
LESSQL: AN APPROACH TO DEAL WITH

DATABASE SCHEMA EVOLUTION IN

CONTINUOUS DEPLOYMENT

ARIEL ANTONY AFONSO

LESSQL: AN APPROACH TO DEAL WITH

DATABASE SCHEMA EVOLUTION IN

CONTINUOUS DEPLOYMENT

Dissertation presented to the Graduate
Program in Informatics of the Universidade
Federal do Amazonas in partial fulfillment
of the requirements for the degree of Master
in Informatics.

Advisor: Altigran Soares da Silva

Manaus

April 2020

Ficha Catalográfica

A257l LESSQL: An approach to deal with Database Schema Changes in
Continuous Deployment / Ariel Antony Afonso . 2020
 55 f.: il. color; 31 cm.

 Orientador: Altigran Soares da Silva
 Dissertação (Ciência da Computação) - Universidade Federal do
Amazonas.

 1. schema changes. 2. continuous deployment. 3. database
decay. 4. query language. I. Silva, Altigran Soares da. II.
Universidade Federal do Amazonas III. Título

Ficha catalográfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

Afonso, Ariel Antony

PODER EXECUTIVO
MINISTÉRIO DA EDUCAÇÃO

INSTITUTO DE COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

FOLHA DE APROVAÇÃO

"/(664/��$Q�DSSURDFK�WR�GHDO�ZLWK�'DWDEDVH�6FKHPD�
&KDQJHV�LQ�&RQWLQXRXV�'HSOR\PHQW"

$5,(/�$1721<�$)2162

Dissertação de Mestrado defendida e aprovada pela banca examinadora constituída pelos

Professores:

3URI��$OWLJUDQ�6RDUHV�GD�6LOYD - PRESIDENTE

Prof���7D\DQD�8FK{D�&RQWH - MEMBRO INTERNO

3URI��-RmR�0DUFRV�%DVWRV�&DYDOFDQWL - MEMBRO EXTERNO

Manaus, �� de $EULO de 20��

Av. Rodrigo Otávio, 6.200 - Campus Universitário Senador Arthur Virgílio Filho - CEP 690��-�00 - Manaus, AM, Brasil�
Tel. (092) 3305 1193 E-mail: secretariappgi@icomp.ufam.edu.br www.ppgi.ufam.edu.br

3URI��$OHVVDQGUR�)DEUtFLR�*DUFLD - MEMBRO EXTERNO

“Embora ninguém possa voltar atrás e fazer um novo começo,
qualquer um pode começar agora e fazer um novo fim.”

(Chico Xavier)

vii

Abstract

The adoption of Continuous Deployment (CD) aims at allowing software systems to
quickly evolve to accommodate new features. However, structural changes to the
database schema are frequent and may incur in systems’ services downtime. This en-
compasses the proper maintenance of both schema and source code, including rewrites
of all outdated queries that use the same database. Previous solutions try to mitigate
the burdening task of manually rewriting outdated queries. Unfortunately, a software
team must still interact with some tools to properly fix the affected queries. Moreover
the team still has to locate and modify all the impacted code, which are often error-
prone tasks. Thus, a project may not experience CD benefits when changes impact
various code regions. In this thesis, we present an alternative approach, called LESSQL,
whose goal is to improve queries’ stability in the presence of structural schema changes
over time. LESSQL supports queries that are less dependent on the database schema
since they do not include the FROM clause. An underlying framework intercepts each
LESSQL query and generates a corresponding SQL query for the current schema. It
also locates the query attributes in the current schema and generate proper expres-
sions to join required tables. LESSQL supports unsupervised, supervised and hybrid
configurations to process mappings of attributes to a newer schema version. We con-
ducted experiments in two open-source applications: Wikipedia, an online and popular
information system, and WebERP, a web-based accounting and business management
system. Experiments outcomes indicate that our approach is effective in significantly
reducing the modifications required for applying schema changes, allowing to better
reap the benefits of CD. While supervised and hybrid configurations achieved a success
rate higher than 95% with a minor query generation overhead, the unsupervised con-
figuration was also successful for certain types of structural schema changes. These re-
sults show that LESSQL effectively favors CD and keeps queries running after database
schema changes without services interruption.

ix

List of Figures

1.1 Equivalent queries in different schema versions 2

3.1 A LESSQL query example . 11
3.2 Example of a LESSQL query and attribute mappings 12
3.3 LESSQL Framework Overview . 13

4.1 An excerpt of the schema graph from the Wikipedia dataset. 19
4.2 Joining network expressions built from the Wikipedia schema graph. . . . 19
4.3 A brief JNGen execution . 21
4.4 A translation from LESSQL to SQL query template 22

5.1 SchemaDiff Overview . 26
5.2 Neighbourhood Filter example . 27

6.1 Types of attribute changes observed in the major versions of Wikipedia. . 32
6.2 Types of attribute changes observed in the major versions of WebERP. . . 32
6.3 Number of queries per each query template. 33
6.4 Number of viable query templates per schema versions. 34
6.5 Success Rate per Wikipedia schema version obtained with the original SQL

templates and with SQL templates generated by different LESSQL config-
urations. 35

6.6 Success Rate per WebERP schema version obtained with the original SQL
templates and with SQL templates generated by different LESSQL config-
urations. 36

6.7 SchemaDiff evaluation across all Wikipedia schema versions. 38
6.8 SchemaDiff evalution across all WebERP schema versions. 38
6.9 SchemaDiff Precision on Wikipedia, considering NULL mappings. 39
6.10 SchemaDiff Precision on Wikipedia, not considering NULL mappings. . . . 39
6.11 SchemaDiff Precision on WebERP, not considering NULL mappings. . . . 40

xi

6.12 Wikipedia Attribute MRR over all schema versions. 41
6.13 WebERP Attribute MRR over all schema versions. 42
6.14 Wikipedia Attribute MRR boxplot in four different versions. 42
6.15 WebERP Attribute MRR boxplot in four different versions. 43
6.16 Wikipedia Query MRR. 43
6.17 WebERP Query MRR. 44
6.18 Wikipedia Query MRR boxplot in major versions. 44
6.19 WebERP Query MRR boxplot in major versions. 45
6.20 Average query generation time per Wikipedia schema version. 45
6.21 Average query generation time per WebERP schema version. 46
6.22 Query generation time in four different versions. 46
6.23 Query generation time in four different versions. 46

xii

List of Tables

6.1 Machine configuration . 29
6.2 Summary of the schema versions in the dataset from 2004/01 to 2007/01 . 30
6.3 Number of mappings removed from the MRR computation 41

xiii

Contents

Abstract ix

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Background and Related Work 5
2.1 Co-evolution of Software Systems and Database Schemas 5
2.2 Database Decay . 7
2.3 Database Instance Migration . 8
2.4 Experimental Studies . 9

3 LESSQL Framework 11
3.1 Framework Overview . 11
3.2 Framework Architecture . 13
3.3 Adopting LESSQL in practice . 15

4 Joining Network Expression Generation 17
4.1 Overview . 17
4.2 The JNG algorithm . 18
4.3 SQL Composition . 22

5 Attribute Mapping Generation 25
5.1 Overview . 25
5.2 Neighbourhood Filter . 26
5.3 SchemaDiff . 27

6 Empirical Study 29

xv

6.1 Experiment Setup . 29
6.2 Overall Results . 34
6.3 Unsupervised LESSQL . 37
6.4 Performance Issues . 42
6.5 Limitations and Threats to Validity . 45

7 Conclusions and Future Work 49
7.1 Conclusions and Main Contributions 49
7.2 Future Work . 50

7.2.1 Expand LESSQL support for CRUD statements 50
7.2.2 Dealing with Database Instance Migration 51
7.2.3 Coupling a Unified Framework into an ORM 51

Bibliography 53

xvi

Chapter 1

Introduction

Continuous Deployment (CD) is a development process that automates software build-
ing, testing, releasing and deployment (Laukkanen et al., 2017). Adopting CD enables
developers to keep up with fast-changing markets and allows applications to quickly
evolve to accommodate new features (Rossi et al., 2016; Savor et al., 2016). However,
developing new features may require structural changes to the database schema and
incur in application service downtime due to the time it takes to perform tasks such
as: (i) predicting and estimating effects before each structural schema change is per-
formed (Qiu et al., 2013), (ii) locating and rewriting the outdated queries in the source
code (De Jong et al., 2017; Curino et al., 2013; Qiu et al., 2013), (iii) evaluating the cost
of reconciling the existing code w.r.t. the new schema before any schema changes (Qiu
et al., 2013), and (iv) locating and modifying all impacted code regions after applying
the schema changes (Qiu et al., 2013). The cost of performing these tasks is not in
concert with CD goals of reducing changes along each cycle and quickly producing
correct builds. Moreover, the high commit throughput due to frequent updates can
hugely impact the application runtime depending on the number of changes that affect
the schema. In particular, changes that directly affect attributes names or locations in
the schema are harmful.

In enterprises, it is often the case that database administrators (DBAs) try to
circumvent the required changes by adding spurious schema elements, resulting in a
superset of what is needed (Savor et al., 2016). In the long run, this implies in a large
gap between the current conceptual database schema and the logical database schema,
which may lead to serious maintenance and performance problems. This phenomenon
is known as database decay (Stonebraker et al., 2016). In order to tame the database
decay at some point, DBAs will have to perform complex changes to the schema.
Meanwhile, developers will also have to rewrite affected queries and perform major

1

2 Chapter 1. Introduction

refactoring in the application source code.
Studies in the literature indicate that database schema changes occur as often

as once per week (Qiu et al., 2013). Thus, enterprises cannot afford to interrupt
the service that often, neither to stop the development of new features for providing
support to existing services during the evolution. An empirical study about the co-
evolution of source code and database schema in ten open-source applications found
out that for every schema change, approximately 10 to 100 lines of code were modified
to keep the functionality running (Qiu et al., 2013). Another research based on two
enterprises, Facebook and OANDA, found out that every developer pushed around
2 to 3 application updates per week (Savor et al., 2016). Considering that every
developer commit is independent, a change on the schema can hugely impact the overall
development environment since it may force developers to search and fix for affected
functionalities and queries in the application source code.

To better illustrate the problems caused by schema changes, consider that in
an initial schema version, attributes uname and urights both belong to relation
USER. In a newer schema version, uname belongs to relation USER and attribute
urights belongs to relation USER_RIGHTS. Figure 1.1(a) presents an SQL query S

that retrieves attributes uname and urights for a particular user, considering the
initial schema version. Query S is outdated by the newer schema version, so that,
another SQL query S ′, illustrated in Figure 1.1(b), must be specified to retrieve the
same attributes. This implies in source code maintenance and eventually in service
interruption.

(a) Query S
SELECT uname, urights
FROM USER
WHERE uid = ’X’

(b) Query S ′

SELECT uname, urights
FROM USER UD
JOIN USER_RIGHTS UR
ON UD.uid = UR.uid

WHERE uid = ’X’

Figure 1.1: Equivalent queries in different schema versions

In the literature, there are several proposals that address aspects related to the
co-evolution of software systems and database schemas. Recently, Caruccio et al. (2016)
presented comprehensive survey on the problem of query rewriting upon schema evo-
lutions. They discuss and compare several techniques in the literature for assisting
developers in the tasks of adapting query and views embedded in the application code

3

when the underlying databases schema changes. One of the most representative tech-
niques based on such an approach is PRISM++ (Curino et al., 2013), a framework for
assisting database schema migrations and automating the process of rewriting queries
when there are changes in the schema. In all of the solutions that follow this approach,
the DBA must interact with some tool or assistant to rewrite queries affected by schema
changes. Moreover, the operation of the application services must be interrupted so
that the the new version of the schema and the adapted queries are deployed. This
represents a significant burden if changes are frequent, thereby harming CD goals.

To avoid the problem of application services interruption, an approach adopted
in the industry is to allow different schema versions to co-exist in the database. Some
systems developed in the industry based on such an approach are Gh-ost (Berquist
and Gunson, 2018) by Github, TableMigrator (Saur et al., 2016) by Twitter and On-
line Schema Change by Facebook (FOS, 2019). A representative solution based on
such an approach is QuantumDB (De Jong et al., 2017). The main idea of this tool is
that the old and new schemas are active in the database while the process of migrat-
ing database instances happens in the background. Then, the tool is responsible for
correctly assigning each query to the schema version it refers to. However, developers
must still search and fix all the queries to reflect the changes applied to the schema.

In our work, we present a novel approach whose goal is to allow queries written for
an initial schema version to be executed on a newer version of the same schema, without
rewriting these queries. As a consequence, service interruption and slow CD cycles
due to source code maintenance are avoided. Our approach, called LESSQL (Less
Structured Query Language), is based on queries that are less dependent from the
database schema since they do not include the FROM clause, providing more flexibility
than regular SQL queries. When the application issues a LESSQL query, our framework
intercepts this query, generates an actual SQL query suitable for the newer schema and
sends it to be processed by the Relational Database Management System (RDBMS).

To this intent, the LESSQL framework locates the query attributes in the newer
schema version and uses a graph-based algorithm we designed, called JNG, to gener-
ate a proper expression to join the required relations. To locate the query attributes,
as some of them may have been renamed, relocated or removed in the newer schema
version, LESSQL relies on a set of attribute mappings. Specifically, these mappings
describe changes to attributes regarding the newer schema version. That is, they
indicate where missing attributes can be found. Also, LESSQL was designed to op-
erate in a supervised configuration, where the DBA supplies attribute mappings or
in an unsupervised configuration, where a schema matching algorithm we propose,
called SchemaDiff, automatically generates these mappings. Additionally, we consider

4 Chapter 1. Introduction

a hybrid configuration that combines the supervised and unsupervised configurations,
where the DBA supplies a small and non-trivial set of attribute mappings.

We conducted experiments in two open-source applications: Wikipedia, an online
and popular information system, and WebERP, a web-based accounting and business
management system. Both projects were used in previous well-known research on
schema and application source code evolution (Curino et al., 2013; Qiu et al., 2013;
Vassiliadis, 2016). In both applications, we observed that only a small fraction of the
queries originally written for a given schema can be executed when this schema changes.
This fraction, we call Success Rate (SR), can be as low as 0.23 in the case of Wikipedia
and 0.13 in the case of WebERP. Our experiments show that LESSQL can largely
improve this metric to 0.96, in the case of the supervised and hybrid configurations,
and 0.91 in the unsupervised configuration. These results indicate that our approach
is effective in reducing the manual effort required for dealing with frequent schema
changes that affect application code, allowing our method to better reap the benefits
of CD.

In summary, we present the following contributions: a novel approach for reducing
source code maintenance while handling structural changes to schemas; an algorithm
called JNG that allows queries written for an initial schema version to be executed
on newer schema versions; an algorithm called SchemaDiff, for automatically finding
mappings between attributes of two schema versions; and an empirical evaluation of
our approach on the maintenance of an open-source project.

This proposal is organized as follows. Chapter 2 provides a background for the
problem of co-evolution of database and application source code as well as database
decay and database migrations, along with researches that aim at studying and solving
these problems. Chapter 3 illustrates an overview of the LESSQL framework and its
processing stages. In Chapter 4, we present the concepts necessary to understand
the generation of the joining network expression, which is used to compose the SQL
query that will be issued to the DBMS. Chapter 5 details how LESSQL is able to
automatically generate a set of attribute mappings through our SchemaDiff algorithm.
In Chapter 6, we present the experimental results of LESSQL when validating in two
open-source applications. Finally, Chapter 7 details the next step towards improving
the LESSQL framework.

Chapter 2

Background and Related Work

In this chapter, we present studies in the literature that propose to assist developers
when the database schema changes. Section 2.1 presents the co-evolution of software
systems and database schemas approach. Section 2.2 presents a new paradigm where
developers specify database operations differently, for instance, without SQL queries.
Section 2.3 presents an alternative approach that is widely adopted in the industry
to prevent application downtime when the database schema changes. Finally, Section
2.4 presents studies on the problem of co-evolution of software systems and database
schemas.

2.1 Co-evolution of Software Systems and

Database Schemas

Through the years, the most successful approach for handling evolution of database
schemas in software development is the so-called co-evolution of software systems and
database schemas(Qiu et al., 2013). This approach consists in providing tools to sup-
port code maintenance and evolution to keep it up to date with the schema changes.
Issues related to co-evolution have been addressed by several proposals in recent liter-
ature.

Recently, Caruccio et al. (2016) presented a comprehensive study that surveys
several methods and techniques based on this approach. This study covers three dif-
ferent strategies for handling the problem of co-evolution. The first strategy, called
operation-based evolution, requires the database administrator to describe the evolu-
tion of the schema through a set of predefined schema change operations, such as
relation decomposition or merging. The second strategy, called mapping-based evolu-

5

6 Chapter 2. Background and Related Work

tion, expects the systems to describe the schema evolution through a set of mappings
between schema elements from two database schema versions. The last strategy, called
hybrid merges the two previous strategies.

One research that represents the mapping-based strategy is the Generic Model
Management (GMM) tool (Bernstein and Melnik, 2007). This tool focuses on reducing
the programmatic effort in handling mappings between schemas. To this intent, the
system provides operators that describe the evolution of a database schema through
mappings. One important operator described is the Match operator, which takes as
input two schema versions, namely, the source schema and the target schema, and
creates mappings between schemas elements. These mappings aid the developer in
updating outdated queries by deriving from the new schema what happened to the old
schema elements that are referred to in these queries.

Another research that is classified as a mapping-based strategy was proposed by
Polese and Vacca (2009b). This work introduced the concept of Default Mappings to
achieve a higher query rewriting ratio than that of GMM. The authors provide an
approach to recover information lost during an evolution where the DBA provides a
formula based on default logic that states whether an information can be recovered or
not. The information to be recovered is programatically predefined. Upon a database
schema change that removes an attribute, the DBAs must provide a formula that "out-
puts" a result that otherwise would be retrieved from the removed attribute. According
to the authors, there should be effort towards retrieving information that would be lost
after a database schema changes. Thus, interrupting application functionalities.

Alternatively, Polese and Vacca (2009a) provide a cooperative approach based on
Hintikka interrogative logic (Hintikka and Bachman, 1991). This cooperative process
is handled as a dialogue between the DBA and the system where the main goal is to
find adequate mappings between a query and the target schema. The user queries for
information on the target schema and, if not found, the system derives deductions to
where the information from the query could possibly be found. Although the interaction
between DBA and system is friendly, handling a dialogue can be a long drag depending
on the operations executed over the database schema.

A representative solution based on the co-evolution approach is the PRISM work-
bench (Curino et al., 2008), later updated to PRISM++ (Curino et al., 2013). The
workbench interface allows the DBA to define a set of atomic change operations to
be applied on the database schema, named Schema Modification Operators (SMOs).
SMOs are used to describe step by step instructions to transform the current schema in
a new one. Using SMOs, PRISM/PRISM++ can support two main tasks: migration
of the database instance from the current schema to a new one and rewriting queries

2.2. Database Decay 7

embedded in the application code, thus reducing the burden of manually rewriting
them.

Wang et al. (2019) recently proposed a new co-evolution approach. Their tool,
called Migrator, aims at automatically synthesizing a new version of the database
program given its original version and the source and target schemas. The authors
argue that they avoid the developers or DBAs having to specify modification operators
(e.g., SMOs). However, their approach still requires code to be refactored, albeit
automatically, to accommodate schema changes.

In fact, all the work based on the co-evolution approach, including PRISM++,
try to avoid the burdening task of manually rewriting queries when schema struc-
ture changes. However, the developers or DBAs must still interact with some tool or
assistant to rewrite queries affected by schema changes besides searching for the af-
fected queries. Notice that they neither prevent, nor reduce, source code maintenance.
Nonetheless, fixing the code represents a significant burden if changes are frequent and
time-consuming, hampering the achievement of CD goals.

In our work, we propose an alternative to the co-evolution approach. Our goal is
to allow queries written for an early schema version to be executed on a newer version
of the same schema, so that queries written once do not need to be modified when
database schema changes. This avoids rewriting queries and the consequences of service
interruptions due to source code maintenance. Additionally, LESSQL relies on a simple
way to provide mappings between two schema versions when necessary, reducing even
more the burdening task of providing support to application functionalities affected by
schema changes. This is a major distinction of our work with respect to the co-evolution
approach.

2.2 Database Decay

Recently, Stonebraker et al. (2016) found out that, in practice, DBAs avoid making
changes, that are considered as “good practices”, to a database schema. This is due
to an attempt on minimizing application source code maintenance since these changes
may span across multiple teams. In the long run, this implies in a large gap between
the current conceptual database schema and the logical database schema, which may
lead to software maintenance and performance problems. This phenomenon is known
as database decay.

The authors present two solutions for the software maintenance problem: (i) cod-
ing “defensively”, trading performance for resiliency and (ii) adopting a new application

8 Chapter 2. Background and Related Work

development paradigm, in which developers specify database operations differently. In
the first solution, developers would avoid application maintenance and services inter-
ruption at the cost of database decay. In the second solution, developers would use an
alternative paradigm for developing applications. In this paradigm, developers specify
database operations using messages instead of SQL queries. Each message is associated
with an SQL query template previously built during application development. During
operation, each message is sent over to a middleware which selects the corresponding
query template, builds an actual SQL query based on this template and executes this
query. Their goal is to centralize SQL query templates in the middleware, so that,
when database schema changes, all affected queries can be easily fixed. The authors
indicate that adapting templates to a new schema can be done automatically and that
there are cases in which human intervention is required to validate this process. This
manual validation slows CD cycles. Moreover, no algorithmic details on this process
have been published so far.

Our work in in-line with the second solution. Although, in our case, developers
would still use SQL-like logical-level queries instead of conceptual-level abstract mes-
sages, thus, easing the adoption of our approach by developers. This makes it viable
to automatically generate the actual SQL query from any LESSQL query using our
JNG algorithm, without having developers to define a query template in advance as
it is done in Data Civilizer. As a consequence, there are no templates to be fixed
either automatically or manually, when the schema changes. Furthermore, to the best
of our knowledge, our work is the first that implements such a paradigm with concrete
algorithm description and empirical evaluation.

2.3 Database Instance Migration

A more critical scenario for schema evolution takes place in environments which adopt
continuous deployment as a software development process. CD aims at frequent feature
releases and more developer freedom in the choice of when deploying these features.
If a change affects the database schema, the application can be interrupted and effort
must be put in finding the defective commit. To this intent, the industry applies a
technique that keeps more than one database schema active at the same time. That
is, multiple application versions are operational but, still, the developers must fix the
queries in the source code. Also, this state that keeps different database schema actives
runs a database instance migration on the background, transferring information from
the old schema to the new schema.

2.4. Experimental Studies 9

The industry shared proprietary tools that are used to aid in the database mi-
grations and schema evolutions. They are: Gh-ost (Berquist and Gunson, 2018) by
Github, TableMigrator (Saur et al., 2016) by Twitter, Online Schema Change by Face-
book (FOS, 2019) and Large Hadron Migrator by Soundcloud (SLH, 2019). Other
solution used in the industry is Liquibase, a database refactoring and migration tool.
However, Liquibase needs a system shutdown to execute schema migrations. Notice
that queries must still be rewritten by developers, not minimizing the effort to search
and fix all the queries affected.

These strategies adopted by the industry were used as baseline in a solution
that aims at a zero-downtime database schema evolution. De Jong et al. (2017) keeps
multiple database schema versions active at the same time and focuses on enterprise
environments that use continuous deployment as development process. The MySQL1

and PostgreSQL2 RDBMSs were used to indicate which operations used for changing
a database schema blocked read and write operations. Then, the authors developed a
tool, called QuantumDB, which acts as a middleware to all the applications that use
the database. During schema evolution, ghost tables are created to mirror the database
tables affected by a set of schema changes, namely, a changeset. This state where the
database has duplicate tables, each for a different application version, is called mixed-
state. In this state, each application version is fully operational and data is transferred
in the background. For this, QuantumDB must delegate each application query to the
correct schema version.

Although circumventing the locking nature of some database operations is an
ideal scenario, the applications evolve and the source code that is affected by a database
schema change still must be fixed since different application versions are active. This
solution can be used complementary to ours, as we focus on minimizing source code
maintenance and not database instance migrations.

2.4 Experimental Studies

Besides providing solutions to the problem, many studies in the literature focus on
exploring the richness of open-source database applications to study how frequently
and significantly software and databases co-evolve and how they impact in application
source code or procedures that are stored inside the database.

The first large-scale empirical study that attempts to study the co-evolution was
presented by Qiu et al. (2013). This study was based on ten open-source databases to

1https://www.mysql.com/
2https://www.postgresql.org/

10 Chapter 2. Background and Related Work

understand how database changes affected the applications source code. The authors
found out that, for every atomic schema change (e.g. ADD COLUMN, ADD TABLE)
approximately 10 to 100 lines of code (LoC) were co-changed. This situation gets
even worse since applications presented 15 to 300 atomic schema changes in a one year
period. Thus, some schema changes are harmful to the application operational state
since they may deprecate some queries written for a previous version of the schema.
After applying these changes, the developers must rewrite the affected queries and
refactor the surrounding code to reflect the changes on the schema. These maintenance
implications affect CD cycles and are harmful to the development environment, since
there will be an interruption to properly fix the affected functionalities.

Another study was based in a complex university database (Delplanque et al.,
2018). Roughly, this database presented 62 views and 64 stored procedures. It is con-
sidered complex not only for the stored views and procedures but because several labo-
ratories fork the “main” database and evolve each fork database schema independently,
according to its own requirements. This introduces another problem since changes to
the “main” database schema must be applied to the other database schema instances.
To ease the maintenance of the different application accessing the database instances,
the database architect implemented stored procedures to maintain consistency across
all applications. The authors detected problems that prevent easy transition between
schemas, such as: analysing dependencies between database entities, evaluating the
impact of a modification in the database, managing the co-evolution of multiple in-
stances of the database and testing the database functionalities, that is, if the results
returned from the database were unmodified by the schema change.

Overall, previous studies present real case scenarios that are hugely affected by
database schema changes. Besides dealing with database schema changes, developers
also need to provide maintenance on applications that are affected by these changes.
Considering a continuous deployment scenario, these changes imply in a burdensome
search and fix for affected code regions. Thus, this maintenance problem requires a
solution which reduces the human effort needed to keep applications up to date with
the database schema and can better reap the benefits of CD.

Chapter 3

LESSQL Framework

In this chapter, we present an overview of the LESSQL framework and of how it
addresses issues in software development caused by database schema changes. Also, we
introduce the execution flow for all different configurations of LESSQL: the supervised
configuration, the unsupervised configuration and the hybrid configuration.

3.1 Framework Overview

In order to keep applications functional when the database schema changes and accel-
erate CD cycles, LESSQL relies on the use of database queries that are less dependent
on the database schema than regular SQL queries. To this intent, queries do not in-
clude the FROM clause. Therefore it is not necessary to specify join conditions to define
where the attributes are located or how they are associated.

(a) Query L
SELECT uname, urights
WHERE uid = “X”

Figure 3.1: A LESSQL query example

For instance, considering Figure 1.1 (a), we propose that instead of query S, the
developer would write the query L shown in Figure 3.1 (a), which is an example of a
LESSQL query. Instead of being issued directly to the DBMS, query L would be sent
to the LESSQL framework. Depending on the schema version, the framework would
automatically generate query S or S ′ from Figure 1.1. Thus, no query rewriting would
be necessary when the schema changes.

We highlight that query L does not include the FROM clause. Thus, it is up to the
framework to locate the attributes in the current schema and eventually to generate

11

12 Chapter 3. LESSQL Framework

a proper joining network expression to retrieve the require attributes. The joining
network expression generation relies on a novel algorithm we developed, named JNG
(Chapter 4), that is based on algorithms previously proposed to handle keyword-based
queries in relational databases (Hristidis and Papakonstantinou, 2002; Oliveira et al.,
2018).

In the particular case of the example in Figure 3.1, the attributes involved in the
query are the same in both versions, and only their locations have changed. However,
it is often the case that attributes referred in queries in a given schema version are re-
named, removed or relocated in newer versions of the schema. To address this, LESSQL
relies on a set of attribute mappings that define the changes made on attributes be-
tween schema versions. These attribute mappings can be seen as a simplified form of
the Schema Modification Operations or SMOs (Curino et al., 2013) (Chapter 2), where
only attribute-related operations (e.g. RENAME COLUMN, ADD COLUMN, DROP
COLUMN) are considered.

(a) Query S
SELECT cur_restrict
FROM cur
WHERE cur_id = “X”;

(b) Query S ′
SELECT page_restrict
FROM page
WHERE page_id = N;

(c) Query L
SELECT cur_restrict
WHERE cur_id = “X”

(d) Attribute
Mappings

cur_restrict → page_restrict
cur_id → page_id

Figure 3.2: Example of a LESSQL query and attribute mappings

Figure 3.2 depicts another schema evolution scenario. Here the attributes are
renamed and relocated from relation CUR to a new relation PAGE. The developer for
the application wrote query S, supposed to work in the early version of the schema. Due
to the evolution, query S is deprecated and must be rewritten as query S ′. Similar
to the example in Figure 3.1, the developer can write a query that works in both
schema versions. To this intent, he should write query L. This query can be used as
replacement for both queries S and S ′, with the assistance of the attribute mappings
shown in Figure 3.2(d). When the query is issued to the LESSQL framework, the set
of attribute mappings is used to correctly translate the query to the new schema.

Attribute mappings can be supplied by the database designer in a similar way as
SMOs. However, there may be cases in which manually generating mappings can be

3.2. Framework Architecture 13

burdensome and error-prone. This can happen when the schema has many attributes,
when the volume of changes is large or when many schema evolutions occur in a short
period of time. In particular, this last issue is commonly found in CD scenarios. If not
properly addressed, these issues may hamper the CD process due to the necessity of
manual intervention. To deal with them we also developed an algorithm for automat-
ically generating attribute mappings, given two versions of the same schema, called
SchemaDiff. This algorithm is based on ideas commonly applied in schema matching
methods (Rahm and Bernstein, 2001), adapted to the context of schema changes.

3.2 Framework Architecture

In Figure 3.3, we illustrate the LESSQL framework architecture. Following next, we
explain how the process of generating SQL queries takes place.

LESSQL
PaUVHU

1

AWWULbXWH
MaSSLQJV

SQL
CRPSRVHU

3

6ELEC7�BBB
:HE5E�BBBB

LE66QL QXHU\

6ELEC7�BB
F52M�BBBB
J2I1B21BB
:HE5E�BBB

6QL QXHU\

RDBM6

UnsXperYised ConÀgXraWion

SRXUcH
ScKHPa
AWWULbXWHV

TaUJHW
ScKHPa

LESSQL
¬CacKH

4

LESSQL
QXHU\

CacKHd
SQL QXHU\

JNG

2

GHQHUaWHd?
YHV

NR

H\brid ConÀgXraWion

ScKHPaDLII

SRXUcH aQd TaUJHW
ScKHPaV

'BA

SXperYised ConÀgXraWion

A

B

Figure 3.3: LESSQL Framework Overview

The process begins when a LESSQL query is received by the framework. The first
step is to parse the query in the LESSQL parser 1 . The parser first checks if the input
LESSQL query uses the same template of another query that has been previously issued

14 Chapter 3. LESSQL Framework

by the application for the current schema version. In this context, a query template
is a query that does not present any instanced value in its WHERE clause, that is, it
does not specify the attribute values in selection conditions that must be met. This
strategy allows us to verify if a LESSQL query has been issued previously by hashing
the query template. If this is the case, there is no need to generate the corresponding
SQL query template once more, so we just forward the SQL query template stored and
finish the process. Otherwise, if the query template is not found in the LESSQL cache,
the parser extracts all the attributes that the query refers to and supplies them to the
Joining Network Expression Generation algorithm, JNG.

Given the source schema attributes, the LESSQL framework may require a set
of attribute mappings to generate the actual SQL query to the target schema. An
attribute mapping is a pair which informs, for an attribute from the source schema, an
equivalent attribute in the target schema, as illustrated in Figure 3.2 (d). The source
schema attributes and the attribute mappings are given as input to the JNG algorithm.
The source that supplies the mappings depends on the LESSQL configuration. In the
case of the supervised configuration A , the DBA is expected to manually supply all
the mappings that comprise the changes between the source and the target schema. In
the case of the unsupervised configuration B , our SchemaDiff algorithm automatically
generates mappings by tracking attributes that suffered transformations between two
schema versions.

In the Joining Network Expression Generation step 2 , the framework gets the
set of attributes that were updated in the last step and identifies the relations that
contain these attributes. With these relations, LESSQL generates a joining network
expression that connects all these relations based on referential integrity constraints
from the target schema.

The last step happens in the SQL Composer 3 module. This module translates
the joining network expression generated in the previous phase to a FROM clause and
its corresponding join conditions, outputting a full SQL query. Then, the query is sent
to the DBMS, which returns the answer to the query and to the LESSQL cache 4 ,
which stores the full SQL query and the LESSQL query template that was issued for
later verification.

In some situations, the DBA applies a significant schema change and LESSQL
effectiveness may be compromised if many mappings are generated. In this scenario,
a possibility is to combine the benefits of the supervised configurations, manually sup-
plying mappings that are considered difficult to track, with the benefits of the unsuper-
vised configuration, letting the framework handle the rest of the cases. For these cases,
we provide the hybrid configuration. This configuration keeps the overall translation

3.3. Adopting LESSQL in practice 15

process effective and allows application functionalities to keep running in the event of
large schema modifications. This is very helpful in a CD context, as the service must
be available at all times (De Jong et al., 2017).

3.3 Adopting LESSQL in practice

Adopting LESSQL in a development environment implies replacing the majority of SQL
interactions specified in the application source code by LESSQL-based interactions. In
addition, the DBA must choose the LESSQL configuration that is more suitable to
their development scenario in the given time. For instance, if the changes that must
be applied to the database schema are subtle and easy to identify, such as a single ele-
ment renaming in a single table, then our unsupervised configuration can be leveraged.
Nonetheless, if a significant volume of changes is to be applied to the database schema,
then our supervised or hybrid configuration may be the best alternative.

According to the chosen configuration, LESSQL behaves differently from the
point of view of how the attribute mappings are provided. When changes are applied
to the database schema changes and the unsupervised configuration of LESSQL is
being used, the SchemaDiff algorithm will retrieve the source schema, that is, the
schema from the previous application version and the target schema, that is, the schema
from the new application version. After retrieving both schemas, it will generate the
attribute mappings according to our heuristics. This process happens when developing
the application, more specifically, when supplying the new schema for the database.
The same applies to the hybrid configuration. However, in this case, the DBA can
provide a small set of attribute mappings for which SchemaDiff was not able to capture
the semantics of the schema change. As for the supervised configuration, the DBA will
provide the entire set of attribute mappings.

Chapter 4

Joining Network Expression
Generation

In this chapter we describe our algorithm for generating joining network expressions.
This algorithm, called JNG, is based on ideas from algorithms previously proposed
for Relational Keyword-Search Systems (R-KwS) (Oliveira et al., 2018)(Hristidis and
Papakonstantinou, 2002). Regardless of the configuration, LESSQL uses the JNG
algorithm to find a way of correctly joining the relations whose attributes are used
in a given LESSQL query template. Precisely, the algorithm generates a relational
expression that correctly joins these relations, which, then, form a network. We also
review concepts necessary for better understanding how JNG generates these joining
network expressions.

4.1 Overview

As we discussed in Section 1, LESSQL queries are designed to omit the FROM clauses
and join conditions, with the ultimate goal of minimizing code maintenance when the
database schema changes. As a consequence, DBMSs cannot handle them directly.
To address this, LESSQL uses the JNG algorithm to help compose a full SQL query
template. JNG receives as input the attribute mappings and the attributes from the
LESSQL query template, which are used to filter only the mappings that will be used to
generate a joining network expression. Essentialy, joining network expressions are sets
of relations that are connected to each other and contain attributes from the extracted
query attribute set. After generating the correct joining network expression, LESSQL
composes an actual SQL query that is forwarded to the RDBMS for processing the
answer to be returned to the application and to the LESSQL cache for later retrieval

17

18 Chapter 4. Joining Network Expression Generation

in case a similar structured query is issued against the LESSQL framework.

4.2 The JNG algorithm

Before presenting the JNG algorithm, we introduce some important concepts that will
be used in the algorithm description.

The first concept we introduce is the one of a query template. Although we have
been using it informally through the text, it is formally stated below.

Definition 1. Let Q = SELECT user_id, old_text WHERE page_id = 10

be a LESSQL query. A LESSQL query template is a query that does not present any
instanced value in the WHERE clause.

The corresponding LESSQL query template L for Q is given by SELECT

user_id, old_text WHERE page_id = ’X’;.

Definition 2. Let L be a LESSQL query template. Also, let AS = {A1, . . . , Ak} be
the set of attributes in the SELECT clause and AW = {Ak+1, . . . , An} be the set of
attributes in the WHERE clause. The attribute set of L, AL, is given by AS ∪ AW .

Consider the following LESSQL query template L:

SELECT user_id, old_text WHERE page_id = ’X’;

According to Definition 2, the attribute set AL of L is given by {user_id, old_text,
page_id}.

Definition 3. Let S be a database schema version. Let AL be the attribute set of a
LESSQL query template L. If a relation R in S contains any of the attributes from
AL, it is called a non-free relation with respect to L, otherwise its called a free relation.

Definition 4. Let S be a database schema version. The schema graph of S is a pair
GS = 〈V,E〉, where V represents the set of relations in the database schema and E

represents the set of referential integrity constraints between the relations in V .

In Figure 4.1, we illustrate an example of a schema graph that corresponds to
an excerpt of a database schema version from the Wikipedia database, which we have
been using in our examples. In this schema graph, we also indicate the relations where
each attribute of AL is defined.

4.2. The JNG algorithm 19

PAGE
^page_id`REVISION

TEXT
^old_text`

USER
^user_id`

USER_RIGHTS LINKS

RECENTCHANGES

WATCHLIST

Figure 4.1: An excerpt of the schema graph from the Wikipedia dataset.

Definition 5. Let GS be a schema graph for a given LESSQL query template L. We
call a joining network expression a tree J ⊆ GS in which all leaves are non-free relations
with respect to L.

Figure 4.2 illustrates some of the joining network expressions that are built using
the schema graph supplied in Figure 4.1.

PAGE
^SaJH_Ld`

REVISION

TEXT
^ROd_WH[W`

PAGE
^SaJH_Ld`

REVISION
USER

^XVHU_Ld`
REVISION

TEXT
^ROd_WH[W`

USER
^XVHU_Ld`

PAGE
^SaJH_Ld`

REVISION

TEXT
^ROd_WH[W`

USER
^XVHU_Ld`

b)

a)

G)

c)

Figure 4.2: Joining network expressions built from the Wikipedia schema graph.

The main objective of JNG is to find a joining network expression on the schema
graph that is composed of relations that contain all the elements of the attribute set of a
LESSQL query template. When a joining network expression J contains all attributes
of an attribute set A, we say that J covers A. As a consequence, this network is said
to be a query joining network expression.

Definition 6. Let L be a LESSQL query template whose attribute set is AL. Also,
let J be a joining network expression in a schema graph GS. We say that J is total in
AL if every attribute from AL appears in at least one non-free relation of J . We say
that J is minimal in AL, if removing any non-free relation from J , it is no longer total

20 Chapter 4. Joining Network Expression Generation

in AL. If J is total and minimal in AL, we say that it covers AL and that it is a query
joining network expression for L.

An example of query joining network expression J that covers the attribute set
AL is shown in Figure 4.2 (a).

The JNG algorithm is detailed in Algorithm 1. It receives as input the attribute
set of a LESSQL query template and a schema graph corresponding to the version of
the schema over which this query template will be executed. JNG outputs a query
joining network expression that is used to compose the FROM clause of the final SQL
query template.

Algorithm 1: JNG
Input:
AL: the attribute set of a LESSQL query template.
GS: a graph for a given schema version.
Output:
J ′: a joining network expression.

1 begin
2 P ← ∅;
3 J ← ∅;
4 let AL = {A1, . . . , An}
5 let R1 be the relation which contains attribute A1 from AL

6 J.V ← {R1};
7 enqueue(P , J);
8 while P is not empty do
9 J ← dequeue(P);

10 foreach relation Ri ∈ GS adjacent to some Ru ∈ J.V do
11 if Ri /∈ J.V then
12 J ′ ← J ;
13 Expand J ′ by adding Ri to J.V and 〈Ru, Ri〉 to J.E
14 if J ′ /∈ P then
15 if the relations in J ′.V covers AL then
16 return J ′

17 else
18 enqueue(P , J ′);

JNG starts by fetching the first attribute in the attribute set and storing its
respective relation in the joining network expression J (Lines 5–6). This relation is
used as the starting node when traversing the graph. Then, JNG fetches relations that
are adjacent to any relation present in the current joining network expression J (Line

4.2. The JNG algorithm 21

10). While traversing the graph, JNG expands J with either free or non-free relations.
After each expansion, JNG checks if the joining network expression was not generated
previously (Line 14). If this is the case and the joining network expression covers the
attribute set AL, it is returned. Otherwise, it is enqueued for later processing.

For a better understanding of JNG, we illustrate its execution in a real case
scenario of the Wikipedia database. In this execution, consider the schema graph to be
the one illustrated in Figure 4.1. Considering the same LESSQL query template L given
previously and its attribute set, JNG generates several joining network expressions to
find the first that covers the attribute set. Notice that in Figure 4.1, we indicate
the relations of the attributes from the LESSQL query template, so the query joining
network expression must contain three non-free relations: USER, TEXT and PAGE.

#I Joining Network Action

0 USER initialize J (enqueued)

1 USER REVISION expand 0 (enqueued)

2 USERUSER_RIGHTS expand 0 (enqueued)

3 USER REVISION PAGE expand 1 (enqueued)

4

USER REVISION

TEXT expand 1 (enqueued)

5 USER REVISIONUSER_RIGHTS expand 1 (enqueued)

6 USER REVISIONUSER_RIGHTS expand 2 (pruned)

7

USER REVISION PAGE

TEXT expand 3 (returned)

Figure 4.3: A brief JNGen execution

In Figure 4.3, for each iteration of JNG, identified in the first column, we show
the joining network generated and the action that was executed. The actions always
refer to the iteration number as it uses the joining network of that iteration. The
joining network expression is initialized once and from this point on, it can only be
expanded. After each expansion, the resulting network can be pruned, enqueued or
returned. In the first case, we generated a similar network in a previous iteration. In
the second case, the network did not satisfy the cover criteria. In the last case, the
network satisfies the cover criteria and is returned as an answer. It is worth noticing
that, although more than one query joining network expression can be generated, only

22 Chapter 4. Joining Network Expression Generation

the first is returned as answer. Also, we shortened the real example to a few steps, for
better visualization.

Given the attribute set AL of L, JNG first extract the attribute user_id from AL

and stores its relation, USER, in the set of vertices of the tree J . This joining network
is enqueued in P . From the moment the queue is initialized, JNG starts generating
joining network expressions by traversing the schema graph GS. Since the USER is the
first relation identified in the graph, JNG uses it as starting node. Then, JNG searches
in a breadth-first fashion for relations that are adjacent to some relation in J.V . In
the current state of the joining network (Iteration 0), only adjacent relations to USER
are fetched. From this point on, we have two relations that can expand the current
joining network: REVISION and USER_RIGHTS. JNG builds two joining network
expressions (Iterations 2 and 3), each with a different adjacent relation. Then, these
joining network expressions are enqueued and the process repeats. If an expanded
joining network expression was already generated in a previous iteration, it can be
pruned (Iteration 6) to avoid unnecessary processing. In the end, JNG generates a
query joining network expression that covers L (Iteration 7).

4.3 SQL Composition

After successfully generating a query joining network expression, a corresponding FROM
clause can be generated to compose the SQL query template that replaces the LESSQL
query template. The query joining network expression is translated in a two-step
process: (i) nodes in the query joining network expression are included in the FROM
clause as database relations and (ii) edges in the query joining network expression are
included as join conditions between the nodes above in the FROM clause.

(a) Query Template L SELECT user_id, old_text
WHERE page_id = “X”

(b) Query Template S SELECT user_id, old_text
FROM (((USER U
JOIN REVISION R ON U.user_id = R.rev_user)
JOIN TEXT T ON R.rev_id = T.old_id)
JOIN PAGE P ON R.rev_page = P.page_id)
WHERE page_id = “X”

Figure 4.4: A translation from LESSQL to SQL query template

Using the query joining network expression obtained in Figure 4.3 (Iteration 7)
for L, we convert it to a FROM clause and generate an actual SQL query template as

4.3. SQL Composition 23

seen in Figure 4.4.
With the generated SQL query template, LESSQL sends the query to the DBMS,

which returns the result to the user of the application, and to the LESSQL cache, where
it is stored for later retrieval in case a similar LESSQL query template is received by
the framework.

Chapter 5

Attribute Mapping Generation

In this chapter, we propose a strategy to detect changes between two versions of a
database schema and automatically generate attribute mappings for these versions. In
particular, we present SchemaDiff, a novel algorithm we propose to carry out this task.
SchemaDiff is used both in the unsupervised and hybrid configurations of LESSQL,
since these configurations entail the automatic generation of attribute mappings and,
as a consequence, aim at reducing human intervention when the schema changes.

In the next sections, we show an overview of the SchemaDiff algorithm steps and
introduce the definitions needed for better understanding the process of generating
attribute mappings.

5.1 Overview

For generating proper SQL queries to a target schema, LESSQL relies on attribute
mappings that define the changes made on attributes of the source schema. In the
supervised configuration, the DBA is expected to specify a set of attribute mappings.
If the number of changes happen to be significantly large, or if they are very frequent,
manually providing attribute mappings becomes a burdening task.

To tackle this issue, we propose the SchemaDiff algorithm which tracks changes
between two schema versions, as illustrated in Figure 5.1. SchemaDiff works at two
levels: the relation level and the attribute level. At the relation level, SchemaDiff
analyses the schema and associates missing relations with added relations leveraging
Referential Integrity Constraints (RIC) defined for the schema versions. The missing
and added relations are associated in a way that attribute mappings can only be gen-
erated between specific pairs of relations from source and target schema. That is, the
mappings cannot be generated between a removed relation from the source schema and

25

26 Chapter 5. Attribute Mapping Generation

every relation in the target schema, but rather to a subset of relations as to not gen-
erate superfluous mappings. At the attribute level, missing attributes are associated
with added attributes based on the associated relations, consequently generating a list
of attribute mappings.

SRXUce
Schema

TaUgeW
Schema

SimilaUiW\
CRmSXWaWiRn

SchemaDiff

NeighbRXUhRRd
FilWeU

AWWribXWe
MappingV

Figure 5.1: SchemaDiff Overview

The next section details how SchemaDiff filters relations that are more likely to
yield suitable attribute mappings by introducing the concept of relation neighbour-
hood. Then, the last section details how SchemaDiff uses this concept when generating
attribute mappings.

5.2 Neighbourhood Filter

The first step of SchemaDiff is to filter changes at the schema relation level. Specifically,
this filter is used when relations from the source schema are missing in the target
schema, affecting queries that referred to attributes located in these relations. To solve
this issue, SchemaDiff associates relations from source and target schema by analysing
the relations neighbourhood.

Definition 7. Let R be a relation from a schema version. Any relation N , such that
there is a Referential Integrity Constraint (RIC) between R and N in the same schema,
is called a neighbour of R. The neighbourhood of R, N (R), is the set of neighbours of
R in a given schema.

In our work, the concept of relation neighbourhood is used to estimate the simi-
larity between relations from distinct database schema versions.

We use the neighbourhood intersection size between two relations to filter out
relations that are not likely to be candidate substitutes.

Definition 8. Let Ra be a relation from a source schema Sa that was removed from
the target schema and let Rb be a relation that was added in the target schema Sb,
such that the intersection N (Ra) ∩N (Rb) between the neighbourhoods of Ra and Rb

5.3. SchemaDiff 27

is the largest one among all relations from Sb that were not present in Sa, that is, the
added relations. The set of candidate substitutes for Ra in Sb, denoted as C(Ra, Sb), is
given by C(Ra, Sb) = (N (Rb)−N (Ra)) ∪Rb.

CUR

RECENTCHANGES

LINKS TE;TPAGE REVISION

:ATCHLIST RECENTCHANGES :ATCHLIST

LINKS

SRXUce SchePa TaUgeW SchePa

Sa

Sb

Figure 5.2: Neighbourhood Filter example

In Figure 5.2, we give a brief example that illustrates how the neighbourhood
filter is applied in the process of generating mappings by using an excerpt of a real
case scenario from the Wikipedia dataset. In the figure, the nodes represent relations
and the edges represent RICs. On the top-right corner of every relation, is specified
if the relation was added or removed. If there is not an indication, the relation did
not change between schema versions. Let Sa = {cur, recentchanges, links, watchlist}
and Sb = {page, revision, text, recentchanges, links, watchlist} be the source and
target schemas, respectively. From Sa to Sb, the set RSa = {cur} is the set
of removed relations and the set RSb

= {page, revision, text} is the set of added
relations. By Definition 8, the relation with largest common neighbourhood is
the page relation, so Rb = {page}. Since there is a single removed relation,
let Ra = {cur}, so N (Ra) = {recentchanges, links, watchlist} and N (Rb) =

{recentchanges, links, watchlist, revision, text}. Finally, applying Definition 8 re-
sults in the candidate substitutes C(Ra, Sb) = {page, revision, text} that will be
used when computing mappings when tracking schema changes. Thus, the set
{page, revision, text} of relations represent the candidate substitutes to the source
relation cur.

5.3 SchemaDiff

After computing candidate substitutes for relations in the target schema, the final step
of SchemaDiff is computing the similarity between attributes of a source relation and
their respective target candidate substitutes. From now on, we refer to attributes in
the source schema as source attributes and attributes in the target schema as target
attributes. The SchemaDiff algorithm is described in Algorithm 2.

Given a source attribute a that went missing in the target schema and its cor-
responding relation Ra in the source schema, for each candidate substitute relation

28 Chapter 5. Attribute Mapping Generation

Ri ∈ C(Ra, Sb), SchemaDiff computes a similarity score between the source attribute a

and each target attribute b ∈ Ri. If the similarity score is higher than a given thresh-
old θ, the target attribute b is stored according to its score. After the computation
of all similarities for a source attribute, SchemaDiff gets the attribute b with highest
similarity score between a and b. Effectively, this pair is the attribute mapping for
a given source attribute. Then, the process repeats for other source attributes. By
default, SchemaDiff adopts Jaccard with n-grams as the similarity metric. Finally, the
attribute mappings are forwarded to the JNG algorithm.

Algorithm 2: SchemaDiff
Input:
Sa: the source schema.
Sb: the target schema.
Output:
AM : attribute mappings.

1 begin
2 AM ← ∅;
3 foreach attribute a ∈ Sa − Sb do
4 let Ra from be the relation from S containing a
5 let C(Ra, Sb) be set of candidate substitutes for Ra in Sb

6 M ← ∅;
7 foreach relation Ri ∈ C(Ra, Sb) do
8 foreach attribute b ∈ Ri do
9 sim ← JaccardNGram(a, b);

10 if sim > θ then
11 M [sim] ← M [sim] ∪ {b};
12 let V be the highest similarity value from M
13 let P be a pair 〈a,mi〉 where mi ∈ M [V]
14 AM ← AM

!
P ;

15 return AM

Chapter 6

Empirical Study

In this chapter, we report a set of experiments we performed with LESSQL on two open-
source applications, Wikipedia and WebERP. The experiments consist of submitting
LESSQL queries to our framework, which is responsible for translating LESSQL queries
into regular SQL queries. As stated in Chapter 1, we propose three configurations for
the LESSQL framework: supervised, unsupervised and hybrid configurations. Every
configuration is evaluated separately, since each one presents different procedures for
dealing with database schema changes. However, in all configurations, we evaluate the
query generation Success Rate (SR), this is, given a query generated by the LESSQL
framework, we evaluate if the generated query is identical to a golden standard query.

6.1 Experiment Setup

In this section, we explain the steps for preparing the dataset for evaluating the
LESSQL framework in practice. In Table 6.1, we introduce the configuration of the
machine used in all experiments.

CPU Intel Core i7 7700 3.4GHz
RAM 32GB
OS Ubuntu 18.04

Table 6.1: Machine configuration

The first dataset is the well-known Wikipedia dataset which contains 127 schema
versions of the Wikipedia database, covering around 4 years of schema versions (2004-
2007). Also, it includes a set of 80 query templates built from more a set of about one
thousand most used queries in Wikipedia by time they were extracted. This dataset

29

30 Chapter 6. Empirical Study

was provided by Curino et al. (2013) and was used in other studies of co-evolution of
software and databases (Qiu et al., 2013; Vassiliadis, 2016). In Table 6.2 we present a
summary of the schema versions in the Wikipedia dataset from 2004/01 to 2007/01.
The versions spam a range of 37 months, from the first to the last. In some semesters,
there were dozens of versions, e.g., in 2005/01.

Semester Versions Total
2004/01 0, 1, 2, 3, 4 5
2004/02 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 16
2005/01 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,

38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51
29

2005/02 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65 13
2006/01 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 14
2006/02 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,

97, 98, 99, 100, 101, 102, 103, 104
23

2007/01 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127

22

Table 6.2: Summary of the schema versions in the dataset from 2004/01 to 2007/01

From the 80 query templates in the Wikipedia dataset, we discarded a few ones
for which a join path could not be generated. They are: (1) Query templates in the
form of SELECT * FROM relation. As queries of this type do not mention any
attributes, its is not clear what must be included in the join path. There are just
one case of such template in the dataset; (2) Query templates that use outer joins
and self joins, which are application-specific and cannot be inferred automatically from
the query attributes. The dataset includes 7 of such templates. Thus, from now on,
we will consider the remaining 72 query templates. In a practical situation, the 8
removed templates can be submitted to LESSQL in their original form, since when our
framework receives a full SQL query, it simply forwards it to the DBMS, without any
processing.

The second dataset we use is WebERP, a web-based accounting and business
management system, containing a total of 188 schema versions and covering around
7 years of development (2005 - 2012). From these schemas, we removed 76 schema
versions that presented syntax errors or missing information. Finally, the remaining
112 schema versions were used for experimentation. Differently from the Wikipedia
dataset, there is no log available from WebERP, so we have no queries for testing. In
addition, due to lack of synchronization between the code versioning system and the
schemas made available (Qiu et al., 2013), we could not extract queries from the code
base. Thus, for the case of this dataset, we generated a synthetic query load by choosing

6.1. Experiment Setup 31

a subset of the tables and attributes from the initial database schema that presented
changes over the entire dataset. In particular, we selected 8 out of 90 relations for
query generation, representing 9% of the schema relations. Although the database
relations coverage percentage is not high, previous studies show that, typically, only a
small subset of relations from a schema suffers significant changes (Vassiliadis, 2016).
We did this to generate both the LESSQL query templates and the golden standard
SQL query templates.

Overall, we selected a set of application databases to experiment with, mostly
based on databases previously used in research (e.g. (Qiu et al., 2013; Curino et al.,
2013)). Originally, our experiments would be executed over all of them. However, due
to a lack of synchronization between the provided database schemas and the original
source code repository, we were unable to manually generate, with confidence, the set of
attribute mappings and schema changes that were applied to the set of schemas. From
all these datasets, WebERP provided more understandable schema changes, which
turn out to be easy for detecting them and generating the attribute mappings to use
on experimentation.

In our discussions, we use the term changes to refer to changes in the schema
versions that affect the queries templates we use, and we disregard any other kind
of changes. In the Wikipedia dataset, notice that although all versions from version
17 on have changes with respect to the initial schema version 0, only 5 versions have
changes with respect to the immediately previous version. These are versions 17, 20,
21, 24, 41, 42 and 45. In the WebERP dataset, from version 11 on we have changes
with respect to the initial schema version, but only versions 11, 36, 71 and 72 present
changes with respect to the immediately previous version. In both datasets, those
versions that present changes with respect to the immediately previous version are
called major versions.

To give an idea of the changes in the schema along the time, we show in Figure
6.1 and Figure 6.2, the types of attribute changes observed in the major versions
with respect to the initial schema (version 0), that is, attributes that were removed
(Dropped), attributes that were moved to another relation (Relocated), attributes
that were renamed (Renamed) and attributes that were both renamed and relocated
(Ren&Rel). The numbers inside the bars indicate the number of occurrences of each
type of change. In the Wikipedia dataset, when comparing version 21 with the initial
schema version we can see that 2 attributes were renamed, 5 were relocated to another
table keeping their original name, 22 where were relocated to another table and their
name changed and 2 attributes where dropped from the schema. In the WebERP
dataset, we observed a more homogeneous distribution in what refers to the number

32 Chapter 6. Empirical Study

�� ��
�� ��

�

�

� �

�
�

� �

�
�

�

� �
� �

7GLIQE�:IVWMSR��3VHMREP

'L
ER

KI
W

�	

��	

��	

��	

���	

�� �� �� �� �� ��

(VSTTIH 6IPSGEXIH 6IREQIH 6IR
6IP

Figure 6.1: Types of attribute changes observed in the major versions of Wikipedia.

�
� � �

� � � ��

�
� � �

7GLIQE�:IVWMSR��3VHMREP

'L
ER

KI
W

�	

��	

��	

��	

���	

�� �� �� ��

6IPSGEXIH 6IREQIH 6IR
6IP

Figure 6.2: Types of attribute changes observed in the major versions of WebERP.

of changes according to the predefined categories. For instance, developers applied
a major change to the WebERP database core relations in version 36. This change
aimed at refactoring the software module responsible for tracking client orders along
with the items and requirements registered for each order. Also, no dropped category
was identified in the manual verification for this dataset.

Strictly for the Wikipedia dataset, which presents a log of queries extracted from
the application production environment, several queries are generated from each of the

6.1. Experiment Setup 33

Figure 6.3: Number of queries per each query template.

query templates. In Figure 6.5 we present the number of queries derived from each of
the 28 templates that generates more than one query. The queries were obtained from
a log of the queries issued by Wikipedia applications over an instance of the initial
version 0 of the Wikipedia database schema.

Overall, 38% of the templates generate more than one query. Each template
generates, on average, 82 queries. In fact, there is one single query template, number
3, that generates 1467 queries, that is, more than 88% of the queries. Thus, failing in
processing a single template due to schema changes, may have a huge impact on the
system’s operation.

Recall from Chapter 4 that the generation of SQL query templates from LESSQL
query templates uses the JNG algorithm, and that this algorithm requires the PF/FK
constraints of the database schema. As the original Wikipedia dataset does not include
such constrains explicitly, we had to manually build them. This process is straightfor-
ward and we carried it out by looking at the joins in the queries from the dataset. On
the other hand, the WebERP dataset included all PK/FK constraints in the database
schema versions.

To form the final set of LESSQL query templates used in the experiments, we
took the remaining original 72 query templates from the Wikipedia dataset and the
generated 80 query templates from WebERP and removed their FROM clauses and
explicit join conditions.

Finally, notice from Figure 6.1, that some attributes were simply removed in
some versions of the Wikipedia dataset. This means that not all 72 query templates

34 Chapter 6. Empirical Study

are viable in every schema version, that is not all initial query templates can generate a
query for every version. The graph in Figure 6.4 shows the number of viable templates
per Wikipedia schema version. From the set of generated queries for WebERP, all
query templates could be executed along all schema versions.

Figure 6.4: Number of viable query templates per schema versions.

6.2 Overall Results

In this section, we compare the impact of using LESSQL and original query templates
from version 0. We call Success Rate (SR) in a schema version v, the fraction of query
templates whose derived queries can be successfully executed in this version. In the
case of the original SQL query templates, SR simply indicates the fraction of templates
whose attributes and relations match the schema version v. In the case of LESSQL,
SR indicates the fraction of LESSQL from which our framework was able to generate
a SQL template whose attributes and relations match the schema version v.

Recall from Figure 6.4 that in newer schema version there are less than 72 valid
templates for Wikipedia. Thus, for the case of LESSQL evaluation, SR metric also
includes LESSQL query templates for which the framework correctly detected that
there is no valid SQL query template in schema version v.

As Figure 6.5 shows, LESSQL was very effective. When using only the original
SQL query templates, after a major schema change in schema version 21, SR was
reduced to 0.23. In the case of supervised LESSQL, in the large majority of the cases,
95% of all generated SQL templates were correct, and in all cases SR was no less than
0.95. The unsupervised configuration was also effective, achieving an SR value of 0.55
after a major update. This is more than twice as expected in the original templates

6.2. Overall Results 35

Figure 6.5: Success Rate per Wikipedia schema version obtained with the original SQL
templates and with SQL templates generated by different LESSQL configurations.

from version 21 on. However, this configuration was also affected by the major schema
change in version 21, in particular those of Ren&Rel type (Figure 6.1). The hybrid
configurations consisted in using the unsupervised approach for all versions, except for
the major version 21. Overall, this configuration achieved the same SR levels of the
supervised configuration, but it required much less effort from the user. While the
supervised configuration required a total of 3941 attribute mappings to be supplied
across all version, the hybrid configuration only required 27 mappings to be supplied
to handle a single major change. It is worth noticing that the whole set of 3941 attribute
mappings contains only 38 distinct mappings. Still, the whole set would have to be
manually supplied.

Also, the detailed window in Figure 6.5 shows a comparison between the super-
vised and the hybrid configurations. We compare the SR of our supervised and hybrid
configurations, since they presented closer results. The overall difference presented by
both SR is explained by the use of the SchemaDiff algorithm. The supervised config-
uration relies solely in the attribute mappings provided by the DBA, while the hybrid
configuration mixes the unsupervised and supervised configurations. Using the unsu-
pervised configuration means relying on the SchemaDiff algorithm to correctly assign
the mappings between a pair of schemas. Although the overall mappings provided by
the SchemaDiff algorithm are correct, the decrease in SR was due to an attribute am-
biguity problem. That is, between versions 17 to 48, more than one relation contained
an attribute with the same name. This impacts the generation of the SQL query since
any of the attributes that share the same name satisfy the LESSQL query referring to

36 Chapter 6. Empirical Study

that single attribute.

As illustrated in Figure 6.6, LESSQL showed a similar behavior if compared to
the Wikipedia dataset experiment. In particular, we focus on the major change intro-
duced by schema version 36 which reduced the query SR to 0.13. When adopting the
LESSQL supervised configuration, above 95% of the generated SQL query templates
were correctly generated, achieving a SR value of 0.96. In the case of the unsupervised
configuration, the SR value achieved 0.91, representing a huge benefit over the original
query template approach since it does not rely on human effort. The difference between
unsupervised configuration in the WebERP dataset with respect to the unsupervised
configuration in the Wikipedia dataset can be explained by the easier mapping gen-
eration faced by the SchemaDiff algorithm. In the hybrid configuration, the results
obtained were similar to the results from the supervised configuration. In this case,
we provided a set of 22 attribute mappings, comprised of 8 attribute mappings from
the schema version 11 on and 14 attributes from the schema version 36 on. Overall,
LESSQL was mainly affected by schema changes of the type Ren&Rel, similar to the
Wikipedia dataset experiments. It is worth noticing that, in WebERP, all queries could
be executed over all database schema versions.

Figure 6.6: Success Rate per WebERP schema version obtained with the original SQL
templates and with SQL templates generated by different LESSQL configurations.

6.3. Unsupervised LESSQL 37

6.3 Unsupervised LESSQL

This section we present a detailed evaluation of the unsupervised configuration, which
requires more steps than the supervised configuration. In particular, the unsupervised
LESSQL configuration relies on the SchemaDiff algorithm presented in Chapter 5.
SchemaDiff generates mappings between attributes using our proposed neighbourhood
filter and a similarity function. However, automatically finding attribute mappings
between schemas is inherently difficult since there is not a pattern to follow when
changes are applied to schema.

To evaluate SchemaDiff, we compute the Precision, Recall and F-measure as
follows. Let Si be the set of mappings from the attributes of the version 0 to the
attributes of version i generated by SchemaDiff and Mi be the set of correct mappings
from the attributes of the version 0 to the attributes of version i. The SchemaDiff
precision and recall at version i are given by Pi = |Si∩Mi|/|Si| and Ri = |Si∩Mi|/|Mi|,
respectively. Finally, the F-measure is given by Fi = 2× (Pi ×Ri)/(Pi +Ri).

This experiment measured the effectiveness of the candidate attribute mappings
found by our algorithm, that is, among the attributes retrieved from the target schema,
if the correct attribute was identified. Formally, given a source version v, a target
version vt, a set of attribute mappings and the golden standard for the target version,
respectively, AMvt and GSvt, if a mapped attribute x ∈ AMvt is correctly mapped as
explicit by GSvt, the accuracy is increased. The next subsections show these metrics
in both datasets, Wikipedia and WebERP.

Overall, for the Wikipedia dataset, the framework average precision was above
0.9 and the average recall was above 0.8, as seen in Figure 6.7. As there can be many
candidate attribute mappings with a very low similarity score, recall from Chapter 5
that our SchemaDiff algorithm uses a top-k score data structure to store the k highest
similarities calculated per attribute removed. In this experiments, we set the value
of k to 3 by empirically testing values that ranged from 1 to 5, analyzing the overall
precision.

In the WebERP dataset, the framework average precision was 0.61 while the av-
erage recall was above 0.65, as shown in Figure 6.8. The precision metric was mainly
affected by the number of false positives raised by our similarity function inside this
dataset. In particular, attributes that are not related between two schema versions
present a similarity value above our predefined threshold, thus, they presented a nega-
tive impact in the precision metric. However, the overall result of our framework is not
affected since the high scored similarities are usually the correct ones. This is shown
in the MRR experiment below.

38 Chapter 6. Empirical Study

Figure 6.7: SchemaDiff evaluation across all Wikipedia schema versions.

Figure 6.8: SchemaDiff evalution across all WebERP schema versions.

The candidate attribute mappings precision results are shown in Figures 6.9 and
6.10 for the Wikipedia dataset and Figure 6.11 for the WebERP dataset. Notice that
the plot does not contain all of the tested values since from value 3 on, the results are
equal. This means that our SchemaDiff algorithm finds the correct attribute at most
in the second position of the candidate attribute mappings rank. Also, we tested the
precision using a slightly different approach. In Figure 6.9, we consider that, when an
attribute from the source schema is mapped to NULL and, according to the golden
standard, it should be mapped to NULL, the overall precision is increased. On the other
hand, Figures 6.10 and 6.11 do not consider these mappings, so the overall precision
is decreased. Different from Wikipedia, the experiments on WebERP did not present
dropped attributes and, for this reason, we only present the chart containing precision
without NULL mappings.

6.3. Unsupervised LESSQL 39

Figure 6.9: SchemaDiff Precision on Wikipedia, considering NULL mappings.

Figure 6.10: SchemaDiff Precision on Wikipedia, not considering NULL mappings.

As said in the last section, the unsupervised LESSQL query generation SR after
a major update reached 0.57 while in the original scenario the expected SR would
be 0.2. This increase, approximately triple of the expected value in the real case,
shows us that application maintenance impact can be reduced with the help of our
framework. In the WebERP scenario, the unsupervised configuration presented a SR
value of 0.91, which represents a huge impact in development scenarios since it does not
rely on manual effort from developers, thus, reducing source code maintenance. This
configuration, besides eliminating the need of supervision from the DBA, will present
an overall quality lower than the other two configurations because of the mapping
generation process. This happens when there is a schema update with a large quantity
of mappings and the system must look for attribute mappings among many possible
attribute transformations.

To further investigate the efficiency of our SchemaDiff algorithm, we illustrate
in Figures 6.12 and 6.13 the attributes mappings MRR. This experiment shows the

40 Chapter 6. Empirical Study

Figure 6.11: SchemaDiff Precision on WebERP, not considering NULL mappings.

position of the rank in which the attributes from the target schema are located accord-
ing to their similarity values. Similarly to the precision experiment, this experiment
was executed considering the first three rank positions and calculated the MRR with
respect to these three positions. That is, if k is 1, then our precision only retrieves
attributes that are located in the 1st position, and so on. In the Wikipedia dataset,
the computed MRR value stays above 0.5, meaning that the correct attribute in the
target schema is at most in the 2nd position of the ranking. In the WebERP dataset,
the average MRR value, considering from the 2nd position, was above 0.8. The MRR
metric is used to provide us with insights on the effectiveness of the LESSQL attribute
mappings generation process. That is, given that the correct attribute mapping was
not found in the first position, in which position it could be found on the mappings
ranking.

When computing the attribute mappings MRR, we removed mappings in which
the attribute from the source schema split into multiple attributes in the target schema.
The MRR metric computes a value according to the position of the first relevant answer.
However, in this scenario, the relevant answer involves many itens in the same ranking
position. Thus, it is not possible to evaluate these cases. We use those mappings only
when computing the precision metric. In Table 6.3, we show the number of occurrences
of attributes that split into multiple attributes in the target schema and also the number
of mappings that represent these cases in both datasets.

For instance, in the WebERP database, schema version 11 presented one occur-
rence of an attribute that was split into more than one attribute in the target schema.
Specifically, the attribute taxauthority split into taxauthority, taxgroupid

6.3. Unsupervised LESSQL 41

and taxprovinceid. From these, the attribute taxauthority in the target
schema was located in two relations so, in practice, two mappings were affected.

Dataset Schema version Occurrences No. of mappings Total
Wikipedia 21 1 2 2

WebERP 11 1 4 1136 3 7

Table 6.3: Number of mappings removed from the MRR computation

Keeping all the queries updated according to the schema requires the schema
changes to not be significantly large. That is, the more significant changes to a database
schema are, the more difficult is the problem to keep the application functionalities
running in the event of schema changes.

Figure 6.12: Wikipedia Attribute MRR over all schema versions.

Although our SchemaDiff algorithm deals with a large number of candidate map-
pings from a pair of schemas, resulting in a precision and recall decrease, we will show
that our framework is capable of generating the correct query even if it is not ranked
with the highest score. Similar to the attribute mappings MRR, the MRR metric for
the query generation process indicates whether LESSQL generated the correct SQL
query in a position that is not the first. Figure 6.16 shows that, after the major update
in Wikipedia version 21, on average, the correct query is found between the 2nd and
the 3rd position. The same is valid for the WebERP dataset, where the correct query
can be found at most at the 3rd position with an average MRR of 0.72.

Over time, according to the schema changes, more candidate attribute mappings
may be identified and the query MRR may be affected. This scenario is depicted in
Figure 6.18 between Wikipedia schema versions 20 and 21. Version 21 presented more
mapping alternatives than the previous versions due to relation additions and removals

42 Chapter 6. Empirical Study

Figure 6.13: WebERP Attribute MRR over all schema versions.

Figure 6.14: Wikipedia Attribute MRR boxplot in four different versions.

in the database schema, since it was classified as a major version. This reflected directly
in the query MRR inside version 21.

6.4 Performance Issues

The adoption of LESSQL introduces new steps in the application and DBMS environ-
ment. In the event of schema changes, LESSQL will trigger the SchemaDiff algorithm,
when using unsupervised or hybrid configurations, computing the mappings between
the source and the target schema, then forwarding it to the JNG algorithm. In our
experiments, the longest time was 0.06 seconds.

As for the query generation process, when a LESSQL query is issued against the
framework it will trigger a SQL template generation through JNG. In some cases, this

6.4. Performance Issues 43

Figure 6.15: WebERP Attribute MRR boxplot in four different versions.

Figure 6.16: Wikipedia Query MRR.

process can introduce a significant time overhead when the query size is large and many
candidate attribute mappings are generated. The most expensive SQL generation time
seen in the Wikipedia dataset experiments was of 39 seconds, for a query referencing
9 attributes. In the WebERP dataset, the most expensive query took 8 seconds and
referenced 7 attributes. An average of the query generation time per schema version is
depicted in Figures 6.20 and 6.21, for Wikipedia and WebERP, respectively.

For a better comprehension of the overhead introduced by the query generation
process, we selected four schema versions that presented a significant time increase as
considered to the version right before, this scenario is shown in Figures 6.22 and 6.23.

As can be seen in Figure 6.22, the majority of SQL query templates are generated
between 0.01-1.0 second in both datasets. Overall, LESSQL introduces little overhead
for querying the database. However, some queries can be burdensome to generate

44 Chapter 6. Empirical Study

Figure 6.17: WebERP Query MRR.

Figure 6.18: Wikipedia Query MRR boxplot in major versions.

and, as a consequence, they may interfere in the application response time. For these
cases, our framework provides an embedded cache feature for storing already generated
queries. In particular, when a LESSQL query is issued, our framework generates an
appropriate SQL query template and stores it, waiting for another LESSQL query with
identical structure to be executed. This makes the generation time negligible after the
generation of a SQL query template for a given LESSQL query and encourages the
adoption of LESSQL since it has little to none impact in the application production
environment.

6.5. Limitations and Threats to Validity 45

Figure 6.19: WebERP Query MRR boxplot in major versions.

Figure 6.20: Average query generation time per Wikipedia schema version.

6.5 Limitations and Threats to Validity

Although we have used only two datasets in our evaluation, we argue that these datasets
are representative for all the problems we tackle. The first dataset, Wikipedia, is a
real and popular system among millions of users. In addition, as described in its
web page1, the project went through numerous schema and code changes through
time and endured an exemplary case of database decay. Moreover, as the dataset
covers 4 years of evolution, it represents a high diversity of schema refactoring types
(Figure 6.1). For these reasons, this dataset has been previously used in other studies
on co-evolution of software and databases, e.g., (Qiu et al., 2013; Vassiliadis, 2016).
Furthermore, WebERP was also used in previous studies and present similar evolution
scenarios to Wikipedia, emphasizing even more the necessity of adopting a framework
that minimizes the source code maintenance when changes are applied to the schema.

1https://www.mediawiki.org/wiki/Manual:MediaWiki_architecture

46 Chapter 6. Empirical Study

Figure 6.21: Average query generation time per WebERP schema version.

Figure 6.22: Query generation time in four different versions.

Figure 6.23: Query generation time in four different versions.

6.5. Limitations and Threats to Validity 47

We were not able to explicitly measure the extent of remaining code modifica-
tions, i.e., those caused by schema changes not successfully handled by LESSQL. In
order to tackle this issue, we computed how often LESSQL was not successful, which
ended up being very rare (less than 5% of the cases) with both supervised and hybrid
configurations for the Wikipedia dataset. In WebERP, LESSQL was more affected
due to the number of cases where the attribute split into more than one alternative.
Nonetheless, we emphasize that the amount of code modifications was lower if com-
pared with the amount of code modifications in case one had to change the original
schema template over time. The same reasoning applies to the unsupervised configu-
ration when it was exposed to simple structural schema changes. Other threats and
corresponding mitigations are discussed in depth in our supplementary material.

Chapter 7

Conclusions and Future Work

In this chapter, we review our main contributions, discuss the conclusions we obtained
in our experiments and outline the improvements for future work.

7.1 Conclusions and Main Contributions

In this work, we presented an alternative approach for handling database schema
changes in development scenarios that choose to adopt Continuous Deployment, named
LESSQL, which is a framework-based approach that aims at minimizing application
source code maintenance in the queries affected by database schema changes. LESSQL
is based on queries that are less dependent on the database schema and do not contain
the FROM clause. This enables LESSQL to generate actual SQL queries that can be
issued against the updated schema.

Overall, LESSQL supports three different configurations: (i) supervised - where
the DBA supplies attribute mappings; (ii) unsupervised - where the attribute mappings
are automatically generated by our novel algorithm, SchemaDiff; and (iii) hybrid -
where the DBA provides a small and critic set of attribute mappings in face of major
updates in the database schema.

In all configurations, we use the JNG algorithm, which is based on Keyword-
Search Systems for Relational Databases, mainly from Oliveira et al. (2018). JNG is an
algorithm we proposed that is responsible for generating joining network expressions,
which are translated into FROM clauses that are used to compose the actual SQL
query to be executed in the RDBMS.

In the unsupervised and hybrid configurations, we adopt the SchemaDiff algo-
rithm. SchemaDiff is also an algorithm we proposed to derive the difference between
two schema versions. This difference is used in the generation of attribute mappings,

49

50 Chapter 7. Conclusions and Future Work

which represent the changes that represent the transformation of the source schema in
the target schema. This representation is used when composing the SQL query to up-
date the references to attributes that were renamed and relocated to different relations
when the schema changes were applied.

We conducted our experiments using two datasets: the well-known Wikipedia
dataset and the WebERP dataset. With the obtained results, we indicate that our ap-
proach can cope with the database decay problem by improving queries’ stability in the
presence of structural changes to the database schema. As a result, our approach favors
faster CD cycles and also keeps application services operational. Moreover, LESSQL
would help to better streamline changes that span across multiple teams, which oth-
erwise significantly harm the efficient generation of builds. In fact, as demonstrated
by our experiment, the number of affected queries can be huge depending on the kind
of schema refactoring. Structural changes to the database schema could be the most
costly and LESSQL provides a way to gracefully handle almost all of them.

Additionally, LESSQL is a concrete approach to handle the database decay prob-
lem stated by Stonebraker et al. (2016). The decay is introduced by schema changes
that result in a poor database schema design. Since our approach keeps the queries
updated according to the changes applied to the schema, we expect it to encourage
DBAs to keep up with good practices with respect to database schema normalization.

Finally, as a result of this research we had a paper accepted for presentation in
the 27th International Conference on Software Analysis, Evolution and Reengineering
(SANER) in 2020 (Afonso et al., 2020). This emphasizes even more the interest of
researchers in tackling the problem of database schema changes when applied in devel-
opment environments that would otherwise be affected by the applied schema changes.

7.2 Future Work

The promising results we obtained so far with LESSQL raised several ideas for future
work. These ideas are enumerated and discussed below.

7.2.1 Expand LESSQL support for CRUD statements

The LESSQL approach avoids rewriting queries by allowing a flexible query syntax.
We will leverage LESSQL queries and expand them to work with other CRUD state-
ments such as INSERT, UPDATE and DELETE. This will allow our method to reduce
impact of structural database schema changes in application source code. After imple-
mentation, we will evaluate the impact of our framework in open-source/proprietary

7.2. Future Work 51

datasets as to ensure the generality of our method with respect to different development
scenarios.

7.2.2 Dealing with Database Instance Migration

Since LESSQL did not provide a database instance migration feature, we will design
a method that is capable of assisting DBAs when migrating database instances. This
method will allow data to be migrated between schema versions in the background while
the application service is running, thus, not impacting application users nor function-
alities. We will evaluate this method based on its efficiency in the data migration
process, that is, its capability of generating low overhead when migrating data across
database instances, keeping the application services operational with minimal inter-
ruption. Also, we will classify the overhead according to the database schema change
applied, generating a best practices report on the use of schema change operations.

7.2.3 Coupling a Unified Framework into an ORM

We will unify both previous developed methods to implement a full-fledged framework.
That is, we will implement a framework that can handle both problems, source code
maintenance and database instance migration, simultaneously. Also, to widen the use
of our solution, we will implement it alongside an Object-Relational Mapper (ORM).
ORMs are widely adopted in the industry and are preferred as a method of accessing
database resources. To the best of our knowledge, an approach such as this is not
present in the literature.

Bibliography

(2019). Facebook schema change. https://github.com/facebookincubator/
OnlineSchemaChange. Accessed: 2019-05-29.

(2019). Soundcloud large hadron migrator. https://github.com/soundcloud/
lhm. Accessed: 2019-05-29.

Afonso, A., da Silva, A., Conte, T., Martins, P., Cavalcanti, J., and Garcia, A. (2020).
Lessql: Dealing with database schema changes in continuous deployment. In 2020
IEEE 27th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pgs. 138–148. IEEE.

Bernstein, P. A. and Melnik, S. (2007). Model management 2.0: manipulating richer
mappings. In Proceedings of the 2007 ACM SIGMOD international conference on
Management of data, pgs. 1–12. ACM.

Berquist, J. and Gunson, G. (2018). Mysql infrastructure testing automation at github.
In Large Installation System Administration Conference, LISA 2018, pgs. –.

Caruccio, L., Polese, G., and Tortora, G. (2016). Synchronization of queries and views
upon schema evolutions: A survey. ACM Trans. Database Syst., 41(2):9:1–9:41.

Curino, C., Moon, H. J., Deutsch, A., and Zaniolo, C. (2013). Automating the database
schema evolution process. The VLDB Journal—The International Journal on Very
Large Data Bases, 22(1):73–98.

Curino, C. A., Moon, H. J., and Zaniolo, C. (2008). Graceful database schema evolu-
tion: the prism workbench. Proceedings of the VLDB Endowment, 1(1):761–772.

De Jong, M., van Deursen, A., and Cleve, A. (2017). Zero-downtime sql database
schema evolution for continuous deployment. In 2017 IEEE/ACM 39th International
Conference on Software Engineering: Software Engineering in Practice Track (ICSE-
SEIP), pgs. 143–152. IEEE.

53

54 BIBLIOGRAPHY

Delplanque, J., Etien, A., Anquetil, N., and Auverlot, O. (2018). Relational database
schema evolution: An industrial case study. In 2018 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pgs. 635–644. IEEE.

Hintikka, J. and Bachman, J. (1991). What If...?: Toward Excellence in Reasoning.
McGraw-Hill Humanities, Social Sciences & World Languages.

Hristidis, V. and Papakonstantinou, Y. (2002). Discover: Keyword search in relational
databases. In VLDB’02: Proceedings of the 28th International Conference on Very
Large Databases, pgs. 670–681. Elsevier.

Laukkanen, E., Itkonen, J., and Lassenius, C. (2017). Problems, causes and solutions
when adopting continuous delivery—a systematic literature review. Information and
Software Technology, 82:55–79.

Oliveira, P., da Silva, A., de Moura, E., and Rodrigues, R. (2018). Match-based
candidate network generation for keyword queries over relational databases. In 2018
IEEE 34th International Conference on Data Engineering (ICDE), pgs. 1344–1347.
IEEE.

Polese, G. and Vacca, M. (2009a). A dialogue-based model for the query synchroniza-
tion problem. In 2009 IEEE 5th International Conference on Intelligent Computer
Communication and Processing, pgs. 67–70. IEEE.

Polese, G. and Vacca, M. (2009b). Notes on view synchronization using default logic.
In SEBD, pgs. 253–260.

Qiu, D., Li, B., and Su, Z. (2013). An empirical analysis of the co-evolution of schema
and code in database applications. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, pgs. 125–135. ACM.

Rahm, E. and Bernstein, P. A. (2001). A survey of approaches to automatic schema
matching. the VLDB Journal, 10(4):334–350.

Rossi, C., Shibley, E., Su, S., Beck, K., Savor, T., and Stumm, M. (2016). Contin-
uous deployment of mobile software at facebook (showcase). In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pgs. 12–23. ACM.

Saur, K., Dumitraş, T., and Hicks, M. (2016). https://www.facebook.

com/notes/mysql-at-facebook/online-schemachange-for-

BIBLIOGRAPHY 55

mysql/430801045932. In IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), pgs. 166–176.

Savor, T., Douglas, M., Gentili, M., Williams, L., Beck, K., and Stumm, M. (2016).
Continuous deployment at facebook and oanda. In 2016 IEEE/ACM 38th Interna-
tional Conference on Software Engineering Companion (ICSE-C), pgs. 21–30. IEEE.

Stonebraker, M., Deng, D., and Brodie, M. L. (2016). Database decay and how to
avoid it. In 2016 IEEE International Conference on Big Data (Big Data), pgs. 7–16.
IEEE.

Vassiliadis, P. (2016). Schema evolution for relational databases. In DATA 2016 -
Proceedings of 5th International Conference on Data Management Technologies and
Applications, Lisbon, Portugal, 24-26 July, 2016., pg. 5.

Wang, Y., Dong, J., Shah, R., and Dillig, I. (2019). Synthesizing database programs
for schema refactoring. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pgs. 286–300. ACM.

