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Abstract

This work proposes a new indoor positioning system, named KLIP, that uses the K-

means clustering algorithm to split the environment into different sets of log-distance

propagation models in order to better characterize the indoor environment and further

improve the position estimation using Bayesian inference. The proposed method is

validated in a large-scale, real-world scenario composed of Bluetooth Low Energy

(BLE)-based devices. It is demonstrated, throughout the work, that the addition of

location information of training points to the received signal strength indicator (RSSI)

as an attribute for the clustering step improves the positioning accuracy. Moreover, the

obtained results show that the solution outperforms the naive Bayesian estimation up to

12% – regarding the positioning accuracy – and the broadly deployed kNN for reduced

training dataset size – regarding both accuracy and online processing time. In this sense,

KLIP proves to be an efficient and scalable alternative when both site-survey effort and

energy consumption constraints must be taken into account.

Keywords: Bayesian estimation, Indoor Positioning, K-Means clustering, Log-distance

Path Loss Model, RSSI.
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1 Introduction

1.1 Context
Indoor Positioning Systems (IPSs) are a reality and provide location information of

devices and persons for different applications in the real world. With the appropriate

technology, it is possible to locate products in a warehouse, firefighters in a burn-

ing building, medicines in a hospital, maintenance tools spread over a plant, and so

forth (Liu et al., 2007). Moreover, with the ascending global need for smart devices

and connected networks, indoor positioning becomes one of the principal enabling

technologies for a great variety of services in the context of the Internet of Things

(IoT) (Macagnano et al., 2014).

Applications already well established as Google Maps, Waze, and Uber are

also location-based services, except that they are used outdoors. In this case, the most

widespread technology is the Global Navigation Satellite Systems (GNSS), which in-

cludes the Global Positioning System (GPS). Unfortunately, GNSS does not perform

well indoors, as it needs, among other factors, direct line of sight to the satellites and

the device whose location one wants to know (Soares Lima et al., 2018).

An indoor positioning system must take into account some factors whose ef-

fects compromise the accuracy when estimating the location. Lack of line of sight, the

influence of obstacles and obstructions such as walls and human movement, multi-

path propagation, and interference noises are examples of factors that result in the low

performance of the most commonly deployed solutions (Farid et al., 2013).

The technologies deployed in indoor positioning systems are often based on

scenario image processing, infrared, WiFi, ultra-wideband (UWB), Bluetooth, inertial

navigation, and magnetic solutions (Liu et al., 2020). However, most of IPSs use wireless
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technologies such as WiFi or Bluetooth due to a wide available and accessible infras-

tructure, which saves time and related costs of deployment (Gu et al., 2009). A common

architecture consists of mobile devices, access points (APs), and a central server. The

main goal is to obtain location information of the mobile devices. To do this, the devices

should transmit signals, whose power levels are captured by the access points which

are spread over the environment. The power levels, well-known in the literature as

Received Signal Strength Indicator (RSSI), are passed on to the central server. After that,

these data are processed using techniques and appropriate algorithms to determine the

location of the devices.

There is a vast literature of positioning algorithms used for IPSs, which in-

clude deterministic and probabilistic methods. The first ones are quite common in

fingerprinting-based localization, which basically consists of two main steps: an offline

phase, in which RSSI measurements (fingerprints) are previously collected in the envi-

ronment; and an online phase, in which machine learning techniques and algorithms

are used for the location estimation by a comparison between the offline database and

the RSSI data collected in real time. One of the first and most traditional systems is the

RADAR (Bahl and Padmanabhan, 2000), which achieved a median error of 2 – 3 m. The

second, probabilistic methods, are much more common in propagation model-based

systems that take into account the random component inherent to the variability of RSSI

over the environment. In this case, the employed model is more likely to describe the in-

door area reasonably. One advantage of this method is a better computational efficiency.

A well-known probabilistic-based solution is the HORUS (Youssef and Agrawala, 2005),

which achieved an error of approximately 2 m during 95% of the time for its particu-

lar testbed. Besides that, many systems provide hybrid solutions taking into account

specificities of the indoor environment, seeking in general to improve accuracy. The

proposed work belongs to second category, that is, a model-based IPS that benefits from

the Bayes probabilistic theory for the position estimation.
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1.2 Problem
Although fingerprint-based systems are usually accurate, the offline or training phase

is very labor-intensive and time-consuming, since it demands a significant amount

of time to gather reliable and enough RSSI samples for every selected point in large,

indoor scenarios (Liu et al., 2020). Also, the computational load in the online phase is

an expensive deployment factor for such systems.

To partially overcome the problem of intensive site-survey effort, some solutions

rely on the log-distance path loss models, which describe, on average, the signal propa-

gation throughout an indoor environment (Rappaport, 2002). Geometrical approaches,

such as trilateration and multilateration techniques, are very efficient in this regard

but have lower accuracy (Subedi and Pyun, 2020; Zafari et al., 2019). Probability-based

approaches, in turn, are usually more accurate than geometrical ones, but they are not

as precise as fingerprint methods for larger and more complex environments (Man et al.,

2020).

The problem of computational efficiency in fingerprint-based IPSs is usually

overcome by employing clustering techniques. However, the reduction in the computa-

tional load often comes with an accuracy drawback (Torres-Sospedra et al., 2020b). The

advances of the area yielded different approaches concerning traditional clustering —

as K-means (Altintas and Serif, 2011; Torres-Sospedra et al., 2020a; Zhong et al., 2016)

—, hierarchical (Li et al., 2021; Zhang et al., 2020) and novel clustering methods (Alraih

et al., 2017; Liu et al., 2016; Ren et al., 2019), and dataset compression techniques (Klus

et al., 2020). These clustering techniques are often associated with algorithms based

on instances, and the k-Nearest-Neighbor (kNN) is one the most deployed due to its

low complexity of implementation and accuracy results above the average regarding

solutions for IPSs. The main working principle of kNN is the exhaustive search over the

fingerprint database for the most similar fingerprints to the current RSSI one desires

to locate. In this sense, the strength of being able to find the most probable candidate

location is also the weakness of spending a great amount of time to estimate the position.

Particularly, the K-means clustering algorithm is often employed due to its flexibility

and efficiency in finding optimized clusters. By dividing a fingerprint database into
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sets of similar instances, the online phase is benefited from a reduction in the search

space, i.e, the estimation takes into account the search for the appropriate cluster, which

is proportional to K, and the search over the instances of that specific assigned cluster,

which is expected to be drastically reduced in comparison with the whole dataset. Still,

the effort put into the training phase remains relatively high to build the fingerprint

database and provide acceptable accuracy results.

As one can see, the efficiency in both the site-survey effort and the online com-

putational load is essential for the feasibility of IPSs regarding time spent on training,

energy consumption, and real-time applications. Naturally, many studies are concerned

with continuously improving classic solutions while keeping the positioning error at

competitive levels. In this sense, to build an accurate IPS that meets the requirements

of reduced effort in offline training and low computational cost when estimating the

position remains a challenge for the research area.

1.3 Objectives
The main objective is to develop a novel positioning algorithm that is more accurate

than the traditional Bayesian approach by using clustering techniques, and scalable

in terms of online processing time and site-survey effort when compared to classic

fingerprint-based schemes. The scalability in processing time should be measured

in terms of robustness, which is considered here as the ability of the corresponding

parameter to remain practically invariable with the increase of dataset size. On the other

hand, the scalability in terms of site survey effort should be measured by the amount of

training points needed to achieve acceptable positioning errors. To achieve this, some

specific objectives are intended:

1. Collect RSSI samples from a real-world, large scale scenario;

2. Build the fingerprint database from the collected samples;

3. Develop the K-means Clustering and the Bayesian Estimation Algorithms;
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4. Adapt the K-means to the dataset of reference in order to train the K corresponding

log-distance models;

• Analyze two different attributes and verify their impact on the system accu-

racy.

5. Enhance the Bayesian estimation;

• Improve the estimation by using the weighted Bayesian approach;

6. Combine the improved K-means clustering with the Bayesian estimation to reduce

the average positioning error;

7. Compare the developed solution with the classic Bayesian estimation and the com-

monly deployed kNN under equivalent circumstances and the same validation

scenarios in terms of positioning error performance.

1.4 Applicability of the Solution
The essence of the proposed work enables a high flexibility for its deployment in a

diversity of applications. Indoor spaces with an expected high variability of RSSI such

as hospitals, shopping malls, schools, buildings with several floors, and so on, are

included, once the diversity of signal propagation is expected to be addressed by the

clustering process of the proposed work in the offline phase.

Concerning the useful information to be used by the location based services,

there is also flexibility. Although the metric for the positioning error employed here is

delivered in meters, a room-accuracy level error is perfectly possible as well. For more

general applications, however, the error in meters is one of the most common in the

literature, which, by the way, includes the tracking applications.

The solution can be also applied in different wireless infrastructures. These

include architectures with a central server, as commented previously, but also decentral-

ized architectures, in which each mobile device is responsible for computing its own

location. The latter are particularly sensitive to the battery-life capacity of the devices,
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which can be a drawback for systems that require a high processing time for estimation.

In this sense, the proposed work is feasible due to its relatively short processing time.

1.5 Structure of the Master Thesis
The rest of this master thesis is organized as follows: Chapter 2 provides the related

literature regarding model-based IPSs. In Chapter 3, the fundamental theory behind

the proposed method is described. Chapter 4 presents in detail the components of the

system, as well as the testbed in which the validation of the solution is conducted.

Chapter 5 presents the obtained preliminary results by comparing the performance of

different positioning approaches. Finally, Chapter 6 draws the conclusions, and presents

the expectations for the next steps of the research.
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2 Related Work

Algorithms based on propagation models are usually efficient in terms of processing

time and do not require a huge dataset to achieve reasonable positioning errors. In

general, the most recent solutions are based on geometrical, as trilateration and multi-

lateration techniques, or probabilistic approaches. They all have in common the search

for improvement over existing methods.

Njima et al. (2017) proposed an enhanced probabilistic algorithm with RSSI

fingerprinting, which benefited from an AP selection strategy based on information

theory. They validated their proposal in a large-scale known dataset and compared their

results with the classic probabilistic approach and the kNN. The AP selection consisted

of reducing the computable APs for estimating the position. This allowed only a few

APs with proved RSSI diversity of information to be considered, which improved the

location estimation. After that, the estimation took into account an weighted average

of the most probable training points in terms of similarity with the received RSSI in

the online phase. The authors achieved a lower computing complexity if compared to

classic approaches. Still, a high site-survey effort is needed, as the proposed approach

is an enhanced probabilistic fingerprint method, and thus many training points are

required in the offline phase.

Han et al. (2018) developed a novel probabilistic method to improve accuracy by

mitigating the effect of Non Line-Of-Sight (NLOS) characteristics of the environment.

Compared to the trilateration and the classic probabilistic algorithms, the proposed

solution reached the minimum positioning error. Nonetheless, the proposed method

requires high computational load due to the use of fusion algorithms. In this sense, the

battery life of receiver devices are reduced, which is addressed by the authors as a major

concern.
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In Li et al. (2019), a probabilistic algorithm using hidden Markov chains was

proposed to improve the room-level accuracy. By adopting a crowd-sourcing approach,

the authors mitigate the problem of high effort in the training phase. Also, the presence

of high signal diversity due to heterogeneous devices is softened by the use of a linear

regression model allied with a geometric distribution of visible APs. The proposed

solution applies to both static and tracking estimations. The obtained positioning errors

are less than 8%. Still, due to the complex strategy deployed in the online phase, one

estimation can take several seconds to occur, which is not feasible for applications out

of the room-level accuracy domain.

Wu et al. (2019) proposed a weighted centroid technique based on least squares to

estimate the position. The estimation was enhanced by using numerical approximations

based on the Gaussian distribution of RSSI near the BLE transmitter devices. They also

discuss the impact of the numbers of APs on the accuracy. The authors validate their

method in two real indoor scenarios with at most 240 m2. Although effortless training is

needed, the processing time analysis of the online estimation phase was not addressed,

which is expected to be relatively high, as a composition of serial steps is required to

improve accuracy.

Hoang et al. (2020) developed a semi-sequential probabilistic approach to boost

the accuracy performance of traditional probability-based algorithms. Mainly focused

on tracking applications, the addition of the previous position estimation proved to

reduce the error up to 30%. The simple short term memory addition provided by the

method in relation to the classic methods is negligible and thus is not considered a

major concern for the final estimation processing time. However, the works served as

references were mostly fingerprint-based, which represent only a high training effort

scenario.

In Li et al. (2020) , a probabilistic method was developed to learn the best

positioning strategy according to a label credibility constraint. The obtained results

show the proposed algorithm is accurate in complex environments at the expense of a

much higher computational cost when compared to traditional approaches presented

in the work.
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Alfakih et al. (2020) proposed an improved Gaussian mixture model to character-

ize more precisely the RSSI variability. As the probability of each location is proportional

to the number of mixtures, the algorithm running time is equally proportional to this

parameter. Among traditional algorithms as the kNN and its variants, as well as classic

probabilistic approaches, the proposed method had the best performance in terms of po-

sitioning error. Since the proposed solution is based on probabilistic-fingerprint schemes

and validated in a small scenario of 110 m2, a demanding computational load in the

online phase is expected due to the addition of mixtures, as well as a high site-survey

effort for large-scale environments.

Finally, Assayag et al. (2020) presented a novel multilateration-based positioning

algorithm that dynamically computes the parameters of the model used to characterize

the indoor scenario. By benefiting from an improved minimum least square estimation,

the method is efficient in terms of computational cost. Also the model built in the offline

phase only requires one training point per access point, which is a total of fourteen in

the work. In this sense, little effort is spent on the training phase. The authors prove the

superiority of their proposed algorithm against the traditional least square approach

and they achieve a minimum of 3.0 m for the average positioning error and around 75%

for the room-level accuracy. Nevertheless, the error results might not be competitive

against classic Bayesian or fingerprint-based solutions.

In summary, there are several classes of positioning algorithms that seek to

improve some of the following performance metrics: training effort, accuracy, and/or

processing time. To achieve a balanced solution that meets these three requirements

satisfactorily remains a challenge for IPSs. Table 1 provides a simplified comparison

among the described works above regarding the size of the considered validation

scenario, the site-survey effort, the online running time of each proposed algorithm,

and the positioning error. The reference for qualitatively classifying the training effort

performance into low, medium or high is the average number of training points needed

in the offline phase. For fingerprint-based schemes, the training effort is classified

as "high". For model-based ones, "low". Optimized systems based on fingerprinting

are classified as "medium". Similarly, for the running time is the average number of
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comparisons needed for estimation.

Table 1 – Comparison table among related works.

Author Dimension Training
Effort

Processing
Time

Average
Error

(Njima et al., 2017) 100 x 100 m High Low 5.8 m
(Han et al., 2018) 54 x 5 m Low High 1.2 m(1)

(Li et al., 2019) - Low High 7%(2)

(Wu et al., 2019) 19 x 13 m Low Medium 0.9 m
(Hoang et al., 2020) 21 x 16 m High Medium 1.0 m
(Li et al., 2020) 308 m2 Low High 2.6 m
(Alfakih et al., 2020) 11 x 10 m Medium High 1.5 m
(Assayag et al., 2020) 45 x 16 m Low Low 3.0 m

(1) Root Mean Square Error (RMSE).
(2) Room-Level Accuracy Error.

Unlike the previous works, the proposed solution, named KLIP (K-means- and

Log-distance model-based Indoor Positioning), combines the simplicity of the log-

distance model and the related Bayesian theory with the K-means clustering technique

to better characterize the signal propagation over the indoor environment. In this

sense, the proposed method enables a significant reduction in the training effort without

compromising accuracy and processing time performances. To achieve this, the collected

RSSI samples are clustered into different log-distance models during the offline phase,

and the Bayesian theory is applied to estimate the position at the online phase.
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3 Theoretical Background

This chapter presents the main theoretical aspects of the proposed IPS, which includes

the fundamentals of fingerprint-based systems, the log-distance path loss model, the

Bayesian estimation, and the K-means clustering algorithm.

3.1 Fundamentals of Fingerprinting
Although the proposed work is not based on the fingerprinting technique, the principles

and terms behind this subject are important for a full comprehension of many methods

for IPSs.

Especially for RSSI-based systems, a fingerprint is a set of values, each corre-

sponding to a captured signal from a determined access point over a specific point in

space. The fingerprint, in this sense, is literally a stamp which is expected to represent

the signal strength in some particular location. Due to the high variability of RSSI in

indoor spaces, a set of fingerprints is eventually collected for a particular point to better

represent the stochastic feature of the RSSI.

In order to cover an entire indoor space, an intuitive approach to capture the

RSSI variability is to uniformly collect fingerprints over the environment. In this sense,

a set of physically located points is chosen, and, for each point, a set of fingerprints is

collected. In the literature, this phase is known as the "training" phase or the "offline"

phase, and each collection point for the fingerprints is known as training point (TP).

A database, in this case, is built for further query in an estimation phase. The last

is also known as the "online" phase, which is responsible for estimating the location

by comparing a set of new fingerprints with the dataset previously stored. The most
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similar set, in this way, is a strong candidate for providing the correct answer of location

information. Figure 1 summarizes the fingerprint-based method.

Figure 1 – Basic representation of the fingerprinting technique. Adapted from Gu et al.
(2009).

Depending on the size of the indoor area, a high effort is required for the site sur-

vey process. Indeed, to collect dozens of fingerprints for each of the possible hundreds

of training points is certainly a time-consuming and exhaustive task.

The main positioning algorithms that benefit from the fingerprinting technique

are the machine learning- based, which include the kNN and its variations, neural net-

works, random forests, and so forth. Probabilistic approaches are also widely employed,

in which the signal variability for each training point is described by a representative

model, usually the Gaussian distribution.

3.2 Log-Distance Path Loss Model
The log-distance path loss model is empirically demonstrated to represent indoor signal

propagation (Rappaport, 2002), as shown in Equation (3.1):

PL(dB) = PL(d0) + 10α log
(
d

d0

)
+Xσ (3.1)

where PL(d0) is a constant which represents the path loss in dB at a distance d0 used

as a reference, α is the path loss exponent, and Xσ is a normal random variable with
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zero mean and standard deviation σ in dB, that is, X ∼ N (0, σ2). All these parameters

are determined for each environment and describe on average the distribution of

RSSI at a point distant d from a transmitter. They are often obtained by collecting

and processing RSSI measurements with linear regression techniques or maximum

likelihood estimation (Roos et al., 2002). These techniques offer a minimum square error

among the real data and the candidate log-distance model, which is expected to has the

best fit.

For instance, suppose one has collected a considerable number of fingerprints

from different places in the same environment. From the real data, a model is generated

to represent the distribution of RSSI over the entire area. Often, for large environments,

it is unlikely that only one model with some set of parameters precisely represents the

signal variability in each arbitrary physical point. In this sense, although the aim of the

model is to generalize the behavior of RSSI across the indoor space, some compartments

might be possibly described by some other better models or representations. This notion

is important, once the location prediction is directly related to the chosen model, and

how this model is applied to some specific estimation problem.

Specifically in this work, the parameters of the log-distance path loss model are

obtained by the use of the LinearRegression(xc, yc) function from the software Octave

(Eaton et al., 2020), in which xc is a function of the considered log-distances, and yc the

collected RSSI at location xc. The function concerning the linear regression technique

then returns the coefficients PL(d0) and α of the model, as well as the variance σ2.

3.3 Bayesian Estimation
By knowing how to describe the RSSI variability from a log-distance model composed

of a certain set of parameters, the Bayes theory helps us estimate the location of a target

by knowing only the values in a set of fingerprints being collected in an undetermined

position.

The model presented before can be slightly modified to describe the distribution
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of RSSI at each point over the area:

r = Pt − PL(dB) = {Pt − PL(d0)} −
{

10α log
(
d

d0

)
+Xσ

}
(3.2)

where r is the perceived power in the receiver device and Pt is the AP transmission

power. It is important to notice that r is also a random variable, which can be represented

by r ∼ N (µr, σ2), in which µr is the expected value of the RSSI for a point in the

environment:

µr = Pt − PL(d0)− 10α log
(
d

d0

)
(3.3)

The equations listed above describe the distribution of RSSI given a point distant

d from an AP, which is known in the literature as the likelihood function, whose probability

density function (p.d.f) is given by:

p(r|l) = 1√
2πσ

exp

{
−1

2

(
r − µr
σ

)2
}

(3.4)

where l is such that d = ‖l − lAP‖, with l and lAP being the test point and the AP

coordinates, respectively.

On the other hand, the main interest is to know the distribution of l given the RSSI

information, which is obtained by the collected data. In this case, the posterior function

contains the necessary information to estimate the location coordinate l. According to

Bayes’ rule:

p(l|r) = p(r|l)p(l)
p(r) (3.5)

where p(l) is the prior function and p(r) is a normalizing factor given by the total
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probability theorem:

p(r) =
∫
p(r|l′)p(l′)dl′ (3.6)

Equation (3.6) refers to the continuous case, in which l′ represents each possible coordi-

nate uniformly distributed over the area. Although it is computationally unfeasible to

calculate this integral analytically, an approximation to the discrete form can be done

(Honkavirta et al., 2009). That is, the area can be divided into many discrete coordinates

as possible, treated here as the reference points (RPs). Likewise, the likelihood function

is computed for each RP given. Thus, Equation (3.5) can be rewritten as:

p(li|r) = p(r|li)p(li)
m∑
j=1

p(r|lj)p(lj)
(3.7)

where m is the number of RPs and p(li|r) is the posterior function that relates the

measure of RSSI r with location li, in which i ∈ {1, 2, ...,m}.

The equations we have seen so far take into account one RSSI sample from one

AP only. However, n > 1 APs are considered in practical situations to improve accuracy,

as it generates fewer ambiguities among the candidate RPs for the estimated location. In

this case, the n-dimensional RSSI vector r is adopted instead of the one-dimensional r.

Another strategy to improve accuracy is to collect a sufficient number of RSSI samples

and take their mean for the estimation. According to the strong law of large numbers, the

sample mean r̄ tends to its true value µr̄, as well as the Tchebycheff’s condition states that

the variance of the estimator of the mean σ̄n2 tends to zero as n→∞ (Papoulis, 1991).

Thereby, as variance diminishes, accuracy is improved due to fewer ambiguities in the

estimation calculus.

Considering the multivariate Gaussian distribution (Tacq, 2010), the likelihood

function already presented in Equation (3.4) can be rewritten as:

p(r|li) = 1
(2π)n

2 |Σ| 12
exp

{
−

(r− µ(i)
r )TΣ−1(r− µ(i)

r )
2

}
(3.8)
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where Σ is the covariance matrix, and µ(i)
r the vector with expected values for the

RSSI at location li. The exponential term of Equation (3.8) is known, when its root is

taken, as the Mahalanobis distance. However, we consider the RSSI data provided

by different APs as statistically independent, and a natural consequence is that the

covariance matrix becomes diagonal. This way, the Mahalanobis distance reduces to the

well-known Euclidean distance, becoming then:

p(r|li) = 1
(2πσ2)n

2
exp

−
n∑
k=1

(rk − µ(i)
rk

)2

2σ2

 (3.9)

Equation (3.9) represents the likelihood function of a vector containing n elements that

correspond to the RSSI from each of the n APs. Next, the posterior function of Equation

(3.7) can be finally presented in its vectorial shape:

p(li|r) = p(r|li)p(li)
m∑
j=1

p(r|lj)p(lj)
(3.10)

By knowing how to compute the probabilities for each RP, the final step is to find

an estimator ˆ̀for the position `. One classic estimation procedure is to find the maximum

a posteriori estimate ˆ̀
MAP , which simply gives the RP coordinate li that maximizes p(li|r)

in Equation (3.10):

ˆ̀
MAP = argmax

li

p(li|r) (3.11)

In other words, one seeks for the RP coordinate li in regards to which the sum presented

into the exponential term in Equation (3.9) is minimized. This estimation is usually

easy to determine (de Coulon, 1986) as well as it needs less computational effort.

Other estimation variations are possible, as the weighted-mean, which simply is the

normalized weighted sum of the probable locations.
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3.4 K-means Clustering
Once we know how to represent the RSSI over an environment using the log-distance

model and how to apply Bayes theory to estimate the location of an unknown set

of fingerprints, the clustering step aims to group similar sets of fingerprints in order

to assign for each set a more representative log-distance path loss model. Intuitively,

similar fingerprints have the property of varying less than the average of all of them. In

this case, a particular model is more likely to fit better to that specific set of RSSI vectors.

K-means clustering is one of the most traditional algorithms to gather similar in-

stances (training examples) to a certain group. The parameter K determines the number

of groups (or clusters) in which the data are separated. The partition is accomplished

according to the euclidean distance among each instance and the existing centroids.

Naturally, a centroid initialization is mandatory.

Next, an example of the algorithm is depicted to show how to split m instances

into K different clusters. In general, the number of iterations R necessary for good

convergence results is at least 100.

Algorithm 1: K-means Clustering

Data: number of clusters K, training set {x(1), x(2), ..., x(m)}, and number of
rounds R

Result: centroids µ and clusters indexes c assigned to each instance of training
1 φ← 1
2 while φ < R do
3 i← 1
4 while i < m do
5 c(i) ← index (from 1 to K) of cluster centroid closest to x(i)

6 i← i+ 1
7 end
8 j ← 1
9 while j < K do

10 µj ← average of points assigned to cluster j
11 j ← j + 1
12 end
13 φ← φ+ 1
14 end

The K-means clustering algorithm applied to the proposed work aims to divide

the training dataset into K different sets of fingerprints. Each set, naturally, has similar
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fingerprints, i.e., RSSI vectors that are close to each other in terms of the Euclidean

distance in the signal space. Each group is then assigned a specific log-distance model,

which is obtained by employing the linear regression technique of the corresponding

RSSI data.

3.5 Chapter Summary
This chapter presented the key theoretical aspects of the tools deployed in the proposed

work. The main features of the fingerprint-based systems were addressed, such as

the need for an offline phase to collect the RSSI signature of the indoor environment,

and important concepts as training points and fingerprints. Also, the kNN was briefly

described as one of the most deployed instance-based algorithms in such systems. Next,

the log-distance path loss model was introduced as an alternative to describe the RSSI

variability by taking into account its stochastic component. The Gaussian essence of this

random component enables the RSSI to be associated with a probability density function,

which, in turn, is a key concept for the theory of estimation using Bayes inference. Finally,

the K-means clustering algorithm was described as the agent responsible for grouping

similar instances of RSSI into clusters with associated log-distance path loss models.
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4 Proposed Method

In this chapter, the proposed system is described. The approach closely follows the

well-known fingerprint-based schemes, which are composed of an offline and an online

phase. Each component from each phase is briefly discussed and the corresponding

architecture depicted at first, and more technical details are presented further.

4.1 System Architecture
The proposed system consists of an offline phase and an online phase, as depicted

in Fig. 2. In the offline phase, the log-distance parameters are determined and stored

immediately after the clustering step. In the online phase, the model parameters corre-

sponding to the most similar computed centroid are selected and used as a reference for

the Bayesian estimation.

Fingerprint
Database

Centroids
(C1, C2, ..., CK)

C1
A1,  α1,  σ1

Ci
Ai,  αi,  σi

Ck
Ak,  αk,  σk

Log-Distance
Parameter

Storage

AN 01

-47-18 -87

...

...

AN 02 AN 03

×

RSSIs [ r ]

Dist(r, Ci)

Mobile
Device

Distances to
Centroids

min{Dist(r, Ci)}

Parameters
with

Bayesian
Estimation

K-Means
Algorithm

Online PhaseOffline Phase

Estimated
 Position

(x, y)

Figure 2 – Positioning system architecture composed of an offline phase and an online
phase. Dist(r, Ci) refers to the euclidean distance between RSSI r and centroid
Ci.
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The figure above can be described as follows:

1. The offline phase, in summary, aims to train the model used in the presented

work. It is composed of a fingerprint database, which contains all the fingerprints

and their corresponding locations from the site-survey process. The K-means

algorithm is then applied to the dataset in order to divide the fingerprints into

K different groups. Each group has a corresponding centroid, which is simply

a vector containing the average of the RSSI vectors assigned to the respective

group. Also, the groups are represented by an specific log-distance model, which

is obtained by linear regression of the corresponding RSSI data.

2. The online phase aims to deliver a reasonable location estimation of a mobile

device in the environment. With a set of fingerprints whose location is still un-

known, a centroid from the offline phase is assigned to the respective RSSI vector

according to the similarity between them. The closest centroid, in this sense, is

more likely to represent that particular set of fingerprints, and so it is the corre-

sponding log-distance model. Then, with the candidate model and its parameters,

it is possible to apply the Bayesian estimation to predict the final location.

Next, more details of each phase are presented.

4.2 Offline Phase

4.2.1 Fingerprint database

For every training point (TP) of the scenario, RSSI samples from each AP are collected.

A fingerprint, in this case, is a composition of one RSSI sample from each AP in the

environment. In other words, a fingerprint can be represented as a n-dimensional

vector, in which n is the number of APs. Considering the number of fingerprints per

training point as f , and the number of training points asm, the total number of collected

fingerprints should be nfp = m× f . Here, besides considering the RSSI from the APs as

features, the relative distance among the corresponding training points and the APs is
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also included. In this sense, each fingerprint is now represented as a 2n-dimensional

vector.

4.2.2 Clustering

The algorithm used in this step is the K-means, which gathers the most similar finger-

prints into K clusters. More specifically, due to its improvement on speed and accuracy,

the K-means++ is deployed (Arthur and Vassilvitskii, 2007).

Most of the RSSI-based clustering solutions focus on grouping RSSI samples into

different sets with similar elements each. Nevertheless, a cluster might contain samples

from entirely different locations due to the high signal level variability over the indoor

environment. In this sense, the addition of a fingerprint location constraint would

somewhat help the clustering algorithm to group RSSI samples that are close to each

other. Specifically, the logarithm of the distance among the APs and the fingerprints is

added as a means of diminishing the probability that two fingerprints with significantly

different relative positions to the APs belong to the same cluster. This attribute choice

comes directly from the structure verified in the log-distance path loss model. Concretely,

the K-means clustering algorithm is fed with the following matrix, whose rows and

columns are typically known as instances and attributes, respectively:

F =



r1,1 · · · r1,n s1,1 · · · s1,n

r2,1 · · · r2,n s2,1 · · · s2,n
... . . . ...

... . . . ...

rnfp,1 · · · rnfp,n snfp,1 · · · snfp,n


, (4.1)

where ri,j is the RSSI concerning the i-th fingerprint from the j-th AP, and si,j refers to

log di,j , with di,j as the distance between i-th fingerprint and j-th AP locations.

In the offline phase, the instances of F in Equation (4.1) are clustered according

to some defined K. In the online phase, the selection of the corresponding cluster is

accomplished by considering only the left half of F , since the only comparison object is

the current RSSI vector. Later, one can verify that the addition of the position information
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improves the accuracy of the system.

4.2.3 Parameters storage

After the preceding grouping process, the log-distance parameters for each cluster are

stored by performing a simple linear regression of the received data according to the

model described in Equation (3.2). In other words, each cluster which contains a certain

set of fingerprints is associated with a specific log-distance path loss model that should

represent the signal propagation over there. In practice, for each cluster centroid Ci,

where i ∈ {1, 2, ..., K}, there is an associated set of parameters Ai, αi, and σi, where

Ai = Pt − PL(d0)i.

4.3 Online Phase

4.3.1 Cluster selection

The selection is performed by taking the minimum of the Euclidean distance between

the current RSSI vector and each centroid stored previously:

c = argmin
i


√√√√ n∑
j=1

(rj − Ci)2

 , (4.2)

where n is the number of APs, and i ∈ {1, 2, ..., K}. The log-distance parameters as-

signed to cluster c are then transfered to the model in Equation (3.2) for further process-

ing.
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4.3.2 Position estimation

With the log-distance path loss model assigned to the current RSSI vector r, it is possible

to compute the probability associated with the chosen reference point li as

p(r|li) = 1
(2πσ2)n

2
exp

−
n∑
k=1

(rk − µ(i)
rk

)2

2σ2

 , (4.3)

where i ∈ {1, 2, ..., nrp}, with nrp as the number of RPs, and µ(i)
rk

is the expected RSSI

value at the i-th RP from the k-th AP.

By applying a variation of Equation (3.7), one possible estimation to the true

location ` can be expressed as:

ˆ̀=

β∑
j=1

ljp(r|lj)
β∑
j=1

p(r|lj)
, (4.4)

where lj is the j−th most probable location, whose p.d.f. is represented by p(r|lj),

computed by Equation (4.3). In this case, β is the number of reference points with

location lj to consider in the weighted estimation. Specifically, β = 5 is set in the

validation experiments.

4.4 Chapter Summary
In this chapter, the main components of the proposed system were described in more

detail. The offline phase is responsible for the model training, i.e., the division of the

fingerprint database into different clusters represented by an unique log-distance path

loss model each. The online phase, in turn, requests from the offline phase the model

which is more likely to represent the current RSSI measurement for the estimation.

In other words, given a certain dataset, composed of RSSI vectors, the basic location

estimation process verified throughout this chapter is summarized as follows:

1. Grouping of similar fingerprints using the K-means clustering algorithm;



Chapter 4. Proposed Method 24

2. Mapping of each group to a representative log-distance path loss model;

3. Selection of the most similar group to represent a given unknown target with only

RSSI information; and

4. Association with the corresponding log-distance model of the selected group for

feeding the Bayesian estimation.
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5 Results

In this chapter, the results of the proposed system are described and discussed. Firstly,

the experimental testbed is presented. Next, the clustering target is slightly modified to

improve the accuracy. It is also shown how the positioning error varies with the number

of clusters. The corresponding evaluation metric, in this case, is the root mean square

error (RMSE) in meters (m). Finally, a comparative performance analysis among the

traditional Bayesian algorithm, the kNN, and the proposed KLIP solution is provided

in terms of accuracy and processing time.

5.1 Experimental Testbed
To evaluate the performance of the solution, both online and offline phases were exe-

cuted in a real-world experimental testbed. Fig. 3 shows the floorplan of the testbed:

a 45 m × 16 m area with 11 rooms and 3 halls. The deployed infrastructure is based

on BLE technology, from the transmitter devices (access points) to the receiver devices

(wearables). The APs have a transmission power Pt of 0 dBm each and are spread over

the site to provide good signal coverage. A total of 148 points, distant 2 m from each

other and uniformly distributed throughout the floor, is selected to collect RSSI samples

from the 14 available APs. The term ‘point’ refers to a real geographic point located in

the floor plan. At each point, 50 samples are collected using 5 different receiver devices

(10 samples each). The samples of each collection point are also split into 30 for training

and 20 for tests.

It is important to highlight that the proposed solution does not necessarily use

all 148 points to train the model. This scenario is specially useful to analyze the effect
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Figure 3 – Experimental testbed in different training scenarios. The upper half (1) shows
148 points (gray dots) where all the RSSI samples are collected. It also corre-
sponds to the points selected for the test set, and the full training scenario.
The lower half (2–5) represents four more distinct training scenarios, where
each training point (TP) is depicted by the cross marks in red.

of the number of training points on the accuracy and the processing time for different

positioning algorithms. The experiments are run over a 2-D problem, though the vertical

distance among the APs on the ceiling and the RSSI collection points is considered as

2.5 m in the estimations. The upper half of Fig. 3 depicts the full training scenario, where

all the collection points are used for training the model. The lower half of Fig. 3 depicts

four more different training scenarios with 3, 14, 42, and 70 selected points for training,

respectively.

The test set is composed of 296 RSSI vectors related to the 148 test points, as a

result of using two different receiver devices. For each position estimation, the average

of the 10 collected samples is taken to improve the system’s accuracy.

In Table 2, a summary containing the essential information is provided regarding

the experimental testbed. All data processing, system modeling, and tests are performed
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using the Octave software packages (Eaton et al., 2020) on a Sony Vaio laptop (Windows

10, 64-bit operating system, 2.70 GHz Intel i7-7500U Processor and 8 GB RAM).

Table 2 – Summary of information about the experimental testbed

Parameter Value

Indoor area 720 m2

RSSI collection points 148
Training points (TPs) {3,14,42,70,148}
Training devices 3
Test points 148
Test devices 2
Tests 296
Samples collected per device per
point (training and test)

10

5.2 Clustering Attributes
Fig. 4 depicts the results for two approaches: using only one attribute (ri,j), which is

called the KLIP-R algorithm; and using two attributes (ri,j, si,j), which is called the KLIP-

RD algorithm. For both, the experiments are run by varying the number of training

points from 3 to 148. The number of clusters considered for each run is described in

Table 3, which corresponds to the minimum found positioning error.

Indeed, the addition of the distance attribute improves the positioning accuracy.

For 3 and 14 training points, there is no difference between the KLIP-R and the KLIP-RD.

However, from 42 training points onwards, there is a significant difference of up to

3.5% between the algorithms. As the number of training points increases, the distance

information plays a more relevant role in distinguishing the clusters accordingly since

the close similarity among RSSI samples becomes more frequent. For all the remaining

analysis, the KLIP-RD is used to represent the KLIP itself.
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Figure 4 – Variation of the root mean square error (RMSE) with the size of the training
dataset for different features used for clustering: RSSI-only (KLIP-R), and
RSSI with distance attribute (KLIP-RD).

5.3 Number of Clusters
The number of clusters is a relevant parameter for reasonably good positioning accuracy.

Experiments were performed for all sets of training points considered in the evaluation

testbed. As an example to illustrate the impact of the number of clusters on the RMSE,

one training point per room was chosen, which is equivalent to a total of 14 over the

floor. The results are shown in Fig. 5. Visually, one can verify that there is no significant

reduction in the error from 20 clusters onwards. For this particular scenario, any number

of clusters close to 20 seems to be a reasonable choice. Also, compared to the traditional

Bayesian algorithm, one can verify an improvement of about 8.7%. As for the other

scenarios with different training dataset sizes, the accuracy behavior is very similar, and

the optimal number of clusters does not exceed 36, as depicted in Table 3.
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Figure 5 – Variation of the RMSE with the clusters computed by the K-means algorithm.
The Traditional Bayesian (TB) algorithm is represented by the circle in red (1
cluster). The proposed KLIP is represented by the crosses in blue.

5.4 Comparative Performance Analysis
In this section, a comparative analysis is performed among three different positioning

algorithms concerning the RMSE and the online processing time: the proposed KLIP

(variant KLIP-RD), the traditional Bayesian (TB), and the kNN.

Table 3 – Performance Analysis: RMSE

#TPs
RMSE (m)

kNN (k)1 TB KLIP-R (K)2 KLIP-RD (K)2

3 6.10 (35) 3.37 2.98±0.05 (29) 2.98±0.06 (25)
14 3.60 (7) 3.11 2.84±0.04 (27) 2.84±0.04 (21)
42 2.80 (37) 3.08 2.85±0.02 (21) 2.78±0.04 (25)
70 2.61 (49) 3.08 2.85±0.03 (26) 2.77±0.03 (36)

148 2.54 (36) 3.11 2.88±0.02 (24) 2.78±0.03 (34)
1 The number of nearest neighbors k is indicated in parentheses for each run of the kNN
algorithm.
2 The number of clusters K is indicated in parentheses for each run of the KLIP algorithm.
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Figure 6 – Variation of the RMSE with the size of the training dataset for different
positioning algorithms: the proposed KLIP, the traditional Bayesian (TB), and
the classic kNN.

5.4.1 Positioning accuracy

Fig. 6 depicts the RMSE results for 3, 14, 42, 70, and 148 (full) training points using

different positioning algorithms. For each training set, the results are plotted by con-

sidering the best accuracy performance for each algorithm. One can notice that KLIP

outperforms TB for all the scenarios, whereas the performance over kNN is better

for three scenarios, but only with reduced training dataset size. The results show an

improvement of about 12% when comparing KLIP with TB for 3 training points. From

14 training points onwards, the improvement is, on average, 10%. When compared to

kNN, KLIP is significantly more accurate for very small sets of training points, as for 3

and 14 ones. On the other hand, 70 training points are sufficient for the kNN to deliver

better results. This is under what one should expect, as the increase in dataset size also

increases the search space for the kNN to estimate more accurate results. Conversely, the

increase in dataset size does not have the same impact on the KLIP performance, as the

model regressor saturates with relatively few training points. In Table 3, the RMSE of

each positioning technique is depicted for each scenario. For the kNN, specifically, one
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can notice an apparent discrepancy of the obtained value of k for the scenario with 14

TPs. Actually, these optimal k’s are not stable, and there is no pattern to be observed, as

it depends on the set of considered fingerprints. Nevertheless, the observed differences

in accuracy for different values of the parameter k at the top of the accuracy rank were

small. Also, these differences did not affect the processing time of the implemented

algorithm significantly.

5.4.2 Processing time

The computational cost is also a fundamental metric to measure the performance of

IPSs when energy consumption and real-time applications are a stringent constraint.

Fig. 7 shows the behavior of the required number of comparisons for each algorithm at

the online (or estimation) phase.

K1 nrp nfp

Nc

1

nrp

2nrp

nfp

nfp + nrp
KLIP

TB

kNN

Figure 7 – Computational load comparison for each algorithm. Nc is the number of
vector comparisons; K, the number of clusters; nrp, the number of reference
points; and nfp, the number of fingerprints (total of samples).
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A scalable scenario is described, where the number of fingerprints nfp is much

higher than the number of reference points nrp used by the Bayesian estimation process,

i.e., nfp >> nrp. Regarding the classic Bayesian algorithm, the number of comparisons

is proportional to nrp, which is the number of required operations to compute the

probability for each reference point. Before the nrp operations, the proposed KLIP

performs a search among the K clusters assigned at the offline phase, which, in the

worst case, can be set as the number of fingerprints nfp. The kNN algorithm, in turn,

performs a search among the nfp samples to estimate the position with the smallest

signal Euclidean distance. Most of the time, one should expect to deploy the KLIP

algorithm with K ≤ nrp, which gives it a complexity O(nrp). In the worst case, though,

KLIP has a complexityO(nfp+nrp). In the experiments,K < nrp, and the KLIP algorithm

performs similarly to the classic Bayesian independently on the size of the training

dataset. On the other hand, as the number of training points increases, the performance

of the kNN decreases. The scenario is better depicted in Fig. 8, in which the average

processing time per positioning estimation for each algorithm was measured through

fifty runs. Table 4 provides the obtained measurements. In effect, the addition of the

intermediate step for the KLIP does not require significantly more time when compared

to the TB, as the number of clusters K is only a reduced fraction of the number of

reference points nrp. On the other hand, the kNN has the worst time performance as the

number of training points increases, that is, as the number of fingerprints nfp becomes

the dominant time complexity factor.

Table 4 – Performance Analysis: Processing Time

#TPs
Processing Time (ms)

kNN (k)1 TB KLIP (K)2

3 2.70±0.10 (35) 7.80±0.10 8.45±0.07 (25)
14 9.46±0.07 (7) 7.77±0.14 8.38±0.10 (21)
42 27.64±0.17 (37) 7.80±0.10 8.48±0.10 (25)
70 46.94±0.37 (49) 7.80±0.10 8.68±0.07 (36)

148 100.44±0.44 (36) 7.84±0.14 8.68±0.20 (34)
1 The number of nearest neighbors k is indicated in parentheses for each run of the kNN
algorithm.
2 The number of clusters K is indicated in parentheses for each run of the KLIP algorithm.
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Figure 8 – Comparative analysis among the positioning algorithms in terms of average
processing time.

5.5 Final Insights
In summary, one can infer that clustering the RSSI samples in different sets of log-

distance models reduces the positioning error without requiring a significant computa-

tional load at the online phase. This is in accordance with the verified better performance

of KLIP over TB. Moreover, the proposed method proves to be an alternative for reduced

training size, as it outperforms the kNN in positioning accuracy. Although this does not

hold for increasing training dataset size, the algorithm processing time is significantly

shorter for KLIP over kNN. Specifically, the choice of 14 TPs, which is equivalent to one

TP per floor compartment, is sufficient for the KLIP algorithm to provide a significant

reduction in the training effort and in the positioning error, while keeping the processing

time at a minimal level, when compared to both TB and kNN performances.



34

6 Conclusions

In this work, KLIP was presented, an indoor positioning solution that combines Bayesian

inference with K-means clustering. The results verified throughout the work indicate

that the high RSSI variability over the indoor environment can be better represented for

more accurate position estimations without intensive site-survey by assigning subsets

of RSSI samples to different sets of log-distance path loss models.

Although the work is not considered a classic fingerprint-based method, a finger-

print database was built to train the log-distance models in different training scenarios.

From each group generated by the implementation of the K-means clustering algorithm,

one model was associated with the corresponding cluster, and the model parameters

were estimated by means of linear regression techniques. This step constitutes what was

called the offline phase here. The estimation phase, on the other hand, was achieved

by the implementation of two steps: the cluster selection and the location estimation

itself. The first associated the RSSI measurement to a specific cluster represented by its

centroid and its corresponding model in the offline phase. The latter used the assigned

log-distance model as the basis for the Bayesian estimation algorithm.

All experiments were conducted in a real-world testbed and over a Bluetooth

Low Energy (BLE)-based infrastructure. The indoor space comprises an area of ap-

proximately 720 m2 with eleven rooms and three halls. The BLE access points were

spread over the environment to cover the majority of the considered area. From 148

RSSI collection points uniformly distributed throughout the indoor site, five different

training scenarios (3, 14, 42, 70, and 148 training points) were considered for evaluating

the KLIP performance. Each scenario simulated a different training effort, and how the

positioning error and the online processing time vary with this parameter. Compared

to the traditional probabilistic approach based on Bayes theory, a positioning accuracy
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improvement of up to 12% was verified in a minimum training effort scenario, and

of 10%, on average, for the rest of the training scenarios. Also, when compared to

the traditional kNN, the proposed system performed much more accurately for small

training dataset sizes, although an inferior performance was observed in a full training

scenario. In this sense, the increase in the search space for the kNN is beneficial, whereas

it does not apply for the model-based KLIP, which has its accuracy early saturated

with relatively few training points. Regarding the algorithm processing time during

the estimation phase, the proposed system performed closely to the typical Bayesian

approach, and approximately constant with the increase of training points, which shows

robustness in this regard. In other words, KLIP is robust concerning the processing time,

as this parameter is virtually invariant with the dataset size. This also indicates the

KLIP system is scalable in terms of energy consumption, as less battery-life is needed

for short processing time, and in terms of real-time applications, as the time required

for the estimation process is sufficiently short for rapid location updates.

6.1 Limitations and Future Work
One of the main limitations of the work is the difficulty of knowing the minimum

number of training points needed to achieve the maximum achievable accuracy. This is

surely an important topic for the research area, and very challenging, due to the great

diversity of indoor environments and their specificities. Similarly, the optimal number

of clusters for each scenario was not addressed in this work, which is, by the way, an

open research topic for scientists that work with the general clustering problem.

For future work, the research moves towards the exploitation and enhancement

of the offline clustering step and the optimization of key parameters (as the number

and the disposal of reference points) of the probability-based algorithm to reduce both

the positioning error and the online computational load. A previous work published

during the pursuing of this master’s thesis (Pinto et al., 2021) addressed the impact of

the number of reference points on accuracy when using the Bayesian estimation for the

design of IPSs, and much of what was presented in the corresponding paper can serve
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as the starting point for the continuity of the current research. In this sense, it is possible

to build strategies for minimizing the number of reference points while keeping the

positioning errors at minimal levels. Also, the geometry of the deployment of reference

points over the environment should be an important variable to consider when dealing

with room-level accuracy applications.
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