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Abstract

Scale-free Networks (SFNs) are structures built with nodes that show a degree distribution
that follows a power law. SFNs are used with great success in several real networks. In this work, the
networks are modeled from an algorithm that constructs scale-free networks without loops by changing the
minimum, Kmin and the maximum, Kmax, allowed degrees, γ, which measures the density of links and N ,
total number of monomers. In this work, we will study the theoretical polymers dynamics models focused
on Generalized Scale-Free Networks (GSFNs) on arbitrary tree-like polymers. For the Rouse Model, we
monitor the influence of each of the parameters Kmin, Kmax, γ, and N . In the Semiflexible Model,
which fixes the angles between the bonds between the nearest neighbors, we add one more parameter:
the stiffness parameter q. In the Copolymer Model, we consider of the parameters: η = NA

NB
, the ratio

between the number of monomers of type A and B, and σ = ζA/ζB , where ζA and ζB are friction constants
of monomers of the A and B, respectively. In all the cases, we will analyze the eigenvalue (λ) spectra
of the connectivity matrix A and the dynamical behavior of these networks, focusing on the Complex
Dynamic Modulus, with its two parts: the Storage Modulus (G′) and the Loss Modulus (G”) and on
the average displacement << Y (t) >>. For eigenvalues, we can notice the influence of the parameters
of the Rouse and Flexibility model in terms of the degeneracy of λ = 1. Differently, in the Copolymer
Model, we have two eigenvalues with high degeneracy: = 1 and λ = σ. In all models are encountered two
situations: connectivity-independent behaviors at very small and very large ω, namely for very small ω
one has G′(ω) ∼ ω2 and G′′(ω) ∼ ω1, for very large ω has G′(ω) ∼ ω0 and G′′(ω) ∼ ω−1.

Keywords: Complex Polymer Networks. Scale-free Networks. Rouse Model. Semiflexible
Model. Copolymer Model.



Resumo

Redes de Livre de Escala, ou em inglês Scale-free Networks (SFNs), são estruturas contruıdas
com nós, que demostra uma distrubuição de grau de tipo lei de potência. SFNs são usadas com grande
sucesso em vários modelos de redes reais. Neste trabalho, as redes são modeladas usando um algorıtmo que
constroi redes livre de escala sem ”loops” alterando os graus minimos Kmin e máximos Kmax permitidos,
γ, que mede a densidade de graus e N , que representa o número total de monômeros. Neste trabalho
estudamos os modelos teóricos focados em redes livres de escala generalizadas (GSFNs) em poĺımeros
tipo árvores arbitrários. Para o Modelo Rouse, monitoraremos a influência de cada um dos parâmetros
Kmin, Kmax, γ e N . No Modelo Semiflex́ıvel, que fixa os ângulos entre as ligações entre os vizinhos
mais próximos, adicionamos mais um parâmetro: a rigidez. No modelo copoĺımero, acresentamos os
parâmetros: η = NA

NB
, que é a razão quantidade de monômeros do tipo A e B, e σ = ζA/ζB , onde ζA e

ζB são as constantes de fricção dos monômeros A e B, repectivamente. Em todos os casos, analisaremos
os espectros de autovalores da matriz de conectividade A e o comportamento dinâmico dessas redes,
com foco no Módulo Dinâmico Complexo, com suas duas partes: o Módulo de Armazenamento (G′)
e o Módulo de Perda (G”) e deslocamento médio << Y (t) >>. Para autovalores, podemos ver a
influência dos parâmetros no Modelos Rouse e Semiflexibilidade em termos da degenerescência para = 1.
Diferentemente, no Modelo de Copoĺımero, temos dois autovalores com alta degenerescência: = 1 e e = σ.
Em todos os modelos são observadas duas situações: independentes para comportamentos em ω muito
pequeno e muito grande; para ω muito pequeno tem-se G′(ω) ∼ ω2 e G′′(ω) ∼ ω1 , para muito grande ω
tem G′(ω) ∼ ω0 e G′′(ω) ∼ ω−1 .

Palavras-chave: Redes Polimericas Complexas. Redes Livre de Escala. Modelo de Rouse.
Modelo Semiflex́ıvel. Modelo Copoĺımero.
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Chapter 1

Introduction

Networks are present in all aspects of our lives: networks of friends, communication,

transportation networks, or the Web are all examples that we experience outwardly, while the neu-

rons in our brain and the proteins within our body form networks that determine our intelligence

and survival. The study of network science predicated its basic foundations on the development of

graph theory, which was early examined by Leonhard Euler in 1736, when he published the famous

Seven Bridges of Königsberg paper [1]. In the context of the network theory, a complex network

system could be defined as a system composed of nodes (e.g., structural or functional relation) and

the direct interactions between them, called links. Nodes can represent some entities like people,

cities, computers, websites, concepts, cells, genes, species, etc. Links represent relationships or

interactions between these entities: friendships among people, flights between airports, packets ex-

changed among computers through Internet, links between Web pages, synapses between neurons,

and so on.

One of the best-known and most widely studied examples of a network is the Internet,

the computer data network in which the nodes are computers and the links are physical data

connections between them, such as optical fiber cables or telephone lines. In Fig. 1.1, we visualize

the network of the Internet where nodes represent servers, and links represent fiber-optic links.

Another example is the map of the human disease network (HDN) show in Fig 1.2 where nodes

represent disorders, and two disorders are connected if they share at least one gene and in which

mutations are associated with both disorders [2].

Various network models have been built. The random graph developed by Erdős and

Rényi can be considered the most basic model of complex networks. Erdos and Rényi (ER)

introduced a model to generate random graphs consisting of N vertices (nodes) and L edges (links).

Starting with N disconnected nodes, the network is constructed by adding L links randomly,

avoiding multiple and self connections [3, 4]. This model builds a network with N nodes and a

probability p of connecting each pair of nodes. Fig. 1.3 (left) represents the ER model for N = 12

and L = 20. The most popular model of random networks with small-world characteristics and an

abundance of short loops was developed by Watts and Strogatz and is called the Watts-Strogatz

(WS) small-world model. To construct a small-word network, we begin with a regular lattice of

N nodes in which each node is connected to nearest neighbors in each direction, totalizing 2

connections, where N > log(N) > 1. Next, each link is randomly rewired with probability p.

When p = 0 we have an ordered lattice with many loops but large distances, and when p −→ 1,

the network becomes a random graph with short distances but few loops [5]. In Fig. 1.3 (right)



2

Figure 1.1 - Visualization of the structure of the Internet network. The nodes represent an IP’s address.
The colors were based on Class A allocation of IP space to different registrars in the world. Source: [6].

Figure 1.2 - Human disease network. Nodes are diseases and two diseases are connected if they share a
genetic component. Source: Adapted of the Goh et al [2].

represents the Small World model for N = 8, L = 16 and p = 0.2.
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Figure 1.3 - (Left) ER model for N = 12 nodes and L = 20 links. (Right) Small-World Model for
N = 8, L = 4 and p = 0.2

After Watts and Strogatz’s model, Barabási and Albert showed that the degree distri-

bution of many real systems is characterized by a degree distribution that has been found to follow

a power law for large k, P (k) ∼ k−γ where k is the number on the links and γ represents the

density those links. These networks are called Scale-Free Networks (SFNs) [4, 7]. This thesis was

focused on SFNs, because they were used with great success to model various real networks, such

as protein-protein interaction network [9,10], metabolic networks [11,12], river networks [13], food

webs [14], internet [15], epidemic processes [16,17], the author collaboration networks of scientific

papers [18,19], financial networks [20,21], transport networks [22,23], to name only a few examples.

In this work, the nodes are the polymer’s monomers and follow a scale-free degree distribution.

Over the past 50 years, the uses for and production of synthetic polymers have increased

exponentially. This is largely due to the undeniable fact that these materials provide many so-

cial benefits, including those strongly and positively connected to sustainability (e.g., lightweight

transportation to reduce fuel consumption, membranes for efficient water purification, and food

packaging to prevent spoilage). Unfortunately, most synthetic polymers are not biodegradable.

Ultimately, the long-term sustainability of the polymer industry will hinge on the successful intro-

duction of new polymers derived from annually renewable resources. [25].

Polymer is used to mean a particular class of macromolecules composed of molecules

that have long sequences of one or more species of atoms or groups of atoms linked to each other

by primary, usually covalent, bonds. If there is only one type of chemical unit (monomer), the

corresponding polymer is a homopolymer (Fig. 1.4 (a)); if there is more than one type, it is a

copolymer (Fig. 1.4 (b)) [26]. Copolymers have played an essential part in developing polymeric

materials for different applications. Ethylene–vinyl acetate (EVA), acetonitrile–butadiene–styrene

(ABS), and styrene–butadiene–styrene (SBS) are just a few examples of copolymers with com-

mercial importance. Depending on the copolymer type, i.e., random/alternating, graft, or block,

copolymers with different properties can be obtained [27].

Nowadays, polymer networks are not only widely used in many everyday commodity

applications such as automotive tires or various structural vibration and noise-cutting solutions

but are also increasingly employed as advanced functional materials for drug delivery systems,
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Figure 1.4 - Type of Polymers, in which bead represents a monomer: (a) Homopolymer (b) Coplymer

selective membranes and gas storage, water purification, shape memory polymers, soft robotics,

materials for medical applications, stretchable electronics, light-controlled contractible gels, and

additive manufacturing [28].The knowledge of dynamics in associative macromolecular networks

is extremely important for understanding biophysical processes and designing soft materials for

applications spanning drug delivery, tissue engineering, and organic electronics [29]. Truong et.

al [30] have show that a study of the charge sequence on polyelectrolyte conformation is important

to understand many biophysical processes and advancing the design of sequence-defined polymeric

material. Modulating a polyelectrolyte’s charge sequence has been shown to significantly alter its

conformational behavior and activity in many biophysical processes [30]. In Fig. 1.5 are shown

three polypeptoid sequences, each with equally spaced charged monomers and a net charge per

monomer.

Figure 1.5 - (A) Schematic of the polypeptoid sequences. Each sequence contains 2 types of monomers:
hydrophilic and uncharged N-methoxyethyl (Nme) glycine (black circle), and negatively charged Nce
glycine (red circle). (B) Attachment scheme to form long polypeptoids through end-to- end click reactions
between 24mer polypeptoids. Source: [30].

In polymer physics, one of the most challenging problems is understanding the connec-

tion between polymeric materials’ topology and their dynamics. The pioneering ideas of Rouse,

starting with the bead-and-spring model for linear flexible chains, resulted in a basic approach that

could be used to treat the dynamics of polymers [31]. In this model, the polymer is considered as

being a sequence of beads connected via harmonic springs (Gaussian chain). Generalized Gaussian
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Structures (GGS) which represent the extension of the classical Rouse model to arbitrary topol-

ogy [32, 33]. Nowadays, its range of applicability is extended to the dynamics of polymers with

much more complex architectures. Many theoretical studies have been devoted to treelike struc-

tures, such as dendrimers (which are regular subsets of the Cayley tree) and their derivates, star

polymers, hyperbranched polymers, fractal polymer networks, and small-world networks [33, 34].

However, the GGS formalism neglects some important polymer features, such as the excluded

volume and the hydrodynamic interactions; moreover, in the original GGS approach, the semiflex-

ibility of polymer strands taken into accounted. In our theoretical approach, the semiflexibility

was introduced by restricting the orientations of the bonds, which can be monitored through the

related stiffness parameter in the GGS model [35–39]. The stiffness effect is often fundamental,

e.g., in biological macromolecular structures like DNA [40], actins [41, 42], and intermediate fila-

ment networks [43]. The GGS model is also applied to copolymers, for which there are two kinds

of monomers with different mobilities, i.e., different friction coefficients [44,45].

In summary, this work focuses on the theoretical investigations of the relaxation dynam-

ics (Storage and Loss Moduli) and statics (topology) of Scale-Free Polymer Networks following the

framework established by Generalized Gaussian Structures applying the Rouse,the Semiflibility,

and the Copolymer Model. The algorithm that creates the networks from a scale-free degree dis-

tribution with additional modularity parameters will be described. The dynamics will be studied

by analyzing the behavior of the relaxation patterns of the average monomer displacement and the

two mechanical relaxation moduli.

This thesis consists of four chapters. Chapter 1 describes the definitions of Network

Science, the difference between graph and network science, the scale-free network, and the model

used for constructing the polymers with a scale-free degree distribution. Chapter 2 recalls the

general formalism of GGSs in the Rouse model and briefly show the equations that govern the

mechanical relaxation and the folding and unfolding dynamics of polymers under applied external

forces. After this, the semiflexible and the copolymers models theory is developed. All the models

are describe by displacement << Y >> and the complex dynamical shear modulus (G∗(ω)) or,

equivalently, its real G′(ω) and imaginary G′′(ω) components. Chapter 3 presents the results of

the relaxation patterns of polymer networks modeled in Chapter 1. Finally, Chapter 4 concludes

the work and outlines future perspectives.



Chapter 2

Complex Network

The mathematical idea of a graph can be traced back at least as far as the 1730s when

Leonhard Euler posed and answered the question of whether it is possible to walk through the city

of Königsberg (now Kaliningrad, Russia) crossing each of its seven bridges only once, see Fig. 2.1.

Figure 2.1 - Map of Königsberg in Euler’s time showing the actual layout of the seven bridges. Source:
[46].

Despite Euler’s solving this problem without using a picture representing the network of

bridges in Königsberg, he reformulated it in a way that was the equivalent of what is now referred

to as a ‘graph’. A representation derived from Euler’s formulation of Königsberg’s bridges problem

is illustrated in Fig. 2.2 by continuous lines, which are superposed on the scheme of the island

and bridges of Fig. 2.1. Euler represented the four land areas separated by the river with letters

A, B, C, and D. They are linked by a bridge and we draw a line (called an edge) between them.

Then Euler made a simple observation: if a path crosses all bridges but never the same bridge

twice, nodes with an odd number of links must be either the starting or the end point of this path.

Indeed, if you arrive at a node with an odd number of links, you may have no unused link to leave

it [4, 57].

As we will see, Graph theory has become a mainstream activity in pure mathematics,

and the notion of a graph has a long history of applications in areas such as chemistry, physics,

the social sciences, and computer science. Now, there is a small difference between a Graph

and a Complex Network, therefore Barabási, in his book ”Network Science” [4], is using them

interchangeably (see Table 2.1).
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Figure 2.2 - Here the various parts of the lands (A, B, C, D) of Fig. 2.1 are stylized as vertices. The
various bridges are represented by the edges of the graph.

Complex Network Graph Theory
Network Graph
Node Vertex
Link Edge

Table 2.1 - Comparison between Complex Network and Graph Theory formulations.

For Complex Networks, the terms network, node and link represent real systems: The

WWW (World Wide Web) is a network of web documents linked by URLs; society is a network

of individuals linked by family, friendship or professional ties; the metabolic network is the sum of

all chemical reactions that take place in a cell [4].

Complex networks occur everywhere: in artificial and human social systems, organic and

non-organic matter from nano to macro scales, and natural and anthropogenic structures [23,47].

Over the past two decades, many studies have applied network science methodologies across diverse

scientific fields to study complex systems. Complex systems involve multiple components that in-

teract with each other to give rise to complex behavior. Network science, which started within

the Physics community, is now a mature multidisciplinary field with many applications ranging

from Ecology to biology, medicine, social sciences, engineering, and computer science. Famous

examples include the findings about sexual partners [48], the Internet and WWW [4,49], epidemic

spreading [17], immunization strategies [50], citation networks [51], the structure of financial mar-

kets [21], social percolation and opinion dynamics [52–54], the structure of mobile communication

networks [55], and many others. Among the phenomena that have been shown to fall in this

conceptual framework are cascading failures, blackouts, crashes, bubbles, crises, viral attacks and

defense against them, introduction of new technologies, infrastructure, understanding measuring

and predicting the emergence and evolution of networks and their stylized features, spreading phe-
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nomena and immunization strategies, as well as the stability and fragility of airline networks [47].

Very recently, we have seen the application of network science; Bellingeri et al. present a complex

networks-based epidemic model in the framework of the COVID-19 spread. The authors elaborate

on the connection between removing social links and the diffusion of pandemics in the light of

non-pharmaceutical interventions [56]. Also, Galiceanu et al. try to understand the evolution of

a pandemic situation focused on a situation in which the spread occurs on a predefined network.

In this case, we understand a network to be a collection of individuals connected through links

based on familiarity, friendship, or professional reasons. A justifiable number of these networks,

also called social networks, are scale-free [17]. It provides an essential tool in a systems approach

to understanding many complex systems.

2.1 Complex Network Properties

To understand a complex system, we first need to know some basic quantities.

• Number of nodes (N) represents the number of components of the system. To distinguish

the nodes, we label them with i = 1, 2, ..., N . Each node can be considered an actor-movie

network, a gene biological network, computers, people (Social Networks) and others things.

• Number of links (E), or number of edges, represents the total number of interactions

between the nodes.

Figure 2.3 - A small subset of (a) the Internet, where routers (specialized computers) are connected
to each other; (b) a protein-protein interaction network, where two proteins are connected if there is
experimental evidence that they can bind to each other in the cell. Source: [4].

• Degree of a node (k) is the number of edges attached to it. In an undirected network the

total number of links can be expressed as the sum of the node degrees:

Etotal =
1

2

N∑
i=1

ki, (2.1)

here the 1/2 factor stands for the fact that in the sum (2.1) each link is counted twice.

• The degree distribution, pk , provides the probability that a randomly selected node in

the network has degree k. Since pk is a probability, it must be normalized:



2.1 Complex Network Properties 9

∞∑
k=1

pk = 1. (2.2)

For a network with N nodes the degree distribution is a normalized histogram (Fig.

2.4) is given by

pk =
Nk
N
, (2.3)

where Nk is the number of nodes with degree k.

Figure 2.4 - (a) A Random Network with N = 50, (b) Degree Rank Plot, (c) Degree Histogram. Source:
Made in Program Python

• Adjacency Matrix of a network is an matrix N x N with elements Ai given by

Bij =

{
1, if there is a link between node j and node i;
0, otherwise.

(2.4)

Let’s consider the example displayed in Fig. 2.5.

1

2
3

4

1

2
3

4

Figure 2.5 - Complex Network with four vertex.

The Adjacency Matrix of the Fig. (2.5) can be expressed as
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B =


B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

 .

Using Eq. (2.4), we have:

B =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 .

There is another matrix, closely related to the adjacency matrix but differing in some

important aspects, that can also tell us much about network structure. This is the Laplacian(L),

because its relation with the Laplacian Operator ∇2 [57]. For an introduction to the Laplacian

Matrix, we choose the problem of diffusion.

Diffusion is, among other things, the process by which gas moves from regions of high

density to regions of low density, driven by the relative pressure (or partial pressure) of the different

regions [57]. We can consider diffusion processes on networks, and such processes are sometimes

used as a simple model of spread across a network, such as the spread of information or a disease.

Suppose we have some commodities on the vertices of a network, and there is an amount ψi at

node i. Moreover, now let us suppose that the commodity moves along the edges, flowing from

one node j to an adjacent one i at a rate C(ψi − ψj) where C is a constant called the diffusion

constant, is a measure of the rate of material transport as a result of the random movement of

particles (diffusion) [58]. That is, in a small interval of time, the amount of fluid flowing from j to

i is C(ψi− ψj)dt. Then the rate at which ψi is written in function of the Adjacency Matrix as

dψi
dt

= C
∑
j

Bij(ψj − ψi). (2.5)

In this expression, the adjacency matrix elements Bij , Eq. (2.4), insure that the only

terms appearing in the sum are those that correspond to node pairs that are actually connected

by an edge. Separating the two terms in Eq. (2.5), we can rewrite

dψi
dt

= C
∑
j

Bijψj − Cψi
∑
j

Bij

= C
∑
j

Bijψj − Cψiki

= C
∑
j

(Bij − δijki)ψj , (2.6)

where ki is the degree of node i and we have made use of the result ki =
∑
j Bij [57], while δij is

the Kronecker delta.

Eq. (2.6) can be written in matrix form as
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dψ

dt
= C(B−D)ψ, (2.7)

where ψ is the vector whose components are numbers ψi, B is the adjacency matrix, and D is the

diagonal matrix with the node degrees along its diagonal:

D =


k1 0 0 · · ·
0 k2 0 · · ·
0 0 k3 · · ·
...

...
...

. . .

 . (2.8)

It is common to define the new matrix

L ≡ D−B. (2.9)

The Eq. (2.6) can also be rewritten as

dψ

dt
+ CLψ = 0, (2.10)

which has the same form as the ordinary diffusion equation for a gas, except that the Laplacian

operator ∇2 that appears in that equation has been replaced by the matrix L that can be called

Laplacian matrix. In chapter 3 we will call it as Connectivity Matrix.

The elements of the Laplacian matrix are

Lij =

 ki, if i = j,
−1, if i 6= j and there is an edge (i, j),

0, otherwise,
(2.11)

We rewrite this expression as

Lij ≡ δijki −Bij . (2.12)

For example, we write the matrix Lij of the network displayed in Fig. 2.5,

Lij =


L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44

 =


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 .

(2.13)

We can solve the diffusion Eq. (2.10) by writing the vector ψ as a linear combination

of the eigenvectors vi of the Laplacian thus:

ψ(t) =
∑
i

ai(t)vi, (2.14)
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with the coefficients ai(t) varying over time. Substituting this form into Eq. (2.10) and making

use of Lvi = λivi, where λi is the eigenvalue corresponding to the eigenvector vi, we get

∑
i

(
dai(t)

dt
+ Cλiai(t)

)
vi = 0. (2.15)

But the eigenvectors of a symmetric matrix such as the Laplacian are orthogonal, and

so, taking the dot product of this equation with any eigenvector vj , we get

dai(t)

dt
+ Cλiai(t) = 0, (2.16)

for all i, which has the solution

ai(t) = ai(0)e−Cλit. (2.17)

Given an initial condition for the system, as specified by the quantities ai(0), we can find

the state at any later time, if we know the eigenvalues and eigenvectors of the Laplacian matrix.

In chapter 3, we will use these definitions.

2.2 Scale-Free Networks (SFNs)

Motivated by such many applications, many theoretical models were proposed aiming

to reproduce or describe real-world networks. In many of these models, the degree distribution is

power law, and the corresponding network is said to be scale-free [4, 59]. Scale-free and power-

law are sacral words in network science. This mature field studies complex systems in nature and

society by representing these systems as networks of interacting elements [60]. The concept of SFNs

was used with great success in real networks such WWW [7,61], the author collaboration network of

scientific papers [18], networks in biological organisms [10], and reaction-diffusion processes [9,62],

to name only a few examples.

The study of scale-free networks has been extensively investigated over the last two

decades. A key indicator for a network to be scale-free is the power-law degree distribution,

p(k) ∝ k−γ , where k is the degree of a node, the parameter is typically in the range, and γ measures

the density of network’s connections. Many networks have been reported scale-free, ranging from

metabolic to protein networks and from information networks to social networks [63]. That is, the

probability distribution for the degree is a power law. In other words we can write

pk ∝ k−γ . (2.18)

If we plot the data in a double logarithmic scale, we should obtain a straight line. For

this, we take a logarithm of Eq. (2.18) and we obtain
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log pk ∼ −γ log k. (2.19)

In more precise terms, we discuss the discrete and the continuum formalism with the

objective to define power-law distribution.

The discrete formalism provides the probability pk that a node has exactly k links

pk = Ck−γ , (2.20)

where constant C and determined by the norma lization condition

∞∑
k=1

pk = 1. (2.21)

Using Eq. (2.20) we obtain,

C

∞∑
k=1

k−γ = 1, (2.22)

hence

C =
1∑∞1

k=1 k
−γ

=
1

ζ(γ)
, (2.23)

where ζ(γ) is the Riemann-zeta function. As node degrees are positive integers, k = 0, 1, 2, ..., the

discrete power-law distribution has the form

pk =
k−γ

ζ(γ)
. (2.24)

See that Eq. (2.24) diverges at k = 0.

For continum formalism, in analytical calculations it is often convenient to assume

that the degrees can have any positive real value [4]. In this case we write the power-law degree

distribution as

p(k) = Ck−γ . (2.25)

With the normalization condition
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∫ ∞
kmin

p(k)dk = 1. (2.26)

Using Eq.(2.25) in Eq.(2.26), we obtain

C =
1∫∞

kmin
Ck−γdk

= (γ − 1)k
(γ−1)
min . (2.27)

Then, applying Eq.(2.27) in Eq.(2.25), the continuum formalism the degree distribution

has the form

p(k) = (γ − 1)k
(γ−1)
min k−γ . (2.28)

Therefore, in the case Discrete formalism has a precise meaning: it is the probability

that a randomly selected node has degree k. However, only the integral of p(k) encountered in the

continuum formalism has a physical interpretation:

∫ k2

k1

p(k)dk, (2.29)

is the probability that a randomly chosen node has degree between k1 and k2.

There is a difference between a random and a scale-free network, and this comes in

the tail of the degree distribution, representing the high-k region of pk. For small k the power

law represents that a scale-free network has many small degree nodes, most of which are absent

in a random network. For large k the power law indicates that the probability of observing a

high-degree node, or hub, is higher in a scale-free than in a random network.

The first scale-free (SF) network model, introduced by Barabási and Albert (BA),

postulated that there are two fundamental ingredients of many real networks [4,7,61]: their growing

character and the preferential attachment rule.

• Growth: Starting with a small number (m0) of nodes, at every timestep, a new vertex is

added with m(≤ m0) links (that will be connected to the vertices already present in the

system).

• Preferential attachment : When choosing the nodes to which the new node connects, the

probability Π(k) that a link of the new node connects to node i depends on its degree ki as

Π(k) =
ki∑
j kj

. (2.30)



2.2 Scale-Free Networks (SFNs) 15

After t timesteps the Barabási-Albert model generates a network with N = t+m0 nodes

and m0 +mt links. Thus, older (with smaller ti) nodes increase their connectivity at the expense

of the younger (with larger ti) ones, leading over time to some nodes that are highly connected, a

“rich-get-richer” phenomenon [4]. The growth and preferential attachment are responsible for the

emergence of scale-free networks.

In the Barabási-Albert model, the node’s growth rate is determined solely by its degree.

However, in real systems, a node’s connectivity and growth rate depend not on its degree alone.

For example, in social systems, some individuals are better at turning a random meeting into

a lasting social link than others. The webpage can bring us back daily despite the many other

pages competing for our attention. Finally, some research papers in a short timeframe acquire

many citations. A common feature of these successful nodes is some intrinsic property, such as

an individual’s social skills, the content of a web page, or the content of a scientific article, that

propels them ahead of the pack. The examples discussed above indicate that nodes have different

abilities (fitness) to compete for links. This different abilities is called fitness property [4, 64]. To

incorporate the role of fitness, we assume that preferential attachment is driven by the product of

a node’s fitness, η, and its degree k. The resulting model, called the Bianconi-Barabási, consists

of the following two steps:

• Growth: In each timestep a new node j with m links and fitness ηj is added to the network,

where ηj is a random number chosen from a fitness distribution τ(η). Once assigned, a node’s

fitness does not change.

• Preferential Attachment : The probability that a link of a new node connects to node i is

proportional to the product of node i′s degree ki and its fitness ηi,

Π(k) =
ηiki∑
j ηjkj

. (2.31)

This generalized preferential attachment Eq.(2.31) incorporates in the simplest possible

way that fitness and connectivity jointly determine the rate at which new links are added to a

given node, i.e., even a relatively young node with a few links can acquire links at a high rate if it

has a large fitness parameter than the rest of the nodes [4, 64].

Differently from the Barabási-Albert and Bianconi-Barabási model, in the building of

the network, we choose to employ a growth algorithm [34, 39, 67, 68] that provides treelike struc-

tures with nodes obeying the power-law degree distribution. This model contains two additional

parameters: Kmin, which represents the minimum allowed degree, and Kmax, which gives the

maximum allowed degree. In order to keep the total probability equal to 1 we assume that the

probability of a node having degree k should be written as
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pk =


k−γ∑Kmax

j=Kmin
j−γ

, Kmin ≤ k ≤ Kmax

0, otherwise.
(2.32)

The two modularity parameters, Kmin and Kmax, and the exponent γ, give us the

possibility to study a larger variety of network’s topologies by smothering the transition between

different topologies.

In Fig. 2.6, we show the degree distribution pk constructed networks through the Eq.

(2.32), facilitating a direct comparison. Displayed are the results obtained for networks consisting

of N = 100000 nodes and the number of realizations of the construction algorithm, S = 100. Here,

we set the parameters Kmin = 2 and Kmax = N − 1. The exponent γ allows us to study a more

extensive variety of network topologies.

Figure 2.6 - Degree distribution for Scale-Free Polymer Networks with N = 100000 and S = 100 real-
izations of the algorithm.

We start the construction procedure by fixing these three parameters’ values and deter-

mining all the probabilities pk, according to Eq. (2.32). Fig. 2.6, demostrates how we built the

network used in thesis. We create the first node, 1, blue node, and we choose at random its number

of links, k1, by making use of the degree distribution (2.32). Thus, we add k1 new nodes, which

are all directly connected to the first node, in this case with 3 nodes. Now, we have three black

nodes, namely, 2, 3 and 4. In the second construction step, we choose randomly one of the black

nodes and we give its degree accordingly to the degree distribution (2.32), in our case the chosen

node is 2 and its degree is 4. In the next step, we add k2− 1 links, because the node 2 already has

a direct connection with node 1, and k2 − 1 new nodes (5, 6 and 7). The numbering is according

to the chronological order in which the nodes were created. This process is repeated until reaching

the target number of nodes, denoted as N . Once the desired network size is achieved, growth is
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halted, and any remaining black nodes are assigned a degree of one. This algorithm ensures that

network construction does not stop on its own due to lack of available nodes. Additionally, every

internal node in the network has a minimum of Kmin and a maximum of Kmax neighbors, while

all peripheral nodes remain, with a degree of one. In chapter 3, we apply this algorithm that

construct treelike Generalized Scale-Free Networks (GSFNs) in the context of polymer network

relaxation dynamics [34,38,65].

Figure 2.7 - Construction procedure in detail.

In Fig. 2.8, by making use of the graphical software Gephi [66], we display several

realizations of the algorithm for Generalized Scale-Free Networks (GSFNs) with N = 1000 nodes

and fixed γ = 2.5 are formed by nodes with high degree Networks with smaller γ, i.e. GSFNs

are mainly composed of coupled stars, while GSFNs with higher γ contain longer linear segments

and fewer nodes with a high degree; for more details, see [39,68]. Here, we can show how the two

modularity parameters, Kmin and Kmax, influence the topology of the networks. In Fig. 2.8, we

consider a network with the parameter Kmin equal to 2 in the first row and 5 in the second row,

while Kmax is equal to 999 in the first column and 50 in the second column. We notice that the

number of nodes with a high degree, which is higher than 5, grows when we increase only the value

of Kmin. The networks with Kmin = 5 become more clustered than the GSFNs with Kmin = 2,

and at the same time, these networks diminish the length of the linear segments. On the other

hand, by decreasing the value of Kmax and keeping Kmin constant, compare, for instance, the

panels from the first row of Fig. 2.8, we increase the linear paths and the emergence of nodes

with high degree is less probable. In the limiting case Kmin = Kmax, one obtains networks formed

by nodes with the same degree, similar to the dendrimers, but they do not inherit their perfect

symmetry.

In Fig.2.9, as another application of the network theory, we have a schematic repre-

sentation of a scale-free network, where Eq.(2.32) is obeyed, with a focus on the spreading of a

disease, let’s say, COVID-19. In this work, Galiceanu et al. consider an epidemiological model
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Figure 2.8 - Realizations of GSFNs with N = 1000, γ = 2.5 and the parameters’ set (Kmin,Kmax):
(Top left) (2, 999), (Top right) (2, 50), (Down left) (5, 999), and (Down right) (5, 50). Source: [39]

based on a version of a A+B → B chemical reaction model where the epidemiological model can

be interpreted as a modified SIR model. The individuals can be Susceptible, Infected, or Removed

and are acting on an irregular lattice, which in the case is of a scale-free network type.
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Figure 2.9 - (a) Schematic representation of a scale-free network of size N = 50, γ = 2.5, Kmin = 2, and
Kmax = 49 and ten random walkers, shown by red color. (b) The visualization of the one step evolution
of the infectious randomwalkers on the network. The black color represents susceptible individuals, red
the infectious, and blue the individuals removed from the network. Source: [17]



Chapter 3

Theoretical Models

Rouse developed the first successful molecular model of polymer dynamics and is one

of polymer physics’s fundamental and classical paper. It has been the subject of intensive investi-

gation, experimentally and theoretically, over many year [69–73]. The theoretical investigation of

flexible polymers’ conformational and dynamical properties often proceeds from a very simplified

model, the Rouse model [31]. In this model the polymer is considered as being a sequence of

beads connected via harmonic (entropic) springs (Gaussian chain); the chain incessantly changes

its shape due to thermal agitation. Though this model disregards many features of a physical

chain e.g., the excluded volume effect, hydrodynamic interactions, and semiflexible effects it works

in a series of cases e.g., semidilute solution. It melts below the entanglement limit to a reasonable

description of the physical situation [32,74]. The extension of Rouse’s approach from linear chains

to other polymer systems is relatively straightforward and eventually leads to the concept of gen-

eralized Gaussian structures (GGS). In the framework of the GGS approach, a polymer system is

modeled as a collection of beads (subject to viscous friction) connected through elastic springs in a

system-specific way [33]. On the other hand, the Rouse model describes very well polymer chain,

where the excluded volume interaction and the hydrodynamic interaction are disregarded [74]. In

this work, we consider the framework of GGS. Usually, in studies of polymer dynamics, semiflex-

ibility is modeled by introducing angular constraints (of freely-rotating type) on the orientations

of the bonds. The basic idea here is to take semiflexibility into account through restrictions on

the orientations of neighboring bonds. Introducing semiflexibility into the GGS consists in the

appearance of additional terms in the connectivity matrix Eq. (2.11) [75]. In this chapter, we will

be to show the models in framework GGS but applied to a new type of hyperbranched polymers:

the Generalized Scale-free Networks 2. I

3.1 Rouse Model

In the Rouse model, a polymer is represented through N connected beads with position

vector (R1, ...,RN ), where the distances between any two directly connected beads, say i and j,

are assumed to obey Gaussian statistics, see Fig 3.1. In this way one is led for Ri to the following

probability distribution:

P (Ri) = (
3

2πl2
)3M/2 exp(− 3

2l2

∑
(i,j)

(Ri −Rj)
2). (3.1)

Here the sum goes over all M directly connected (i, j) -pairs of beads and l2 is the mean-
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square distance between them. Eq. (3.1) can be envisaged as being a Boltzmann distribution,

exp(U(R)/kBT ), where kB is the Boltzmann constant and Uelastic(R) is the potential energy.

The potential energy (Uelastic(R)) contains only harmonics terms between monomers

directly bound each other:

Uelastic(R) =
κ

2

∑
bond

(Ri −Rj)
2 =

κ

2

N∑
i=1

N∑
j=1

AijRiRj, (3.2)

where Ri(t) = (Xi(t), Yi(t), Zi(t)) and Rj(t) = (Xj(t), Yj(t), Zj(t)) are the position vectors of

the ith and jth GGS beads, respectively. The summation in the first sum of Eq. (3.3) goes

over all pairs of beads (i, j) directly connected by elastic springs (bonds). The quantity K =

3kBT/l
2 is the elastic constant of a harmonic spring, where kB is the Boltzmann constant, T

is the temperature, and l2 is the mean square end-to-end distance for the unstretched spring.

The symmetric NxN matrix A = (Aij), which is the Connectivity Matrix Eq.(2.11), reflects the

topology of the particular structure [33, 76]: the nondiagonal elements Aij equal 1 if the ith and

jth beads are directly connected and 0 otherwise and the diagonal elements Aii equal the number

of connections of the ith bead. By construction, the detA = 0; therefore, at least one of its

eigenvalues vanishes.

Figure 3.1 - Rouse Model.

The dynamics of the whole network is described by the set of N linearly independent

Langevin equations [74], which have the forces determined from the potential U(Ri) through
∂U(Rk)

∂Ri
. Thus, for a bead i has the form [32–34,68,76,77]:

∂Ri(t)

∂t
+ σ

N∑
j=1

AijRj(t) = wi(t) +
Fi
ζ
, (3.3)

where ζ = 6πρa is the friction constant of the beads, usually formulated in terms of an effective

radius a and viscosity of the solvent ρ and σ = K/ζ is the bond rate constant. Furthermore, wi and

Fi are the external forces acting on the ith bead, which in our models we will consider to vanish.
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However, wi represents the stochastic force that acts on the ith bead. Due to the fluctuation-

dissipation theorem, this force is connected with the dissipative force (or friction) [33, 68] and is

assumed to be Gaussian with zero mean value, so that one has

< wi(t) >= 0, (3.4)

< wiα(t)wjβ(t′) >= 2ζκBTδijδαβδ(t− t′), (3.5)

where α and β denote the directions (x, y, z), δij and δαβ are the Kronecker delta.

The solution of Eq. (3.3) can be written as

R(t) =

∫ t

−∞
dt′ exp [−σ(t− t′)A][w(t′) +

F(t′)

ζ
]. (3.6)

The connectivity matrix A can be diagonalized, for determining R(t) from Eq. (3.6).

Given the eigenvectors Qi of A, that AQi = λiQi, so we define Q ≡ (Q1,Q2, · · · ,QN ). We use

the matrix Q to diagonalize A, since

A = QΛQ−1, (3.7)

where Q−1 is the inverse of Q. So, this relation follows from AQ = ΛQ, being Λ the diagonal

matrix whose elements are λi of A.

Knowing that any function of A can be written

f(A) = Qf(Λ)Q−1,

(3.8)

especially one has

exp(At) = Qexp(Λt)Q−1.

(3.9)

Thus Eq. (3.6) can be written in terms of these eigenvalues and eigenvectors

R(t) =

∫ t

−∞
dt′Q exp [−σ(t− t′)Λ]Q−1[w(t′) +

F(t′)

ζ
]. (3.10)

The mean displacement 〈R(t)〉 can be obtained by averaging Eq. (3.10). For this, we

use the relations (3.4) and (3.5). Thus, Eq. (3.10) simplifies to:
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〈R(t)〉 =

∫ t

−∞
dt′Q exp [−σ(t− t′)Λ]Q−1 F(t′)

ζ
. (3.11)

The Eq. (3.11) represents the average displacement under the action of the external

forces. Assume that the external force pulls the mth bead then stay constant. We also let the

force be switched on at t = 0 and then stay constant. Choosing the y-coordinate in the direction

of the force we have

Fm(t) ≡ F0Γ(t)ey. (3.12)

and Fj(t) = 0 for j 6= m. In Eq. (3.12) is the Heaviside step function.

We now turn to the determination of the mean displacement of the mth bead under a

constant step force acting on it. From Eq. (3.11) the motion of this bead in y-direction is:

〈Ym(t)〉 =
F0

ζ

N∑
m=1

∫ t

0

dt′Qm,i exp [−σ(t− t′)λi]Q−1
i,m = (3.13)

=
F0t

Nζ
+
F0

σζ

N∑
i=2

∫ t

0

dt′Qm,i
1− exp (−σλit)

λi
Q−1
i,m, (3.14)

where we set (Q−1)i,m ≡ Q−1
i,m.

A particular situation arises when the external force acts on a charged monomer con-

tained in a GGS. When the position of the charge inside the structure is random (quenched

disorder), the ensemble-averaged monomer displacement can be calculated from Eq.(3.11), by av-

eraging over all monomer positions, which is a double average, both over the fluctuations of the

random forces and over the positions of the charges. Nonetheless, the ensuing expression turns

out to be simpler than Eq.(3.11), since for its determination only the eigenvalues of A, but not

its eigenvectors are required [32, 68, 77, 78]. To show this, one remarks that when monitoring the

bead on which the external force acts, one has from Eq.(3.11) and Eq.(3.13)

〈〈Y (t)〉〉 =
1

N

N∑
i=2

〈〈Ym(t)〉〉 = (3.15)

=
F0

Nζ

∫ t

0

dt′Tr(Q exp [−σ(t− t′)Λ]Q−1) (3.16)

=
F0

Nζ

∫ t

0

dt′Tr(exp [−σ(t− t′)Λ] (3.17)

=
F0

Nζ

∫ t

0

dt′
N∑
i=2

(exp [−σλi(t− t′)]. (3.18)

This equation can be readily integrated; noting that only λ1 vanishes, λ1 = 0, one has:
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〈〈Y (t)〉〉 =
F0t

Nζ
+

F0

σNζ

N∑
i=2

1− exp (−σλit)
λi

. (3.19)

In this model, the average displacement depends only on the eigenvalues λn of the

connectivity matrix A, but not on its eigenvectors.

3.1.1 Viscoelastic Relaxation Moduli

The dynamics of polymers in solution can be studied by measuring their viscoelastic

properties. In this work, we won’t study the interaction with solution. Newton’s law of viscosity

defines viscosity η by stating that stress σ is proportional to the velocity gradient in the liquid [79]

σ = η
∂v

∂y
, (3.20)

where v is the velocity and y is the direction of the velocity gradient. For a velocity gradient in

the xy plane

σxy = η(
∂vx
∂y

+
∂vy
∂x

), (3.21)

The terms ∂vx/∂y and ∂vy/∂x are the velocity gradients in the y and x directions.

Since vx = ∂u/∂t and vy = ∂w/∂t, where u and w are the displacements in the x and

y directions, respectively, we have

σxy = η[
∂

∂y
(
∂u

∂t
) +

∂

x
(
∂w

∂t
)] (3.22)

= η
∂

∂t
(
∂u

∂y
+
∂w

∂x
) (3.23)

= η
∂exy
∂t

. (3.24)

It can be seen that the shear stress σxy is directly proportional to the rate of change of

shear strain with time.

If the shear rate κ(t) = ∂exy/∂t) is small enough, the shear stress depends linearly on

κ(t) and can be written as [74,80]

σxy(t) =

∫ t

−∞
dt′G(t− t′)κ(t′), (3.25)

where G(t) is called the shear relaxation modulus. For dilute solutions, in which the effect of the

polymer is small, it is convenient to write Eq. (3.25) as
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σxy(t) = ηsκ(t) +

∫ t

−∞
dt′Gp(t− t′)κ(t′) (3.26)

The first term represents the property of the pure solvent and the second term represents

the effect of the polymers (Gp).

We have one case very important case where there is an oscillatory flow:

κ(t) = κ0cos(ωt) = κ0Re(expiωt), (3.27)

where Re stands for the real part. The response for this flow defines the complex modulus G∗(ω):

σxy(t) = κ0Re(
G∗(ω)

iω
expiωt). (3.28)

Since Eq. (3.26) gives

σxy(t) = κ0Re(expiωt ηs +

∫ t

−∞
dt′Gp(t− t′) expiωt

′
) (3.29)

= κ0Re[expiωt(ηs +

∫ t

−∞
dt′Gp(t′) exp−iωt

′
]. (3.30)

G∗(ω) is written as [31,33,74,79]

G∗(ω) = iωηs + iω

∫ ∞
0

dt exp−iωtGp(t) (3.31)

= G′(ω) + iG′′(ω). (3.32)

The real component of G∗(ω) , G′(ω) , is called the dynamic storage modulus and the

imaginary part, G′′(ω) , is called the dynamic loss modulus. For GGS according to [74] in Eqs.

(4.159) and (4.160),

G′(ω) =

∫ ∞
0

dtω sin(ωt)
∑
i

exp(−t/τi) =

∞∑
i=2

(ωτi)
2

1 + (ωτi)2
(3.33)

and

G′′(ω) =

∫ ∞
0

dtω cos(ωt)
∑
i

exp(−t/τi) =

∞∑
i=2

ωτi
1 + (ωτi)2

, (3.34)

the reduced storage G′(ω) and loss G′′(ω), moduli read [33]:

G′(ω) = νkBT
1

N

N∑
n=2

ω2

ω2 + (2σλn)2
(3.35)
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and

G′′(ω) = νkBT
1

N

N∑
n=2

2σωλn
ω2 + (2σλn)2

. (3.36)

where ν is the number of polymer segments (beads) per unit volume and σ = K/ζ. We can see

that the Eqs. (3.35) and (3.36) depend only on the eigenvalues (λi) of the connectivity matrix A.

In these equations the λ1 = 0 mode corresponds to the translation of the whole structure and may

influence G′′(ω) only in the very close vicinity of ω = 0. Note that the factor 2 in the relaxation

times τi = τ0/2λi arises from the second moment of the displacement involved in computing the

stress required in the evaluation of the G∗(ω) [74,95].

From Eqs. (3.35) and (3.36) the limiting connectivity-independent behaviors, very high

ω are clearly evident. For small frequencies, the reduced storage and loss moduli can be written

as

lim
ω→0

[G′(ω)] = νkBT
1

N
lim
ω→0

(

N∑
n=2

ω2

ω2 + (2σλn)2
) '

N∑
i=2

ω2

(2λn)2
∼ (ω)2 (3.37)

and

lim
ω→0

[G′′(ω)] = νkBT
1

N
lim
ω→0

(

N∑
n=2

2σωλn
ω2 + (2σλn)2

) '
N∑
n=2

ω

2λn
∼ ω. (3.38)

In the high frequency region, the storage and loss moduli depend on ω as

lim
ω→∞

[G′(ω)] = νkBT
1

N
lim
ω→∞

(

N∑
n=2

ω2

ω2 + (2σλn)2
) '

N∑
i=2

ω2

ω2
∼ ω0 (3.39)

and

lim
ω→∞

[G′′(ω)] = νkBT
1

N
lim
ω→∞

(

N∑
n=2

2σωλn
ω2 + (2σλn)2

) '
N∑
n=2

2λn
ω
∼ ω−1. (3.40)

3.2 Semiflexible Model

In this section, we summarize the concepts and the main equations of the Semiflexible

Treelike Polymers (STPs) model, focusing on the relaxation dynamics of polymers. Here, semi-

flexibility is introduced by restricting the orientations of the bonds, and it is modeled through

the interactions between the next-nearest neighboring beads. The polymer network comprises N

beads, described by a set of position vectors Ri (i = 1, 2, . . . , N). The neighboring beads are

connected by elastic springs, da = Ri−Rj , and these springs possess the same elasticity constant

K and obey Gaussian statistics. The dynamics of the polymer network are described by a set of

linear Langevin equations, which for the Y -component of bead i can be written as [33,34,82,83]:

ζ
∂Yi(t)

∂t
+
∂VSTP ({Rk})

∂Yi
= f̃i(t), (3.41)
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where f̃i corresponds to the Y component of the stochastic Gaussian force acting on the ith bead,

with their moments given by 〈f̃(t)〉 = 0 and 〈f̃i(t)f̃j(t′)〉 = 2kBTζδijδ(t− t′) (kB is the Boltzmann

constant, T is the temperature and ζ denotes the friction coefficient).

The potential VSTP ({Rk}) accounts for the connections between beads and in this model

it includes also the semiflexibility effects. Considering that the bonds are Gaussian-distributed and

correlated [86] and by making use of some traditional typical conditions, explained in details in

Refs. [35,36,38,84–86,88–90] we express the potential as:

VSTP (da) =
K

2

∑
a,b

WSTP
ab da · db. (3.42)

The general form of the potential VSTP allows to impose restrictions on the angles

between the bonds of the GGS through the matrix W ≡ (Wab) [36]. The elements of the matrix

W are determined through the bond–bond correlations and having the da Gaussian,

〈da · db〉 = l2(W−1)ab. (3.43)

Hence the knowledge of all 〈da · db〉 is sufficient in order to determine W through a

matrix inversion. Following the traditional choice [35,36,38,84–86],

〈da · db〉 = l2, (3.44)

and for adjacent bonds a and b (connected, say, by the ith bead),

〈da · db〉 = ±l2qi, (3.45)

where qi reflects the stiffness of junction i.

We envisage the bonds to be directed, so that the plus sign holds for a head to tail

arrangement and the minus sign in the other cases. For nonadjacent bonds a and c we consider,

in the spirit of the freely rotating chain model [91],

〈da · dc〉 = 〈da · db1〉〈db1 · db2〉...〈dbk · dc〉l−2k, (3.46)

where (b1, b2, ..., bk) denotes the shortest path that connects a with c.

In Eq. (3.45), the stiffness parameter qi is associated with the bead i; by this, we assume

equal average values for all bond pairs connected by this bead. In the limit qi → 0 for all i, all

averages involving different bonds vanish, and the potential Eq. (3.42) takes the simple diagonal

form which corresponds to a flexible polymer Eq.(3.3). In the opposite limit, an upper bound for qi

follows from the fact that the sum of the cosines of the angles between all pairs of bonds adjacent

to monomers of functionality fi is bounded by
∑
a<b cos θab ≥ −fi/2. Thus if all the averages of

Eq. (3.46) are equal, one obtains qi ≤ 1/(fi − 1). For all cos θab = θ (without averaging), i.e.
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cos θ = 1/(fi − 1), is realizable in three dimensions only for functionalities fi ≤ 4. For higher

functionalities, this limit is attainable only on average, i.e., for 〈da · db〉 [35,36,86,91].

The matrix W defines the potential energy in the bond representation. The set of

Langevin equations, Eq.(3.41), requires that the potential VSTP be written in position variables.

The transformation from bonds’ to positions’ variables, da = Ri −Rj , can be written in terms of

the incidence matrix G [92] as

da =
∑
k

(GT )akRk. (3.47)

In the last equation GT is the transpose of the incidence matrix G, whose elements

are Gja = 1 and Gia = 1, when the bond a connects the beads i and j, and zero otherwise. By

replacing Eq. (3.47) into Eq. (3.42) we encounter the potential in position variables:

VSTP ({Ri}) =
K

2

∑
m,n

ASTPmn Rm ·Rn. (3.48)

Here, ASTP is the so-called dynamical matrix and it is given by ASTP = GWGT , where

the matrix G is the incidence matrix [86]. The elements of the dynamical matrix ASTP = (ASTPij )

are known in the closed form [35,86] and depend on the functionalities and stiffness parameters, see

Eqs. (3)-(5) from Ref. [86]. However, these equations are simplified by considering a homogeneous

situation, for which an inner node i with functionality fi (fi > 1) has the stiffness parameter

qi = q
fi−1 . Thus, the parameter q will be the only parameter responsible for the stiffness. This

real number allows us to monitor the transition between a pure flexible polymer (q = 0) and a

completely rigid polymer (q = 1).

Figure 3.2 - Schematic drawing of the nearest and next-nearest neighbors of a bead i in a treelike
network. Source: [86]

The non-vanishing elements of matrix ASTP can be written as a function of the stiffness

parameter q and they can be classified into three distinct groups [86]. Here it is worthwhile to
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introduce a notation to present the situation of the bead sites, see Fig. 3.2. The first group

contains the diagonal elements and are equal to

ASTPii = 1 +
q2

(fik − 1 + q)(1− q)
(3.49)

if i is a peripheral node, fi = 1, and

ASTPii =
fi

1− q
+
∑
ik∈∆i

q2

(fik − 1 + q)(1− q)
(3.50)

if the node i has functionality fi > 1. In the last equation the set ∆i contains only the neighbors

ik of node i.

In the second group we have the non-diagonal nearest-neighboring elements of matrix

ASTP . These elements are given by

ASTPiik
= − 1

1− q
(3.51)

if either i or ik is a peripheral bead and

ASTPiik
= −1 + q

1− q
. (3.52)

if both i and ik beads have functionalities larger than 1.

The last group is formed by the non-diagonal next nearest-neighboring elements. These elements

depend only on the functionality of bead ik, which is the nearest neighbor of both beads i and iks

and are expressed as:

ASTPiiks
=

q

(fik − 1 + q)(1− q)
. (3.53)

The solution of Eq. (3.41), which is found by deploying a normal mode analysis, can

be averaged both over the fluctuating forces and over all the bead positions. Thus, the average

monomer displacement along the Y -axis is an expression that depends only on the eigenvalues of

ASTP [38, 82, 93] and is calculated substituting in Eq. (3.19). Here, we are mainly interested in

the slope of 〈〈Y 〉〉 and we consider for simplicity that 2l2K
ζ = 1 and 2l2 = 1. In same form, the

storage G′(ω), Eq. (3.35), and loss G′′(ω), Eq. (3.36), moduli in the Rouse-type formalism depend

now only on the eigenvalues of ASTP . In these equations the vanishing eigenvalue (λ1 = 0), which

corresponds to the translation of the system as a whole, is not considered.

3.3 Copolymer Model

The polymers are subunits of two different (A− and B−) types, modeled as beads. The

type of every bead is chosen randomly and will be kept unaltered during the calculations. All N

beads of the polymer network are connected to their neighbors by Gaussian elastic springs (i.e.

obeying Gaussian statistics) with the same elasticity constant K. The dynamical properties of

the two kinds of monomers (A− and B−) differ; thus, we focus on the situation that the friction
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constants ζA and ζB are different [44,94].

Our growth procedure of the generalized scale-free copolymer network is given by the

construction steps seen in chapter 2 with the additional step that every node of the network is

randomly chosen to be of A- or B-type of monomer. The type is chosen by maintaining constant

the ratio between the number of monomers of type A and B: η = NA
NB

. In Fig. 3.3 we exemplify

the above steps for small networks. The filled circles are the nodes that received the degree from

the distribution (2.32), while the other nodes are shown by open circles. In panel (e) we depict

the scale-free network of panel (c) as a copolymer network, in which the type of all monomers

was chosen by maintaining constant the ratio between the number of monomers of type A and B.

In this last panel we displayed a network with η = 0.5 with the monomers’ type being picked at

random.
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Figure 3.3 - Construction procedure of a GSFN: (a) and (b) Construction procedure in detail for
realization of the GSFN construction procedure with N = 20 and the parameters’ set (γ,Kmin,Kmax)
equal to: (c) (1.0, 2, 19) and (d) (4.0, 2, 19). (d) Copolymer GSFN obtained from network (c) by chosing
at random the A-type (green) and B-type (gray) monomers.

The configuration of any GGS with N beads is given by a set of position vectors Ri

(i = 1, 2, . . . , N), where Ri(t) = (Xi(t), Yi(t), Zi(t)) is the three-dimensional position vector of the

ith bead at time t. The dynamics of the network are described by a set of N linearly independent

Langevin equations, which for an arbitrary bead i can be written as [32,68,74,82,96]

ζi
dRi(t)

dt
+K

N∑
j=1

AijRj(t) = fi(t), (3.54)

where ζi is the friction constant of bead i, fi represents the stochastic force acting on ith bead,

and A = (Aij) is the connectivity matrix (or Laplace-matrix). This N ×N real symmetric matrix
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has its non-diagonal elements Aij equal to −1 if the beads ith and jth are directly connected

and 0 otherwise; while its diagonal elements Aii equal the number of connections of bead i. It

is important to mention that the sets ζi and fi are correlated through the fluctuation-dissipation

theorem [74]. However, we do not enter into details because we will be interested only in the

eigenvalues of the system, which depends on A. In the GGS framework the right-hand-side term

vanishes after a thermally averaging Ri [44, 45], thus we have to focus only on the homogeneous

equation of the differencial equation (3.54).

We consider beads of type A as the reference and we introduce the characteristic relax-

ation time of the network τ0 ≡ ζA/K. Implementing these assumptions the homogeneous part of

Eq. (3.54) reads as [44,45,94]

dRi(t)

dt
+ (1/τ0)

N∑
j=1

ÃijRj(t) = 0, (3.55)

where the elements of the matrix Ã are given by

Ãij = σiAij (3.56)

with

σi =
ζA
ζi
. (3.57)

The new matrix Ã is obtained from the connectivity matrix A by multiplying its rows

with σi. In general, this matrix is not syymmetric, but it was shown [44] that all its eigenvalues

are real and nonnegative. Here, we consider two types of beads A− and B−, thus from Eq. (3.57)

one can clearly see that σi takes two values: ζA/ζA = 1 and ζA/ζB = σ.

From the wealth of physical quantities dependent on the relaxation times τi of the

networks, which are related to the eigenvalues λ̃i = 1/τi of Eq. (3.55), we choose the complex

dynamic modulus G∗(ω). In typical mechanical experiments the real and the imaginary compo-

nents of this modulus, namely the storage G′(ω) and the loss G′′(ω) moduli, are determined by

applying an external harmonic strain to the polymer network. The storage and loss moduli in the

GGS framework depend only on the eigenvalues of the matrix Ã. In Eqs. (3.58) and (3.59) ν is

the number of polymer segments (beads) per unit volume, KB is the Boltzmann constant and T is

the temperature. In these equations the vanishing eigenvalue λ1 = 0 is not considered, while the

factor 2 in the relaxations times τi = τ0/2λi arises from the second moment of the displacements

involved in calculating the stress [74]. Our main interest are the slopes and not the prefactors,

thus in Eqs. (3.58) and (3.59) we will consider only the reduced storage and loss moduli, obtained

by setting νKBT = 1 and τ0 = 1.

G′(ω) = νKBT
1

N

N∑
i=2

ω2

ω2 +
(

2λ̃i
τ0

)2 , (3.58)



32 3.3 Copolymer Model

and

G′′(ω) = νKBT
1

N

N∑
i=2

ω
(

2λ̃i
τ0

)
ω2 +

(
2λ̃i
τ0

)2 . (3.59)



Chapter 4

Results

In this chapter, we focus on the relaxation dynamics of Generalized Scale-free Polymer

Networks (GSFNs) applied to the Rouse, Semiflexible, and Copolymer Model using the algorithm

described in chapter 2. In all models, we fix the number of the monomers N and the number of

realizations of the construction algorithm S, and we change the parameters γ, Kmin and Kmax of

the Eq. (2.32). After this, we built the connectivity matrix for each model. In the Rouse Model,

the dynamical matrix A is its Laplacian matrix (connectivity matrix) seen Eq. (2.11). However,

in the semiflexible model, we need to add the stiffness parameter q and, as a consequence, the

dynamical matrix is ASTP with the elements are seen in section 3.2. In the Copolymer model, we

increase the parameters σ and η, and the dynamical matrix Ã is represented by Eq.(3.56).

4.1 Eigenvalue spectra

The eigenvalue spectrum λ of the Dynamical Matrix of the Models plays a fundamental

role in the static and dynamic properties of polymers. In all the figures, the results are displays

are in double logarithmic scale.

4.1.1 Rouse Model

In Fig. 4.1, we plot the eigenvalues in progressive order for networks of N = 1000 nodes

and averaged over S = 1000 realizations. This eigenvalue with the highest degeneracy is situated

in the intermediate part of the spectra. We fix Kmin constant to 4, and we investigate the influence

on the eigenvalue spectrum of the other parameter, Kmax. In fig. 4.1 the parameter Kmax is equal

to N−1, Fig. 4.1(a), 0.02N = 20, Fig. 4.1 (b), 0.05N = 50, Fig. 4.1(c), 0.1N = 100 and N = 1000

Fig. 4.1(d).

For this value of Kmin, a very high γ corresponds to a network with nodes connected

in a ”fish-bonelike” or ”dendriticlike” fashion or a combination of both. We note that the effect

of Kmax is mainly related to the decrease of γ for GSFPNs. For large values of γ, the maximum

allowed degree Kmax does not play an important role because the networks are homologous; that

is, they are structures built by nodes of the same degree Kmin. Decreasing the value of Kmax,

the degeneracy of the eigenvalue λ = 1 gets lower. For the same Kmax, the degeneracy of the

eigenvalue λ = 1 decreases as γ increases. Another point, for a star with N − 1 arms we get three

eigenvalues: λ1 = 0, λN = N , and the (N − 2)-fold degenerated eigenvalue λ2, . . . , λN−1 = 1.

The number of appearances of eigenvalue λ = 1 diminishes by increasing the value of γ, which

corresponds to dendritic-like (Kmin ≥ 3) segments. The lowest nonzero eigenvalue is λ ≈ 0.001,

except for GSFPNs with Kmax = 999 and γ = 1.0, as shown in Fig. 4.1 (d), for which we have
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Figure 4.1 - (a-d) Eigenvalues in progressive order for GSFPNs with N = 1000 and Kmin = 4.

0.039. The highest eigenvalue depends more on Kmax, for example, in the case of γ = 1.0, we have

max ≈ 584, 93, and 21.54 for Kmax = N − 1, 100 and 20, respectively. The eigenvalue spectrum

plays an important role in the Relaxation Patterns.

4.1.2 Semiflexible Model

In figures we display in ascending order the eigenvalues of ASTP for S = 250 Semiflexible

Generalized Scale-Free polymer Networks (SGSFNs) consisting of N = 4000 nodes. In Fig. 4.2,

we focus on the influence of q, on the eigenvalues spectrum, while we keep constant the parameters

Kmin and Kmax. In Fig. 4.3 we fix γ to 2.5 and vary the parameter Kmin, we monitor the influence

of the minimum allowed degree Kmin on the eigenvalue spectrum. In Fig. 4.4 we focus on the

influence of γ, which controls the topology of the networks, while we keep constant the stiffness

parameter q to 0.1. As shown in all figures, the degeneracy of eigenvalue λSTP ≈ 1 is immediately

visible, representing a fingerprint of the branching density we find in our networks. This eigenvalue

corresponds to the case where the movement of the polymer is to the movement of two dangling

neighbors.

In Fig. 4.2 (a) and (b), we monitor the influence of the stiffness parameter on the

eigenvalue spectrum. We observe that with growing stiffness, the largest eigenvalues increase

while the small eigenvalues decrease slightly. The degeneracy of the eigenvalues is comparable

in both cases. The eigenvalue with the highest degeneracy is λSTPd = f
(f+q) , with f being the
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Figure 4.2 - Eigenvalue spectra for SGSFNs with N = 4000 nodes and S = 250 realizations. Other
parameters are: (γ, Kmin , Kmax, q): (a)(2, 2, 3999, variable), (b) (2.5, 2, 3999, variable).

degree of the node. The degeneracy of λSTPd is closely related to the topology of the networks,

i.e. γ. With low γ, the polymer network is composed predominantly of dendritic-like or star-like

structures, while high γ contains mostly long linear segments. The pseudogap between λd and

the largest eigenvalue increases slightly as q increases, in contrast to symmetric networks, such as

dendrimers or recursive small-world networks [24,75,86].

Figure 4.3 - Eigenvalue spectra for SGSFNs with N = 4000 nodes and S = 250 realizations for the
parameters (γ, Kmin , Kmax, q) being (2.5, variable, 3999, 0.3).

In Fig. 4.3, we monitor the influence of the minimum allowed degree Kmin on the

eigenvalue spectrum, while the stiffness parameter is kept constant to q = 0.3 and Kmax = 3999
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for γ = 2.5. By increasing Kmin, our networks are composed of nodes with higher degrees, i.e.,

stars with more branches, and their longest linear path diminishes. This aspect is easily observed

by focusing on the highest degenerated eigenvalue. Its degeneracy is strongly influenced by the

minimum allowed degree, which directly influences the size of the stars and the number of dangling

beads. For instance, a slight increase of Kmin, such as the change from 2 to 3, will alter the

degeneracy of λd by almost 1000. This corresponds to a topological transition between networks

with and without linear segments, which, in terms of the eigenvalue spectrum, corresponds to a

more discretized spectrum.

Figure 4.4 - Eigenvalue spectra for SGSFNs with N = 4000 nodes and S = 250 realizations for the
parameters (γ, Kmin , Kmax, q) are variable, 2, 3999, 0.1.

In Fig. 4.4, we display the spectra for different γ-values and a fixed stiffness parameter

q = 0.1. For very high γ the probability of having a node with high functionality is low [38]; see

Eq. (2.32). In this case, the structure will have more chainlike segments than nodes with high

functionality (Hubs). In this situation, the structures obtained from the degree distribution are

more similar to a linear chain topology. This behavior can be seen through the degeneracy of the

eigenvalues, with growing γ the largest eigenvalues increase. For very small γ the probability of

getting vertices with high functionalities increases [38]; thus, we can get structures with a starlike

topology or an ensemble of starlike segments.

4.1.3 Copolymers Model

Our Generalized Scale-Free Copolymer Networks (GSFCNs) involve randomness in the

network construction and also in the choice of monomer’ type. Thus, for every choice of the

parameters’ set (N, γ,Kmin,Kmax, σ, η) we consider averages over S distinct realizations of the
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steps growth algorithm of Chapter 2. In our model, these irregular hyperbranched trees can

be described by two parameters: the network-related and the polymer-based quantities. In the

first class, we have the number of nodes N , the connectivity parameter γ, the minimum and the

maximum allowed degrees, Kmin and Kmax, respectively. The second class is composed of the

ratio between the frictions, σ, and the ratio between the numbers of monomers of the two types,

η. In this section, we consider S = 100 GSFCNs with N = 4000 nodes. We monitor how the

eigenvalue spectrum of the dynamical matrix Ã and the complex dynamic modulus are influenced

by the network topology, which is controlled through changes of γ, Kmin and Kmax, or by the

copolymer parameters: σ or η.
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Figure 4.5 - Eigenvalue spectra for GSFCNs with N = 4000. The parameters (γ,Kmin,Kmax, σ, η) are:
(2.5, 2, 3999, variable, 1.0).

In Fig. 4.5 we let σ to vary between 0.01 and 100, keeping constant the topological

parameters: γ = 2.5, Kmin = 2, and Kmax = N − 1. Here, we consider that the number

of monomers of type B and A is the same: NB = NA, i.e. η = 1. The value σ = ζA/ζB = 1

corresponds to the homopolymer situation, and we encounter the results for Generalized Scale-Free

Polymer Networks [68]. For the networks considered in this panel, γ = 2.5, we have a good mixture

between stars and linear segments. For our GSFNs the eigenvalue with the highest degeneracy,

tildeλλ = 1, has a degeneracy of 1486 for the homopolymer case. By considering copolymers,

this eigenvalue splits into two subgroups: one is composed of the eigenvalue tildeλ = 1, and the

other corresponds to eigenvalue λ̃ = σ. Both eigenvalues correspond to the nonsymmetric case,

for which only two dangling monomers of the same type are moving against each other. The

degeneracy of each eigenvalue depends on the number of such independent pairs that one can

form and can be understood by considering a star with N monomers. The eigenvalues λ̃ = σ

and λ = 1 are surrounded by regions of continuous spectrum, which is typical for linear segments.
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The highest and the lowest eigenvalues, tildeλmax and tildeλmin, are increasing when σ increases.

For our GSFCNs considered in Fig. 4.5 we encounter that the average tildeλmax over S networks

varies between 236.4 (σ = 0.01) and 18259.9 (σ = 100), while for the average of tildeλmin we

have 4.7 · 10−6 (σ = 0.01) and 4.68 · 10−4 (σ = 100). For homopolymers (σ = 1) we found

tildeλmax = 309.7 and tildeλmin = 2.3 · 10−4.
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Figure 4.6 - Eigenvalue spectra for GSFCNs with N = 4000. The parameters (γ,Kmin,Kmax, σ, η) are:
(variable, 2, 3999, 0.01, 1.0).

In Fig. 4.6 we monitor the influence of γ on the eigenvalue spectrum. We display the

results for GSFCNs with σ = 0.01 and η = 1, stressing that similar findings were encountered for

other σ-values. The eigenvalue spectrum of our GSFCNs is bounded by two limiting topological

cases: random stars with N − 1 arms and random linear copolymers. For these kind of random

stars we have only two distinct situations: an A-core star and a B-core star, both having a very

discrete spectrum composed of only five eigenvalues. The most degenerated eigenvalues are equal

to σ and 1.0. Random linear copolymers display a more continuous spectrum, having only some

degenerate eigenvalues. These eigenvalues are bounded by two limiting situations: an alternating

sequence of A- and B-type monomers and a two block sequence of the same monomers’ type.

Our GSFCNs have star-like segments, thus their eigenvalue spectrum is degenerated, having the

eigenvalues σ and 1 as the most degenerated. GSFCNs with low γ-values are mostly formed by

star-like segments, while GSFCNs with high γ contain predominantly linear segments. Thus, as

seen also in Fig. 4.6, by increasing the value of γ the spectrum becomes less discrete. The lowest

nonvanishing and the highest eigenvalues are decreasing when γ increases. The ratio between

dendritic and linear segments of a network can be also monitor through the degree of branching,

which for homopolymer GSFNs was determined in Ref. [39].

In Fig. 4.7, we check the influence of the minimum and the maximum allowed degree
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Figure 4.7 - Eigenvalue spectra for GSFCNs with N = 4000. The parameters (γ,Kmin,Kmax, σ, η) are:
(2.5, variable, variable, 0.01, 1.0).

Kmin and Kmax on the eigenvalue spectrum. Here, we plot the results for GSFCNs with γ =

2.5, σ = 0.01 and η = 1. Topologically, by fixing Kmax and increasing Kmin, our networks will be

composed of nodes with higher degrees, i.e. larger size of the stars. Due to this aspect, we notice

an increase in the degeneracy of eigenvalues σ and 1.0, which are the most degenerated eigenvalues

of a copolymer star. Their degeneracy is strongly influenced by the minimum allowed degree; even

a small change of Kmin is very impactful. For example, the eigenvalue 1 is 578-fold degenerated

for networks with (Kmin,Kmax) = (2, N − 1) and appears 1666 times for (10, N − 1). Between

the two most degenerated eigenvalues is created a pseudogap, which becomes thinner when Kmin

increases. Its limiting size is about two eigenvalues, encountered when Kmin = Kmax = N −1, i.e.

a copolymer star with N − 1 arms. In this panel, we also investigate the influence of Kmax and

display the results for GSFCNs with Kmin = 2. Overall, we observe a not too strong influence on

Kmax than on Kmin, although we diminished Kmax from N − 1 to 10 or 3. The degeneracy of the

eigenvalues σ and 1 decreases while the size of the pseudogap between them increase. The average

of the highest eigenvalue is the only quantity suffering big changes when Kmax equals 3: it decreases

from 236.4 (for Kmax = N −1) to 5.03. All the features mentioned above can also be explained by

the topological changes of our networks, namely, more linear segments and smaller stars are found

when Kmax is diminished. For comparison reasons, we also plot the results for networks resembling

dendrimers because they have the same degree for all nodes (Kmin = Kmax = 3). However, our

copolymers do not inherit the perfect symmetry of dendrimers or the ratio η between A- and B-

type monomers. For copolymeric dendrimers with alternating monomers having an A-core η is

equal to 2G+1−1
2G−1

(if G is even) and 2G−1
2G+1−1

(if G is odd), where G is the dendrimer generation. In

the limit of very large copolymers, the ratio equals 2 (even G) or 0.5 (odd G). For this particular

kind of copolymers, it is possible to determine the eigenvalues in a semi-analytical fashion [45].
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In Fig. 4.7, the big difference between the last two curves is in the degeneracy of eigenvalue 1,

which is higher for networks with Kmin = Kmax = 3, and a higher number of eigenvalues around

2, which is higher for (Kmin,Kmax) = (2, 3). This feature is a consequence of the linear segments

for linear copolymers.
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Figure 4.8 - Eigenvalue spectra for GSFCNs with N = 4000. The parameters (γ,Kmin,Kmax, σ, η) are:
(2.5, 2, 3999, 0.01, variable).

In Fig. 4.8 we vary only the ratio η = NA/NB between the A- and B-type monomers,

keeping fixed the parameters γ = 2.5, σ = 0.01, Kmin = 2 and Kmax = N − 1 = 3999. The

value η = 1 corresponds to an equal number of A and B monomers, while for η > 1 the GSFPNs

have more A monomers and for η < 1 we have more B monomers. Immediately apparent is the

degeneracy of eigenvalues σ and 1. GSFCNs with more A type monomers have higher degeneracy of

1, while copolymers with more B monomers have more eigenvalues equal to σ. The responsible for

this behavior are the star-like segments. For small star copolymers with predominant A monomers

have the eigenvalue 1, while for predominant B monomers we get the eigenvalue σ as the most

degenerated. The networks considered in Fig. 4.8 have a good number of star-like segments,

thus the ratio η will control which of the two eigenvalues is the most degenerated. The lowest

nonvanishing and the highest eigenvalues get higher when η increases, i.e. when the number of

A monomers increases. In Fig. 4.8 the average of tildeλmin is between 2.5 · 10−6 (η = 0.2) and

1.3 · 10−5 (η = 5), while for tildeλmax we have the interval 106.6 (η = 0.2) to 288.3 (η = 5).

4.2 Mechanical Relaxation

We are now in the position to compute the mechanical moduli G′(ω), Eq. (3.35) and

G′′(ω), Eq. (3.36), and their derivatives, α′ = d(log10G
′)

d(log10ω) and α′′ = d(log10G
′′)

d(log10ω) , respectively, of

GSFNs built from the algorithm described in chapter 2 and with their eigenvalue spectrum dis-
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cussed in section 4.1. Most polymer measurements are monitored in the frequency domain; more-

over, they are accompanied by macroscopic changes. The moduli are given by Eqs (3.35) and (3.36),

where we set νKBT
N = 1 and σ = 1. Clearly evident in all figures are the limiting, connectivity-

independent behaviors at very small and very large ω; for very small ω one has G′(ω) ∼ ω2 and

G′′(ω) ∼ ω1, which represents the mechanical response of the entire polymer network and very

large ω has G′(ω) ∼ ω0 and G′′(ω) ∼ ω−1 which signifies single-bead mechanical response. These

scaling behaviors are universal, being independent of network topology or the model implemented

and they are not associated with the microscopic structure.

The average monomer displacement 〈〈Y (t)〉〉 Eq.(3.27) we show in double logarithmic

scale with F
ζ = 1 and σ = 1. In the limit of very short times and sufficiently large N one has

〈〈Y (t)〉〉 = Ft/ζ, and for very long times, we have 〈〈Y (t)〉〉 = Ft/Nζ. The physical interpretation

is as follows: For very short times, only one bead is moving, whereas for very long times, the

whole GGS diffuses, which increases the friction from ζ to Nζ. In the intermediate time region

the particular topology of the GGS under investigation will come into play; the behavior of the

averaged displacement indeed depends on the eigenvalues of the connectivity matrixes A and ASTP

for Rouse and Semiflexible Models, respectively [34,38,39].

4.2.1 Rouse Model

Fig. 4.9 shows the behavior of the storage modulus, G′(ω) and Figure 4.10 of the loss

modulus, G′′(ω), calculated for GSFPNs of size N = 4000 and averaged over ensembles consisting

of S = 250 realizations. The minimum allowed degree, Kmin, was kept constant to 3 for G′(ω) and

to 5 for G′(ω) and γ was varied: 1.0, 2.5 and 4.0. The scales on all panels of the figure are double

logarithmic to basis 10. We restricted the maximum allowed degree to Kmax = N/200 = 20 and

in Kmax = N/400 = 100.

Figure 4.9 - The storage modulus G′(ω) for GSFPNs with N = 1000 and γ = variable. The parameters’
set (Kmin, Kmax) is equal to: (Left) (3, 20) and (Right) (3, 100).

The intermediate frequency range is typical of the topological details of the structure

being examined. The shape of the curves in the intermediate frequency range suggests that different
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types of networks were formed as a function of the parameter γ. In both panels, for γ = 1 and

2.5 the intermediate frequency domain splits into two regions which suggests that the achieved

networks consists of two major components. The splits increased when Kmax change the value to

100. The splitting of the intermediate region indicates the existence of two relaxation processes,

with each component of the network relaxing independently of the other components within its

frequency range. When the value of γ is greater than 1, the intermediate domain is not split,

suggesting that the resulting network is a single component. For a better visualization of the

intermediate frequency domain, we plot the derivative α′ = d(log10G
′)

d(log10ω) as an inset for the same

curves of Fig. 4.9. As expected, the very low and very high frequency limiting behavior applies to

slope 2 and slope 0. However, in the intermediate frequency range, all four curves become wavy. In

Fig. 4.9 left-hand side panel, we notice a peak at log10ω ≈ −0.21, which starts to fade away when

γ increases and Fig. 4.9 right-hand side panel happen when the peak is log10ω ≈ −0.11 when

γ increases. We observe that only by reducing the maximum allowed degree, Kmax,the curves

corresponding to different values of γ tend to stick together and the overall γdependent behavior

is preserved.

Figure 4.10 - The loss modulus G′′(ω) for GSFPNs with N = 1000 and γ = variable. The parameters’
set (Kmin, Kmax) is equal to: (Right) (5, 50), and (Left) (5, 1000).

Now, we turn our attention to the loss modulus, G′′(ω). In Fig. 4.10 left-hand side

panel, we fixed the maximum allowed degree Kmax = N/80 and in right-hand panel Kmax = N/4.

In both panels, the restrictive and connection-independent behavior at very small ω and very large

ω is clearly visible; for very small ω has G′′(ω) ≈ ω, and for very large G′′(ω) ≈ ω−1. What we

are interested in is the intermediate frequency range where we can determine the topology of the

structure [34, 68]. We find that for γ = 1 and 4, the intermediate frequency region of the loss

modulus is decomposed into two regions, indicating the existence of a two-component network and

two independent relaxation processes. In Fig. 4.10 right-hand side panel, Kmax = 50, for values

of γ = 2.5 and 4 the in-between frequency domain does not decompose and one obtains single-

component networks. To have a better insight in the intermediate domain, we plot as inset graph

the derivative α′′ = d(log10G
′′)

d(log10ω) . When Kmax is decreased, the curves corresponding to different
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values of γ form a kind of similar main curve and tend to maintain the same pattern. This

constant slope is similar in both panels and spans nearly two orders of magnitude, α′′ ≈ 0.77. For

γ = 4.0, this region with constant slope disappears. In the frequencies’ interval log10ω ≈ (−1, 1)

a very pronounced peak at γ = 1.0 is observed and transformed into a small plateau when γ

increases. This situation is reminiscent of a star-shape geometry: a polymer with a core and N −1

arms [34,68].

Figure 4.11 - The average monomer displacement for GSFPNs with N = 1000 its derivative for GSFPNs
corresponds to Kmin = 2, Kmax = 50, γ = variable.

In the Figures 4.11 and 4.12, we plot in double logarithmical scale the average monomer

displacement for GSFPNs with N = 4000. In Fig. 4.11 left-hand side panel, we focus on the role of

γ, keeping unchanged the other two parameters: Kmin = 2 and Kmax = N/20 = 50 and right-hand

panel, we show their derivatives, α′ = dlog10〈〈Y (t)〉〉
dlog10t

. In Fig. 4.12 left-hand side panel, we focus

on the role of Kmin, keeping unchanged the other two parameters: Kmax = N and γ = 2.5 and

right-hand panel, we show their derivatives, α′. In Fig. 4.11 here we took all the values γ from 1

to 4. We observe the limiting cases are clearly observed: linear t dependence for short and long

times. We notice that all the curves reach faster long-time linear behavior than a pure linear chain

(γ = 4), but slower than a N − 1 arms star polymer (γ = 1). One can easily spot the slope equal

to 1 for short and long times and its inverted shape for all the curves. Between α ≈ 0.2 and 0.45,

the slope decreases when the value γ increases. In Fig. 4.12, we observe that if the value of Kmin

increases the intermediate time region with this slope gets larger.

4.2.2 Semiflexible Model

In Figs. 4.13 and Fig. 4.14 we display in double logarithmic scale the storage modulus,

Eq. (3.35), for SGSFNs with N = 4000 and S = 100. In the inset panels we show the derivatives

of the curves from the main panel α′ = d(log10G
′(ω))

d(log10ω) in semi-logarithmic scale. From all panels

of Figs. 4.13 and 4.14 immediately apparent are the two limiting behaviors, namely for very

low frequencies one encounters an ω2-behavior and for very high frequencies one obtains a plateau.

These scaling behaviors are universal, i.e. independent of topology or the model implemented, valid
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Figure 4.12 - The average monomer displacement and its derivative for GSFPNs with N = 1000.
Left-hand side panel corresponds to Kmin = variable, Kmax = 1000, γ = 25.

for all polymer networks [33], and they are not associated with the microscopic structure. The

microscopic properties of the polymers are exposed only in the region of intermediate frequency.

Figure 4.13 - Storage modulus and its derivative for SGSFNs with N = 4000 and S = 100 realizations
for the parameters (γ, Kmin, Kmax, q) are (variable, 2, 3999, 0.1).

In Fig. 4.13 we monitor the influence of the parameter γ, for SGSFNs with fixed values

of Kmin = 2, Kmax = 3999, and low stiffness: q = 0.1. Here, we vary γ = 1.0, 2.5 and 4.0 and

one can easily notice a transition from SGSFNs with predominant star-like segments (low γs) to

SGSFNs with long linear segments (high γs). The differences between distinct curves are better

visualized in the derivative, α′. For γ = 1 we encounter a high peak at log10ω ≈ −0.5, which is a



4.2 Mechanical Relaxation 45

consequence of having an eigenvalue with a very high degeneracy, λ∗ = f/(f + q). This peak will

be drastically diminished by a small increase of γ, such as 2.5. In the same time a small region of

almost constant slope appears between log10ω = −2 and −1, which becomes broader for SGSFNs

with γ = 4. However, due to a significant number of nodes with higher functionalities, SGSFNs

with γ = 2.5 has α′ ≈ 0.83 and only for about two orders of magnitude. The overall behavior

of the curves keeps the same, namely networks with γ = 1 show a high peak due to the starlike

topology, while SGSFNs with γ = 2.5 show a mixture of linear-like chain with some dendrimer-like

segments. For these networks we notice a split for intermediate frequencies: a concave downward

behavior, which is typical for dendrimers [33], and a short plateau, which is a trademark of linear

chains.

Figure 4.14 - Storage modulus and its derivative for SGSFNs with N = 4000 and S = 100 realizations
for the parameters (γ, Kmin, Kmax, q) are (2.5, variable, 3999, 0.3).

In Fig. 4.14 we increase the stiffness parameter to q = 0.3 and we focus on the influence

of Kmin on G. Networks with Kmin = 2 are allowed to have nodes with degree 2, thus the

linear segments between branching nodes increase. However, starting from Kmin= 3 the topology

changes drastically to networks formed by stars of different sizes. This change in topology is seen

also in the panel: a peak around ω ≈ 1.0 becomes visible and a complete destruction of any

constant slope plateau. These drastic changes could be understand also in terms of the eigenvalue

spectrum. SGSFNs with higher Kmin have a more discrete spectrum, i.e. less distinct eigenvalues,

but higher degeneracies.

In Fig. 4.15 we monitor how the stiffness parameter q affects the storage modulus. We

consider the same SGSFNs, which have γ = 2.5, Kmin = 2 and Kmax = 3999. By switching
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Figure 4.15 - Storage modulus and its derivative for SGSFNs with N = 4000 and S = 100 realizations.
The parameters (γ, Kmin, Kmax, q) are (2, 2, 3999, variable).

on the stiffness we manage to smoothen this peak and for q = 0.3 we encounter the broadest

constant slope, α′ ≈ 0.83, in the region of intermediate frequencies. However, this behavior is

destroyed gradually by further increasing the q-value. We also notice that the elevation around

ω ≈ 10 becomes more visible and with higher values of the derivative when the stiffness parameter

increases. This elevation is encountered for medium and high values of q; for q = 0.5 the derivative

ranges between α′ ≈ 0.3 and 0.1. Similar values were also found for linear chains and large values

of stiffness parameter [36]. In the region between ω ≈ 0.1 and 1.0 we have noticed a decrease in

the net values of G′ for all the curves.

In Fig. 4.16 we plot in double logarithmical scale the reduced loss modulus, Eq. (3.36),

where we consider νkBT/N = 1 and σ = 1. We display the results for S = 100 networks with

N = 4000 monomers. In all panels we show as inset the derivative α′′ = d(log10G
′′)

d(log10ω) of all the curves

from the main subfigure. First, we focus on the influence of the networks’s topology, which is

controled by the parameter γ, on the relaxation dynamics. In Fig. 4.16 (right) we set the stiffness

parameter to q = 0.3, while in Fig. 4.16 (down) we have q = 0.7. In both panels, the connectivity

parameter takes γ-values between 1 and 4. Immediately apparent are the limiting behaviors for all

the curves, namely an ω1-law for very low frequencies and an ω−1-law for very high frequencies.

For γ = 1 we encounter a high peak at log10ω ≈ −1, which is a consequence of having an eigenvalue

with a very high degeneracy, λ∗ = f/(f + q). Due to big changes of networks’s topology, the peak

is not so evident anymore even for increase of γ and it disappears completely for networks with

γ = 4. For SGSFNs with γ = 2.5 we encounter a small region of almost constant slope (α′′ ≈ 0.76),
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Figure 4.16 - Loss modulus and its derivative for SGSFNs with N = 4000 and S = 100 realizations.
Other parameters are: (γ, Kmin, Kmax, q): (Left) (variable, 2, 3999, 0.3) and (Right) (variable, 2, 3999,
0.7).

which is broader when q is smaller. For example, it extends for more than one order of magnitude

when q = 0.3 and only to one order when q = 0.7 is considered, by comparing Figs. 4.16 (right)

and (left). Similar values of the slope were encountered experimentally for cross-linked polymer gel

based on reversible covalent acylhydrazone bond [97] and Poly(vinyl chloride) plastisol gels [98].

In Ref. [99], the authors encountered slopes between 0.5 and 0.7 in the intermediate frequency

region when studying dendronized polymers with generations 1− 3 and backbone nominal degrees

of polymerization in the range of 50 − 3000. For frequencies between 10−3 and 10−4 we notice

another very prominent peak for networks with γ = 1, which is shifted in the direction of lower

frequencies when γ increases. The existance of this peak is due to the presence of larger stars; the

same behavior being encountered also for flexible scale-free networks [34,68]. For small to medium

values of the stiffness parameter, like in panel 4.16 (a), the peak slowly disappears, but for high

values of q it moves towards lower frequencies when γ is increased.

In Fig. 4.17 we investigate the influence of Kmax on the loss modulus for SGSFNs

with γ = 2.5, Kmin = 2, and the stiffness parameter q = 0.1. In this case the usual slope for

a linear chain, namely 0.5, is perfectly recovered; a higher stiffness value diminishes the length

of the constant slope. Even by a small increase of Kmax we notice a clear transformation of the

curves in the intermediate frequency region. The constant slope of 0.5 vanishes and we notice a

monotounous decay of the derivative, due to the presence of many nodes with degree higher than

two. Networks with very high γ show a constant slope of α′′ ≈ 0.76, extended for almost two

orders of magnitude. By comparing these results with Fig. 4.14 we can conclude that a change of

Kmax is not that stricking as a change of Kmin.

In Fig. 4.18 we focus on the influence of the stiffness parameter q on the loss modulus,

choosing to display the results for SGSFNs with γ = 2.5, Kmin = 3 and Kmax = 3999. In the region

of lower intermediate frequencies we observe a constant slope with α′′ ≈ 0.76. For all the other

q-values the slope continues to be the same, but its width gets narrower. For higher intermediate
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Figure 4.17 - Loss modulus and its derivative for SGSFNs with N = 4000 and S = 100 realizations for
the parameters (γ, Kmin, Kmax, q) are (2.5, 2, variable, 0.1).

region we observe a monotounous decay of the derivative for lower values of q, followed by a local

minimum and a peak for medium to high values of q. However, this minimum is not as sharp as

in the case of dendritic semiflexible polymers [84] or dendrimers [36, 89] because the pseudogap

in the region of high eigenvalues is smoothered by the scale-free topology. Similar findings were

encountered for some particular semiflexible scale-free networks (Kmin = 2 and Kmax = N−1) [38]

or small-world networks [93]. In the region of high frequencies the loss modulus gets wider if the

stiffness parameter q is increased. This aspect is related to an increase in the value of the highest

eigenvalues, as noticed also in other semiflexible hyperbranched polymer networks [38,84–86].

In figures 4.19 and 4.20 we display in double logarithmical scale the average monomer dis-

placement, 〈〈Y 〉〉, calculated based on Eq.(3.19), for S = 100 SGSFNs with N = 4000 monomers.

In Fig. 4.19 we monitor how the stiffness parameter q influences the average monomer displace-

ment, choosing to display the results for SGSFNs with γ = 2.5, Kmin = 2, and Kmax = 3999. For

these networks we have noticed a constant slope in the region of intermediate times when q = 0.3,

see Fig. 4.19. Now, by varying q we observe almost the same behavior for all the q-values. The

most significative difference is given by the width of the constant slope region. When q increases

the length of the constant slope diminishes and a region of monotonous decay appears for lower

intermediate times. It is worth reminding that we observe scaling only for SGSFNs with γ = 2.5,

but this small increase of the slope for lower intermediate times is valid for other values of γ. This

is a direct consequence of the increase of the highest eigenvalues, as can be seen in Fig. 4.2 (c).

In Fig. 4.20 (a) we focus on the influence of the networks’ topology, by varying only γ.



4.2 Mechanical Relaxation 49

Figure 4.18 - Loss modulus and its derivative for SGSFNs with N = 4000 and S = 100 realizations for
the parameters (γ, Kmin, Kmax, q) are (2.5, 2, 3999, variable).

Here, we display the results for SGSFNs with (Kmin,Kmax) = (2, 3999) and the stiffness parameter

q = 0.3. All the curves lay between the curves for a linear chain and a star with N − 1 arms;

features from both these limiting topologies being observed. In the intermediate time domain we

notice an almost constant slope of α ≈ 0.53 for a linear chain, which is slightly different than 0.5

obtained for the Rouse flexible linear chain (q = 0). For the single star we notice a complete lack

of scaling, having only a steep decay until a minimum followed by a fast increase of the derivative.

Networks with low values of γ maintain the behavior of a star, while SGSFNs with high γs are

approaching the linearlike behavior, but it will not be reached due to the presence of nodes with

higher degree. The most interesting siuation is encountered for SGSFNs with γ = 2.5. For these

networks we found a constant slope of 0.23 for more than two orders of magnitude. This low value

of the slope is characteristic for some semiflexible topologies, like linear chains [100], stars [36] or

other hyperbranched polymers [93]. In Fig. 4.20 (b) we focus on the influence of Kmin, keeping

constant all the other parameters. For having a constant slope in the intermediate time region

we choose again the SGSFNs with γ = 2.5 and Kmax = 3999 with the stiffness parameter being

equal to q = 0.3. When Kmin is increased, we obtain hyperbranched polymers with a nontrivial

mixture of linear segments and stars of various sizes for Kmin = 2 and formed only by stars for

Kmin > 2. This topological transition can be observe also in the figure, especially in the region

of lower intermediate times. SGSFNs with Kmin > 2 show a local minimum, which gets lower by

increasing Kmin. Remarkably, this local minimum extends by one order of magnitude the region

of constant slope for networks with Kmin = 2 and 3. The effect of diminishing the width of the
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Figure 4.19 - Average monomer displacement and its derivative for SGSFNs. The parameters’ set is:
(N , γ, Kmin, Kmax, q): (Left) (4000, 2, 2, N1, variable), (Right) (4000, 2.5, 2, 3999, variable)

.

Figure 4.20 - Average monomer displacement and its derivative for SGSFNs. The parameters’ set is:
(N , γ, Kmin, Kmax, q): (a) (4000, variable, 2, 3999, 0.3), (b) (4000, 2.5, variable, 3999, 0.3).

constant slope when q is increased, observed in 4.19, is canceled by a slight increase of Kmin. Thus,

a similar behavior can be obtained when both γ and Kmin are varied in a proper manner.

4.2.3 Copolymers Model

Here we study systematically the influence of the parameters, namely γ, Kmin, Kmax, σ

and η, on both mechanical moduli. For each parameter we display in the same figure the results for

the storage and loss moduli G′(ω) and G′′(ω), given by Eqs. (3.35) and (3.36) and their derivatives.

As in the model had seen, we can see in all figures, at very small and very large frequencies G′ ∼ ω2



4.2 Mechanical Relaxation 51

and G′′ ∼ ω1 for ≤ 1 and G′ ∼ ω0 and G′′ ∼ ω−1 for ω ≥ 1. These scaling behaviors are universal,

independent of network topology or the model implemented, and they are not associated with the

microscopic structure.

In Figs. 4.21 and 4.22 we study the influence of changes in σ, which is varied between

0.01 and 100. The particular case σ = ζA/ζB = 1 corresponds to homopolymers (blue color in

the panels) and reproduces the results of homopolymer GSFNs [68]. Even a small deviation from

1 leads to significant differences in the behavior of both moduli. For relatively small differences

from 1, such as σ = 0.1 or 10, we encounter a new feature: a short quasi-plateau (α′ ≈ 0.3 and

α′′ ≈ 0.05) localized to the left (to the right) from the curve with σ = 1, when σ is smaller (larger)

than 1. By further increasing the distance from 1, for example σ = 0.01 or 100, the quasi-plateau

disappears and a pronounced peak appears to the left (to the right) from the curve with σ = 1.

For σ � 1 the B-type monomers are more mobile than the A monomers, thus the relaxation

dynamics starts earlier than in the case of homopolymers, σ = 1. In the region of high frequencies

only the B monomers move, while the A monomers are practically immobile. These monomers

start to move only if one goes towards much lower frequencies. This clear scale separation between

monomers is responsible for the quasi-plateaus and the peaks already mentioned. The scaling

behavior encountered for homopolymer GSFNs in the low frequency domain (frequencies between

10−3 and 100) remains practically unaltered when σ is switched on. The broadening of this constant

slope is almost the same and is noticed only a shift towards low (high) frequencies when σ is smaller

(larger) than 1. This shift exits due to the difference between the mobility of the two monomer

types: ζA and ζB . The value of the slope keeps the same, namely α′ ≈ 0.3 and α′′ ≈ 0.05, because

it is mainly dependent of the topology of the network. In this figure the construction parameters

which control the topology γ, Kmin, and Kmax, are kept constant, thus for all the curves the

topological changes are minimal. The high symmetry between σ and 1/σ curves is due to the fact

that all the networks have the same number of A and B type monomers, as it was observed for

linear alternating copolymer chains [44]. Different values of η infer some discrepancies between σ

and 1/σ curves, i.e. interchange the monomers type. This aspect creates an asymmetric behavior,

which was also observed for copolymeric dendrimers built from alternating monomers [45].

In Figs. 4.23 and 4.24 we study the influence of the network topology on the moduli by

changing only the parameter γ. GSFCNs with low γ (1 in our figure) have predominantly star-like

segments, while for high γ (4 in the figure) we obtain networks with more linear-like segments [68].

For comparison we display the results of the limiting cases: the random linear copolymers, depicted

by circle symbols in the figure, and random stars with N − 1 arms, shown through square symbols

in the figure. For linear copolymers is clearly noticed a plateau with α′ = α′′ = 0.5, which is typical

for a linear homopolymer. This happens because at low frequencies only half of the beads, i.e.

the higher mobility monomers, start to move. It is important to remark that a similar behavior

is encountered for alternating copolymer chains [44]. The big difference between them occurs in

the intermediate frequency region, more precisely in the intensity of the peaks. The symmetric

arrangement of the alternating copolymer gives the highest difference between peaks, while for the
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Figure 4.21 - Storage modulus G′(ω) and your derivative for GSFCNs with N = 4000 with the param-
eters (γ,Kmin,Kmax, σ, η) = (2.5, 2, 3999, variable, 1.0).
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Figure 4.22 - Loss modulus G′′(ω) and your derivative α′′ for GSFCNs with N = 4000 with the
parameters (γ,Kmin,Kmax, σ, η) = (2.5, 2, 3999, variable, 1.0).

block copolymer the variation in the slope is the lowest. The slope of the peaks for any random

linear copolymers is situated between the above-mentioned limiting situations. The results of G′

and G′′ for random copolymer linear chains are similar to our GSFCNs of γ = 4.0, but only in

the region of intermediate to high frequencies (ω ≥ 10−2). In the region of small frequencies the

difference between these two topologies are still significant: the GSFCNs contain a good number

of hyperbranched segments. The same behavior is encountered when one compares both G′ and

G′′ of random stars with N − 1 arms to the GSFCNs with γ = 1. Differently than a star with

N − 1 arms our GSFCNs possess a significant number of linear segments. In the low intermediate

domain we observed constant slopes for almost two orders of magnitude, namely α′ ≈ 0.77 for

GSFCNs with γ = 3.0 and α′′ ≈ 0.85 for GSFCNs with γ ≤ 2.5. This distinct behavior between

the slopes of the moduli was encountered also for the scale-free homopolymer networks, but for

slightly different γ-values, namely 2.75 (for storage modulus) and 2.25 (for loss modulus) [34].

This fact also confirms our findings from Fig. 4.21 that changes in σ appear more clearly in the

region of higher frequencies if σ < 1. For high frequencies (ω ≥ 103) the random stars with N − 1

arms display an increase in the slope of the G′′, which is due to the presence of the core, i.e. a
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monomer with very high degree. This behavior is encountered also for our random GSFCNs of

γ = 1.0 because they also contain monomers with high degree. Remarkably, GSFCNs with γ = 2.0

transform this peak in the slope into a small region of constant slope α′′ ≈ −0.9.
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Figure 4.23 - Storage modulus G′(ω) and your derivative for GSFCNs with N = 4000 with the param-
eters (γ,Kmin,Kmax, σ, η) = (variable, 2, 3999, 0.01, 1.0)
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Figure 4.24 - Loss modulus G′′(ω) and your derivative α′′ for GSFCNs with N = 4000 with the
parameters (γ,Kmin,Kmax, σ, η) = (variable, 2, 3999, 0.01, 1.0)

In Figs. 4.25 and 4.26 we monitor how the modularity parameters Kmin and Kmax

influence the storage and loss moduli. For the first three curves we gradually increase the value of

Kmin, keeping constant Kmax. There is a topological transition between networks with Kmin = 2

and Kmin = 3, more precise a transition from networks with linear segments to networks composed

of stars of different sizes. This transition provides very little changes for GSFCNs, which are better

seen in the slopes α′ and α′′. In the intermediate frequency domain, around ω ≈ 10−2, we notice

only a slight increase of the slopes. This situation is different than semiflexible GSFNs with Kmin =

3 [39], for which a peak becomes more prominent and destroys the constant slope. Copolymer and

semiflexible GSFNs with Kmin = 10 show a very similar behavior in the intermediate frequency

domain, see Fig. 4 (d) of [39] for more details. These two polymer types become distinct in the

region of higher intermediate frequencies, when a new peak appears for copolymers. Remarkably,

the loss modulus keeps almost unaltered when the transition Kmin = 2→ 3 occurs, but copolymers
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with Kmin = 10 increases by almost two order of magnitude the constant slope α′′ ≈ 0.77. In

Fig. 4.25 becomes more evident the presence of a new peak around ω ≈ 101.5, for having to

deal with stars of higher sizes. These results can be understand also in terms of the eigenvalue

spectrum, see Fig. 4.7. GSFCNs with Kmin = 10 increase the degeneracy of the most degenerated

eigenvalues: tildeλλ ≈ σ and tildeλλ ≈ 1, i.e. gaining a more discrete spectrum. In Fig. 4.25 we

keep constant Kmin to 2 and vary the Kmax from 3999 (first curve) to 10 (fourth curve) and 3 (fifth

curve). By doing this, from the topological point of view we are decreasing the size of the stars

in our networks. For the limiting value, Kmax = 3, we get a combination of linear and dendritic

segments. The slopes α′ and α′′ show more clearly that the constant slope is completely destroyed

in the intermediate frequency domain by decreasing Kmin. However, for the curve with Kmax = 3

the constant slope around 0.5 starts to appear (more clearly for G′), which is a feature typical to

single linear chains. Another impactful change occurs for G′′ in the region of ω ≈ 101.5: the peak

observed for (Kmin,Kmax) = (10, 3999) vanishes. Thus, the appearance of this peak is strictly

related to stars of high sizes. In the last curve of Fig. 4.25 we display the results of nonsymmetric

modified dendrimers, i.e. networks composed of monomers with functionality 3 without preserving

the high symmetry of dendrimers. Also for these nonsymmetric dendrimers the lack of scaling in

the intermediate frequency domain is evident, which was observed also for alternating copolymeric

dendrimers as shown in Ref. [45]. By having the same number of A− and B− type of monomers

the two peaks of α′′ show the same height for all curves. However, the behavior of the derivates of

the last three curves are similar: a complete lost of scaling for low intermediate ω-values followed

by a maximum around ω = 1.
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Figure 4.25 - Storage modulus G′(ω) and your derivative for GSFCNs with N = 4000 with the param-
eters (γ,Kmin,Kmax, σ, η) = (2.5, variable, variable, 0.01, 1.0)

In Figs. 4.27 and 4.28 we study the influence of the ratio between the numbers of

monomers of the two types, η = NA
NB

, on the moduli. The construction of our networks allows

us to choose any value between η = 0 (all monomers are of type B) and ∞ (all monomers are

of type A). For an equal number of A and B monomers one has to choose η = 1. In Fig. 4.27

we choose symmetric values for this parameter, such that one value is obtained by invertion of

another η-value. For instance, η = 0.2 corresponds to copolymer networks containing on average
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Figure 4.26 - Loss modulus G′′(ω) and your derivative α′′ for GSFCNs with N = 4000 with the
parameters (γ,Kmin,Kmax, σ, η) = (2.5, variable, variable, 0.01, 1.0)

NA = 667 monomers of type A from a total of N = 4000 monomers, while its inverse η = 5.0

provides networks with roughly NB = 667 B-type monomers. The distribution of the A or B-type

monomers on the network is chosen at random, as described in chapter 3. In Fig. 4.27 we display

the results for σ = 0.01, i.e. monomers of type B are 100 times heavier. By decreasing the number

of B monomers, i.e. increasing η, the width of the constant slope in the region of low intermediate

frequency gets shorter. In the region of ω ≈ 1 a new peak appears when η is switched on, its

height being proportional to the value of η. For comparison we depict by circles the results for

alternating copolymer dendrimers of generation G = 10, which have N = 3070 monomers. For

this class of copolymer dendrimers [45] one monomer type dominates, depending on the dendrimer

generation number G. If one considers that the central monomer (G = 0) is of A-type, for G even

the A monomers predominates, while for G odd the majority of the monomers are B-type. More

precise, the ratio between the A and B monomers η = NA
NB

is equal to 2G+1−1
2G−1

or 2G−1
2G+1−1

if G is

even or odd, respectively. In Fig. 4.27 our dendrimers have η = 211−1
210−1 ≈ 2.0009. The hierarchical

organization of the dendrimers provides a complete lost of scaling in the low intermediate frequency

domain. The second peak of the derivatives, encountered for ω ≈ 1, shows a similar behavior as

our GSFCNs with η = 2.0, especially for the G′ modulus. Thus, we conclude that the size of the

peak in the region of ω ≈ 1 is related to the value of η. The two peaks observed for G′′ have

almost the same height, i.e. the curve is more symmetric, when the network has the same number

of A and B monomers (η = 1). However, it is possible to fine tune this symmetry by choosing an

appropriate distribution of the monomers’ type
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Figure 4.27 - Storage modulus G′(ω) and your derivative for GSFCNs with N = 4000 with the param-
eters (γ,Kmin,Kmax, σ, η) = (2.5, 2, 3999, 0.01, variable)
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Figure 4.28 - Loss modulus G′′(ω) and your derivative α′′ for GSFCNs with N = 4000 with the
parameters (γ,Kmin,Kmax, σ, η) = (2.5, 2, 3999, 0.01, variable)



Chapter 5

Conclusion

We presented a systematic theoretical investigation of the dynamic properties of polymer

networks in the framework of the generalized Gaussian structures. The main goal of this work is

to explore the impact of various Theoretical Models such as Rouse, Semeflexible, and Copolymer

models, applied to the same networks type: scale-free networks. In the models the dynamics is

fully determined by knowing the complete eigenvalues’ spectrum of the dynamical matrix. Firstly,

we have introduced a new type of scale-free network by considering two new modularity parameters

for the usual power-law degree distribution of these hyperbranched trees. They were built by using

the degree distribution given by Eq. (2.32) where Kmin parameter restricts the minimum allowed

degree, Kmax, controls the maximum allowed degree, and γ controls the topology from linear

to hyperbranched networks. Secondly, based on the eigenvalue spectra, we have investigated the

mechanical relaxation G′(ω), G′′(ω) and the average displacement << Y (t) >>.

We have analyzed the structural properties of networks for the Rouse Model. Of help

here is that in the Rouse-regime, the main relaxation patterns depend only on the eigenvalues,

but not on the eigenvectors of the connectivity matrix [33,34,37,38,82]. The eigenvalue spectrum

strongly depends on Kmin for GSFNs of any γ-value. Increasing the value of Kmin we have

observed a gap in the spectrum, located between λ = 1 and the next higher eigenvalue. This gap

was encountered for all γs, and it gets broader as long as Kmin increases. The influence of Kmax

on the eigenvalue spectrum is less pronounced. The most important feature, which is more evident

for lower γs, is a decrease in the degeneracy of the eigenvalue γ = 1 when Kmax gets lower. The

dynamics of the networks have been analyzed through the average monomer displacement and the

mechanical moduli. As observed for the static properties, the parameter Kmin has also a stronger

influence on the dynamical properties of the networks than the parameter Kmax. We have shown

that if only the parameter Kmax is decreased, the moduli for all γ-values tend to the same curve,

and usually the value of the slope is maintained. When we varied the parameter Kmin, we have

observed for intermediate frequencies various regions of constant slopes for different values of the

parameters set (γ,Kmin). We have highlighted the scaling behavior in the intermediate frequency

region for (Kmin, γ) = (3, 2.5). In analyzing the dynamical behavior of the average monomer

displacement, we have mainly concentrated on the influence of Kmin for a particular choice of

γ, specifically γ = 2.5. Varying the parameter Kmin, while Kmax is fixed, we have been able to

increase the width of the scaling region by one order of magnitude, obtaining a larger power-law

behavior for Kmin > 2. This remarkable finding was extended to GSFPNs with higher γs that

don’t show scaling for Kmin = 2, but will scale when Kmin is increased to a certain value.
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We have considered the Semiflexible model on generalized scale-free polymer networks.

The stiffness effects were considered by assuming correlations between bonds of a freely rotating

chain. Thus, we have investigated the influence of the stiffness strength q and of the networks’

topology, controlled by γ, Kmin, and Kmax on the eigenvalue spectrum. The impact of the stiffness

parameter can be reduced to two main aspects: the highest eigenvalues increase and the lowest

eigenvalues decrease if q gets higher, while the most degenerated eigenvalue depends on the q-value,

for not dealing with highly symmetric networks. The influence of other parameters is richer because

by changing at least one of these parameters, we switch to a distinct topology. In the intermediate

frequency domain of the mechanical moduli, we encounter networks with γ = 2.5, for which we

found a constant slope of 0.83 for about two orders of magnitude. By increasing the stiffness

parameter, we increase the width of this constant slope region for another order of magnitude (for

networks with q = 0.3). Networks with no scaling in the intermediate frequency domain show

scaling by carefully choosing all our parameters: γ, q, Kmin, and Kmax. The behavior of the

mechanical moduli show a stronger dependence on Kmin than on Kmax, since the change in the

topology is more efficient. In the intermediate time region of the averaged monomer displacement,

we have observed scaling for networks with γ = 2.5. For these networks, the width of the scaling

region is diminished by increasing the stiffness parameter, but it is increased by more than one

order of magnitude if 3 ≤ Kmin ≤ 5. Thus, by an interplay between q and Kmin, we obtain

networks with different topologies but similar behavior.

In the theoretical model of copolymers, the two monomer types, namelyA andB, are also

assumed to have different friction constants, with σ being the ratio between them. In the limiting

case of equal friction constant or single monomer type, the results of scale-free homopolymer

networks [38,68] were well recovered. By varying the minimum and the maximum allowed degree,

Kmin and Kmax, and the exponent γ of the power-law degree distribution, we obtained irregular

hyperbranched networks within two limiting topologies: linear and star polymer. The type of

each monomer was chosen at random, and the ratio η between the number of A− and B−beads

was established at the beginning of the construction. Thus, we have built random copolymers

from a scale-free network, but the special cases of block copolymers or copolymers with alternating

monomers were possible. In our theoretical model, by knowing the whole eigenvalue spectrum of

a new dynamical matrix, we were able to compute the storage and the loss moduli, which can

be measured in rheological experiments. For star copolymers, no scaling behavior is observed in

the intermediate frequency region, while for random linear copolymers, a scaling with slope 0.5 is

seen. For GSFCNs we encountered an additional constant slope for low intermediate frequencies,

namely 0.77 for G′ (γ = 3.0) and 0.85 for G′′ (γ = 2.5). For relatively high frequencies, the

random star copolymers and GSFCNs with γ = 1.0 have shown a peak for the derivative of G′′

because the networks contain monomers with very high degree. This peak was transformed into

a new region of constant slope for GSFCNs with γ = 2.0 and was completely lost when γ was

higher. The topological transition between GSFCNs with (Kmin = 2) and without (Kmin = 3)

linear segments have shown very little changes for G′. The situation is drastically different when
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Kmin gets higher: the constant slope observed for GSFCNs with γ = 2.5 was almost destroyed

for G′, but was increased by almost two orders of magnitude for G′′. The parameter Kmax was

decreased while Kmin was kept unaltered; thus, the size of the stars in our networks got higher.

For both moduli, the scaling behavior was completely destroyed and for Kmax = 3 the constant

slope around 0.5 started to appear, reminding single linear chains.

The influence of the ratio η for GSFCNs with more A type monomers have higher

degeneracy of 1, while copolymers with more B monomers have more eigenvalues equal to σ.

The ones responsible for this behavior are the star-like segments. For small star copolymers with

predominant A monomers, they have the eigenvalue 1, while for predominant B monomers, we get

the eigenvalue σ as the most degenerated. For G′, when decreasing the number of B monomers, i.e.

increase η, the width of the constant slope in the region of low intermediate frequency gets shorter.

In the region of ω ≈ 1 a new peak appears when η is switched on, its height being proportional to

the value of η. The second peak of the derivatives, encountered for ω ≈ 1, shows a similar behavior

as our GSFCNs with η = 2.0, especially for the G′ modulus, which influence in the size of the peak

in the region of ω ≈ 1 is related to the value of η.

In these three models, the dynamics are fully determined by knowing the complete

eigenvalues’ spectrum of a dynamical matrix. However, unlike what one finds for flexible (Rouse)

GGS, the mechanic relaxation forms for SGSFNs and GSFCNs are not similar. In all models,

we have displayed the mechanical storage and loss moduli and average displacement. In the limit

of very small and very large frequencies we obtained the well-known behaviors: for the storage

modulus G′ a ω2 dependence and a plateau, respectively, while for the loss modulus G′′ a ω1 and

a −1 dependence, respectively. For Semiflexible model, with the increasing stiffness parameter q,

the G′′ curves get broader especially in the high frequency domain (showing that the stiffness is

very important at the local scales) and they start to show a local minimum and another minor

peak in the in-between region. Already for the copolymers, G′ and G”, we can observe two peaks

with the size of the peak in the region of ω ≈ 1 being related to the values of σ and η, and for G′′

have almost the same height, i.e. the curve is more symmetric, when the network has the same

number of A and B monomers (η = 1).

Futher perpectives of this thesis include studying two situations: the application of the

semiflexible to copolymers and to work with three type monomers, both for Generalized Scale-Free

Copolymer Network. In both situations, we study the behavior of the mechanical relaxiton moduli

through the eigenvalues of the new dynamical matrix.
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[21] ONNELA, J.-P.; KASKI, Kimmo; KERTÉSZ, Janos. Clustering and information in corre-

lation based financial networks. The European Physical Journal B, v. 38, p. 353-362,

2004.

[22] BERCHE, Bertrand et al. Resilience of public transport networks against attacks. The Eu-

ropean Physical Journal B, v. 71, p. 125-137, 2009.

[23] ZHANG, Peng et al. The robustness of interdependent transportation networks under targeted

attack. Europhysics Letters, v. 103, n. 6, p. 68005, 2013.
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