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Abstract

Indoor Positioning Systems (IPSs) are used to locate mobile devices in indoor environ-

ments. Model-based IPSs have the advantage of not having an exhausting training and

signal characterization of the environment, as required by the fingerprint technique.

However, most model-based IPSs are done using static model parameters, treating

the whole scenario as having a uniform signal propagation. This might work for most

small scale experiments, but not for larger scenarios. In this work, we propose PoDME

(Positioning using Dynamic Model Estimation), a model-based IPS that uses dynamic

parameters that are estimated based on the location the signal was sent. More specifi-

cally, we use the set of anchor nodes that received the signal sent by the mobile node

and their signal strengths, to estimate the best local values for the propagation model

parameters. Also, since our solution depends highly on the selected anchor nodes to use

on the position computation, we propose a novel method for choosing the three best

anchor nodes. Our method is based on several data analyses executed on a large-scale,

Bluetooth-based, real-world experiment and it chooses not only the nearest anchor

but also the ones that benefit our least-square-based position computation. Our solu-

tion achieves a position estimation error of 3 m, which is 17% lower than the position

estimates obtained by positioning models based on static parameters.

Keywords: Indoor Positioning Systems; Bluetooth Low Energy; Path-loss Model; Local-

ization Systems, Trilateration.
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1 Introduction

Today’s most commonly used positioning system is the Global Navigation Satellite

Systems (GNSS), which includes the Global Positioning System (GPS). They allow

people to navigate from place to place through applications such as Google Maps,

Waze, and Apple Maps. However, the satellite signals are easily blocked by buildings,

decreasing its accuracy, and making its usage limited to outdoor environments (Ni et al.,

2006). For this reason, Indoor Positioning Systems (IPSs) have been proposed to allow

the location of mobile devices indoors, using the local infrastructure.

IPSs have been drawing the attention of many companies since it allows the

development of several interesting applications, such as monitoring the position of

the elderly in retirement homes, monitoring children in schools, assisting customers in

supermarkets, and tracking patients and equipment in hospitals (Brena et al., 2017).

Many IPSs have been proposed in the literature, but to date, no system has

been established as standard since each one has its pros and cons. Positions can be

estimated using several data sources, such as the Angle of Arrival (AoA), Time of

Arrival (ToA), Time Difference of Arrival (TDoA), and the Received Signal Strength

Indicator (RSSI). However, most IPS solutions are based on the RSSI due to its low cost

and high availability since they can use signals from WiFi and Bluetooth, both of which

are available in most mobile devices (Sadowski and Spachos, 2018).

The RSSI can be used to estimate the distance between two devices since there

is a decrease in the signal strength as the distance increases (Li et al., 2018). However,

the RSSI is sensitive to environmental noises, such as obstacles from furniture and

walls, people’s movements, and opening or closing doors, all of which can cause a

high signal variation making it difficult to convert the signal strength to distance

accurately (Sadowski and Spachos, 2018). Consequently, the position estimation of the
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mobile device is affected.

Many wireless communication technologies can be used in IPS, such as WiFi and

Bluetooth, as mentioned, but also Radio Frequency Identification (RFID), Ultra-Wide

Ban (UWB), ZigBee, and others. WiFi has greater prominence since it is the most used

technology and, therefore, more easily found indoors, which results in no need for extra

hardware (Torteeka and Chundi, 2014). However, WiFi consumes more energy, making

it unfeasible for small, low-power devices (Zuo et al., 2018). Thus, with the development

of BLE, it has become increasingly common to employ this technology due to its low

energy consumption, ease of deployment, and low cost (Faragher and Harle, 2015).

IPSs can be classified into two categories: fingerprint-based and model-based.

Fingerprint-based IPSs use an extensive and exhaustive training of reference points in

the scenario to feed a machine learning algorithm that will later be used to localize the

mobile devices. The created signal map is susceptible to changes in the environment (He

and Chan, 2016) and is unfeasible to be generated and maintained for larger scenarios.

On the other hand, model-based IPSs require only some information from the scenario,

such as the coordinates of the anchors (reference nodes) and, in some cases, a simple

collection of signal data, to create a better signal propagation model for the scenario.

The model-based IPSs have two main phases: model data gathering and position

computation (Wu et al., 2019). In the first phase, RSSI samples are taken to obtain the

signal propagation model (also known as path-loss model) that characterizes the signal

strength in the scenario as the distance increases. This is the most sensitive step since

it depends directly on the measured RSSI values in the real environment, which are

known to have a high variance, and they will also affect the estimated distances (Li

et al., 2018). In the position computation phase, the positions of the mobile devices

are computed using the distances estimations and the known position of the anchors.

This computation is usually done by some optimization algorithms, such as the least-

squares (Teoman and Ovatman, 2019).

Most model-based IPSs proposed in the literature use the same static model

parameters for the whole scenario (Fang and Chen, 2020; Shi et al., 2017; Teoman

and Ovatman, 2019; Yong et al., 2020). This static model considers that the signals
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behave uniformly over the whole scenario. However, this is not the case, especially

for medium to large-scale scenarios in which the signal behavior changes from place

to place depending on the obstacles and other environment variables. In this work,

we propose PoDME (Positioning using Dynamic Model Estimation), an IPS that uses

a signal propagation model with dynamically estimated parameters to improve the

distance computation between the mobile device and the anchor nodes. Our main idea

is that these dynamically estimated path-loss parameters correspond more closely to the

signal’s characteristics of the region where the packet we want to localize was sent from,

improving the accuracy of the estimated distances. Also, since our solution depends

highly on the selected anchors used on the position computation, we propose a novel

method for choosing the three best anchors that focus not only on the nearest anchors

but also the ones that benefit the least-squares-based position computation.

In our experiments, we decided to use the BLE technology. We implemented our

solution in a real-world, large-scale testbed and compared its performance to different

variations of a static model-based IPS, as used by most model-based solutions in the

literature. Our results show an average error of 3 m, a 17% improvement compared to

the best experimented parameter of a static model-based IPS, which had an error of

3.6 m.

1.1 Objectives
The main goal of this work is to develop and evaluate a IPS to be implemented in

medium to large-scale scenarios that uses a signal propagation dynamic model to

provide location information for small battery-powered devices to be worn by people

inside buildings, such as the elderly in retirement homes or students in schools.

As specific objectives, it is intended:

• Establish the signal collecting method from the environment to obtain consolidated

data that support the proposed approach;

• Evaluate and improve the smoothing filter for reducing noise from RSSI;
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• Implement a propagation model with a dynamic choice of the parameters using

information from different regions of the environment;

• Propose a novel method for choosing the best anchor nodes that benefit the

least-squares-based position computation;

1.2 Structure of the Master Thesis
The rest of this master thesis is organized as follows: Chapter 2 gives a theoretical back-

ground for this IPS proposed, shows the different technologies, localization techniques,

and works that are directly related to the development of this work. In Chapter 3, we

present our proposed PoDME solution, show the components of our system and explain

the offline and online phases. Chapter 4, presents the performance evaluation of our

solution in a real-world testbed, and shows the comparison of different methods. Finally,

in Chapter 5, summarises the results and suggestions for future work.
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2 Frame of Reference

This chapter presents the theoretical background for this IPS proposed. We show dif-

ferent technologies, localization techniques, and works that are directly related to the

development of this work.

2.1 Bluetooth Low Energy
The BLE is currently available on most electronic devices, such as smartphones, note-

books, and Internet of Things (IoT) devices. Due to this availability and the focus on low

energy consumption, this technology has become attractive for use in indoor location

systems and has become increasingly common in several works (Dickinson et al., 2016;

Onofre et al., 2016; Paterna et al., 2017; Zhuang et al., 2016). With the advances in BLE, an

improved Bluetooth version, it has been possible to obtain a more significant reduction

in cost while also reducing the power consumption, ensuring an increased lifespan

for the devices (Zhuang et al., 2016). Also, BLE introduced the advertisement packets,

which are data packets used mainly for positioning, in which the receiving devices are

required to report the RSSI.

BLE devices can communicate with each other and, in this way, it is possible to

establish an ad-hoc network composed of several nodes. As the number of network

nodes increases, the interference among devices increases. To reduce this interference,

BLE performs a channel division and makes a random jump among them, changing

frequency between 2.402 GHz and 2.480 GHz (Al Kalaa and Refai, 2015).
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2.2 Multipath
Wireless communication takes place through signal emitting and receiving devices.

When a transmitter sends a signal through a wireless channel, waves propagate in

different ways due to reflections caused by room layout. Several devices adopt omnidi-

rectional antennas, which propagate signals in all directions. Thus, the same signal will

arrive in different ways at the receivers depending on the objects and the line-of-sight

between them.

The reflected signal will always have a phase change compared to the signal

emitted in a direct line between two devices. Such a phase change causes attenuation in

the signal, and this effect is called multipath. All wireless communication is affected by

this effect, however, communication in indoor environments is more affected due to the

greater number of obstacles present in the environment, being therefore responsible for

the high variation in signal strength (Sadowski and Spachos, 2018).

The signal variation can be increased by devices motions, called the doppler

effect. To decrease the signal variation, some authors suggest the filters use such as the

mean filter (Luo and Zhan, 2014), particle filter (Liu et al., 2019), and Kalman filter (Sung,

2016). The sliding window filter also proved to be a simple solution with some of the

best results.

2.3 Log-Distance Path Loss Model
In IPSs, the RSSI can be used to estimate the distance between mobile devices to anchor

nodes. The RSSI is highly dependent on the environment in which the electromagnetic

wave will propagate and gradually decreases when the devices are moved away.

The IPS uses the RSSI as information for positioning mainly due to the simplicity

and low cost for the system’s implementation, as this is information available in all

wireless communication devices. In free space, the signal loss is low, however, according

to the obstacles in the environment and the multipath effects that wave suffers, the

signal variation becomes high, decreasing the IPS accuracy that uses RSSI values (Glitza

et al., 2017).
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The relationship between signal and distance can be represented using a signal

propagation model. Thus, because the RSSI value decreases with increasing distance

and it is affected by the multipath, the most used propagation model to model the

relationship between signal and distance is the log-distance path loss model. This model

is given by the following equation:

R(d) = R0 − 10η log10
d

d0
+Xσ (2.1)

where d is the distance between the transmitter and the receiver, R(d) is the RSSI value

measured at distance d, R0 is the RSSI value measured at distance d0, η is the path-loss

exponent, i.e., a signal loss rate related to the environment and, finally,Xσ is a zero-mean

Gaussian random variable (Huang et al., 2019) that models the RSSI variation. For the

d0 model parameter, a distance of 1 m is commonly used in the literature (Chan and

Sohn, 2012; Yong et al., 2020). Thus, R0 is the RSSI at 1 m.

As each scenario of using an IPS contains layouts with different obstacles, the

parameters’ values R0 and η tend to vary, requiring minimal training to be obtained

correctly.

2.4 Positioning Techniques

2.4.1 Angle of Arrival (AoA)

Angle of Arrival is a location technique that uses information from the angles that

the signals arrive at a set of antennas on the anchor nodes. Through the arrival angle

information, the positioning calculation can be done through algorithms that cross this

information and compare the line’s intersections to find the device coordinates (Tariq

et al., 2017). In this technique, the anchor nodes must know in advance their orientation

to make the positioning calculation.

This technique is affected by multipath and depends on the layout and materials

of the environment. To reduce the multipath effect on the signal behavior, a large

number of antennas more sensitive to signal orientation are used, which adds greater

positioning accuracy but also increases the hardware complexity (Brena et al., 2017).
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2.4.2 Time of Arrival (ToA)

Time of Arrival is a location technique that estimated the distance between two devices

using the RTT, measurement the signal propagation time in the transmitter-receiver

direction, and multiplies this value by the propagation speed that the electromagnetic

wave travels, i.e., the light speed. This technique requires devices with a synchronized

clocks, as any synchronization failure can result in greater positioning errors (Lim et al.,

2007).

This is one of the techniques that achieve the smallest positioning errors, making

it one of the most accurate techniques, although the multipath that the wave travels

can interfere with the distance accuracy. However, due to the need and the cost of

hardware with high time synchronization, this technique becomes a challenge to be

used in IPSs (Tariq et al., 2017).

2.4.3 Proximity

This technique can also be referred to as the source cell, as a reference anchor is needed

to estimate the location of the target to be tracked through the proximity between

them (Liu et al., 2007). For this, it is necessary to spread several reference anchors

around the environment, with their location duly known by the system.

The basic case of tracking with this technique is when the device location is

requested, and it is detected by only one anchor. In this case, it can be said that the

device is close to the anchor. When more anchors detect the device, then the anchor that

had the strongest RSSI is chosen as the closest (Dickinson et al., 2016).

This technique is generally used when it is necessary to obtain precision by room

and a simple implementation is required. For cases in which it is necessary to obtain

precision by point inside the room, this technique becomes a bad choice.
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2.4.4 Fingerprint

The fingerprint is a technique that consists of obtaining the scenario characteristics

through signals fingerprints, thus forming a signal map. The fingerprint is done through

the RSSI and this technique implementation has two phases: offline and online.

During the offline phase, an analysis of the scenario is made, separating the

environment into several reference points and for each point are collected some RSSI

values by the anchors nodes (He and Chan, 2016). The values obtained at each point are

stored in an offline database that will be used to obtain the location later.

During the online phase, the system obtains signals values emitted by the track-

ing device and compares these values with those collected in the offline phase, verifying

which reference point is more similar to the newly received signal, and thus the posi-

tioning is estimated (Faragher and Harle, 2015).

The fingerprint method is more accurate than model-based solutions, but it is

time-consuming since it requires the characterizations of the environment through the

signal map. Also, this method is susceptible to changes in the environment, such as the

number of people, new walls, and furniture, that require a new characterization of the

signals.

2.4.5 Trilateration

Trilateration (also called a model-based technique), is a traditional technique to estimat-

ing the device position through the distances to three reference anchors with previously

known positions. As with the fingerprint-based IPSs, the main information used in

model-based IPSs is the RSSI. However, it is well-known that the signal strength value

varies widely, either due to the nature of the wireless channel or some obstacles in the

environment (Ji et al., 2006; Yong et al., 2020). This problem is worse in the packet losses

presences, especially when using BLE advertising packets, in which only half of the

packets are usually received.

The distances used are obtained through the RSSI transformation to distance

made by propagation models such log-distance path-loss model. Thus, each reference
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anchor will have a circle of radius equal to the estimated distance and the device

position can be estimated through the circumferences intersection.

The circumferences intersection will only be formed in an ideal scenario, in

which the distance is perfectly estimated by the RSSI. However, this does not occur in a

real scenario due to the variations in signal strength caused by multipath. To solve this

problem, optimization algorithms are used that find a point that minimizes the distance

to all reference anchors, such as the least-squares method (Ni et al., 2006; Shi et al., 2017;

Zhou et al., 2017). When more than three reference anchor are used in the positioning

calculation, we call it multilateration.

2.5 Related Work
Among the RSSI-based methods, the nearest-anchor method is possibly the most simple

solution. The works of Wu et al. (2019), and Dickinson et al. (2016), compare the nearest-

anchor with other model-based techniques.

In the fingerprint technique, training of the whole scenario is required to generate

an RSSI database that will be used by machine learning algorithms to estimate positions

in the online phase. The positioning system developed by Bahl and Padmanabhan

(2000), called RADAR, is a classic work in the area because it was one of the first to

create a signal map using RSSI. The solution proposed by the authors resulted in an

accuracy of 2 m to 3 m.

Model-based IPSs use propagation models to transform the RSSI value in the

distance between the sender and receiver. Such propagation models try to model the

behavior of the signal in relation to the variation of distance. In Onofre et al. (2016), the

authors developed an empirical propagation model using the RSSIs collected from a

real-world experiment to estimate the distance based on the signal strength. However,

the proposed propagation model is valid only for the experimented site.

In Li et al. (2018), it was proposed an IPS that uses a distance-based RSSI adjust-

ment model to correct signal losses in the environment. The work compares three main

propagation models: Log-Distance, Back Propagation Neural Network (BPNN), and
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Back Propagation Neural Network with a Particle Swarm Optimization (PSO-BPNN).

Their experiment is performed in a small-scale scenario with an area of 9 × 6 m², con-

sisting of four anchor nodes, an Android-based mobile device, and a gateway. The

proposed solution resulted in a Root Mean Square Error (RMSE) of 2 m when using

PSO-BPNN. However, these results were obtained by evaluating only 8 reference points

and without considering the corners of the scenario as well as other regions with more

complex signal behaviors, with more obstacles, and low anchors nodes coverage.

The system proposed by Wu et al. (2018), called AcMu, explores the static be-

havior of mobile devices, using the regression of the partial least-squares to update

the signal map with data from the user’s mobile devices. The system uses the signal

intensities’ readings in real-time received at the reference points to update the model.

In Lim et al. (2010), it is proposed a positioning system that uses signal infor-

mation among anchor nodes to obtain the exponent of the path-loss model for the

environment. This proposal uses the average distance among all anchors to estimate

the location. Similarly, the work of Elbakly and Youssef (2016) uses the relative values

between pairs of anchors and the site map information, such as walls and obstacles, to

decrease the impact of the building infrastructure on the position computation. They

evaluate the number of anchors impact on the system performance and the effect of

techniques to decrease the signal variation. Their results show an average error of 2.8 m.

An IPS based on signal diversity and least-squares is proposed in Fang and Chen

(2020). In the proposed solution, the RSSI noise is first filtered using an adaptive Kalman

filter to decrease the variability. Next, the values of two functions are computed using a

channel filter to obtain the degree of correspondence between the RSSI values on the

different channels to prevent the distance estimation between nodes from falling into

local optimum, which would prevent them from reaching the global optimum. The

experiments were performed in a small-scale area of 10 × 10 m² with three Bluetooth-

based anchors. Their results show an average error of 1.5 m.

Finally, in Paterna et al. (2017), the authors proposed a Bluetooth-based IPSs

aimed at improving accuracy while reducing both energy consumption and total cost.

The system does not perform signal characterization for the different regions and uses
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a static path-loss exponent value. The results show an error of 4.6 m in 90% of the

time for a scenario with an area of 16.50 × 17.60 m². For this, their proposal focused

on frequency diversity, signal filtering using the Kalman filter, and a Weighted Least

Squares (WLS), without considering the form of anchors organization. The WLS works

by increasing the weights of receivers that are closer to the emitter. Their work compares

three different propagation models: the International Telecommunication Union (ITU)

model, the log-distance model with shadowing, and a fitted empirical model.

In relation to the works that use RSSI, the fingerprint technique is the one that

has the best accuracy but is necessary an exhausting training to be implemented. On

the other hand, the trilateration technique has a greater error than the fingerprint but

is easier to be implemented. In general, the error can be reduced by fixing anchor

nodes evenly spaced on 5-meter grids. Table 1 shows a comparison among the works

previously described in relation to the techniques used, the IPS scenario size, the number

of anchor nodes fixed in the environment, and the average positioning error.

Table 1 – Comparison table among related works.

Author Techinique Dimension Anchors Error

(Bahl and Padmanabhan, 2000) WiFi Fingerprint 43 x 22 m 3 2.9 m
(Lim et al., 2010) WiFi Trilateration 23 x 26 m 8 3.0 m

(Dickinson et al., 2016) BLE Trilateration 800 m2 25 2.1 m
(Elbakly and Youssef, 2016) WiFi Trilateration 26 x 17 m 10 2.8 m

(Paterna et al., 2017) BLE Trilateration 16 x 17 m 4 4.6 m
(Li et al., 2018) WiFi Trilateration 9 x 6 m 4 2.2 m

(Wu et al., 2019) BLE Trilateration 18 x 12 m 25 0.9 m
(Fang and Chen, 2020) BLE Trilateration 10 x 10 m 3 3.0 m

2.5.1 Discussion

Our proposed PoDME solution differs from all of the mentioned solutions. First, our

solution is implemented in large-scale scenarios compared to the scenarios from the

previous works, which are implemented in small scenarios, with a high density of

anchor nodes, and they use a static path-loss exponent to characterize signal, which is

not suitable for large environments. Second, our model-based IPS uses a propagation
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model with dynamic path-loss exponent values that allow selecting the best values of the

signal loss by distance that characterize the region of the mobile node we want to localize.

This results in better accuracies for the estimated distances in large environments,

unlike the static parameters for all regions of the environment. Third, we propose a

novel method for choosing the best anchor nodes that benefit the least-squares-based

position computation by using both the highest RSSI values and the similarity to

equilateral triangles, which increases considerably the positioning accuracy compared

to approaches that choose anchor nodes only respect to signal strength. The details of

our proposed solution are described in the next chapter.
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3 PoDME Method

In this chapter, we present our proposed PoDME architecture. Figure 1 shows the

components of our system. In the offline phase, we performed model data gathering

and obtained the path-loss estimates between the anchor nodes. In the online phase, we

perform the position computation using the RSSI values, choosing the best anchor nodes,

and using the path-loss estimates obtained in the offline phase to improve the distance

mapping between the mobile device and the anchor nodes. All of these components are

detailed in the next sections.

Model Data Gathering
ANs AN 01 AN 02

AN 01

AN 02

AN 03

AN 04

-64

-45

-

-60

- -83

Path Loss
Estimations

Offline Phase Online Phase

AN 01

-47-18 -87

...

...

AN 02 AN 03

×

Signal Strenghts of
the Mobile Device

Estimated
 Position of  
 the Mobile  

Device

Position
Computation

×

Choosing the Best
Anchor Nodes

Dynamic Model
Estimation

Figure 1 – Phases and components of our PoDME architecture.

3.1 Model Data Gathering
Our solution’s first step is to collect some RSSI samples to obtain signal behavior in the

environment. Most proposed model-based solutions in the literature require some signal

information to fit their models. In some solutions, it is done automatically (Elbakly
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and Youssef, 2016; Lim et al., 2010), in others, manually (Li et al., 2018; Sadowski and

Spachos, 2018).

Our goal is to create a database containing the RSSI values that represent the

distances among anchor nodes and use it to estimate the path-loss exponent in different

regions of the environment. We consider that we know the positions of the anchors,

which is common in these type of IPS (Fang and Chen, 2020; Huang et al., 2019; Wu

et al., 2019; Yong et al., 2020) and, thus, we can quickly obtain the distance among

anchors by computing the Euclidean distance, as shown in Equation (3.1).

dab =
√

(xa − xb)2 + (ya − yb)2 (3.1)

where dab is the distance between Anchora and Anchorb.

Now we need to know the RSSI behavior among the anchors. Therefore, in this

part of our PoDME solution, we propose a simple data gathering methodology in which

a person gets one or more mobile devices and physically positions himself below or

near an anchor node. From that location, the mobile devices start sending packets. These

packets will be received by all nearby anchors with different RSSI values, depending

on their positions and the characteristics of the environment in that region. This step is

repeated for all anchors in the scenario.

6.7m

5.8m

6.3m

01

05

04

03

10m

02 4.6m

8.5m 5.2m

8.1m

Figure 2 – True distances among anchor nodes obtained through the site plan.

Since we are using Bluetooth advertising packets, we need to filter the RSSI

values before using them. Besides the known RSSI variation, the use of Bluetooth

advertising packets has another problem: packet loss. It happens because the nodes

send these packets in three different channels and, thus, the receiver needs to alternate

among these channels constantly. In our experiments, it is common for the anchors to
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lose nearly 50% of the packets. To solve this problem, we used the highest RSSI value

from the last 1 seconds to smooth out RSSI on each measurement, as the device sends 1

packet every 100 ms, and for small windows, the highest RSSI proved to be better than

average value.

Table 2 – RSSI values between anchor nodes. Gathered by physically positioning a
mobile node near an anchor node and sending packets that will be received
by all other nearby anchors. This step is repeated for all anchor nodes in the
scenario.

Anchorneighbor Anchor1 Anchor2 Anchor3 Anchor4 Anchor5

Anchor1 - -89 -90 -85 -77
Anchor2 -89 - -75 - -80
Anchor3 -90 -75 - -73 -
Anchor4 -85 - -73 - -82
Anchor5 -77 -80 - -82 -

As a result, after taking the measurements, we obtain the RSSI values of all

anchors to all of their neighbors. However, since we need only one RSSI value, we take

several RSSI samples and use the average RSSI as the value that represents the signal

among each anchor node. In Table 2, we have an example of a Model Data Gathering

containing the RSSI values between 5 anchors. In the table, not filled cells mean that we

have no signal between the two anchors, which indicates that they are far from each

other. The relationship between RSSI and distance can be seen in Table 2 and Figure 2.

For example, the Anchor2 is positioned at a distance of 10 m from Anchor5 and has an

RSSI average of −80 dBm. On the other hand, the Anchor2 is positioned at a shorter

distance from Anchor1, about 8.5 m, and the RSSI value of -89 is weaker when compared

to Anchor1. This is mainly due to more interference caused by obstacles between them.

This factor is corrected by the path-loss exponent detailed in the next section.

3.2 Path-Loss Estimations
Now that we have the distances among anchor nodes, given by the map information

and Equation (3.1), and also the RSSI values among these anchors, collected in the

previous section, we can estimate the best parameters for a Path-Loss Model. Since
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there are different distances among anchors and different RSSI values, we will have a

different Path-Loss Model for each pair of anchors.

A Path-Loss Model predicts the fading of a signal as it travels a given distance.

Such behavior of the signal variation with respect to distance is usually modeled by

a logarithmic equation. Several propagation models are proposed in the literature to

better relate the signal, distances, and obstacles. However, the Logarithmic Distance

Path-Loss Model, described in section 2.3, is the most known and used (Li et al., 2018;

Yim, 2012).

Thus, the only environment-dependent variable of the model is the path-loss

exponent (η). From Equation (2.1), we can compute this parameter for each pair of

anchors:

ηab = R0 −Rab

10 × log10
dab
d0

(3.2)

where ηab is the path-loss exponent between Anchora and Anchorb, Rab is the RSSI

between them, as shown in Table 2 and, finally, dab is the distance between them, as in

Equation (3.1). Please note that we ignored the parameter Xσ, since Rab is an averaged

value from several samples.

Therefore, we can estimate all of the path-loss exponents in the scenario because

we know the real position among them and their signals, so we can apply that informa-

tion to the signal propagation model. A higher ηab would indicate a higher number of

obstacles and other fading factors between Anchora and Anchorb, while two anchors

with direct visibility from each other would result in a lower path-loss exponent. Table 3

show examples of path-loss exponents for the values in Figure 2 and Table 2. It is worth

noting how these values change from one anchor node to another. When we establish

the path-loss exponent between two anchor nodes, we are characterizing the signal be-

havior in the region in which they are located, based on their respective positions on the

map. Thus, when a mobile device sends a packet and has the signal strengths collected,

the distance estimation is made using the respective values of path-loss exponents

between the nearest anchors.
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Table 3 – Path-loss exponents among anchor nodes calculated through the Equation
(3.2) using the RSSI values from the Table 2.

Anchorneighbors Anchor1 Anchor2 Anchor3 Anchor4 Anchor5

Anchor1 - 4.2 4.8 4.9 3.6
Anchor2 4.2 - 3.8 - 3.0
Anchor3 4.8 3.8 - 2.9 -
Anchor4 4.9 - 2.9 - 3.5
Anchor5 3.6 3.0 - 3.5 -

3.3 Choosing the Best Anchor Nodes
The next part of our proposed PoDME solution is executed every time we have a new

sample to locate, i.e., a mobile node sent a packet that was received by several anchor

nodes, and we need to estimate the mobile position. In this part, we will choose, among

all anchors that received the packet, which ones we will use in the next parts of our

solution.

The main reason for choosing the best anchors is because the Position Computa-

tion part of our solution, detailed in Section 3.5, uses the least-squares technique to find

the position of the target. This technique uses distances computed using our Dynamic

Model Estimation (detailed in the next section) to find the most consistent position.

However, using all of the anchors information, leads to greater errors, since we will

use information from faraway anchors, that will have higher distance errors. On the

other hand, if we use only the information from the three closest anchors (based on

their RSSI values), their positions may be somewhat collinear, which greatly decreases

the estimated position accuracy. Thus, in this part, we aim at choosing the closest three

anchors that are far from being collinear.

For this, the first step is to sort the list of anchors that received the mobile node

packet by their RSSI values in such a way that the closest anchors will be at the beginning

of the list. Then, we get the three closest anchors and check their positions against an

equilateral triangle similarity filter that will be detailed in the next paragraphs. This test

will tell how close the anchors positions form an equilateral triangle since this would

be the farthest from them being collinear and, thus, the best-case scenario. If the three

closest anchors pass the filter, they will be the chosen anchors for the next parts of our
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architecture. However, if the anchors fail the check, i.e., they are somewhat collinear,

we ignore them and test the second closest anchors, and so on. If we reach the end of all

anchors combinations and they all have failed the similarity checker, we then fall back

to the three nearest anchors, considering only the signal strength, as we no longer have

other options regarding the organization of the anchor nodes.

Given the positions of three anchors (Anchora, Anchorb, Anchorc), our equilateral

triangle similarity checker starts by computing the internal angles (α, β, γ) of the triangle

formed by the anchors positions:

α =
(

cos dac2 + dbc
2 − dab

2

2 × dac × dbc

)
× 180/π (3.3)

β =
(

cos dab2 + dbc
2 − dac

2

2 × dab × dbc

)
× 180/π (3.4)

γ =
(

cos dab2 + dac
2 − dbc

2

2 × dab × dac

)
× 180/π (3.5)

Then, we compute how far from 60◦ these angles are since an equilateral triangle

has three internal angles of 60◦:

∆ =
√

(α− 60)2 + (β − 60)2 + (γ − 60)2 (3.6)

The closer ∆ is from zero, the closer the anchors are to form an equilateral

triangle. The threshold chosen in our proposed solution has a value of 75. Thus, if the

three anchors at the beginning of the list have a ∆ between zero and 75, then they can

be used in the position calculation, otherwise, we evaluate other sets. This threshold

was obtained empirically, as will be shown in our performance evaluation in Section 4.

3.4 Dynamic Model Estimation
As shown in Section 3.2, the only environment-dependent variable of the log-distance

model is the path-loss exponent (η). As mentioned, in most model-based IPSs (Fang

and Chen, 2020; Paterna et al., 2017; Shi et al., 2017; Teoman and Ovatman, 2019) this
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parameter is static for the whole scenario. Static path-loss exponent is not recommended

for large-scale scenarios since the path-loss exponent changes from place to place

depending on the obstacles and other environment variables. In our PoDME solution,

we propose the use of a dynamically computed path-loss exponent, in such a way that

this value corresponds more closely to the characteristics of the region the packet we

want to localize was sent from.

In the last section, we chose the best three anchors to be used to locate that

specific packet sent by the mobile node. These anchors are closer to the mobile node

and, thus, their information can be used to estimate the local path-loss exponent to be

used in the position computation. The goal is to use the average value of the path-loss

exponent among the neighbors anchors to represent the region where the mobile device

is located. For this, we use the path-loss estimations, computed in Section 3.2. There, we

computed the path-loss exponent among all pairs of anchors. Since in the next section,

we will need three distance estimations, one for each anchor, we will compute three

different path-loss exponents. Thus, the final path-loss exponent, for a given anchor,

will be the average exponent between this anchor and the other two:

ηma = (ηab + ηac)/2 (3.7)

ηmb = (ηba + ηbc)/2 (3.8)

ηmc = (ηca + ηcb)/2 (3.9)

where ηma is the path-loss exponent that will be used to compute the distance between

the mobile node and Anchora, and so on.

As we can see, the model parameters estimated in this part of PoDME depend

mainly on the anchors that heard the packet from the mobile node. Thus, this parameter

can change for each packet sent by the mobile node, depending on its location. In the

next section, we will use these parameters to, finally, compute the node’s position.
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3.5 Position Computation
Now that we have the path-loss model for the three best anchor nodes, we can convert

the RSSI value of the packet sent by the mobile node and received by the anchors

through an adaptation of Equation (2.1):

dma = 10(R0−Rma
10×ηma ); dmb = 10

(
R0−Rmb
10×ηmb

)
; dmc = 10(R0−Rmc

10×ηmc ) (3.10)

where dma is the estimated distance between the mobile node and the Anchora, and so

on.

Since the real positions of the anchors are known in advance and the distances

are estimated using the previous equations, we can finally compute the mobile node

position. For this, each anchor will have a circle of radius equal to the estimated distance,

and the final target position will correspond to the intersection of the three circles.

However, since we will have inaccuracies in our distance estimations, due to the RSSI

variation (Wu et al., 2019), the formed circles often do not have a single intersection.

To minimize this problem, we use the least-squares method (Wu et al., 2019; Xia et al.,

2019) to optimize the position computation, as follow:

fi(x, y) = dmi −
√

(xm − xi)2 + (ym − yi)2 (3.11)

min(x, y) = min
m∑
i=1

[fi(x, y)]2, m ≥ 3 (3.12)

However, it is difficult to resolve directly. To simplify, we can define the Equa-

tion (3.11) as fi(xm, ym) = 0 and squared both sides to obtain:

xm
2 + ym

2 − 2xmxi − 2ymyi = dmi
2 − xi

2 − yi
2 (3.13)

Given the three anchors (Anchora, Anchorb, Anchorc), their coordinates (xa, ya),

(xb, yb), and (xc, yc), and the coordinate of mobile device (xm, ym). Then, if we set
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w = xm
2 + ym

2, we can organize as follows:



w − 2xmxa − 2ymya = dma
2 − xa

2 − ya
2

w − 2xmxb − 2ymyb = dmb
2 − xb

2 − yb
2

w − 2xmxc − 2ymyc = dmc
2 − xc

2 − yc
2

(3.14)

Then we can obtain an equation of the form AX = b:

A =


1 −2xa −2ya

1 −2xb −2yb

1 −2xc −2yc

; X =


w

xm

ym

; b =


dma

2−xa2 − ya
2

dmb
2−xb2 − yb

2

dmc
2−xc2 − yc

2

 (3.15)

Finally, the equation can be solved as a least-squares problem:

X = (ATA)−1
AT b (3.16)

The result of the least-squares equation is the mobile node estimated position.

3.5.1 Discussion

Our PoDME solution requires minimal training to obtain the path-loss exponent among

the anchor nodes. As the anchor nodes are usually fixed to the environment ceiling,

we chose to do the training used a device under each anchor to better represent the

communication among them, since the user will always be under the anchors.

In the training phase, it is necessary to create a database that contains the RSSI

values among the anchor nodes. Thus, for each anchor node, a collection of 120 signal

samples lasting 2 minutes is archived. As the devices are configured to send BLE

packets every 100 ms, and it is known that the signal variation is high, so to minimize

this variation, each signal sample corresponds to the most strong RSSI sent in the

1 second interval.

On the other hand, we only need an RSSI value to represent the communication

between two anchors, as represented in Table 2. Thus, as the training base contains

120 signal samples between neighboring anchors, our solution uses the average of 120
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values to obtain the RSSI that represents communication between two anchors, as it

was the approach that was most representative in relation to the median, mode, and

strong signal.

This approach is also subject to changes in the environment, as new obstacles

added to the scenario would change the signal behavior. However, as this step is easy

to be performed, the cost is much lower when compared to the fingerprint technique

that would require a more exhaustive training phase. Contrary to the need to carry

out training by collecting signal values at various points in the environment, usually

spaced by 2 meters, our solution requires only N collections, where N is the number of

anchor nodes in the scenario. Through the signal representation table among the anchor

nodes, the path-loss exponent can be estimated more correctly and thus enable a signal

estimate for a more realistic distance.
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4 Performance Evaluation

In this chapter, we evaluate the performance of our proposed PoDME solution com-

pared to the traditional static, model-based approaches found in the literature. We also

evaluate other aspects of our solution such as the variation of the path-loss exponent in

a real-world scenario and the behavior of the data used for choosing the best anchors.

4.1 Methods Comparison
We compared our PoDME solution to three variations of a static model-based IPS. These

variations use the log-distance path-loss propagation model, the same used in our

solution, but instead of using a dynamic path-loss exponent (η), they use a static value

for all scenarios. It is important to note that the exponent value was computed based

on the collected RSSI samples and we confirmed that it was the best possible static

exponent, i.e., the one that resulted in the smallest errors. Finally, the main difference

between these three variations and our solution is the choice of the anchors used for

the position computation. While in our solution we used our method explained in

Section 3.3, in the models variations we used other possible solutions found in the

literature:

1. Using 3 anchors with the highest RSSI values

2. Using 4 anchors with the highest RSSI values

3. Using all anchors

Using 3 (Huang et al., 2019; Sadowski and Spachos, 2018; Yong et al., 2020) or all

anchor nodes (Fang et al., 2015; Paterna et al., 2017; Wang et al., 2013) in the position
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computation is a solution commonly found in the literature. However, the main reason

we also experimented using the 4 anchors with the highest RSSIs, is that it could be a

simple solution for the problem of anchors with collinear positions. Thus, as we will see,

it resulted in considerably better performance when compared to using only 3 anchors.

4.2 Testbed and Methodology
The main goal of our proposed IPS is to provide location information for small, battery-

powered devices to be used by people inside buildings, such as the elderly in retirement

homes. These mobile devices are required to be operated by a single, small battery

while also having other sensors. Thus, in our IPS, we decided to use the Bluetooth Low

Energy (BLE) technology.

Figure 3 – Testbed hardware: (a) mobile devices with Bluetooth communication; and
(b) anchor nodes with Bluetooth and 900 Mhz communication (front, opened,
back, and installed on the ceiling).

Furthermore, one of the premises of the hardware architecture was not to rely

on the WiFi infrastructure of the building. Thus, to be able to send all of the gathered

RSSI data to a central monitoring server, we developed a Bluetooth-based anchor. The

testbed architecture works by mobile devices sending Bluetooth advertising packets

every second and several anchors receive these packets. In our experiments, the longest

communication distance between Bluetooth devices was 25 m. These anchor nodes

compute the RSSI of the received packets by Bluetooth and send them to a central device
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using long-range, 900 Mhz communication. The central device is connected to a server,

which will locate the mobile nodes. Figure 3 shows our developed hardware that was

used in the testbed.

To evaluate the performance of our proposed IPS solution, we carried out a large-

scale experiment in a 43 × 15 m² area composed of 15 spaces (11 rooms and 3 halls), as

shown in Figure 4. To cover the whole area, we deployed 15 anchor nodes fixed on the

ceiling of the rooms in locations where it was somewhat convenient to connect them

to the mains supply. It is important to note that to perform our Model Data Gathering,

explained in Section 3.1, we used 8 different mobile devices and collected samples at 15

different locations. This was done to estimate the path-loss exponents among anchors

with a variety of signals from different devices.
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Figure 4 – Testbed map: 11 rooms, 3 halls, and 15 anchor nodes. 100 packet samples
collected from 150 test points. The gray points are the test points.

However, to understand and evaluate our system results for the whole scenario,

we gathered 100 packet samples from evenly spaced, 2 m apart locations, to a total of 150

different test points, which are the gray dots in Figure 4. For this, we used another three

mobile devices that were different from the ones used in the Model Data Gathering.

Thus, our testing was done with samples from a set of mobile devices that were not

part of the Model Data Gathering. This step is important to ensure that the proposed

system would work on new, never seen, mobile devices. Finally, it is important to note

that these 150 test points data are not required for our PoDME solution, and were only

used for performance evaluation purposes.
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4.3 Signal Strength Analysis
To better understand the signal propagation behavior in our testbed environment,

Figure 5 shows, for each test point, which anchor nodes received the packets from that

point and at which signal strengths. For this, each anchor was given a different color.

The stronger the color, the higher the signal strength. This map shows which points are

covered by which anchors, and also gives us some insights into the behavior of the IPS.

As we will see in the next sections, the lightest points did result in higher errors.
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Figure 5 – Signal characterization of the scenario based on the measurements made
empirically.

We then used these RSSI data to estimate the path-loss exponent parameter of

log-distance propagation model. Our main goal is to allow the visualization of how a

propagation model would compare to our real-world data. Thus, we implemented a

simple signal propagation simulator. Figure 6 show the result of our simulation. It is

interesting to see that, comparing both maps, we can notice that, in most parts, the colors

seem to match. Even though this result is not scientific, it will help us to understand

some of our obtained results in the next sections.
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Figure 6 – Signal characterization of the environment using the signal propagation
model.

4.4 Path-loss Exponent Analysis
One of the key points of our PoDME solution is that the path-loss model parameters

change throughout the environment and, thus, using a static model would result in

higher positioning errors. To depict these changes, Figure 7 shows some of the path-

loss exponents among the anchor nodes, as explained in Section 3.2, and based on the

anchors of the map in Figure 4. It is important to note that the lines in this figure are

just a small subset of the connectivity among anchors and does not represent the full

connectivity.
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Figure 7 – Path-loss exponents among anchors computed from a real-world experiment.
The lines are just a small subset of the connectivity among anchors and does
not represent the full connectivity.

As we can see, these values change considerably even among the neighbors of

the same anchor. Even though this is a small set of the path-loss exponents, we can see

some cases in which the scenario affects the model parameters. For instance, focusing on
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Anchor3, we can see that its path-loss exponent to Anchor14 is 3.9, while the exponent

between Anchor3 and Anchor13 is higher, at 4.3. Both Anchor14 and Anchor13 are at

similar distances from Anchor3, the main difference being that Anchor13 is shadowed

by a corner and also by an extra wall, resulting in a higher path-loss exponent.

4.5 Choosing the Best Anchors Parameters
Our main parameter for choosing the best anchor nodes is the RSSI values, as explained

in Section 3.3. Anchors with higher RSSI values are closer to the mobile device, which

leads to lower distance estimation errors due to the model inaccuracies (Wu et al., 2019).

To better understand the impact of the choice based on this criterion, for each sample

to be located in our experiment, we computed the device’s position using all possible

combinations of 3 anchors. For each computed position, we saved the positioning error

and the average RSSI value among the three used anchors.
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Figure 8 – Positioning error by average RSSI. The farther the anchor nodes, the higher
the positioning error. Even slightly farther anchor nodes can increase the
positioning error by almost 1 m.

Figure 8 shows our results from the experiment. As expected, anchors with the

highest RSSI values have the lowest average positioning error. However, one interesting

aspect that we noticed after analyzing the graph, is that the difference between the first

and the second bars are higher than expected. It means that getting slightly farther

anchors can increase the positioning error by almost 1 m. It does show that our priority
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should be using the closest anchors.

Another key aspect of Choosing the Best Anchors is the equilateral triangle

similarity checker, the ∆ shown in Equation (3.6). As mentioned, we noticed that

even for closer anchors, when their positions were somewhat collinear, it resulted in

considerably higher errors. Again, to better understand the impact of the anchors choice

based on this criterion, for each sample to be located in our experiment, we computed

the device’s position using all possible combinations of 3 anchors. For each computed

position, we saved the positioning error and our equilateral triangle similarity (∆).
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Figure 9 – Positioning error by equilateral triangle similarity. The closer ∆ is from zero,
the closer the anchor nodes are to form an equilateral triangle. For ∆ between
0 and 75, the error does not change significantly.

As shown in Figure 9, we can see that for ∆ between 0 and 75, we have an

average error that does not change significantly, always below 4 m. However, after this

value, the greater the ∆, the greater the average error. After analyzing these experiments

and conduct some tests, we observed that combining these two criteria (RSSI and ∆)

would not yield the best results, since they have different behaviors. Thus, we decided

to use the ∆ value as a filter and established a threshold of 75 for allowing a set of three

anchors to be used in the positioning while prioritizing the closest anchors.
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4.6 Positioning Error Analysis
As mentioned, for our experiment, we captured RSSI samples in all of the points of the

scenario to allow a fair comparison of the evaluated methods. For all measurements,

we saved their correct positions on the map where the measurement was made, thus

allowing us to compare the position estimated by the models and the actual point

position.

We first evaluate the average positioning error for each of the methods. As shown

in Figure 10a, PoDME resulted in an average error of 3 m, being the smallest error when

compared to the other approaches. As mentioned, we used a static path-loss exponent

for the model variations. In these cases, the value was η = 4.2, obtained through the

gathered data. Our solution used the dynamic path-loss exponents values chosen based

on the region of the three anchors with the highest RSSI values.

The worst results were obtained by the static, model-based method using infor-

mation from 3 anchors with the highest RSSI values. As mentioned, in some cases, the

chosen anchors are located in such a way that make their positions somewhat collinear,

increasing considerably the error of the position estimations. As we can also see in

Figure 10a, when we consider just one more anchor in the position computation we

have a reduction of more than half of the error.

Figure 10b shows the average room accuracy. The room accuracy evaluation

was done comparing whether the position estimated by each method was within the

room limits where the measurement was performed. Since all of the models do not take

into consideration the walls of the scenario, it is common for test points near walls to

be located outside their rooms. Furthermore, small regions such as halls, also impact

this metric, since the positioning error is greater than their width. However, as shown

in Figure 10b, our proposal resulted in a greater room accuracy of 74.8%. As we will

discuss in our conclusions, in our future work we intend to use a model that also takes

into consideration the walls of the area, aiming at improving this metric.

The results obtained by our solution show that contrary to what it may seem

initially if we continue using only 3 anchors, but considering better criteria for choosing

these anchors, we can considerably reduce the total average error of the system. In
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Figure 10c, the curve of our solution (red line) grew the fastest. This means that our

results contain the highest number of mobile devices with the smallest positioning error

when compared to the other approaches. In Figure 10d, we can see that our approach

contains most of the positioning errors between 0-4 m, although part of the samples was

still located with higher errors. This happens due to regions of the map that are covered

by only 3 anchors, not allowing the choice of other sets that could help in reducing the

positioning error.
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Figure 10 – Positioning error analysis.

To evaluate the impact of the value used as the path-loss exponent, in Figure 10e,

we can see the average positioning error in relation to the use of a static path-loss

exponent value or the use of our proposed dynamic value. These results show that our

proposed dynamic model was able to improve the accuracy of all evaluated variations

of anchor choice. We can also see that our proposed PoDME solution takes advantage of
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Room 3 Anchors 4 Anchors All Anchors PoDME

Static Dynamic Static Dynamic Static Dynamic

Room 01 3.96 3.11 3.70 3.10 3.72 3.10 3.12
Room 02 3.30 2.86 3.90 3.07 3.90 3.07 3.00
Room 03 2.54 2.64 3.46 2.77 4.02 3.01 2.64
Room 04 48.52 35.21 6.27 5.50 3.59 3.98 3.67
Room 05 3.47 3.06 3.26 2.97 3.54 3.37 3.00
Room 06 3.58 4.31 3.13 4.13 4.29 4.13 4.32
Room 07 3.86 4.63 3.34 4.42 2.75 4.21 4.29
Room 08 2.77 3.16 2.38 2.49 3.07 2.61 2.39
Room 09 5.88 6.21 3.87 3.82 2.60 2.63 2.60
Room 10 4.51 3.35 3.90 2.89 3.23 2.58 2.70
Room 11 2.76 2.37 3.20 2.86 3.20 3.56 2.24

Hallway 1 7.24 8.47 3.38 3.45 4.49 3.92 3.39
Hallway 2 3.25 2.73 2.22 2.02 3.34 2.18 2.23
Hallway 3 5.5 7.43 6.02 4.37 5.69 4.32 3.86
Average 8.43m 7.22m 3.73m 3.48m 3.57m 3.35m 3.00m

Table 4 – Table with average error per room comparing the different approaches.

not only the dynamic model but also the anchors choice, i.e., both aspects are responsible

for improving the accuracy of the solution.

To better understand the behavior of the errors throughout the evaluated sce-

nario, Table 4 shows the average error obtained by each approach for all rooms in the

environment. We can see that the smallest errors per room vary a lot according to the

approach used, that is, each room has its smallest error with different approaches. When

we use 3 anchors, most measurements in Room 04 have the anchor nodes 3, 4, and

5 with the strongest signal power values. In this case, their organization on the map

results in a high positioning error, as can be seen in Table 4. When we add an additional

anchor node, the positioning error is drastically reduced. In our solution, even using

only three anchors we obtain a low error as we choose the best anchors that help in the

positioning calculation.

In most cases, our PoDME solution resulted in positioning errors close enough to

the smallest error between all approaches. We use values in bold to facilitate comparison.

The rooms with higher errors were rooms 06 and 07, on the right side of the map. The

main reason for this is the lack of anchors coverage in some areas of these rooms, as

depicted previously in Figure 6.
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the best positioning regions.

Finally, in order to better visualize the data in Table 4, Figure 11 shows a heatmap

of the errors in the whole scenario. Darker red colors indicate the areas with the highest

errors. In this heatmap, we can notice another problematic region of the scenario, which

is the hall near Anchor13. In this area, especially towards the bottom of the map, the

other anchors (besides 13), are far from the hall which, combined with the walls in the

area, resulted in a worse performance. This lack of anchors coverage can also be noticed

in Figure 6.
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5 Conclusions

In this work, we propose and evaluate a new model-based IPS, in which the parameters

of the model are dynamically estimated using the RSSI information from the best anchor

nodes that received the packet sent by the mobile device we want to locate. Thus, for

each packet sent by the mobile device, depending on its location, we have a different

propagation model that will be used to estimate distances and, then, positions. The main

goal of our proposed solution is to be implemented in medium to large-scale scenarios,

in which a fingerprint-based solution would be hard or unfeasible to train and, also, a

static, model-based solution would result in higher errors due to the static parameters of

the model for the whole scenario. We also aim at applications in which mobile devices

are highly energy-efficient such as small, battery-powered, sensor-based smartwatches,

to be easily worn by people inside buildings such as the elderly in retirement homes.

Thus, we implemented a complete large-scale, Bluetooth-based testbed using

custom-made hardware to evaluate the performance of our solution and compare it to

traditional static, model-based solutions used by the current literature. Our experiments

show a significant contribution in two of the main parts of our solution: the best anchors

choice algorithm and the dynamic model estimation. When combined, our preliminar

solution resulted in an average error of 3 m, a 17% decrease when compared to the best

experimented parameter of a static model-based IPS, that had an error of 3.6 m.

5.1 Limitations And Future Work
It is known that fingerprint-based solutions are among the most precise solutions for

IPSs (Bahl and Padmanabhan, 2000; Honkavirta et al., 2009; Youssef and Agrawala,
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2005; Yu-liang, 2013). However, they require an extensive training phase, making them

basically impractical for medium to large-scale settings. One can argue that our pro-

posed PoDME solution also has a training phase, which would be Model Data Gathering

(explained in Section 3.1). However, in our solution, we do not train all possible ref-

erence points of the environment but, rather, only a single point for each anchor. As

a comparison, in the experiments explained in Section 4 and depicted in Figure 4, we

only needed to collect some samples from 15 different locations to generate our model.

This can be done in fewer than 15 minutes since it does not require many samples. For

a fingerprint-based solution, it would be required to train at least all of the 150 tested

locations in our experiments. It took us several days to have unimpeded access to the

rooms and collect enough data from all the points. Also, the number of reference points

increases drastically as the scenario increases.

Also, our Model Data Gathering could be done automatically by the anchors,

by modifying them to send data packets among themselves, as done by some works in

the literature (Elbakly and Youssef, 2016; Lim et al., 2010). However, we do not think

that this would be the best solution, since the signal strengths from packets exchanged

between the anchors, which are all located in the ceiling, would differ significantly from

the packets sent by the mobile nodes, which would be located in a mid-height. The

main reason for this is the interference caused by the ceiling itself. Thus, we argue that

our proposed Model Data Gathering would yield the best results, with little to no extra

work when compared to other model-based IPSs.

Even though we used the log-distance propagation model, our solution can also

be applied to any other propagation model. As next steps, we intend to experiment

mainly with models that take into consideration the walls of the scenario. We also

aim at proposing better algorithms for choosing the best anchor nodes by also taking

advantage of the walls’ information. Finally, we will perform additional experiments

to propose better solutions for the tested points located in small rooms, halls, and

areas with less anchors coverage, since these were the areas that resulted in greater

positioning errors and lower room accuracies.
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