???jsp.display-item.social.title??? |
![]() ![]() |
Please use this identifier to cite or link to this item:
https://tede.ufam.edu.br/handle/tede/7078
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Alencar, Márcio André da Costa | - |
dc.creator.Lattes | http://lattes.cnpq.br/7247102045522245 | por |
dc.contributor.advisor1 | Barreto, Raimundo da Silva | - |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/1132672107627968 | por |
dc.contributor.referee1 | Barreto, Raimundo da Silva | - |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/1132672107627968 | por |
dc.contributor.referee2 | Souto, Eduardo James Pereira | - |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/3875301617975895 | por |
dc.contributor.referee3 | Caldas, Ruiter Braga | - |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/9686087091192989 | por |
dc.contributor.referee4 | Carro, Luigi | - |
dc.contributor.referee4Lattes | http://lattes.cnpq.br/8544491643812450 | por |
dc.date.issued | 2019-03-25 | - |
dc.identifier.citation | ALENCAR, Márcio André da Costa. Extração descentralizada de conhecimento associativo para internet das coisas. 2019. 79 f. Dissertação (Mestrado em Informática) - Universidade Federal do Amazonas, 2019. | por |
dc.identifier.uri | https://tede.ufam.edu.br/handle/tede/7078 | - |
dc.description.resumo | A identificação dos padrões de comportamento do usuário é um dos recursos que pode ser incorporado à Internet das Coisas. Encontrar padrões e utilizá-los como conhecimento para a tomada de decisões pode proporcionar facilidade, conforto, praticidade e autonomia para a execução das atividades diárias. Embora a extração de conhecimento seja comum em ambientes inteligentes centralizados, sua execução em uma arquitetura descentralizada ainda é um desafio computacional relevante considerando as restrições de armazenamento e processamento dos dispositivos IoT. Esta dissertação descreve um método para minerar correlações implícitas entre os padrões de ações de dispositivos de IoT por meio de análise associativa embarcada. Com base nas métricas support, confidence e lift, o método identifica as correlações mais relevantes entre um par de ações de diferentes dispositivos e sugere ao usuário a integração entre elas por meio de solicitações HTTP. Resultados experimentais mostram que, em média, as regras mais relevantes para ambas as arquiteturas são as mesmas em 99,75% dos casos. Além disso, o método proposto identificou correlações relevantes que não foram identificadas pela arquitetura centralizada. Esta pesquisa enfatiza que a análise do padrão de ações do dispositivo é uma abordagem eficiente para fornecer um ambiente altamente integrado e inteligente, contornando os problemas do ponto único de falha e do armazenamento excessivo de dados em dispositivos IoT. | por |
dc.description.abstract | Identifying user behavior patterns is one of the features that can be incorporated into the Internet of Things. Finding standards and using them as knowledge for decision making can provide ease, comfort, practicality and autonomy for the execution of daily activities. Although knowledge extraction is common in centralized intelligent environments, its execution in a decentralized architecture is still a relevant computational challenge onsidering the storage and processing constraints of IoT devices. This dissertation describes a method for mining implicit correlations between IoT device action patterns through embedded associative analysis. Based on the metrics support, confidence and lift, the method identifies the most relevant correlations between a pair of actions from different devices and suggests to the user the integration between them through HTTP requests. Experimental results show that, on average, the most relevant rules for both architectures are the same in 99.75\% of cases. In addition, the proposed method identified relevant correlations that were not identified by the centralized architecture. This research emphasizes that device action pattern analysis is an efficient approach to provide a highly integrated and intelligent environment by circumventing single point failure problems and excessive data storage on IoT devices. | eng |
dc.description.sponsorship | FAPEAM | por |
dc.format | application/pdf | * |
dc.thumbnail.url | https://tede.ufam.edu.br//retrieve/29751/Dissertacao_MarcioAlencar_PPGI.jpg | * |
dc.thumbnail.url | https://tede.ufam.edu.br//retrieve/29974/Disserta%c3%a7%c3%a3o_MarcioAlencar_PPGI.pdf.jpg | * |
dc.language | por | por |
dc.publisher | Universidade Federal do Amazonas | por |
dc.publisher.department | Instituto de Computação | por |
dc.publisher.country | Brasil | por |
dc.publisher.initials | UFAM | por |
dc.publisher.program | Programa de Pós-graduação em Informática | por |
dc.rights | Acesso Aberto | por |
dc.subject | Internet das Coisas | por |
dc.subject | Análise Associativa | por |
dc.subject | Sistemas Distribuídos | por |
dc.subject | Mineração Descentralizada | por |
dc.subject | Comportamento de usuários | por |
dc.subject.cnpq | CIÊNCIAS EXATAS E DA TERRA | por |
dc.title | Extração descentralizada de conhecimento associativo para internet das coisas | por |
dc.title.alternative | Decentralized extraction of associative knowledge for the internet of things | por |
dc.type | Dissertação | por |
Appears in Collections: | Mestrado em Informática |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Dissertação_MarcioAlencar_PPGI.pdf | 3.48 MB | Adobe PDF | ![]() Download/Open Preview |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.