current support for templates, our experimental results allow us to conclude

that ESBMC represents the state-of-the-art regarding the application of model checking in C++

programs.

Chapter 6

Conclusions

This work presented a novel SMT-based BMC approach to verify C++ programs using ESBMC.

Firstly, we describe our approach to support templates, which works similarly as conventional com-

pilers, by replacing the instantiated templates before the encoding phase. We also present an ab-

straction of the standard C++ libraries, named COM, which replaces the SCL during the verification

of a C++ program and whose purpose is to verify safety properties related to the usage of the SCL.

Furthermore, we describe ESBMC’s mechanism to handle single and multiple inheritance and poly-

morphism in C++ programs. Lastly, we formally describe and all throw & catch exception rules in

ESBMC. The main contributions of this work are the formalization of the ESBMC’s engine to handle

templates, inheritance & polymorphism, and exception handling; the operational model structure to

handle new features from the SCL (e.g., sequential and associative template-based containers); and

the expressive set of publicly available benchmarks explicitly designed to evaluate model checkers

that target the C++ programming language.

In order to evaluate the proposed approach, we introduce a new version of ESBMC v2.0 with a

new set of over 1, 500 benchmarks, which covers several features o↵ered by the C++03 programming

language. It is worth noting that ESBMC can verify correctly 84.27%, in approximately 7 hours,

outperforming other state-of-art C++ verification tools (cf., Chapter 5). In the experimental evalu-

ation, two state-of-art verifiers, DIVINE and LLBMC, are compared to ESBMC, which was able to

present a higher number of correct results, in less time than both tools (7 and 1.7 times faster than

DIVINE and LLBMC, respectively). Importantly, ESBMC and DIVINE were also able to verify

programs with exceptions enabled, a missing feature from LLBMC that decreases the verification

accuracy of real-world C++ programs.

Based on the extensive experimental evaluation and the available literature, we believe this work

sets ESBMC as the state-of-the-art in the verification of C++ programs regarding inheritance &

polymorphism, standard C++ libraries, and exception handling.

We intend to extend ESBMC coverage, in order to verify C++11 programs. The new standard is

44

CHAPTER 6. CONCLUSIONS 45

a huge improvement over the C++03, which includes the replacement of exception specialization by

a new keyword noexcept, which works in the same fashion as an empty exception specialization. The

standard also presents new sequential containers (array and forward list), new unordered associa-

tive containers (unordered set, unordered multiset, unordered map and unordered multimap),

and new multithreaded libraries (e.g., thread) in which our COM does not yet support. Finally, we

intend to develop an automatic conformance testing procedure to ensure that our COM conserva-

tively approximates the SCL semantics.

Furthermore, we intend to improve the general verification of C++ programs, including improved

support for templates. Although our C++ front-end is able to support most features of C++03, to

improve the front-end for newer versions of the C++ standard is unmanageable. For that reason,

we could rewrite our front-end using clang [59] to generate the program AST for C++ programs.

To obtain full control over the clang AST and integrate it into ESBMC’s front-end, we could use

the LibTooling1 API, which is a C++ interface aimed at writing standalone tools based on clang.

Importantly, we do not intend to use the LLVM intermediate representation, but the AST generated

by clang. An AST is a representation of the abstract syntactic structure of source code, which does

not represent every aspect in the syntax, but rather just the specific language elements that have

meaning [49]. In particular, if we use clang to generate the AST, then it solves several problems:

• The AST generated by clang contains all the instantiated templates so we only need to convert

the instantiated classes/functions and ignore the generic version.

• Supporting new features should be as easy as adding a new AST conversion node from the

clang representation to ESBMC representation.

• We do not need to maintain a full C++ front-end since ESBMC would contain all libraries

from clang. Thus, we can focus on the main goal of ESBMC, the SMT encoding of C/C++

programs.

We already took the first step towards that direction and rewrote the C front-end [44], and

the C++ front-end is currently under development. One of the major bottlenecks to maintain the

ESBMC support of the C++ programming language is the need to update its front-end for each

C++ release. Rewrite the ESBMC’s front-end for C++ programs requires a significant engineering

e↵ort. We already started the development of the new C++ front-end. It is, however, far from

complete. Therefore, we want to focus on the object-oriented aspects to set the foundation of this

approach. Firstly, we intend to extend and evaluate ESBMC to verify the fundamental structures

of object-oriented programs (e.g., classes, methods, constructors, and destructors).

Furthermore, we must improve and evaluate ESBMC to include the instantiation of all templates

in the program, which represents the weakest aspect in the current ESBMC version, as shown in

the experimental evaluation (cf. Chapter 5). Finally, we would need to focus again on the support

1
http://clang.llvm.org/docs/LibTooling.html

CHAPTER 6. CONCLUSIONS 46

for inheritance & polymorphism, including the code to build virtual tables. Unfortunately, the AST

provided by clang does not represent the whole type-structure of C++, virtual classes and virtual

tables are present. There are cases where the front-end can deduce the type of an object, but it

is not always so. There are two possible solutions here: we could either implement a full virtual

dispatch table or use some devirtualization approach to solving the problem. The idea is to use

static analysis to restrict/resolve the virtual types, the use of dispatch tables only when necessary.

This work would set a strong foundation for the full support of the C++ programming language in

ESBMC.

Bibliography

[1] Roger T. Alexander, Je↵ O↵utt, and James M. Bieman. Fault detection capabilities of coupling-

based OO testing. In Software Reliability Engineering, pages 207–2002, 2002.

[2] Saswat Anand, Corina S. Păsăreanu, and Willem Visser. JPF-SE: A symbolic execution ex-

tension to java pathfinder. In Tools And Algorithms For The Construction And Analysis Of

Systems, volume 4424 of LNCS, pages 134–138, 2007.

[3] Andrei Arusoaie, Stefan Ciobâca, Vlad Craciun, Dragos Gavrilut, and Dorel Lucanu. A com-

parison of open-source static analysis tools for vulnerability detection in C/C++ code. In

Symposium On Symbolic And Numeric Algorithms For Scientific Computing, pages 161–168,

2017.

[4] Zuzana Baranová, Jǐŕı Barnat, Kataŕına Kejstová, Tadeáš Kučera, Henrich Lauko, Jan Mrázek,

Petr Ročkai, and Vladimı́r Štill. Model checking of C and C++ with DIVINE 4. In Automated

Technology For Verification And Analysis, volume 10482 of LNCS, pages 201–207, 2017.

[5] Clark Barrett, Christopher Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim

King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Computer-Aided Verification, volume

6806 of LNCS, pages 171–177, 2011.

[6] Dirk Beyer. Competition on software verification (SV-COMP). In Tools And Algorithms For

The Construction And Analysis Of Systems, volume 7214 of LNCS, pages 504–524, 2012.

[7] Dirk Beyer. Second competition on software verification - (summary of SV-COMP 2013). In

Tools And Algorithms For The Construction And Analysis Of Systems, volume 7795 of LNCS,

pages 594–609, 2013.

[8] Dirk Beyer. Status report on software verification - (competition summary SV-COMP 2014). In

Tools And Algorithms For The Construction And Analysis Of Systems, volume 8413 of LNCS,

pages 373–388, 2014.

47

BIBLIOGRAPHY 48

[9] Dirk Beyer. Software verification and verifiable witnesses - (report on SV-COMP 2015). In

Tools And Algorithms For The Construction And Analysis Of Systems, volume 9035 of LNCS,

pages 401–416, 2015.

[10] Dirk Beyer. Reliable and reproducible competition results with benchexec and witnesses (report

on SV-COMP 2016). In Tools And Algorithms For The Construction And Analysis Of Systems,

volume 9636 of LNCS, pages 887–904, 2016.

[11] Dirk Beyer. Software verification with validation of results (report on SV-COMP 2017). In

Tools And Algorithms For The Construction And Analysis Of Systems, volume 10206 of LNCS,

pages 331–349, 2017.

[12] Dirk Beyer. Automatic verification of C and java programs: SV-COMP 2019. In Tools And

Algorithms For The Construction And Analysis Of Systems, volume 11429 of LNCS, pages

133–155, 2019.

[13] Dirk Beyer and Thomas Lemberger. Software verification: Testing vs. model checking. In

Hardware and Software: Verification and Testing, volume 10629 of LNCS, pages 99–114, 2017.

[14] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. Handbook of Satisfiability:

Volume 185 Frontiers in Artificial Intelligence and Applications, volume 185. IOS Press, 2009.

[15] Nicolas Blanc, Alex Groce, and Daniel Kroening. Verifying C++ with STL containers via

predicate abstraction. In Automated Software Engineering, pages 521–524, 2007.

[16] Aaron R. Bradley and Zohar Manna. The Calculus Of Computation - Decision Procedures With

Applications To Verification. Springer, 1st edition, 2007.

[17] Aaron R. Bradley and Zohar Manna. The Calculus Of Computation: Decision Procedures With

Applications To Verification. Springer-Verlag New York, Inc., 1st edition, 2007.

[18] Robert Brummayer and Armin Biere. Boolector: An e�cient SMT solver for bit-vectors and

arrays. In Tools And Algorithms For The Construction And Analysis Of Systems, volume 5505

of LNCS, pages 174–177, 2009.

[19] C++ Resources Network. Reference Of The C++ Language Library. Standard C++ Founda-

tion, 2013. [Online; accessed September-2018].

[20] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and automatic genera-

tion of high-coverage tests for complex systems programs. In Symposium On Operating Systems

Design And Implementation, pages 209–224, 2008.

BIBLIOGRAPHY 49

[21] Pedro de la Cámara, J. Raúl Castro, Maŕıa-del-Mar Gallardo, and Pedro Merino. Verification

support for ARINC-653-based avionics software. Software Testing, Verification and Reliability,

21(4):267–298, 2011.

[22] Nathan Chong, Byron Cook, Konstantinos Kallas, Kareem Khazem, Felipe R. Monteiro, Daniel

Schwartz-Narbonne, Serdar Tasiran, Michael Tautschnig, and Mark R. Tuttle. Code-level model

checking in the software development workflow. In 42nd International Conference on Software

Engineering (ICSE), 2020.

[23] Alessandro Cimatti, Alberto Griggio, Bastiaan Schaafsma, and Roberto Sebastiani. The math-

SAT5 SMT solver. In Tools And Algorithms For The Construction And Analysis Of Systems,

volume 7795 of LNCS, pages 93–107, 2013.

[24] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C programs. In

Tools And Algorithms For The Construction And Analysis Of Systems, volume 2988 of LNCS,

pages 168–176, 2004.

[25] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. SATABS: SAT-based

predicate abstraction for ANSI-C. In Tools And Algorithms For The Construction And Analysis

Of Systems, volume 3440 of LNCS, pages 570–574, 2005.

[26] Edmund M. Clarke, Thomas A. Henzinger, and Helmut Veith. Handbook Of Model Checking,

chapter Introduction To Model Checking, pages 1–26. Springer International Publishing, 2018.

[27] Byron Cook, Kareem Khazem, Daniel Kroening, Serdar Tasiran, Michael Tautschnig, and

Mark R. Tuttle. Model checking boot code from AWS data centers. In Computer Aided Verifi-

cation, pages 467–486, 2018.

[28] Lucas C. Cordeiro and Bernd Fischer. Verifying multi-threaded software using SMT-based

context-bounded model checking. In International Conference on Software Engineering, pages

331–340, 2011.

[29] Lucas C. Cordeiro, Bernd Fischer, and João Marques-Silva. SMT-based bounded model checking

for embedded ANSI-C software. IEEE Transactions on Software Engineering, 38(4):957–974,

2012.

[30] Lucas C. Cordeiro, Bernd Fischer, and Joã£o Marques-Silva. Continuous verification of large

embedded software using SMT-based bounded model checking. In Engineering of Computer

Based System, pages 160–169, 2010.

[31] Erickson H. da S. Alves, Lucas C. Cordeiro, and Eddie Batista de Lima Filho. Fault localization

in multi-threaded C programs using bounded model checking. In 2015 Brazilian Symposium

BIBLIOGRAPHY 50

on Computing Systems Engineering, SBESC 2015, Foz do Iguacu, Brazil, November 3-6, 2015,

pages 96–101. IEEE Computer Society, 2015.

[32] Erickson H. da S. Alves, Lucas C. Cordeiro, and Eddie Batista de Lima Filho. A method to

localize faults in concurrent C programs. J. Syst. Softw., 132:336–352, 2017.

[33] Leonardo De Moura and Nikolaj Bjørner. Z3: An e�cient SMT solver. In Tools And Algorithms

For The Construction And Analysis Of Systems, volume 4963 of LNCS, pages 337–340, 2008.

[34] Harvey M. Deitel and Paul J. Deitel. Java How To Program. Prentice-Hall, Inc., 6th edition,

2004.

[35] Harvey M. Deitel and Paul J. Deitel. C++ How To Program. Prentice Hall Press, 6th edition,

2007.

[36] Dino Distefano, Manuel Fahndrich, Francesco Logozzo, and Peter W. O’Hearn. Scaling static

analyses at Facebook. Communications of ACM, 62:62–70, 2019.

[37] Karel Driesen and Urs Hölzle. The direct cost of virtual function calls in C++. In Object-

Oriented Programming, Systems, Languages & Applications, pages 306–323, 1996.

[38] Bruno Dutertre. Yices 2.2. In Computer-Aided Verification, volume 8559 of LNCS, pages

737–744, 2014.

[39] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-

Wesley, 1st edition, 1990.

[40] Stephan Falke, Florian Merz, and Carsten Sinz. The bounded model checker LLBMC. In

Automated Software Engineering, pages 706–709, 2013.

[41] Free Software Foundation, Inc. GCC, The GNU Compiler Collection. The LLVM Project, 51

Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA, 2015.

[42] Mikhail R. Gadelha. Verificação Baseada em Indução Matemática para Programas C++. Mas-

ter’s thesis, Federal University of Amazonas, Brazil, 2013.

[43] Mikhail R. Gadelha, Rafael Menezes, Felipe R. Monteiro, Lucas Cordeiro, and Denis Nicole.

Esbmc: Scalable and precise test generation based on the floating-point theory (competition

contribution). In International Conference on Fundamental Approaches to Software Engineer-

ing, volume 12076 of LNCS, pages 525–529, 2020.

[44] Mikhail R. Gadelha, Felipe R. Monteiro, Jeremy Morse, Lucas C. Cordeiro, Bernd Fischer, and

Denis A. Nicole. ESBMC 5.0: An industrial-strength C model checker. In Automated Software

Engineering, pages 888–891, 2018.

BIBLIOGRAPHY 51

[45] Mikhail R. Gadelha, Felipe R. Monteiro, Lucas Cordeiro, and Denis Nicole. ESBMC v6.0:

Verifying C programs using k-induction and invariant inference (competition contribution). In

Tools And Algorithms For The Construction And Analysis Of Systems, volume 11429 of LNCS,

pages 209–213, 2019.

[46] Mikhail Y. R. Gadelha, Lucas C. Cordeiro, and Denis A. Nicole. Encoding floating-point num-

bers using the SMT theory in ESBMC: an empirical evaluation over the SV-COMP benchmarks.

In Simone André da Costa Cavalheiro and José Luiz Fiadeiro, editors, Formal Methods: Foun-

dations and Applications - 20th Brazilian Symposium, SBMF 2017, Recife, Brazil, November

29 - December 1, 2017, Proceedings, volume 10623 of Lecture Notes in Computer Science, pages

91–106. Springer, 2017.

[47] Mikhail Y. R. Gadelha, Hussama Ibrahim Ismail, and Lucas C. Cordeiro. Handling loops in

bounded model checking of C programs via k-induction. STTT, 19(1):97–114, 2017.

[48] Mikhail Y. R. Gadelha, Felipe R. Monteiro, Lucas C. Cordeiro, and Denis A. Nicole. Towards

counterexample-guided k-induction for fast bug detection. In ACM Joint European Software

Engineering Conference And The Foundations Of Software Engineering, pages 765–769, 2018.

[49] D. Galles. Modern Compiler Design, chapter Abstract Syntax Trees in C, pages 33–48. Scot-

t/Jones, 2004.

[50] Mário Garcia, Felipe R. Monteiro, Lucas C. Cordeiro, and Eddie Batista de Lima Filho.

ESBMCQtOM : A bounded model checking tool to verify qt applications. In SPIN, volume

9641 of LNCS, pages 97–103, 2016.

[51] Raphael Geissert. Debian automated code analysis. https://qa.debian.org/daca/, 2019.

[Online; accessed August-2019].

[52] Benny Godlin and Ofer Strichman. Regression verification: Proving the equivalence of similar

programs. Software Testing, Verification and Reliability, 23(3):241–258, 2013.

[53] C. Hathhorn and G. Rosu. Dealing with C’s original sin. IEEE Software, 36:24–28, 2019.

[54] Steven Holzner. C++ Black Book. Coriolis, 1st edition, 2000.

[55] ISO. C++ Standard, 2003. ISO/IEC 14882:2003.

[56] Franco Ivančić, Ilya Shlyakhter, Aarti Gupta, and Malay K. Ganai. Model checking C programs

using F-SOFT. Computer Design, pages 297–308, 2005.

[57] Wei Ming Khoo, Saad Aloteibi, Ross Anderson, and Michael Meeks. Hunting for vulnerabilities

in large software: The openo�ce suite. Cambridge University press, page 9, 2010.

BIBLIOGRAPHY 52

[58] Daniel Kroening, Joël Ouaknine, Ofer Strichman, Thomas Wahl, and James Worrell. Linear

completeness thresholds for bounded model checking. In Computer-Aided Verification, volume

6806 of LNCS, pages 557–572, 2011.

[59] Chris Lattner. Clang Documentation. The Clang-LLVM Project, 2015. [Online; accessed

September-2018].

[60] Bruno Cardoso Lopes and Rafael Auler. Getting Started With LLVM Core Libraries. Packt

Publishing, 1st edition, 2014.

[61] Daniel Marjamäki. Cppcheck - a tool for static C/C++ code analysis. http://cppcheck.

sourceforge.net, 2018. [Online; accessed August-2019].

[62] John McCarthy. Program Verification: Fundamental Issues In Computer Science, chapter

Towards a Mathematical Science of Computation, pages 35–56. Springer Netherlands, 1993.

[63] Farhad Mehta and Tobias Nipkow. Proving pointer programs in higher-order logic. Information

and Computation, 199(1):200–227, 2005.

[64] Florian Merz, Stephan Falke, and Carsten Sinz. LLBMC: Bounded model checking of C and

C++ programs using a compiler IR. In Verified Software: Theories, Tools, And Experiments,

volume 7152 of LNCS, pages 146–161, 2012.

[65] Cade Metz. Why apple’s switf language will instantly remake computer programming. https:

//www.wired.com/2014/07/apple-swift/, 2004. [Online; accessed August-2019].

[66] Matt Miller. Trends, challenges, and strategic shifts in the software vulnerability mitigation

landscape. Technical report, Microsoft Security Response Center, 2019.

[67] Jonathan Moerman. Evaluating the performance of open source static analysis tools. Bachelor’s

thesis, Radboud University, 2018.

[68] Felipe R. Monteiro, Erickson H. da S. Alves, Isabela S. Silva, Hussama I. Ismail, Lucas C.

Cordeiro, and Eddie B. de Lima Filho. ESBMC-GPU a context-bounded model checking tool

to verify CUDA programs. Science of Computer Programming, 152:63–69, 2018.

[69] Felipe R. Monteiro, Lucas C. Cordeiro, and Eddie B. de Lima Filho. Bounded model checking

of C++ programs based on the qt framework. In Global Conference on Consumer Electronics,

pages 179–180, 2015.

[70] Felipe R. Monteiro, Mário A. P. Garcia, Lucas C. Cordeiro, and Eddie B. de Lima Filho.

Bounded model checking of C++ programs based on the qt cross-platform framework. Software

Testing, Verification and Reliability, 27(3):24, 2017.

BIBLIOGRAPHY 53

[71] Felipe R Monteiro, Mário AP Garcia, Lucas C Cordeiro, and Eddie Batista de Lima Filho.

Bounded model checking of c++ programs based on the qt cross-platform framework (journal-

first abstract). In Proceedings of the 33rd ACM/IEEE International Conference on Automated

Software Engineering, page 954, 2018.

[72] Steven S. Muchnick. Advanced Compiler Design And Implementation. Morgan Kaufmann

Publishers Inc., 1st edition, 1997.

[73] Paul Muntean, Jens Grossklags, and Claudia Eckert. Practical integer overflow prevention.

arXiv e-prints, page arXiv:1710.03720, 2017.

[74] Joseph Neggers and Hae-sik Kim. Basic Posets. World Scientific Pub. Co. Inc., 1st edition,

1999.

[75] Aina Niemetz, Mathias Preiner, and Armin Biere. Boolector 2.0 system description. Journal

on Satisfiability, Boolean Modeling and Computation, 9:53–58, 2014.

[76] Corina S. Pasareanu and Willem Visser. Verification of java programs using symbolic execution

and invariant generation. In Model Checking of Software, volume 2989 of LNCS, pages 164–181,

2004.

[77] Phillipe Pereira, Higo Albuquerque, Isabela da Silva, Hendrio Marques, Felipe R. Monteiro,

Ricardo Ferreira, and Lucas Cordeiro. SMT-based context-bounded model checking for CUDA

programs. Concurrency and Computation: Practice and Experience, 29(e3934):1–20, 2017.

[78] Prakash Prabhu, Naoto Maeda, and Gogul Balakrishnan. Interprocedural exception analysis

for C++. In European Conference on Object-Oriented Programming, volume 6813 of LNCS,

pages 583–608, 2011.

[79] Magnus Ågren. Static code analysis for embedded systems. Master’s thesis, University of

Gothenburg, Göteborg, Sweden, 2009.

[80] Mikhail Ramalho, Mauro Freitas, Felipe Sousa, Hendrio Marques, Lucas C. Cordeiro, and Bernd

Fischer. SMT-based bounded model checking of C++ programs. In Engineering of Computer

Based System, pages 147–156, 2013.

[81] Tahina Ramananandro, Gabriel Dos Reis, and Xavier Leroy. Formal verification of object layout

for C++ multiple inheritance. In Symposium On Principles Of Programming Languages, pages

67–80, 2011.

[82] Petr Ročkai, Jǐŕı Barnat, and Lubos̆ Brim. Model checking C++ programs with exceptions.

Science of Computer Programming, 128:68–85, 2016.

BIBLIOGRAPHY 54

[83] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera Jaspan.

Lessons from building static analysis tools at Google. Communications of ACM, 61:58–66,

2018.

[84] Jeremy Siek and Walid Taha. A semantic analysis of C++ templates. In European Conference

On Object-Oriented Programming, volume 4067 of LNCS, pages 304–327, 2006.

[85] Richard L. Sites. Some thoughts on proving clean termination of programs. Technical report,

Computer Science Department, Stanford University, 1974.

[86] SoSy-Lab. SV-COMP 2018. https://sv-comp.sosy-lab.org/2018/, 2018. [Online; accessed

August-2019].

[87] Felipe R. M. Sousa, Lucas C. Cordeiro, and Eddie B. Lima Filho. Verificação de programas c++

baseados no framework multiplataforma qt. In Encontro Regional de Computação e Sistemas

de Informação, volume 4, pages 181–190, 2015.

[88] Vladimı́r Štill, Petr Ročkai, and Jǐŕı Barnat. Using o↵-the-shelf exception support components

in C++ verification. In Software Quality, Reliability & Security, pages 54–64, 2017.

[89] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Longman Publishing

Co., Inc., 3rd edition, 2000.

[90] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal war in memory. In

IEEE Symposium on Security and Privacy, pages 48–62, 2013.

[91] S. Thompson and G. Brat. Verification of c++ flight software with the mcp model checker. In

2008 IEEE Aerospace Conference, pages 1–9, 2008.

[92] Sarah Thompson, Guillaume Brat, and Karl Schimpf. The mcp model checker. https:

//ti.arc.nasa.gov/m/pub-archive/1312h/1312%20(Thompson,%20S).pdf, 2008. [Online;

accessed March-2020].

[93] Sarah Thompson, Guillaume P. Brat, and Arnaud Venet. Software model checking of ARINC-

653 flight code with MCP. In César A. Muñoz, editor, Second NASA Formal Methods Sympo-

sium - NFM 2010, Washington D.C., USA, April 13-15, 2010. Proceedings, volume NASA/CP-

2010-216215 of NASA Conference Proceedings, pages 171–181, 2010.

[94] Heila van der Merwe, Oksana Tkachuk, Brink van der Merwe, and Willem Visser. Generation of

library models for verification of android applications. Software Engineering Notes, 40(1):1–5,

2015.

[95] Heila van der Merwe, Brink van der Merwe, and Willem Visser. Verifying android applications

using java pathfinder. Software Engineering Notes, 37(6):1–5, 2012.

BIBLIOGRAPHY 55

[96] David Vandevoorde and Nicolai M. Josuttis. C++ Templates: The Complete Guide. Addison-

Wesley Longman Publishing Co., Inc., 2nd edition, 2017.

[97] Andrew Walker, Michael Co↵ey, Pavel Tisnovsky, and Tomas Cerny. On limitations of modern

static analysis tools. In Kuinam J. Kim and Hye-Young Kim, editors, Information Science and

Applications, pages 577–586, Singapore, 2020. Springer Singapore.

[98] Xiao Xusheng, Balakrishnan Gogul, Ivanǒić Franjo, Maeda Naoto, and Gupta Aarti.

NECLA benchmarks: C++ programs with C++ specific bugs. http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.410.7773&rep=rep1&type=pdf, 2013. [Online; accessed

August-2019].

[99] Jing Yang, Gogul Balakrishnan, Naoto Maeda, Franjo Ivančić, Aarti Gupta, Nishant Sinha,

Sriram Sankaranarayanan, and Naveen Sharma. Object model construction for inheritance

in C++ and its applications to program analysis. In Compiler Construction, volume 7210 of

LNCS, pages 144–164, 2012.

Appendix A

Experimental Data

Tables A.1, A.2, and A.3 show the experimental data. In those tables, C is the number of C++

programs, LOC is the number of lines of code o↵ all the benchmarks, Time is the total verification

CPU time of each test suite, P is the number of benchmarks without errors correctly verified, N is

the number of benchmarks with errors correctly verified, FN is the number of benchmarks reported

as correct but are incorrect, FP is the number of benchmarks reported as incorrect but are correct,

Error is the number of benchmarks where occurred an internal error during the verification, TO is

the number of timeouts (i.e., the tool was aborted after 900 seconds), and MO is the number of

memory-outs (i.e., the tool consumed more than 14GB of memory).

56

APPENDIX A. EXPERIMENTAL DATA 57

Table A.1: ESBMC v2.0 experimental data.

ESBMC v2.0

Test suite C LOC Time P N FP FN Error TO MO

1 templates 23 853 107 7 5 0 0 11 0 0

2 gcc-template 32 1036 387 13 0 0 5 14 0 0

3 cbmc 39 898 5 35 2 0 1 1 0 0

4 algorithm 144 4354 5812 56 59 8 14 5 2 0

5 deque 43 1239 981 20 21 0 2 0 0 0

6 vector 146 6853 1131 74 36 3 14 19 0 0

7 list 72 2292 364 17 21 4 10 20 0 0

8 queue 14 328 290 6 7 0 1 0 0 0

9 priority queue 15 396 560 8 7 0 0 0 0 0

10 stack 14 286 308 6 6 0 0 2 0 0

11 map 47 1678 698 20 19 0 1 5 0 2

12 multimap 45 1439 428 20 20 0 1 4 0 0

13 set 48 1393 834 18 22 0 7 1 0 0

14 multiset 43 1238 724 14 18 1 6 4 0 0

15 inheritance 51 3460 96 25 18 1 6 1 0 0

16 try catch 81 4743 43 27 44 3 2 5 0 0

17 stream 66 1831 540 47 12 1 5 1 0 0

18 string 233 4921 7948 106 125 0 2 0 0 0

19 cpp 357 33208 3991 278 39 8 8 22 2 0

1513 72446 25251 797 481 29 85 115 4 2

APPENDIX A. EXPERIMENTAL DATA 58

Table A.2: DIVINE v4.0.22 experimental data.

DIVINE v4.0.22

Test suite C LOC Time P N FP FN Error TO MO

1 templates 23 853 1291 9 8 0 4 2 0 0

2 gcc-template 32 1036 190 26 0 0 4 2 0 0

3 cbmc 39 898 215 35 0 0 0 4 0 0

4 algorithm 144 4354 21867 1 70 0 73 0 0 0

5 deque 43 1239 7600 0 21 0 22 0 0 0

6 vector 146 6853 20681 1 34 0 91 20 0 0

7 list 72 2292 9372 0 34 0 36 2 0 0

8 queue 14 328 2466 0 7 0 7 0 0 0

9 priority queue 15 396 1953 1 7 0 7 0 0 0

10 stack 14 286 1964 0 7 0 6 1 0 0

11 map 47 1678 6844 0 22 0 25 0 0 0

12 multimap 45 1439 2890 0 22 0 23 0 0 0

13 set 48 1393 5748 1 22 0 24 1 0 0

14 multiset 43 1238 6012 0 21 0 22 0 0 0

15 inheritance 51 3460 3914 3 13 0 24 11 0 0

16 try catch 81 4743 4704 5 37 4 25 10 0 0

17 stream 66 1831 8269 1 13 0 51 1 0 0

18 string 233 4921 27683 34 125 0 74 0 0 0

19 cpp 357 33208 43292 18 27 1 244 67 0 0

1513 72446 176957 135 490 5 762 121 0 0

APPENDIX A. EXPERIMENTAL DATA 59

Table A.3: LLBMC v2013.1 experimental data.

LLBMC v2013.1

Test suite C LOC Time P N FP FN Error TO MO

1 templates 23 853 1825 8 8 1 5 0 1 0

2 gcc-template 32 1036 2 26 0 0 5 1 0 0

3 cbmc 39 898 <1 34 0 0 1 4 0 0

4 algorithm 144 4354 12549 62 61 1 3 6 10 1

5 deque 43 1239 7086 16 17 0 0 2 6 2

6 vector 146 6853 6611 87 38 1 3 9 4 4

7 list 72 2292 1333 8 29 5 29 0 0 1

8 queue 14 328 32 6 7 0 1 0 0 0

9 priority queue 15 396 9008 2 3 0 7 0 3 0

10 stack 14 286 32 6 7 0 0 1 0 0

11 map 47 1678 322 8 17 5 17 0 0 0

12 multimap 45 1439 951 3 19 3 19 0 0 1

13 set 48 1393 315 5 20 2 20 1 0 0

14 multiset 43 1238 599 3 20 1 19 0 0 0

15 inheritance 51 3460 98 23 12 0 3 13 0 0

16 try catch 81 4743 – – – – – – – –

17 stream 66 1831 <1 17 13 0 35 0 1 0

18 string 233 4921 1 6 121 4 102 0 0 0

19 cpp 357 33208 3675 213 21 8 47 65 1 2

1513 72446 44438 533 413 31 316 183 26 11

